JP4549086B2 - Running wind cooling system for railway vehicles - Google Patents

Running wind cooling system for railway vehicles Download PDF

Info

Publication number
JP4549086B2
JP4549086B2 JP2004084790A JP2004084790A JP4549086B2 JP 4549086 B2 JP4549086 B2 JP 4549086B2 JP 2004084790 A JP2004084790 A JP 2004084790A JP 2004084790 A JP2004084790 A JP 2004084790A JP 4549086 B2 JP4549086 B2 JP 4549086B2
Authority
JP
Japan
Prior art keywords
heat
wind
traveling
vehicle
traveling wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084790A
Other languages
Japanese (ja)
Other versions
JP2005271646A (en
Inventor
雅彦 堀内
清一 渡辺
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2004084790A priority Critical patent/JP4549086B2/en
Publication of JP2005271646A publication Critical patent/JP2005271646A/en
Application granted granted Critical
Publication of JP4549086B2 publication Critical patent/JP4549086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は受熱部と放熱部を配管で接続してポンプにより冷媒を循環させて発生熱を輸送し、放熱部に走行風を取込み冷却する循環冷却システムを有する鉄道車両用走行風冷却装置に係わり、特に電力変換装置の小型化、冷却性能向上を図れるようにした鉄道車両用走行風冷却装置に関するものである。   The present invention relates to a traveling wind cooling apparatus for a railway vehicle having a circulation cooling system in which a heat receiving section and a heat radiating section are connected by piping and a refrigerant is circulated by a pump to transport generated heat and the traveling wind is taken into the heat radiating section and cooled. In particular, the present invention relates to a traveling wind cooling device for a railway vehicle that can reduce the size of the power conversion device and improve the cooling performance.

図8は特開2003−48533号公報の図25〜27に記載された、走行風を利用して冷却を実施している従来構造の鉄道車両用走行風冷却電力変換装置26の斜視図を示す。電力変換装置26内部にはパワーユニット23が配置してある。   FIG. 8 is a perspective view of a traveling wind cooling power conversion device 26 for a railway vehicle having a conventional structure, which is described in FIGS. 25 to 27 of Japanese Patent Application Laid-Open No. 2003-48533, and that performs cooling using traveling wind. . A power unit 23 is disposed inside the power conversion device 26.

パワーユニット23は半導体素子3、ヒートブロック20、冷却フィン21、ヒートパイプ22から構成されている。素子3の発生熱は熱伝導原理を利用して冷却フィン21に輸送され車両床下面を流れる走行風で冷却されるのと同時に、沸騰潜熱輸送原理を利用してヒートパイプ22に輸送され車両側面から取込んだ走行風で冷却される。   The power unit 23 includes a semiconductor element 3, a heat block 20, a cooling fin 21, and a heat pipe 22. The heat generated by the element 3 is transported to the cooling fins 21 using the heat conduction principle and cooled by the traveling wind flowing on the lower surface of the vehicle floor. At the same time, it is transported to the heat pipe 22 using the boiling latent heat transport principle. It is cooled by the driving wind taken from

素子の発生熱を車両床下並びに側面に輸送するために熱伝導原理または沸騰潜熱輸送原理を利用しているが、これらの熱輸送手段を用いて効率よく熱輸送するためには、受熱部であるヒートブロック20と放熱部である冷却フィン21、ヒートパイプ22をごく近傍に配置する必要がある。   The heat conduction principle or boiling latent heat transport principle is used to transport the generated heat of the element to the vehicle floor and to the side, but in order to efficiently transport heat using these heat transport means, it is a heat receiving part. It is necessary to arrange the heat block 20, the cooling fins 21 that are heat radiating portions, and the heat pipe 22 in the very vicinity.

このため、パワーユニット23は走行風取込み可能な車両床下並びに車両側面に直ぐに面するように、電力変換装置26内部の下部または側部位に平面的に配置されることとなる。この平面的なパワーユニット23配置の制約を受けるために電力変換装置26小型化には限界が発生していた。   For this reason, the power unit 23 is planarly arranged at the lower part or the side part inside the power conversion device 26 so as to face the vehicle floor under which the traveling wind can be taken in and the vehicle side surface. Due to the restriction of the planar power unit 23 arrangement, there has been a limit to downsizing the power converter 26.

走行風を取込むための床下カバー開口部24は矩形であり、開口部24内部に配置されている導風ガイド25は直線的に傾いた形状となっている。   The underfloor cover opening 24 for taking in the traveling wind is rectangular, and the air guide 25 arranged inside the opening 24 has a linearly inclined shape.

車両側面に沿って流れている走行風27を開口部24から取込む場合、一般的に開口部24端面で流れの剥離が起こりやすいために、導風ガイド25の流れに対する傾斜角度はできる限り小さくする必要がある。一般的に剥離を起こさない角度は7°以下と報告されている。しかしながら、ヒートパイプ22全面に走行風を取込むために導風ガイド25の流れに対する傾斜角度は7°以上に大きくなっており、剥離が生じて走行風取込み効率が悪化している。   When the traveling wind 27 flowing along the vehicle side surface is taken in from the opening 24, generally, the separation of the flow tends to occur at the end surface of the opening 24, so the inclination angle with respect to the flow of the air guide 25 is as small as possible. There is a need to. In general, the angle at which peeling does not occur is reported to be 7 ° or less. However, since the traveling wind is taken into the entire surface of the heat pipe 22, the inclination angle with respect to the flow of the wind guide guide 25 is increased to 7 ° or more, and peeling occurs to deteriorate the traveling wind intake efficiency.

また、床下カバーに設けられた開口部24について、矩形形状では開口部エッジでの流体剥離が大きくなり走行風取込み効率が悪化している。
特開2003−48533号公報
Further, with the rectangular opening 24 provided in the underfloor cover, fluid separation at the edge of the opening becomes large, and the running wind intake efficiency is deteriorated.
JP 2003-48533 A

以上のように、走行風を利用して冷却する電力変換装置において、発生熱を熱伝導原理または沸騰潜熱輸送原理を利用して輸送する冷却フィン21、ヒートパイプ22を用いた冷却方式では電力変換装置が小型化できないという問題がある。   As described above, in the power conversion device that cools using traveling wind, power conversion is performed in the cooling method using the cooling fins 21 and the heat pipes 22 that transport the generated heat using the heat conduction principle or the boiling latent heat transport principle. There is a problem that the device cannot be miniaturized.

また、走行風を取込むための床下カバー開口部24形状並びに導風ガイド25形状が流体的に剥離を助長する形状となっており、走行風取込み効率が悪化して冷却性能を低下させている問題がある。   Further, the shape of the underfloor cover opening 24 for taking in the traveling wind and the shape of the air guide 25 are the shapes that promote fluid separation, and the traveling wind intake efficiency is deteriorated to lower the cooling performance. There's a problem.

本発明の第1の目的は電力変換装置外形の小型化を可能にする冷却方式を有する鉄道車両用走行風冷却装置を提供することにある。   A first object of the present invention is to provide a traveling wind cooling device for a railway vehicle having a cooling system that enables downsizing of the outer shape of the power converter.

本発明の第2の目的は冷却性能向上を可能にする走行風取込み形状を提供することにある。   A second object of the present invention is to provide a traveling wind intake shape that enables an improvement in cooling performance.

上記の目的を達成するために、本発明では、素子の発生熱を冷媒を用いて受熱し、ポンプの動力にて配管を経由して放熱部に熱輸送する強制熱輸送方式を利用した循環冷却システムを構築するようにしている。すなわち、冷媒を流通させる通路が設けられた受熱部と、走行風が流れる流路中に設けられた放熱部と、該放熱部と前記受熱部との間で前記冷媒を流通させる流路とを有し、前記前記走行風が流れる流路は、車体の床下部に車体表面に連続して設けられた床下カバーから、前記車体の内側方向へ窪ませて設けている。 In order to achieve the above object, in the present invention, circulating cooling using a forced heat transport system that receives the generated heat of the element using a refrigerant and transports heat to the heat radiating portion via a pipe by the power of the pump. I try to build a system. That is, a heat receiving part provided with a passage for circulating the refrigerant, a heat radiating part provided in a flow path through which the traveling wind flows, and a flow path for circulating the refrigerant between the heat radiating part and the heat receiving part. The flow path through which the traveling wind flows is provided to be recessed toward the inside of the vehicle body from an underfloor cover that is provided continuously on the surface of the vehicle body at the bottom of the vehicle body.

従って、受熱部と放熱部は電力変換装置の任意の部位に配置し、その間を配管で接続することが可能となり、車両床下スペースを有効に利用して電力変換装置の小型化が可能となる。   Therefore, the heat receiving portion and the heat radiating portion can be arranged at any part of the power conversion device, and can be connected by a pipe between them, and the power conversion device can be miniaturized by effectively using the space under the vehicle floor.

また、本発明では、放熱部を車体床下カバー内側に配置し、その両側に走行風を取込むための開口部を設けている。   Further, in the present invention, the heat radiating portion is disposed inside the vehicle body underfloor cover, and openings for taking in the traveling wind are provided on both sides thereof.

従って、車体側面を流れている走行風を最も取込み易い位置に放熱部が配置できるので、取込むことができる走行風も大きく冷却性能向上が期待でき、放熱部の小型化とポンプ容量の小型化によって電力変換装置全体の小型化が可能となる。   Therefore, since the heat radiation part can be arranged at the position where the traveling wind flowing on the side of the vehicle is most easily captured, the traveling wind that can be captured can be expected to greatly improve the cooling performance, and the heat radiation part can be downsized and the pump capacity can be reduced. Therefore, the power converter as a whole can be downsized.

さらに本発明では、冷媒循環冷却システムに放熱部を追加配置し、車両に搭載している電力変換装置以外の機器からの冷却風の一部を追加した放熱部に強制的に導風するようにしている。   Furthermore, in the present invention, an additional heat dissipating part is arranged in the refrigerant circulation cooling system so that a part of the cooling air from equipment other than the power converter installed in the vehicle is forcibly guided to the heat dissipating part. ing.

従って、走行風による冷却風確保以外に追加の冷却風を得ることができ、冷却性能の向上が可能となる。   Therefore, it is possible to obtain additional cooling air in addition to securing the cooling air by the traveling air, and it is possible to improve the cooling performance.

さらに本発明では、走行風取込み口形状を走行風流入方向に対して徐々に広げるような構造としている。   Furthermore, in this invention, it is set as the structure which expands a driving | running | working wind intake port shape gradually with respect to a driving | running | working wind inflow direction.

従って、走行風流体の剥離は開口部先端の1点でのみ発生し、徐々に両側2本に広がった形状端部で走行風を巻き込みながら取込むことができ、走行風導入効率向上による冷却性能の向上が可能となる。   Therefore, the separation of the traveling wind fluid occurs only at one point at the front end of the opening, and it can be taken in while the traveling wind is gradually trapped at the two ends of the shape, and the cooling performance is improved by improving the traveling wind introduction efficiency. Can be improved.

さらに本発明では、冷却に必要な放熱部容量を請求項1に対する発明と同じに確保した状態で集約し、通風方向を車両進行方向に平行に配置するようにしている。   Furthermore, in the present invention, the heat dissipating section capacity necessary for cooling is gathered in a state secured in the same manner as in the invention for claim 1, and the ventilation direction is arranged parallel to the vehicle traveling direction.

従って、放熱部を車両進行方向に対して短くできるので、電力変換装置の小型化が可能となる。
さらに本発明では、導風ガイドの傾きを複数段にするように形成している。
従って、走行風の流体は流れ方向に対して急激な傾きの変化がないので剥離しにくくなり、より多くの走行風を取込むことができ、冷却性能の向上が可能となる。
Therefore, since the heat radiating part can be shortened with respect to the traveling direction of the vehicle, the power converter can be downsized.
Furthermore, in this invention, it forms so that the inclination of a wind guide may be made into multiple steps | paragraphs.
Therefore, since the fluid of the traveling wind does not change sharply with respect to the flow direction, it is difficult to peel off, more traveling wind can be taken in, and the cooling performance can be improved.

以上説明したように、本発明の鉄道車両用走行風冷却装置を備えた電力変換装置によれば、受熱部と放熱部を配管で接続してポンプにより冷媒を循環させて発生熱を輸送し、放熱部に走行風を取込み冷却する循環冷却システムを使用するので装置の小型化、冷却性能向上を図ることが可能となる。 As described above, according to the power conversion device provided with the traveling wind cooling device for railway vehicles of the present invention, the heat receiving portion and the heat radiating portion are connected by a pipe and the generated refrigerant is circulated by a pump to transport the generated heat. Since a circulating cooling system that takes in and cools the running air into the heat radiating section is used, the apparatus can be downsized and the cooling performance can be improved.

さらに、放熱部を車両側面に配置しているので、車両定期点検時等の清掃作業が容易に実施でき、省メンテナンス化を図ることが可能となる。   Furthermore, since the heat radiating portion is arranged on the side surface of the vehicle, cleaning work such as during periodic vehicle inspections can be easily performed, and maintenance can be saved.

本発明は、車両が走行することによって得られる走行風を利用して機器発生熱を冷却する鉄道車両用電力変換装置において、受熱部と放熱部を配管で接続してポンプにより冷媒を循環させて発生熱を輸送し、放熱部に走行風を取込み冷却する循環冷却システムを構築することによって、電力変換装置の小型化を実現するようにするものである。また、走行風取り入れ部の構造を流体力学の見地から最適化し、より多くの走行風を導風して冷却性能向上を図るようにするものである。   The present invention relates to a railway vehicle power conversion device that cools equipment generated heat using traveling wind obtained by traveling of a vehicle, and connects a heat receiving portion and a heat radiating portion with a pipe and circulates a refrigerant by a pump. By constructing a circulating cooling system that transports the generated heat and cools the running air by taking it into the heat radiating section, the power conversion device can be miniaturized. In addition, the structure of the traveling wind intake portion is optimized from the viewpoint of fluid dynamics, and more traveling wind is guided to improve the cooling performance.

以下、上記のような考え方に基づく本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention based on the above-described concept will be described in detail with reference to the drawings.

(第1の実施の形態)
図1は本実施の形態による鉄道車両用走行風冷却装置を備えた電力変換装置の構成例を示す斜視図(車体下面からの装置斜視図)、図2は図1の電力変換装置のみを内部構造がわかるように表示した斜視図、図7は図2の受熱部のみを内部構造がわかるように表示した斜視図であり、第1の実施の形態について図1、図2、図7を用いて説明する。
(First embodiment)
FIG. 1 is a perspective view (apparatus perspective view from the bottom of a vehicle body) showing an example of the configuration of a power conversion device provided with a traveling wind cooling device for a railway vehicle according to the present embodiment. FIG. 2 shows only the power conversion device in FIG. FIG. 7 is a perspective view showing only the heat receiving portion of FIG. 2 so that the internal structure can be seen. FIG. 1, FIG. 2, and FIG. 7 are used for the first embodiment. I will explain.

図7において、発熱を伴う半導体素子3は受熱部4に実装されている。受熱部4内部には熱を輸送する冷媒が循環できるよう流路17が設けられている。流路17内を冷媒が流れて受熱部4内部を通過することにより、半導体素子3の発生熱を吸収し熱輸送を実施する。尚受熱部4は、例えば、半導体素子3が実装される絶縁性基板に金属等からなる放熱板を積層した構造、あるいは、金属基板の表面にほうろう等の絶縁層を設けたものであって、前記放熱版や金属基板の内部やその表面に冷媒の流路を設けた構造となっている。   In FIG. 7, the semiconductor element 3 that generates heat is mounted on the heat receiving portion 4. A flow path 17 is provided inside the heat receiving portion 4 so that a refrigerant for transporting heat can circulate. When the refrigerant flows through the flow path 17 and passes through the heat receiving portion 4, the heat generated by the semiconductor element 3 is absorbed and heat transport is performed. The heat receiving portion 4 is, for example, a structure in which a heat sink made of metal or the like is laminated on an insulating substrate on which the semiconductor element 3 is mounted, or an insulating layer such as an enamel is provided on the surface of the metal substrate, The heat dissipation plate or the metal substrate has a structure in which a coolant channel is provided inside or on the surface thereof.

図2において、パワーユニット5は電力変換部の中枢であるが、半導体素子を含む多数の電気部品から構成されている。多数の電気部品の中で最も発熱し、冷却が必要な部品は半導体素子3であるが、その実装形態は図7としており、パワーユニット5に冷媒循環用の配管28が接続され、半導体素子3の発生熱はポンプ6で冷媒を圧送することにより放熱部7に輸送される。   In FIG. 2, the power unit 5 is the center of the power conversion unit, but is composed of a large number of electrical components including semiconductor elements. Of the many electrical components, the component that generates the most heat and needs to be cooled is the semiconductor element 3. The mounting form is as shown in FIG. 7, and the refrigerant circulation pipe 28 is connected to the power unit 5. The generated heat is transported to the heat radiating section 7 by pumping the refrigerant with the pump 6.

放熱部7は車両床下カバー10の内側にスペース効率良く配置している。通常、このスペースは車体形状の制約を受けるため、狭く機器類の実装が困難なスペースであるが、放熱部7は冷却性能を確保するために長細く通風面積を広く確保した形状としたことで、この狭いスペースを有効に活用でき配置が可能となっている。前記放熱部7は、冷媒が流れる流路となるパイプを所定の空間(例えば図2に符号7で示された放熱部の空間)内で多数回屈曲させ、該空間を流れる流体(より具体的には走行風)に接触する表面積をできるだけ大きく確保するようにした構成となっている。   The heat dissipating part 7 is arranged in a space efficient manner inside the vehicle floor lower cover 10. Normally, this space is limited due to restrictions on the vehicle body shape, so it is narrow and difficult to mount equipment, but the heat radiation part 7 is long and narrow in order to ensure cooling performance. This narrow space can be used effectively and arranged. The heat dissipating part 7 bends a pipe serving as a flow path through which the refrigerant flows a number of times in a predetermined space (for example, a space of the heat dissipating part indicated by reference numeral 7 in FIG. 2), and a fluid flowing through the space (more specifically, In this configuration, the surface area in contact with the traveling wind) is as large as possible.

放熱部7に走行風を取込むために、床下カバー10に開口部11が設けられている。また、走行風を放熱部7に導風するために導風ガイド13が設けられている。走行風は車体床下カバー10に沿って流れているが、開口部11に接続されている導風ガイド13に沿って、流れが曲げられ、放熱部7に導風される。   An opening 11 is provided in the underfloor cover 10 in order to take the traveling wind into the heat radiating unit 7. An air guide 13 is provided to guide the traveling air to the heat radiating section 7. The traveling wind flows along the vehicle body underfloor cover 10, but the flow is bent along the wind guide 13 connected to the opening 11 and is guided to the heat radiating unit 7.

開口部11は矩形形状としており、導風ガイド13は放熱部7全体に走行風が通風できる角度に構成している。導風ガイド13に沿って、流れが曲げられる時、導風ガイド13の角度が急であれば、流れが曲がりきれず剥離して走行風の取込み量が減少して冷却性能の低下を招く。一般的に剥離限界角度は7°と言われているが、第1の実施の形態では7°以上になっており、境界層において流れの剥離が生じる可能性があるから、車体1の前号方向へのスペースが許す限り、前記角度を前記剥離限界角度以下に小さくすることが望ましい。また、図示の例では、発熱源である電力変換装置2と放熱部7とを車両の走行方向へほぼ位置を揃えて設けたが、これらの位置を車両の走行方向へずらして配置することにより、放熱部7を設けるための幅方向へのスペースに相当する分だけ電力変換装置2等の発熱源の幅方向への寸法の制限を緩和することができる。また、発熱源で生じた熱が放熱部7から外部へ放出されるので、発熱源自体の通気性を考慮するする必要がなく、したがって、空気抵抗を考慮して設けられるカバーの内側等、車体内あるいは床下等における通風性の悪いスペースに前記発熱源を配置することができる。   The opening 11 has a rectangular shape, and the air guide 13 is formed at an angle that allows the traveling air to pass through the entire heat radiating portion 7. When the flow is bent along the wind guide 13, if the angle of the wind guide 13 is steep, the flow cannot be bent completely and peels off, reducing the amount of running air taken in, and lowering the cooling performance. In general, the separation limit angle is said to be 7 °. However, in the first embodiment, the separation limit angle is 7 ° or more, and flow separation may occur in the boundary layer. As long as space in the direction allows, it is desirable to make the angle smaller than the peeling limit angle. Further, in the illustrated example, the power conversion device 2 that is a heat source and the heat radiating unit 7 are provided so as to be substantially aligned in the traveling direction of the vehicle, but by shifting these positions in the traveling direction of the vehicle, And the restriction | limiting of the dimension to the width direction of heat generating sources, such as the power converter device 2, can be eased by the part corresponding to the space to the width direction for providing the thermal radiation part 7. FIG. Further, since the heat generated in the heat source is released from the heat radiating portion 7 to the outside, there is no need to consider the air permeability of the heat source itself, and therefore the inside of the cover provided in consideration of the air resistance, etc. The heat generation source can be disposed in a space with poor ventilation, such as in the body or under the floor.

次に、以上のように構成した本実施の形態による鉄道車両用走行風冷却装置の作用について説明する。   Next, the operation of the traveling wind cooling apparatus for railway vehicles according to the present embodiment configured as described above will be described.

図2において、パワーユニット5とポンプ6は電力変換装置2内部の任意の場所に配置できる。本実施の形態では車両進行方向に対して、電力変換装置2の長さ方向を最も小さくするように配置している。図8の従来技術では、パワーユニット23の配置が制約されるために電力変換装置26の車両進行方向に対する長さの小型化には限界があったが、本実施の形態では長さの小型化が可能となる。   In FIG. 2, the power unit 5 and the pump 6 can be arranged at any location inside the power conversion device 2. In this Embodiment, it arrange | positions so that the length direction of the power converter device 2 may be made the smallest with respect to the vehicle advancing direction. In the prior art of FIG. 8, since the arrangement of the power unit 23 is restricted, there is a limit in reducing the length of the power conversion device 26 in the vehicle traveling direction, but in this embodiment, the length is reduced. It becomes possible.

さらに放熱部7についても、電力変換装置2の内部でなく、床下カバー10の若干内側という、車体1の表面よりわずかに内側の位置に設けたので、狭く機器類の実装が困難な車両床下カバー内側スペースに有効に配置できる。このため、電力変換装置2には放熱部7を収納する必要がなく、更なる小型化が可能となる。   Further, the heat dissipating part 7 is provided not at the inside of the power conversion device 2 but at a position slightly inside the surface of the vehicle body 1 such as slightly inside the underfloor cover 10, so that the vehicle underfloor cover is difficult to mount equipment narrowly. It can be effectively placed in the inner space. For this reason, it is not necessary to store the heat radiating part 7 in the power converter 2, and further miniaturization becomes possible.

(第2の実施の形態)
図3は本実施の形態による鉄道車両用走行風冷却装置を備えた電力変換装置の構成例を示す斜視図である。図2と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
(Second Embodiment)
FIG. 3 is a perspective view showing an example of the configuration of the power conversion device provided with the traveling wind cooling device for railway vehicles according to the present embodiment. The same reference numerals are given to the same elements as those in FIG. 2 and the description thereof is omitted, and only different parts will be described here.

図3において、循環冷却システムに追加の放熱部9を配置する。床下にぎ装された電力変換装置2以外の電機機器装置(他の電機機器)16を放熱部9の近傍に配置する。   In FIG. 3, an additional heat dissipating part 9 is arranged in the circulation cooling system. An electrical equipment device (other electrical equipment) 16 other than the power conversion device 2 mounted under the floor is disposed in the vicinity of the heat radiating unit 9.

次に、以上のように構成した本実施の形態による鉄道車両用走行風冷却装置を備えた電力変換装置の作用について説明する。 Next, the operation of the power conversion device including the traveling wind cooling device for railway vehicles according to the present embodiment configured as described above will be described.

電機機器装置16の冷却風19の一部が強制的に放熱部9を通過するので、冷却性能向上を図ることが可能となる。また、追加の放熱部9と電機機器装置16は台数、配置位置、組み合わせに制約は無く、任意に増やすことができ、更なる冷却性能向上が可能となる。   Since a part of the cooling air 19 of the electrical equipment device 16 forcibly passes through the heat radiating section 9, it is possible to improve the cooling performance. Moreover, there are no restrictions on the number, arrangement position, and combination of the additional heat dissipating section 9 and the electrical equipment device 16 and can be arbitrarily increased, and further cooling performance can be improved.

(第3の実施の形態)
図4は本実施の形態による鉄道車両用走行風冷却装置の構成例における走行風取込み口形状の斜視図である。図2と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
(Third embodiment)
FIG. 4 is a perspective view of the traveling wind inlet shape in the configuration example of the traveling wind cooling apparatus for railway vehicles according to the present embodiment. The same elements as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here.

図4において、開口部12形状は走行風流入方向に対して徐々に幅を広くした形状としている。鉄道車両は両方向に走行するため、開口部形状は対称形状とし、各進行方向に対して徐々に開口部幅が広くなるように配置している。   In FIG. 4, the shape of the opening 12 is a shape in which the width is gradually increased with respect to the traveling wind inflow direction. Since the railway vehicle travels in both directions, the opening shape is symmetrical, and the opening width is gradually increased with respect to each traveling direction.

次に、以上のように構成した本実施の形態による鉄道車両用走行風冷却装置の作用について説明する。   Next, the operation of the traveling wind cooling apparatus for railway vehicles according to the present embodiment configured as described above will be described.

走行風が取込み口に達した部分では流体の巻き込みや剥離が生じる。図4の走行風流線30は流入方向に対して開口部12に達した部分で斜めに接するために、巻き込み現象が発生して走行風流入を促進する。一方、図2における矩形形状の開口部11では、導風ガイド13の角度が大きい場合、流入先端で開口部幅部分で走行風流線28の剥離が生じ、かつ、走行風流線29は開口部幅が平行なため、巻き込み現象が小さくなり走行風流入が促進できない可能性がある。   In the part where the traveling wind reaches the intake port, fluid entrainment or separation occurs. The traveling wind stream line 30 in FIG. 4 is obliquely in contact with a portion reaching the opening 12 with respect to the inflow direction, so that the entrainment phenomenon occurs and promotes the traveling wind inflow. On the other hand, in the rectangular opening 11 in FIG. 2, when the angle of the air guide 13 is large, the traveling wind stream line 28 peels off at the opening width portion at the inflow tip, and the traveling wind stream line 29 has the opening width. Are parallel to each other, the entrainment phenomenon may be reduced, and traveling wind inflow may not be promoted.

以上のような考えの元で、アメリカで開発された形状(NACAモデル)等を用いて、走行風の流路の抵抗を低減することが望ましい。   Based on the above-mentioned idea, it is desirable to reduce the resistance of the flow path of the traveling wind using a shape (NACA model) developed in the United States.

(第4の実施の形態)
図5は本実施の形態による鉄道車両用走行風冷却装置の構成例における放熱部の斜視図である。図2と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
図5において、放熱部8の通風方向は車両進行方向に平行に配置している。
(Fourth embodiment)
FIG. 5 is a perspective view of the heat dissipating part in the configuration example of the traveling wind cooling apparatus for railway vehicles according to this embodiment. The same reference numerals are given to the same elements as those in FIG. 2 and the description thereof is omitted, and only different parts will be described here.
In FIG. 5, the ventilation direction of the heat radiating portion 8 is arranged in parallel to the vehicle traveling direction.

次に、以上のように構成した本実施の形態による鉄道車両用走行風冷却装置の作用について説明する。   Next, the operation of the traveling wind cooling apparatus for railway vehicles according to the present embodiment configured as described above will be described.

放熱部8は図2の放熱部7と同様の放熱面積を確保しており、冷却性能は同等である。走行風流入方向の外形長さを小さくしているので、放熱部と導風部分を総合したスペースの小型化が可能となる。放熱部形状については放熱部7並びに放熱部8ともに、車両のぎ装の制約に合わせた選択が可能であり構造の自由度が増す。   The heat dissipating part 8 secures a heat dissipating area similar to that of the heat dissipating part 7 in FIG. 2, and the cooling performance is the same. Since the outer length in the traveling wind inflow direction is reduced, the space that combines the heat radiating portion and the air guiding portion can be reduced in size. About the heat radiating part shape, both the heat radiating part 7 and the heat radiating part 8 can be selected in accordance with the restrictions on the mounting of the vehicle, and the degree of freedom of the structure is increased.

(第5の実施の形態)
図6は本実施の形態による鉄道車両用走行風冷却装置を備えた電力変換装置の構成例における導風ガイドの斜視図である。図2と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
(Fifth embodiment)
FIG. 6 is a perspective view of the wind guide in the configuration example of the power conversion device provided with the traveling wind cooling device for railway vehicles according to the present embodiment. The same elements as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here.

図6において、導風ガイド15は流入方向に対して複数段に傾斜角度を変更している。   In FIG. 6, the air guide 15 changes the inclination angle in a plurality of stages with respect to the inflow direction.

次に、以上のように構成した本実施の形態による鉄道車両用走行風冷却装置の作用について説明する。   Next, the operation of the traveling wind cooling apparatus for railway vehicles according to the present embodiment configured as described above will be described.

図2におけて、導風ガイド13に沿って、流れが曲げられる時、導風ガイド13の角度が急であれば、流れが曲がりきれず剥離して走行風の取込み量が減少して冷却性能の低下を招く。一般的に剥離限界角度は7°と言われているが、第1の実施の形態では7°以上になっており、流れの剥離が生じて抵抗が増加する可能性がある。   In FIG. 2, when the flow is bent along the wind guide 13, if the angle of the wind guide 13 is steep, the flow cannot be bent and is separated to reduce the intake amount of the traveling wind and cool down. Incurs performance degradation. Generally, the separation limit angle is said to be 7 °. However, in the first embodiment, the separation limit angle is 7 ° or more, and there is a possibility that flow separation occurs and resistance increases.

図6において、走行風流入先端部の角度は、ある剥離限界角度としての7°以下とし、剥離が無いように走行風を導風している。その後、中間地点でさらに7°以下の角度で導風ガイドを傾斜させて放熱部7に導風している。導風ガイドの寸法に制限がある場合は複数段に傾斜角度を変化させることによって、剥離を生じ難くし、走行風導入効率向上を図ることが可能となる。実際の実施段階では流体粘性、構造物の表面粗さの関係から7°に限定されるものではなく、最適値を求めて実施することになる。 In FIG. 6, the traveling wind inflow front end portion has an angle of 7 ° or less as a certain separation limit angle, and the traveling wind is guided so that there is no separation. Thereafter, the air guide is further inclined at an angle of 7 ° or less at the intermediate point to guide the heat to the heat radiating portion 7 . When the size of the air guide is limited, the inclination angle is changed in a plurality of stages to make it difficult for the separation to occur and to improve the running air introduction efficiency. In the actual implementation stage, it is not limited to 7 ° because of the relationship between the fluid viscosity and the surface roughness of the structure.

(その他の実施の形態)
なお、本発明は、実施段階でその主旨を逸脱しない範囲で種々に変形して実施でき、適宜、組合せて実施できる。組み合わせた場合は組み合わせた効果を得ることができる。また、本願の冷却装置は、電力変換装置以外の他の発熱源の冷却にも利用することができる。また、受熱部に対して放熱部を相対的に上方の位置に配置し、これらの間を適当な勾配を持った流路(流路として利用されるパイプ)で接続することにより、受熱部の熱により蒸発した冷媒を上方の放熱部へ移動させ、放熱部で冷却されて液化した冷媒を重力によって流路の傾斜に沿って受熱部へ戻す方式を採用すれば、冷媒用のポンプを省略し、あるいはポンプ駆動に要する負荷を最小限にするができる。さらに、受熱部と放熱部とは一対一の関係にある必要はなく、複数の受熱部から供給される冷媒を集中させて一つの放熱部で放熱させても、あるいは、単一の受熱部から供給される冷媒を複数の放熱部に分散させて放熱させてもよい。
(Other embodiments)
It should be noted that the present invention can be implemented with various modifications without departing from the spirit of the invention at the stage of implementation, and can be implemented in appropriate combinations. When combined, the combined effect can be obtained. The cooling device of the present application can also be used for cooling other heat sources than the power conversion device. In addition, by disposing the heat dissipating part relative to the heat receiving part and connecting them with a flow path (pipe used as a flow path) having an appropriate gradient, If a method is adopted in which the refrigerant evaporated by heat is moved to the upper heat radiating section, and the refrigerant cooled and liquefied by the heat radiating section is returned to the heat receiving section along the inclination of the flow path by gravity, the refrigerant pump is omitted. Alternatively, the load required for driving the pump can be minimized. Further, the heat receiving part and the heat radiating part do not have to be in a one-to-one relationship, and the refrigerant supplied from a plurality of heat receiving parts may be concentrated and radiated by one heat radiating part, or from a single heat receiving part. The supplied refrigerant may be dispersed in a plurality of heat dissipating parts to dissipate heat.

本発明による鉄道車両用走行風冷却装置の第1の形態を示す斜視図The perspective view which shows the 1st form of the running wind cooling device for rail vehicles by this invention. 図1の電力変換装置のみを内部構造がわかるように表示した斜視図The perspective view which displayed only the power converter device of FIG. 1 so that an internal structure could be understood. 本発明による鉄道車両用走行風冷却装置の第2の形態を示す斜視図The perspective view which shows the 2nd form of the running wind cooling device for rail vehicles by this invention. 本発明による鉄道車両用走行風冷却装置の第3の形態を示す斜視図The perspective view which shows the 3rd form of the running wind cooling device for rail vehicles by this invention. 本発明による鉄道車両用走行風冷却装置の第4の形態を示す斜視図The perspective view which shows the 4th form of the running wind cooling device for rail vehicles by this invention. 本発明による鉄道車両用走行風冷却装置の第5の形態を示す斜視図The perspective view which shows the 5th form of the running wind cooling device for rail vehicles by this invention. 図2の受熱部のみを内部構造がわかるように表示した斜視図The perspective view which displayed only the heat receiving part of FIG. 2 so that an internal structure could be understood. 従来の鉄道車両用走行風冷却装置の斜視図A perspective view of a conventional running wind cooling device for a railway vehicle 図8のパワーユニット部分の斜視図The perspective view of the power unit part of FIG.

符号の説明Explanation of symbols

1…車体 2…電力変換装置 3…半導体素子
4…受熱部 5…パワーユニット 6…ポンプ
7…放熱部(薄型) 8…放熱部(厚型) 9…(追加の)放熱部(薄型)
10…床下カバー 11…開口部(四角型) 12…開口部(三角型)
13…導風ガイド(急角度型) 14…導風ガイド(急角度型)
15…導風ガイド(複数段角度型) 16…他の電気機器
17…流路 18…走行風流れ方向
19…冷却風 20…ヒートブロック
21…冷却フィン 22…ヒートパイプ(冷却フィン含む)
23…パワーユニット 24…開口部(四角型)
25…導風ガイド(急角度型) 26…電力変換装置
27…走行風流れ方向(走行風流線) 28…走行風流れ剥離状態
29…走行風流れ巻き込み状態(走行風流線)
30…走行風流れ巻き込み状態(走行風流線)


DESCRIPTION OF SYMBOLS 1 ... Car body 2 ... Power converter device 3 ... Semiconductor element 4 ... Heat-receiving part 5 ... Power unit 6 ... Pump 7 ... Radiation part (thin type) 8 ... Radiation part (thick type) 9 ... (Addition) Radiation part (thin type)
10 ... Underfloor cover 11 ... Opening (square) 12 ... Opening (triangular)
13 ... Guiding guide (steep angle type) 14 ... Guiding guide (steep angle type)
DESCRIPTION OF SYMBOLS 15 ... Air guide (multi-stage angle type) 16 ... Other electric equipment 17 ... Flow path 18 ... Traveling wind flow direction 19 ... Cooling air 20 ... Heat block 21 ... Cooling fin 22 ... Heat pipe (including cooling fin)
23 ... Power unit 24 ... Opening (square type)
25 ... Wind guide (steep angle type) 26 ... Power converter 27 ... Traveling wind flow direction (traveling wind stream line) 28 ... Traveling wind flow separation state 29 ... Traveling wind flow entrained condition (traveling wind stream line)
30 ... Running wind flow entrainment state (running wind stream line)


Claims (8)

車両が走行することによって得られる走行風を利用して機器発生熱を冷却する鉄道車両用走行風冷却装置において、発熱体が搭載されるものであって、冷媒を流通させる通路が設けられた受熱部と、走行風が流れる流路中に設けられた放熱部と、該放熱部と前記受熱部との間で前記冷媒を流通させる流路とを有し、
前記走行風が流れる流路は、車体の床下部に車体表面に連続して設けられた床下カバーより、前記車体の内側に入った位置に設けられ、
前記床下カバー開口部内部に配置した導風ガイドの傾きを車両進行方向に対して剥離限界角度以下ずつ段階的に変化させたことを特徴とする特徴とする鉄道車両用走行風冷却装置。
A railcar traveling wind cooling apparatus that cools equipment generated heat by using traveling wind obtained by traveling of a vehicle, in which a heating element is mounted, and a heat receiving unit provided with a passage for circulating a refrigerant Part, a heat radiating part provided in a flow path through which the traveling wind flows, and a flow path for circulating the refrigerant between the heat radiating part and the heat receiving part,
The flow path through which the traveling wind flows is provided at a position entering the inside of the vehicle body from an underfloor cover continuously provided on the vehicle body surface at the bottom of the vehicle body,
The running wind cooling device for a railway vehicle, characterized in that the inclination of the wind guide arranged inside the underfloor cover opening is changed stepwise by an angle below the separation limit angle with respect to the vehicle traveling direction.
車両が走行することによって得られる走行風を利用して機器発生熱を冷却する鉄道車両用走行風冷却装置において、受熱部と放熱部を配管で接続してポンプにより冷媒を循環させて発生熱を輸送し、放熱部に走行風を取込み冷却する循環冷却システムを有し、
前記走行風が流れる流路は、車体の床下部に車体表面に連続して設けられた床下カバーより、前記車体の内側に入った位置に設けられ、
前記床下カバー開口部内部に配置した導風ガイドの傾きを車両進行方向に対して剥離限界角度以下ずつ段階的に変化させたことを特徴とする鉄道車両用走行風冷却装置。
In a running wind cooling device for a railway vehicle that cools equipment generated heat using running wind obtained by running of a vehicle, a heat receiving part and a heat radiating part are connected by piping, and a refrigerant is circulated by a pump to generate the generated heat. It has a circulating cooling system that transports and cools the running air by taking it into the heat dissipation part,
The flow path through which the traveling wind flows is provided at a position entering the inside of the vehicle body from an underfloor cover continuously provided on the vehicle body surface at the bottom of the vehicle body,
A running wind cooling device for a railway vehicle, wherein the inclination of the wind guide arranged inside the underfloor cover opening is changed stepwise by a step below the separation limit angle with respect to the vehicle traveling direction.
前記走行風の流路よりさらに内側の前記車両の床下に前記受熱部を設けたことを特徴とする請求項1または2に記載の鉄道車両用走行風冷却装置。   The travel wind cooling device for a railway vehicle according to claim 1 or 2, wherein the heat receiving portion is provided below the floor of the vehicle further inside the flow path of the travel wind. 前記請求項1〜3のいずれかに記載の鉄道車両用走行風冷却装置において、放熱部を車体床下カバーの内側に配置し、放熱部の両側の床下カバーに走行風を取込むための開口部を設けたことを特徴とする鉄道車両用走行風冷却装置。 The running wind cooling device for a railway vehicle according to any one of claims 1 to 3, wherein the heat radiating portion is disposed inside the vehicle body under floor cover, and the opening for taking the running wind into the under floor covers on both sides of the heat radiating portion. A running wind cooling device for a railway vehicle, characterized by comprising: 前記請求項1〜4のいずれかに記載の鉄道車両用走行風冷却装置において、放熱部を複数配置し、走行風以外の冷却手段にて得られる冷却風を放熱部に取込むことを特徴とする鉄道車両用走行風冷却装置。 The traveling wind cooling device for a railway vehicle according to any one of claims 1 to 4, wherein a plurality of heat radiating portions are arranged, and cooling air obtained by a cooling means other than the traveling wind is taken into the heat radiating portions. A running wind cooling device for railway vehicles. 前記請求項1〜4のいずれかに記載の鉄道車両用走行風冷却装置において、床下カバー開口部の形状を車両進行方向に対して徐々に幅が広くなるように変化させたことを特徴とする鉄道車両用走行風冷却装置。 5. The traveling wind cooling apparatus for a railway vehicle according to any one of claims 1 to 4, wherein the shape of the underfloor cover opening is changed so that the width gradually increases in the vehicle traveling direction. A running wind cooling system for railway vehicles. 前記請求項1〜4のいずれかに記載の鉄道車両用走行風冷却装置において、放熱部通風方向を車両進行方向に平行に配置したことを特徴とする鉄道車両用走行風冷却装置。 The traveling wind cooling device for a railway vehicle according to any one of claims 1 to 4, wherein the ventilation direction of the heat radiating portion is arranged in parallel to the traveling direction of the vehicle. 前記導風ガイドの傾きは、平面視において段階的に変化しており、走行風を前記放熱部に取り込むことを特徴とする請求項1または2に記載の鉄道車両用走行風冷却装置。 The traveling wind cooling device for a railway vehicle according to claim 1 or 2, wherein the inclination of the wind guide guide changes stepwise in a plan view, and the traveling wind is taken into the heat radiating portion.
JP2004084790A 2004-03-23 2004-03-23 Running wind cooling system for railway vehicles Expired - Fee Related JP4549086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084790A JP4549086B2 (en) 2004-03-23 2004-03-23 Running wind cooling system for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084790A JP4549086B2 (en) 2004-03-23 2004-03-23 Running wind cooling system for railway vehicles

Publications (2)

Publication Number Publication Date
JP2005271646A JP2005271646A (en) 2005-10-06
JP4549086B2 true JP4549086B2 (en) 2010-09-22

Family

ID=35171765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084790A Expired - Fee Related JP4549086B2 (en) 2004-03-23 2004-03-23 Running wind cooling system for railway vehicles

Country Status (1)

Country Link
JP (1) JP4549086B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE533681T1 (en) 2007-09-10 2011-12-15 Mitsubishi Electric Corp DRIVE DEVICE FOR VEHICLE
EP3703992B1 (en) * 2017-10-30 2024-07-31 Hitachi Energy Ltd Cooling system for an electric power conversion device of a railroad vehicle
JP6960313B2 (en) * 2017-11-27 2021-11-05 日本車輌製造株式会社 Cooling structure for railroad vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016288A (en) * 1998-07-01 2000-01-18 Fuji Electric Co Ltd Air filter of cowl cover for vehicle underfloor equipment
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2000158938A (en) * 1998-11-24 2000-06-13 Mitsubishi Electric Corp On-vehicle cooling device
JP2003048533A (en) * 2001-08-03 2003-02-18 Central Japan Railway Co Power converter for high-speed rolling stock
JP2003258471A (en) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp Cooler for moving element
JP2004363253A (en) * 2003-06-03 2004-12-24 Japan Ae Power Systems Corp Transformer for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240090B2 (en) * 1971-09-13 1977-10-08
JPS61115767A (en) * 1984-11-12 1986-06-03 財団法人鉄道総合技術研究所 Cooling device for electric apparatus for main circuit of body mounting type electric car
JP3877408B2 (en) * 1997-12-25 2007-02-07 三菱電機株式会社 Automotive cooler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016288A (en) * 1998-07-01 2000-01-18 Fuji Electric Co Ltd Air filter of cowl cover for vehicle underfloor equipment
JP2000092819A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor cooling apparatus
JP2000158938A (en) * 1998-11-24 2000-06-13 Mitsubishi Electric Corp On-vehicle cooling device
JP2003048533A (en) * 2001-08-03 2003-02-18 Central Japan Railway Co Power converter for high-speed rolling stock
JP2003258471A (en) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp Cooler for moving element
JP2004363253A (en) * 2003-06-03 2004-12-24 Japan Ae Power Systems Corp Transformer for vehicle

Also Published As

Publication number Publication date
JP2005271646A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
CA2820330C (en) Two-phase cooling system for electronic components
US8879259B2 (en) Cooling system for onboard electrical power converter, and electrical power converter for railway vehicle
US7265978B2 (en) Control apparatus having fluid passage for cooling purpose
WO2007116460A1 (en) Power converter
WO2018097271A1 (en) Power conversion device for railway vehicle
JP5926928B2 (en) Power semiconductor module cooling device
JP2010171033A (en) Method of brazing heat sink
JP2013230010A (en) Power conversion device
JP4720688B2 (en) Electronic control unit cooling system
KR20140089421A (en) Cooling device for under-floor device for vehicle
US20060005953A1 (en) Liquid cooling device
JP4483792B2 (en) Cooling system
US9661780B2 (en) Heat-receiver, cooling unit and electronic device
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP6494384B2 (en) Transformer for vehicle
JP4549086B2 (en) Running wind cooling system for railway vehicles
JP2001260877A (en) Power conversion device for rolling stock
JP2005053330A (en) Power converter for railway vehicle
JP4011272B2 (en) Semiconductor cooling device
JP2015156411A (en) Power converter and railway vehicle mounting the same
JP2018037557A (en) Power converter and rolling stock mounting power converter
JP2008211001A (en) Electronic device cooling apparatus
JP2020171196A (en) Electric power conversion apparatus of railway vehicle
JP2011135649A (en) Inverter device
JP3879080B2 (en) Cooling device for exothermic electrical equipment for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees