JP5581119B2 - Cooling device, power converter, railway vehicle - Google Patents

Cooling device, power converter, railway vehicle Download PDF

Info

Publication number
JP5581119B2
JP5581119B2 JP2010129520A JP2010129520A JP5581119B2 JP 5581119 B2 JP5581119 B2 JP 5581119B2 JP 2010129520 A JP2010129520 A JP 2010129520A JP 2010129520 A JP2010129520 A JP 2010129520A JP 5581119 B2 JP5581119 B2 JP 5581119B2
Authority
JP
Japan
Prior art keywords
heat
heat receiving
pipes
heat pipes
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010129520A
Other languages
Japanese (ja)
Other versions
JP2011259536A (en
Inventor
砂穂 舟越
敦 鈴木
陽介 安田
健 田中
哲 佐川
昭裕 菱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010129520A priority Critical patent/JP5581119B2/en
Publication of JP2011259536A publication Critical patent/JP2011259536A/en
Application granted granted Critical
Publication of JP5581119B2 publication Critical patent/JP5581119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

本発明は、冷却装置の冷却性能向上に関する。特に、電力変換装置に関する。   The present invention relates to an improvement in cooling performance of a cooling device. In particular, it is related with a power converter device.

電力変換装置は、電動機を制御するためのものであり、電力変換装置は冷却性能を向上し、小型化することが望まれている。従来の電力変換装置は、特許文献1のようにL字形状のヒートパイプの受熱部が受熱部材に熱的に接触するように配置し、ヒートパイプ受熱部から立ち上がる放熱部を千鳥状に配置することにより、放熱性能を向上した構造が知られている。   The power conversion device is for controlling an electric motor, and it is desired that the power conversion device be improved in cooling performance and downsized. The conventional power converter is arranged such that the heat receiving part of the L-shaped heat pipe is in thermal contact with the heat receiving member as in Patent Document 1, and the heat radiating parts rising from the heat pipe heat receiving part are arranged in a staggered manner. Thus, a structure with improved heat dissipation performance is known.

特開平11−251499号公報JP-A-11-251499

近年、冷却装置の冷却性能向上が重要な課題となっており、特に高速車両等の高出力が要求される電力変換装置においては、高発熱密度のパワー半導体素子が密接して配置される傾向にあり、高い発熱をいかに冷却して素子の温度上昇を抑えるかが重要である。前記従来構造においては、ヒートパイプの受熱部が冷却風の流れ方向のみに配置されていたため、冷却風の流れと垂直の方向に大きな発熱分布がある場合に、発熱の大きい部分から発熱の小さい部分への熱の移動が必ずしも十分になされていないため、冷却装置が大型化するという課題があった。   In recent years, improving the cooling performance of the cooling device has become an important issue, and particularly in power conversion devices that require high output such as high-speed vehicles, power semiconductor elements with high heat generation density tend to be closely arranged. It is important to cool the high heat generation to suppress the temperature rise of the element. In the conventional structure, since the heat receiving portion of the heat pipe is arranged only in the flow direction of the cooling air, when there is a large heat generation distribution in the direction perpendicular to the flow of the cooling air, the portion where heat generation is large to the portion where heat generation is small Since heat is not necessarily sufficiently transferred to the heat sink, there is a problem that the cooling device is increased in size.

本発明の目的は、発熱素子の発熱が冷却風の流れ方向と異なる方向に分布がある場合においても、発熱の大きい部分から小さい部分へと十分に熱を移動させることができる冷却装置または電力変換装置を提供することにある。   An object of the present invention is to provide a cooling device or power conversion capable of sufficiently transferring heat from a large heat generation portion to a small portion even when the heat generation of the heat generating element is distributed in a direction different from the flow direction of the cooling air. To provide an apparatus.

前記目的を達成するために、本発明の電力変換装置では、複数のヒートパイプの前記受熱部材に取り付けられた部分が、互いに所定角度以上を成すように、前記複数のヒートパイプが前記受熱部材に取り付けられる。   In order to achieve the above object, in the power conversion device of the present invention, the plurality of heat pipes are connected to the heat receiving member such that portions of the plurality of heat pipes attached to the heat receiving member form a predetermined angle or more. It is attached.

本発明の冷却装置では、前記複数のヒートパイプの前記受熱部材と接続する部分が、互いに所定角度以上を成すように、前記複数のヒートパイプが前記受熱部材と接続されている。   In the cooling device of the present invention, the plurality of heat pipes are connected to the heat receiving member such that portions of the plurality of heat pipes connected to the heat receiving member form a predetermined angle or more.

発熱素子の発熱が冷却風の流れ方向と異なる方向に分布がある場合においても、冷却風温度が高く素子温度が上がり易い部分から冷却風温度が比較的低い部分へ熱が移動するとともに、発熱量の多い部分から少ない部分へ熱が移動するので、発熱素子の発熱が効果的に分散されて冷却装置の冷却性能が向上する。   Even when the heat generation of the heating element is distributed in a direction different from the flow direction of the cooling air, the heat moves from the part where the cooling air temperature is high and the element temperature easily rises to the part where the cooling air temperature is relatively low, and the heat generation amount Since heat moves from a portion with a large amount to a portion with a small amount, the heat generated by the heat generating element is effectively dispersed and the cooling performance of the cooling device is improved.

本発明の一実施形態における電力変換装置の冷却風の流れ方向と平行な鉛直方向断面図である。It is vertical direction sectional drawing parallel to the flow direction of the cooling wind of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の冷却風の流れ方向と垂直方向から見た鉛直方向断面図である。It is the vertical direction sectional view seen from the flow direction of the cooling wind of the power converter in one embodiment of the present invention. 本発明の一実施形態における電力変換装置のヒートパイプと半導体モジュールの配置を示す図である。It is a figure which shows arrangement | positioning of the heat pipe and semiconductor module of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の別の位置における流れ方向と平行な鉛直方向断面図である。It is vertical direction sectional drawing parallel to the flow direction in another position of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の別の位置における冷却風の流れ方向と垂直方向から見た鉛直方向断面図である。It is the vertical direction sectional view seen from the perpendicular direction with the flow direction of the cooling wind in another position of the power converter in one embodiment of the present invention. 本発明の一実施形態における電力変換装置のヒートパイプと半導体モジュールの配置の他の配置方法を示す図である。It is a figure which shows the other arrangement | positioning method of arrangement | positioning of the heat pipe and semiconductor module of the power converter device in one Embodiment of this invention. 本発明の他の実施形態(第2の実施形態)における電力変換装置のヒートパイプと半導体モジュールの配置を示す図である。It is a figure which shows arrangement | positioning of the heat pipe and semiconductor module of the power converter device in other embodiment (2nd Embodiment) of this invention. 本発明の他の実施形態(第2の実施形態)における電力変換装置の冷却風の流れ方向と垂直方向の鉛直方向断面図である。It is vertical direction sectional drawing of the orthogonal | vertical direction with the flow direction of the cooling wind of the power converter device in other embodiment (2nd Embodiment) of this invention. 本発明の更に他の実施形態(第3の実施形態)における電力変換装置の冷却風の流れ方向に沿った鉛直方向断面図である。It is vertical direction sectional drawing along the flow direction of the cooling wind of the power converter device in further another embodiment (3rd Embodiment) of this invention. 本発明の更に他の実施形態(第3の実施形態)における電力変換装置の冷却風の流れ方向に沿った鉛直方向断面図である。It is vertical direction sectional drawing along the flow direction of the cooling wind of the power converter device in further another embodiment (3rd Embodiment) of this invention. 本発明の更に他の実施形態(第4の実施形態)における電力変換装置のヒートパイプと半導体モジュールの配置を示す図である。It is a figure which shows arrangement | positioning of the heat pipe and semiconductor module of the power converter device in further another embodiment (4th Embodiment) of this invention. 本発明の電力変換装置を鉄道車両に搭載した構成を示す図である。It is a figure which shows the structure which mounted the power converter device of this invention in the rail vehicle. 本発明の一実施形態における電力変換装置の各モジュールの配置構成を示す図である。It is a figure which shows the arrangement configuration of each module of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置における各モジュールの発熱量と温度分布の一例を示す図である。It is a figure which shows an example of the emitted-heat amount and temperature distribution of each module in the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の1相分の回路図を示す図である。It is a figure which shows the circuit diagram for 1 phase of the power converter device in one Embodiment of this invention.

本発明の実施の形態を以下、図面を用いて説明する。図12に本発明の一実施形態における電力変換装置を鉄道車両に搭載したときの構成を示す。本発明の電力変換装置は、鉄道車両の床下等に設けられ、車両を駆動する電動機に供給する電力の周波数などを制御することにより、電動機の回転速度の制御を行う。図12において、電力変換装置1000は、車体1002と固定されている。矢印30は冷却風の流れを示す。冷却風は、送風機40によって吸込みグリル41から吸い込まれ、電力変換装置1000の冷却装置1001に供給される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 12 shows a configuration when the power conversion device according to one embodiment of the present invention is mounted on a railway vehicle. The power conversion device of the present invention is provided under the floor of a railway vehicle and controls the rotation speed of the electric motor by controlling the frequency of electric power supplied to the electric motor that drives the vehicle. In FIG. 12, power conversion apparatus 1000 is fixed to vehicle body 1002. An arrow 30 indicates the flow of cooling air. The cooling air is sucked from the suction grille 41 by the blower 40 and supplied to the cooling device 1001 of the power conversion device 1000.

図15に本実施例の電力変換装置の1相分の回路構成を示す。電力変換装置は、IGBT(Insulated Gate Bipolar Transistor)やクランプダイオードのパワー半導体素子と、コンデンサで構成されており、図15に示す回路をU,V,Wの3相分備える。本電力変換装置をインバータとして駆動する場合には、直流電圧を一次側から受けて3レベルの電圧波形を二次側へ出力することができる。   FIG. 15 shows a circuit configuration for one phase of the power conversion device of this embodiment. The power conversion device includes a power semiconductor element such as an insulated gate bipolar transistor (IGBT) or a clamp diode, and a capacitor, and includes the circuit shown in FIG. 15 for three phases U, V, and W. When the power converter is driven as an inverter, a DC voltage can be received from the primary side and a three-level voltage waveform can be output to the secondary side.

図13に本実施例の本実施例の電力変換装置の各モジュールの配置構成を示す。複数のIGBTモジュール6,8やクランプダイオードモジュール7は、アルミニウム合金等の金属からなる受熱部材4の一方側の面に配置される。   FIG. 13 shows an arrangement configuration of each module of the power conversion device according to the present embodiment. The plurality of IGBT modules 6 and 8 and the clamp diode module 7 are arranged on one surface of the heat receiving member 4 made of a metal such as an aluminum alloy.

図14に本実施例の電力変換装置を駆動した場合における各モジュールの発熱量と温度分布の一例を示す。この図からクランプダイオードモジュール7の発熱量は、IGBTモジュール6,8の発熱量と比較して低く、温度分布も同様にクランプダイオードモジュール7がIGBTモジュール6,8と比較して低温であることが分かる。実際に、IGBTモジュール6,8の最大発熱量はクランプダイオードモジュール7の最大発熱量の10倍程度と非常に大きい。   FIG. 14 shows an example of the heat generation amount and temperature distribution of each module when the power conversion device of this embodiment is driven. From this figure, the heat generation amount of the clamp diode module 7 is lower than the heat generation amount of the IGBT modules 6 and 8, and the temperature distribution is similarly low in the clamp diode module 7 as compared with the IGBT modules 6 and 8. I understand. Actually, the maximum heat generation amount of the IGBT modules 6 and 8 is as large as about 10 times the maximum heat generation amount of the clamp diode module 7.

図1に本実施形態(第1の実施形態)における電力変換装置の冷却風の流れ方向に平行な鉛直断面図を、図2に冷却風の流れ方向と垂直な方向から見た鉛直断面図を示す。本実施形態の電力変換装置は各モジュールの配置を受熱部材上で左右対称となるように配置したので、図2には装置の半分の構造を示した。   FIG. 1 is a vertical sectional view parallel to the cooling air flow direction of the power conversion device in the present embodiment (first embodiment), and FIG. 2 is a vertical sectional view seen from a direction perpendicular to the cooling air flow direction. Show. Since the power converter of the present embodiment is arranged so that the modules are arranged symmetrically on the heat receiving member, FIG. 2 shows a half structure of the apparatus.

図1で、1000は電力変換器全体、1001は電力変換器の冷却装置を示す。冷却装置は、受熱部材4,ヒートパイプ1,2,フィン5等から構成される。モジュール6,7,8,61,62等は、グリース等の部材(図示せず)を介して受熱部材4とねじ等(図示せず)によって固定される。受熱部材4のパワー半導体モジュールの側には、IGBT駆動回路9やフィルタコンデンサ10等の電子部品が設置されている。また、受熱部材4に装着されたパワー半導体モジュールの周囲は、ケース11,12により密閉されている。受熱部材4のパワー半導体モジュール設置面の反対側には、U字型のヒートパイプ1の受熱部101が冷却風の流れ方向と略同一方向となるように埋め込まれ、受熱部101はハンダ付け等により受熱部材4と熱的に接続されている。ここで、冷却風の流れ方向と略同一方向とは、冷却風の流れ方向に対して約−10度〜約10度を成す向きを意図するものである。しかし、必ずしも略同一方向となる必要はなく約−45度〜約45度の範囲内であれば良い。U字型ヒートパイプ1の受熱部101の両側からは、放熱部102が立ち上がっている。L字型のヒートパイプ2の受熱部201も同様に冷却風の流れ方向と略同一方向となるように受熱部材4に埋め込まれて、ハンダ付け等により受熱部と接続されている。L字型のヒートパイプ2の受熱部201の片側からは、放熱部202が立ち上がっている。放熱部102および202には、アルミニウムや銅等の金属でできた複数のフィン5が圧入等によって接続されている。   In FIG. 1, reference numeral 1000 denotes an entire power converter, and 1001 denotes a cooling device for the power converter. The cooling device includes a heat receiving member 4, heat pipes 1, 2, fins 5 and the like. The modules 6, 7, 8, 61, 62 and the like are fixed by a heat receiving member 4 and screws (not shown) via a member (not shown) such as grease. Electronic components such as an IGBT drive circuit 9 and a filter capacitor 10 are installed on the heat receiving member 4 side of the power semiconductor module. The periphery of the power semiconductor module mounted on the heat receiving member 4 is sealed with cases 11 and 12. On the opposite side of the power semiconductor module installation surface of the heat receiving member 4, the heat receiving portion 101 of the U-shaped heat pipe 1 is embedded so as to be substantially in the same direction as the flow direction of the cooling air, and the heat receiving portion 101 is soldered or the like. Thus, the heat receiving member 4 is thermally connected. Here, the direction substantially the same as the flow direction of the cooling air is intended to be in the direction of about −10 degrees to about 10 degrees with respect to the flow direction of the cooling air. However, they do not necessarily have to be in substantially the same direction, and may be in the range of about −45 degrees to about 45 degrees. From both sides of the heat receiving part 101 of the U-shaped heat pipe 1, a heat radiating part 102 stands up. Similarly, the heat receiving portion 201 of the L-shaped heat pipe 2 is embedded in the heat receiving member 4 so as to be substantially in the same direction as the flow direction of the cooling air, and is connected to the heat receiving portion by soldering or the like. From one side of the heat receiving part 201 of the L-shaped heat pipe 2, a heat radiating part 202 rises. A plurality of fins 5 made of a metal such as aluminum or copper are connected to the heat radiating portions 102 and 202 by press fitting or the like.

さらに受熱部材4には、ヒートパイプ3が、冷却風の流れ方向とその長手方向が略垂直の向きになるように配置されている。すなわち、ヒートパイプ3の長手方向は、U字型ヒートパイプ1やL字型ヒートパイプ2の長手方向と略垂直方向に配置されている。ここで、冷却風の流れ方向とその長手方向が略垂直の向きとは、冷却風の流れ方向に対して約80度〜約100度の角度を成す向きを意図するものである。しかし、必ずしも略同一方向となる必要はなく約45度〜約135度の範囲内であれば良い。   Furthermore, the heat receiving member 4 is provided with the heat pipe 3 so that the flow direction of the cooling air and the longitudinal direction thereof are substantially perpendicular. That is, the longitudinal direction of the heat pipe 3 is arranged in a direction substantially perpendicular to the longitudinal direction of the U-shaped heat pipe 1 or the L-shaped heat pipe 2. Here, the direction in which the flow direction of the cooling air and the longitudinal direction thereof are substantially perpendicular is intended to be the direction that forms an angle of about 80 degrees to about 100 degrees with respect to the flow direction of the cooling air. However, they do not necessarily have to be in substantially the same direction, and may be in the range of about 45 degrees to about 135 degrees.

受熱部材4とヒートパイプおよびパワー半導体モジュールの配置を図3に示す。図3において6,8,61,62,81,82はIGBTモジュールを示し、7,71,72はクランプダイオードモジュールを示す。各パワー半導体モジュールはヒートパイプと反対側の面に設置されているので、図3では破線で示している。ヒートパイプ3の中心軸を通るように切断した面における鉛直断面図を図4,図5に示す。図4は冷却風の流れに平行な断面、図5は冷却風の流れに垂直な断面を表わしている。なお、図3における切断面A−A,B−B,C−C,D−Dは、それぞれ図1,図2,図4,図5の断面図に対応している。ヒートパイプ3の受熱部301は受熱部材4に埋め込まれており、受熱部301の片側からは放熱部302が立ち上がり、フィン5に接続されている。フィン側に立ち上げることのできない端部付近には、立ち上がり部を持たないヒートパイプ15,16を設けている。   The arrangement of the heat receiving member 4, the heat pipe, and the power semiconductor module is shown in FIG. In FIG. 3, 6, 8, 61, 62, 81 and 82 indicate IGBT modules, and 7, 71 and 72 indicate clamp diode modules. Since each power semiconductor module is installed on the surface opposite to the heat pipe, it is indicated by a broken line in FIG. 4 and 5 are vertical cross-sectional views taken along a plane cut through the central axis of the heat pipe 3. 4 shows a cross section parallel to the flow of cooling air, and FIG. 5 shows a cross section perpendicular to the flow of cooling air. Note that cut planes AA, BB, CC, and DD in FIG. 3 correspond to the cross-sectional views of FIGS. 1, 2, 4, and 5, respectively. A heat receiving portion 301 of the heat pipe 3 is embedded in the heat receiving member 4, and a heat radiating portion 302 rises from one side of the heat receiving portion 301 and is connected to the fin 5. Heat pipes 15 and 16 having no rising portions are provided in the vicinity of the end portions that cannot be raised to the fin side.

冷却装置1001の周囲にはダクト14が設けられ、図12に示すように、送風機40によってダクト14に冷却風が送られる。なお、本実施形態では冷却風を冷却ファンによって強制的に送風する構造について説明するが、車両が走行することにより発生する走行風によって電力変換装置を冷却する構造や、熱せられた空気が上昇するという自然対流を利用して電力変換装置を冷却する構造にも本発明は適用できる。走行風を利用する構造の場合は、冷却風は走行方向とほぼ同一方向となるため、ヒートパイプ1,2は車両の走行方向とほぼ同一方向に沿うように配置される。また、自然対流を利用する構造では、ヒートパイプ1,2は鉄道車両の上下方向(重力方向)とほぼ同一方向に沿うように配置される。   A duct 14 is provided around the cooling device 1001, and cooling air is sent to the duct 14 by the blower 40 as shown in FIG. 12. In the present embodiment, the structure for forcibly blowing the cooling air with the cooling fan will be described. However, the structure for cooling the power conversion device by the traveling air generated when the vehicle travels, and the heated air rises. The present invention can also be applied to a structure that cools the power converter using natural convection. In the case of a structure using traveling air, the cooling air is substantially in the same direction as the traveling direction, so that the heat pipes 1 and 2 are arranged along substantially the same direction as the traveling direction of the vehicle. Further, in the structure using natural convection, the heat pipes 1 and 2 are arranged along substantially the same direction as the vertical direction (gravity direction) of the railway vehicle.

次に、各パワー半導体モジュールを冷却する動作について、IGBTモジュール82を例に取って説明する。IGBTモジュール82の内部に設けられたパワー半導体等が動作することによって発生した熱は受熱部材4に伝えられ、U字型ヒートパイプ1の受熱部101に達する。U字型ヒートパイプ1には冷媒(純水,ハイドロフルオロカーボン等)が封入されている。受熱部101において加熱された冷媒は蒸発して気体となり、放熱部102に移動する。放熱部102において空気によって冷却された冷媒は凝縮して液体に戻る。放熱部102で凝縮した冷媒は重力によって受熱部101に戻ってくる。このように蒸発,凝縮を繰り返して冷媒が移動することにより、受熱部材4の熱が大気などの電力変換装置の外に放熱される。ヒートパイプ2,3にも冷媒(純水,ハイドロフルオロカーボン等)が封入されており、同様に蒸発,凝縮を繰り返して冷媒が移動することにより、受熱部材4の熱が大気などの電力変換装置の外に放熱される。立ち上がり部を持たないヒートパイプ15,16にも冷媒(純水,ハイドロフルオロカーボン等)が封入されている。   Next, the operation of cooling each power semiconductor module will be described taking the IGBT module 82 as an example. Heat generated by the operation of a power semiconductor or the like provided in the IGBT module 82 is transmitted to the heat receiving member 4 and reaches the heat receiving portion 101 of the U-shaped heat pipe 1. A refrigerant (pure water, hydrofluorocarbon, etc.) is sealed in the U-shaped heat pipe 1. The refrigerant heated in the heat receiving unit 101 evaporates into a gas and moves to the heat radiating unit 102. The refrigerant cooled by the air in the heat radiating unit 102 is condensed and returned to the liquid. The refrigerant condensed in the heat radiating unit 102 returns to the heat receiving unit 101 by gravity. Thus, by repeating evaporation and condensation, the refrigerant moves, so that the heat of the heat receiving member 4 is dissipated outside the power conversion device such as the atmosphere. The heat pipes 2 and 3 are also filled with a refrigerant (pure water, hydrofluorocarbon, etc.). Similarly, the refrigerant moves through repeated evaporation and condensation, so that the heat of the heat receiving member 4 is transferred to the power conversion device such as the atmosphere. Heat is released to the outside. A refrigerant (pure water, hydrofluorocarbon, etc.) is also sealed in the heat pipes 15 and 16 that do not have a rising portion.

パワー半導体モジュールの発熱により、冷却風の温度は風上側から風下側に行くに従って上昇する。そのため、発熱量が同じであっても風下側のパワー半導体モジュールのジャンクション温度は風上側のパワー半導体モジュールのジャンクション温度よりも高くなる傾向がある。図1から図5において、冷却風の方向に長手方向を配置したU字型及びL字型のヒートパイプ1,2は、受熱部101,放熱部102を冷却風の流れに沿って配置して風下側から風上側に熱を移動させることにより、風下側のパワー半導体モジュールの温度上昇を抑えている。   Due to the heat generated by the power semiconductor module, the temperature of the cooling air rises from the windward side toward the leeward side. Therefore, even if the heat generation amount is the same, the junction temperature of the leeward power semiconductor module tends to be higher than the junction temperature of the leeward power semiconductor module. 1 to 5, U-shaped and L-shaped heat pipes 1 and 2 arranged in the longitudinal direction in the direction of cooling air have heat receiving portions 101 and heat radiating portions 102 arranged along the flow of cooling air. By moving heat from the leeward side to the leeward side, the temperature rise of the power semiconductor module on the leeward side is suppressed.

一方、図14に示すように、IGBTモジュール8,81,82の発熱量が、クランプダイオードモジュール7,71,72の発熱量よりも著しく大きく、IGBTモジュール8,81,82の発熱量がIGBTモジュール6,61,62よりも比較的大きいような場合、走行風の方向と略垂直方向に長手方向を配置したヒートパイプ3によって、冷却風と略垂直方向に発熱量の大きい方から小さいほうへ熱を移動できるので、発熱量の大きなIGBTモジュール8,81,82の温度上昇を抑えることができる。ここで、ヒートパイプ3は発熱量の大きなIGBTモジュールと発熱量の比較的小さなクランプダイオードモジュールに跨るように配置することで発熱量の大きい方から小さいほうへ熱移動が容易となる。更に、立ち上がり部を持たないヒートパイプ15,16にも温度の高い部分から低い部分に熱を移動させて平均化させる均熱作用がある。   On the other hand, as shown in FIG. 14, the heat generation amount of the IGBT modules 8, 81, 82 is significantly larger than the heat generation amount of the clamp diode modules 7, 71, 72, and the heat generation amount of the IGBT modules 8, 81, 82 is IGBT module. When it is relatively larger than 6, 61, 62, the heat pipe 3 having a longitudinal direction arranged in a direction substantially perpendicular to the direction of the traveling wind heats the heat from the larger amount of heat generation in the direction substantially perpendicular to the cooling wind. Therefore, it is possible to suppress the temperature rise of the IGBT modules 8, 81, and 82 that generate a large amount of heat. Here, the heat pipe 3 is arranged so as to straddle the IGBT module having a large calorific value and the clamp diode module having a relatively small calorific value, thereby facilitating heat transfer from the larger calorific value to the smaller calorific value. Furthermore, the heat pipes 15 and 16 that do not have a rising portion also have a soaking action that averages by moving heat from a high temperature portion to a low temperature portion.

IGBTモジュール6,61,62とIGBTモジュール8,81,82の発熱量が同じぐらいで、クランプダイオードモジュール7,71,72の発熱量よりも著しく大きい場合には、図6に示すようにIGBTモジュール6,8,61,62,81,82の各部分に走行風の方向と略垂直方向に長手方向を配置したヒートパイプ3を配置するとよい。長手方向が冷却風の流れ方向とほぼ垂直の方向に設置されたヒートパイプが、対応する素子側の発熱量の大きい部分と発熱量の小さい部分ないしは発熱体のない部分との間に跨るように設置する構造とする。   When the heat generation amounts of the IGBT modules 6, 61, 62 and the IGBT modules 8, 81, 82 are about the same and are significantly larger than the heat generation amounts of the clamp diode modules 7, 71, 72, as shown in FIG. A heat pipe 3 having a longitudinal direction arranged in a direction substantially perpendicular to the direction of the traveling wind may be arranged in each of the parts 6, 8, 61, 62, 81, 82. A heat pipe installed in a direction in which the longitudinal direction is substantially perpendicular to the flow direction of the cooling air so as to straddle between a portion with a large amount of heat generation on the corresponding element side and a portion with a small amount of heat generation or a portion without a heating element. The structure will be installed.

このように、本実施形態によれば、冷却風と略同じ方向に長手方向を配置したヒートパイプと、冷却風と略垂直方向に長手方向を配置したヒートパイプとを組み合わせることによって、パワー半導体モジュールの発熱を効果的に分散することにより冷却性能を向上できるので、冷却装置を小型化することが可能である。また、冷却装置が小型化されるに従って、受熱部材の一方側は発熱性のモジュールで覆われることとなるため、発熱量の比較的大きなモジュールと発熱量の比較的小さなモジュールに対応する位置に跨ってヒートパイプを配置することにより均熱効果を向上させることが可能となる。   As described above, according to the present embodiment, a power semiconductor module is obtained by combining a heat pipe having a longitudinal direction arranged in substantially the same direction as the cooling air and a heat pipe having a longitudinal direction arranged substantially perpendicular to the cooling air. Since the cooling performance can be improved by effectively dispersing the heat generation, it is possible to reduce the size of the cooling device. In addition, as the cooling device is downsized, one side of the heat receiving member is covered with a heat generating module, so that it straddles the position corresponding to the module that generates a relatively large amount of heat and the module that generates a relatively small amount of heat. Thus, it is possible to improve the soaking effect by arranging the heat pipe.

図7,図8に本発明の他の実施形態(第2の実施形態)における電力変換装置を示す。図7には受熱部材4とヒートパイプ及びパワー半導体モジュールの配置を、図8に冷却風の流れ方向と垂直方向の断面(図7でE−Eに相当する断面)を示す。他の部分の構成は、第1の実施形態と同様である。本実施形態では、冷却風の流れに略垂直方向のヒートパイプ31の受熱部311の両端部分312及び313をフィン側に立ち上げる構造としている。このような構造とすることにより、高温のIGBTモジュール6,61,62の発熱を比較的低い部分に移動させるとともに、高温のパワー半導体モジュール部分にあるフィンにも放熱させることにより、冷却性能を向上している。本実施形態によれば、冷却風と略同じ方向が長手方向となるように受熱部を配置したヒートパイプと、冷却風と略垂直方向に受熱部を配置したU字形のヒートパイプを組み合わせることによって、パワー半導体モジュールの発熱を効果的に分散して冷却性能を向上できるので、冷却装置を小型化することが可能である。   7 and 8 show a power conversion device according to another embodiment (second embodiment) of the present invention. FIG. 7 shows the arrangement of the heat receiving member 4, the heat pipe, and the power semiconductor module, and FIG. 8 shows a cross section perpendicular to the flow direction of the cooling air (cross section corresponding to EE in FIG. 7). The structure of other parts is the same as that of the first embodiment. In the present embodiment, both end portions 312 and 313 of the heat receiving portion 311 of the heat pipe 31 in a direction substantially perpendicular to the flow of cooling air are raised to the fin side. By adopting such a structure, the heat generation of the high temperature IGBT modules 6, 61, 62 is moved to a relatively low part, and the cooling performance is improved by dissipating heat to the fins in the high temperature power semiconductor module part. doing. According to this embodiment, by combining a heat pipe in which the heat receiving portion is arranged so that the substantially same direction as the cooling air is the longitudinal direction, and a U-shaped heat pipe in which the heat receiving portion is arranged in a direction substantially perpendicular to the cooling air Since the heat generation of the power semiconductor module can be effectively dispersed to improve the cooling performance, the cooling device can be downsized.

図9に本発明の更に他の実施形態(第3の実施形態)における電力変換装置を示す。本実施形態では、冷却風の上流側のフィン5のピッチを広くして、下流側はフィン5と50によってフィンピッチを小さくするようにした。フィンの構成としては、図10のように、上流側フィン51と下流側フィン52とにフィンを分割して、それぞれのフィンピッチを変えるようにしてもよい。また、上流側のフィンと下流側のフィンの材質を変えて、下流側のフィンの熱伝導率が上流側のフィンの熱伝導率よりも高い材質にしてもよい。例えば、上流側フィンの材質をアルミニウム、下流側フィンの材質を銅にする。   FIG. 9 shows a power conversion apparatus according to still another embodiment (third embodiment) of the present invention. In the present embodiment, the pitch of the fins 5 on the upstream side of the cooling air is widened, and the fin pitch is reduced by the fins 5 and 50 on the downstream side. As the configuration of the fins, as shown in FIG. 10, the fins may be divided into upstream fins 51 and downstream fins 52, and the respective fin pitches may be changed. Further, the material of the upstream fin and the downstream fin may be changed so that the thermal conductivity of the downstream fin is higher than the thermal conductivity of the upstream fin. For example, the material of the upstream fin is aluminum and the material of the downstream fin is copper.

本実施形態によれば、冷却風の温度が低い風上の部分はフィンピッチを広くして通風抵抗を下げ、冷却風の温度が高い風下の部分はフィンピッチを狭くして放熱を多くすることにより、冷却装置全体としてバランス良く放熱することができ、冷却装置を小型化することが可能である。   According to this embodiment, the windward part where the temperature of the cooling air is low widens the fin pitch to reduce the ventilation resistance, and the part of the leeward where the temperature of the cooling air is high narrows the fin pitch to increase heat dissipation. As a result, the entire cooling device can dissipate heat in a well-balanced manner, and the cooling device can be downsized.

図11に本発明の更に他の実施形態(第4の実施形態)における電力変換装置を示す。本実施形態では、上流側のヒートパイプ401,402のフィン側へ立ち上げるパイプ(放熱部)の間隔を大きく、下流側のヒートパイプ403,404のフィン側へ立ち上げるパイプ(放熱部)の間隔を小さくし、下流になるほどヒートパイプのフィン側へ立ち上げたパイプ(放熱部)が密に配置されるようにした。本実施形態によれば、冷却風の温度が低い風上の部分はパイプの間隔を広く取ることによってパイプの通風抵抗を下げ、冷却風の温度が高い風下の部分はパイプの間隔を狭くしてフィンに放熱するパイプを多く設置することにより、冷却装置全体としてバランス良く放熱することができ、冷却装置を小型化することが可能である。   FIG. 11 shows a power conversion device according to still another embodiment (fourth embodiment) of the present invention. In the present embodiment, the interval between the pipes (heat dissipating portions) that rise to the fin side of the upstream heat pipes 401 and 402 is large, and the interval between the pipes that dissipate to the fin side of the downstream heat pipes 403 and 404 (heat dissipating portion). The pipe (heat dissipating part) raised to the fin side of the heat pipe is arranged densely toward the downstream. According to this embodiment, the windward portion of the windward where the temperature of the cooling air is low widens the interval between the pipes to reduce the ventilation resistance of the pipe, and the portion of the leeward where the temperature of the cooling air is high reduces the interval between the pipes. By installing many pipes that radiate heat to the fins, heat can be radiated in a well-balanced manner as the entire cooling device, and the cooling device can be downsized.

なお、第3の実施形態における図9または図10の構造と、第4の実施形態における図11の構造を組み合わせることによって、更に効果的にモジュールの放熱を行い、冷却装置を小型化することも可能である。   In addition, by combining the structure of FIG. 9 or FIG. 10 in the third embodiment and the structure of FIG. 11 in the fourth embodiment, the module can be radiated more effectively, and the cooling device can be downsized. Is possible.

上記した各実施例では、U字のヒートパイプ1とL字のヒートパイプ2を冷却風と略同一の方向に沿って配置する例を示したが、本発明は当該実施例に限られず、U字ヒートパイプ1のみで放熱部を構成する場合や、L字ヒートパイプ2のみで放熱部を構成する場合にも当然適用可能である。   In each of the above-described embodiments, an example in which the U-shaped heat pipe 1 and the L-shaped heat pipe 2 are arranged along substantially the same direction as the cooling air is shown. However, the present invention is not limited to the embodiment, and U Of course, the present invention can also be applied to the case where the heat radiating portion is configured only by the letter-shaped heat pipe 1 or the case where the heat radiating portion is configured only by the L-shaped heat pipe 2.

また、上記した各実施例では、放熱部が千鳥状に配列した例を説明したが、本発明は当該実施例に限られず、冷却方向と略垂直方向に隣接するヒートパイプの放熱部が冷却方向と略垂直方向に見て重なりあうように、放熱部が整列した構成においても、本発明は適用可能である。   Further, in each of the above-described embodiments, the example in which the heat radiating portions are arranged in a staggered manner has been described. However, the present invention is not limited to the embodiment, and the heat radiating portions of the heat pipes adjacent to the cooling direction are substantially in the cooling direction. The present invention can also be applied to a configuration in which the heat dissipating portions are aligned so as to overlap each other when viewed in a substantially vertical direction.

また、上記した各実施例では、冷却風と略同一方向に長手方向を配置したヒートパイプと、冷却風と略垂直方向に長手方向を配置したヒートパイプ3とを組み合わせることについて説明したが、必ずしも冷却風の方向を意識する必要はなく、複数のヒートパイプの受熱部が所定以上の角度となるように受熱部材4に配置されていれば、パワー半導体モジュールの発熱を分散して冷却性能を向上させるという効果を奏することができる。ここで、所定以上の角度とは、例えば30度以上150度以下であれば良い。   In each of the above-described embodiments, the description has been given of combining the heat pipe having the longitudinal direction arranged in the substantially same direction with the cooling air and the heat pipe 3 having the longitudinal direction arranged in the substantially vertical direction with the cooling air. There is no need to be aware of the direction of the cooling air, and if the heat receiving parts of the plurality of heat pipes are arranged on the heat receiving member 4 so as to have an angle of a predetermined angle or more, the heat generation of the power semiconductor module is dispersed to improve the cooling performance. The effect of making it possible can be produced. Here, the predetermined angle or more may be, for example, 30 degrees or more and 150 degrees or less.

また、上述した実施例において、最大発熱量が異なるパワー半導体モジュールの例として、IGBTモジュールとクランプダイオードモジュールを示したが、IGBTモジュール同士であっても最大発熱量が異なり、温度分布に傾きが生じる場合には、本発明が適用可能である。   In the above-described embodiments, the IGBT module and the clamp diode module are shown as examples of the power semiconductor modules having different maximum heat generation amounts. However, even among IGBT modules, the maximum heat generation amount is different and the temperature distribution is inclined. In some cases, the present invention is applicable.

1 U字型ヒートパイプ
2 L字型ヒートパイプ
3 ヒートパイプ
4 受熱部材
5 フィン
6,8,61,62,81,82 IGBTモジュール
7,71,72 クランプダイオードモジュール
9 IGBT駆動回路
10 フィルタコンデンサ
11,12,13 ケース
14 ダクト
15,16 立ち上がり部を持たないヒートパイプ
40 送風機
101,201,301 ヒートパイプの受熱部
102,202,302 ヒートパイプの放熱部
DESCRIPTION OF SYMBOLS 1 U-shaped heat pipe 2 L-shaped heat pipe 3 Heat pipe 4 Heat receiving member 5 Fin 6, 8, 61, 62, 81, 82 IGBT module 7, 71, 72 Clamp diode module 9 IGBT drive circuit 10 Filter capacitor 11, 12, 13 Case 14 Duct 15, 16 Heat pipe 40 having no rising part Blower 101, 201, 301 Heat pipe heat receiving part 102, 202, 302 Heat pipe heat radiating part

Claims (17)

複数のパワー半導体素子と、
受熱部材と、
複数のヒートパイプを有し、
前記複数のパワー半導体素子は前記受熱部材の一方側の面に取り付けられ、
前記複数のヒートパイプは前記受熱部材の他方側の面に取り付けられ、
前記複数のヒートパイプは、前記受熱部材の外側に立ち上げられた放熱部と、前記受熱部材と接触する受熱部と、を備えた電力変換装置において、
前記複数のヒートパイプの各々の受熱部が同一面上に設置される、複数の第1のヒートパイプと第2のヒートパイプを備え、
前記複数の第1のヒートパイプは、前記複数の第1のヒートパイプの受熱部の長手方向が冷却風の流れ方向と略同一方向に並べて設置され、
前記第2のヒートパイプは、前記第2のヒートパイプの受熱部の長手方向が冷却風の流れ方向と略垂直の方向で、かつ隣接する前記複数の第1のヒートパイプとの間に設置され、
前記第2のヒートパイプの受熱部は、発熱量の異なる複数の素子に跨って配置されること
を特徴とする電力変換装置。
A plurality of power semiconductor elements;
A heat receiving member;
Have multiple heat pipes,
The plurality of power semiconductor elements are attached to one surface of the heat receiving member,
The plurality of heat pipes are attached to the other surface of the heat receiving member,
The plurality of heat pipes, in a power converter including a heat radiating unit raised outside the heat receiving member, and a heat receiving unit in contact with the heat receiving member,
Each of the heat receiving portions of the plurality of heat pipes is installed on the same surface, and includes a plurality of first heat pipes and second heat pipes,
The plurality of first heat pipes are installed with the longitudinal direction of the heat receiving portions of the plurality of first heat pipes arranged in substantially the same direction as the flow direction of the cooling air,
The second heat pipe is installed between the plurality of adjacent first heat pipes in which the longitudinal direction of the heat receiving portion of the second heat pipe is substantially perpendicular to the flow direction of the cooling air. ,
The power conversion device, wherein the heat receiving portion of the second heat pipe is disposed across a plurality of elements having different calorific values.
請求項1記載の電力変換装置において、
前記複数の第1のヒートパイプの受熱部、及び前記第2のヒートパイプの受熱部と同一面上であって、前記受熱部材の端部に沿って、前記受熱部材の熱を平均化させる均熱パイプを有すること
を特徴とする電力変換装置。
The power conversion device according to claim 1,
The heat receiving portions of the plurality of first heat pipes and the heat receiving portions of the second heat pipe are on the same plane, and average the heat of the heat receiving members along the end portions of the heat receiving members. A power conversion device comprising a heat pipe.
請求項2に記載の電力変換装置において、
前記複数の素子は、IGBTモジュールとダイオードモジュールであること
を特徴とする電力変換装置。
The power conversion device according to claim 2,
The plurality of elements are an IGBT module and a diode module.
請求項2記載の電力変換装置において、
前記の長手方向が冷却風の流れ方向と略垂直の方向に設置された第2ヒートパイプの少なくとも一部は、少なくとも片側を前記受熱部材の外側に立ち上げたこと
を特徴とする電力変換装置。
The power conversion device according to claim 2,
At least a part of the second heat pipe installed in a direction in which the longitudinal direction is substantially perpendicular to the flow direction of the cooling air has at least one side raised to the outside of the heat receiving member.
請求項2記載の電力変換装置において、
前記放熱部に取り付けられるフィンを備え、
前記フィンは、冷却風の上流側と下流側で間隔を変え、下流側ほど前記フィンの間隔を狭くしたこと
を特徴とする電力変換装置。
The power conversion device according to claim 2,
Including fins attached to the heat radiating portion;
The fins have different intervals between the upstream side and the downstream side of the cooling air, and the intervals between the fins are narrower toward the downstream side.
請求項2記載の電力変換装置において、
冷却風の上流側と下流側で前記放熱部の間隔を変え、下流側ほど前記放熱部の間隔を狭くしたこと
を特徴とする電力変換装置。
The power conversion device according to claim 2,
A power conversion device characterized in that an interval between the heat radiating portions is changed between an upstream side and a downstream side of the cooling air, and an interval between the heat radiating portions is narrowed toward a downstream side.
請求項5記載の電力変換装置において、
冷却風の上流側と下流側で前記フィンの材料を変え、上流側の前記フィンの熱伝導率よりも下流側の前記フィンの熱伝導率を大きくしたこと
を特徴とする電力変換装置。
The power conversion device according to claim 5, wherein
The power conversion apparatus according to claim 1, wherein the fin material is changed between the upstream side and the downstream side of the cooling air so that the thermal conductivity of the fin on the downstream side is larger than the thermal conductivity of the fin on the upstream side.
複数の発熱素子を一方側の面で接続するための受熱部材と、
前記受熱部材の他方側の面に接続した複数のヒートパイプと、を備え、
前記複数のヒートパイプは、前記受熱部材の外側に立ち上げられた放熱部と、前記受熱部材と接触する受熱部と、を備えた冷却装置において、
前記複数のヒートパイプの各々の受熱部が同一面上に設置される、複数の第1のヒートパイプと第2のヒートパイプを備え、
前記複数の第1のヒートパイプは、前記複数の第1のヒートパイプの受熱部の長手方向が冷却風の流れ方向と略同一方向に並べて設置され、
前記第2のヒートパイプは、前記第2のヒートパイプの受熱部の長手方向が冷却風の流れ方向と略垂直の方向で、かつ隣接する前記複数の第1のヒートパイプとの間に設置され、
前記第2のヒートパイプの受熱部は、発熱量の異なる複数の素子に跨って配置されること
を特徴とする冷却装置。
A heat receiving member for connecting a plurality of heating elements on one surface;
A plurality of heat pipes connected to the other surface of the heat receiving member,
The plurality of heat pipes, in a cooling device including a heat radiating portion raised outside the heat receiving member, and a heat receiving portion that contacts the heat receiving member,
Each of the heat receiving portions of the plurality of heat pipes is installed on the same surface, and includes a plurality of first heat pipes and second heat pipes,
The plurality of first heat pipes are installed with the longitudinal direction of the heat receiving portions of the plurality of first heat pipes arranged in substantially the same direction as the flow direction of the cooling air,
The second heat pipe is installed between the plurality of adjacent first heat pipes in which the longitudinal direction of the heat receiving portion of the second heat pipe is substantially perpendicular to the flow direction of the cooling air. ,
The heat receiving portion of the second heat pipe is disposed across a plurality of elements having different calorific values.
請求項8記載の冷却装置において、
前記複数の第1のヒートパイプの受熱部、及び前記第2のヒートパイプの受熱部と同一面上であって、前記受熱部材の端部に沿って、前記受熱部材の熱を平均化させる均熱パイプを有すること
を特徴とする冷却装置。
The cooling device according to claim 8, wherein
The heat receiving portions of the plurality of first heat pipes and the heat receiving portions of the second heat pipe are on the same plane, and average the heat of the heat receiving members along the end portions of the heat receiving members. A cooling device comprising a heat pipe.
請求項9記載の冷却装置において、
複数の前記第2ヒートパイプの少なくとも一部は、少なくともパイプの片側に前記放熱部を備えること
を特徴とする電力変換装置。
The cooling device according to claim 9, wherein
At least a part of the plurality of second heat pipes includes the heat radiating portion on at least one side of the pipe.
請求項9記載の冷却装置において、
前記放熱部に取り付けられるフィンを備え、
前記フィンは、冷却風の上流側と下流側で間隔を変え、下流側ほど前記フィンの間隔を狭くしたこと
を特徴とする冷却装置。
The cooling device according to claim 9, wherein
Including fins attached to the heat radiating portion;
The cooling device is characterized in that the fins have different intervals between the upstream side and the downstream side of the cooling air, and the intervals between the fins are narrower toward the downstream side.
請求項9記載の冷却装置において、
冷却風の上流側と下流側で前記放熱部の間隔を変え、下流側ほど前記放熱部の間隔を狭くしたこと
を特徴とする冷却装置。
The cooling device according to claim 9, wherein
The cooling device characterized in that the space between the heat radiating portions is changed between the upstream side and the downstream side of the cooling air, and the space between the heat radiating portions is narrowed toward the downstream side.
請求項11記載の冷却装置において、
冷却風の上流側と下流側で前記フィンの材料を変え、上流側の前記フィンの熱伝導率よりも下流側の前記フィンの熱伝導率を大きくしたこと
を特徴とする冷却装置。
The cooling device according to claim 11, wherein
The cooling device, wherein the fin material is changed between the upstream side and the downstream side of the cooling air so that the thermal conductivity of the fin on the downstream side is larger than the thermal conductivity of the fin on the upstream side.
受熱部材と、
前記受熱部材の一方側に取り付けられる複数のパワー半導体素子と、
前記受熱部材の他方側に取り付けられる複数のヒートパイプと、
を備えた電力変換装置および該電力変換装置により駆動される車両駆動用電動機を備えた鉄道車両において、
前記複数のヒートパイプは前記受熱部材と接触する受熱部を備え、
前記複数のヒートパイプの各々の受熱部が同一面上に設置される、複数の第1のヒートパイプと第2のヒートパイプを備え、
前記複数の第1のヒートパイプは、前記複数の第1のヒートパイプの受熱部の長手方向が前記送風機の送風方向と略同一方向に並べて設置され、
前記第2のヒートパイプは、前記第2のヒートパイプの受熱部の長手方向が前記送風機の送風方向と略垂直の方向で、かつ隣接する前記複数の第1のヒートパイプの受熱部との間に設置され、
前記第2のヒートパイプの受熱部は、発熱量の異なる複数の素子に跨って配置された電力変換装置を搭載したこと、
を特徴とする鉄道車両。
A heat receiving member;
A plurality of power semiconductor elements attached to one side of the heat receiving member;
A plurality of heat pipes attached to the other side of the heat receiving member;
In a railway vehicle provided with a power converter provided with a vehicle driving motor driven by the power converter,
The plurality of heat pipes include a heat receiving portion that comes into contact with the heat receiving member,
Each of the heat receiving portions of the plurality of heat pipes is installed on the same surface, and includes a plurality of first heat pipes and second heat pipes,
The plurality of first heat pipes are installed with the longitudinal direction of the heat receiving portions of the plurality of first heat pipes arranged in substantially the same direction as the blowing direction of the blower,
The second heat pipe has a longitudinal direction of a heat receiving portion of the second heat pipe in a direction substantially perpendicular to a blowing direction of the blower, and between the heat receiving portions of the plurality of adjacent first heat pipes. Installed in
The heat receiving part of the second heat pipe is mounted with a power conversion device arranged across a plurality of elements with different calorific values,
A railway vehicle characterized by
受熱部材と、
前記受熱部材の一方側に取り付けられる複数のパワー半導体素子と、
前記受熱部材の他方側に取り付けられる複数のヒートパイプと、
を備えた電力変換装置および該電力変換装置により駆動される車両駆動用電動機を備えた鉄道車両において、
前記複数のヒートパイプは前記受熱部材と接触する受熱部を備え、
前記複数のヒートパイプは、同一面上に前記受熱部の各々が設置される複数の第1のヒートパイプと、第2のヒートパイプを備え、
前記複数の第1のヒートパイプは、前記複数の第1のヒートパイプの受熱部の長手方向が前記鉄道車両の走行方向と略同一方向に並べて設置され、
前記第2のヒートパイプは、前記第2のヒートパイプの受熱部の長手方向が前記鉄道車両の走行方向と略垂直の方向で、かつ隣接する前記複数の第1のヒートパイプの受熱部との間に設置され、
前記第2のヒートパイプの受熱部は、発熱量の異なる複数の素子に跨って配置された走行風冷却式の電力変換装置を搭載したこと、
を特徴とする鉄道車両。
A heat receiving member;
A plurality of power semiconductor elements attached to one side of the heat receiving member;
A plurality of heat pipes attached to the other side of the heat receiving member;
In a railway vehicle provided with a power converter provided with a vehicle driving motor driven by the power converter,
The plurality of heat pipes include a heat receiving portion that comes into contact with the heat receiving member,
The plurality of heat pipes includes a plurality of first heat pipes each having the heat receiving portion installed on the same surface, and a second heat pipe,
The plurality of first heat pipes are installed with the longitudinal direction of the heat receiving portions of the plurality of first heat pipes arranged in substantially the same direction as the traveling direction of the railway vehicle,
The second heat pipe has a longitudinal direction of a heat receiving portion of the second heat pipe in a direction substantially perpendicular to a traveling direction of the railway vehicle, and the heat receiving portions of the plurality of adjacent first heat pipes. Installed between
The heat receiving portion of the second heat pipe is mounted with a traveling wind cooling power conversion device disposed across a plurality of elements with different calorific values,
A railway vehicle characterized by
受熱部材と、
前記受熱部材の一方側に取り付けられる複数のパワー半導体素子と、
前記受熱部材の他方側に取り付けられる複数のヒートパイプと、
を備えた電力変換装置および該電力変換装置により駆動される車両駆動用電動機を備えた鉄道車両において、
前記複数のヒートパイプは前記受熱部材と接触する受熱部を備え、
前記複数のヒートパイプは、同一面上に前記受熱部の各々が設置される複数の第1のヒートパイプと、第2のヒートパイプを備え、
前記複数の第1のヒートパイプは、前記複数の第1のヒートパイプの受熱部の長手方向が前記鉄道車両の上下方向と略同一方向に並べて設置され、
前記第2のヒートパイプは、前記第2のヒートパイプの受熱部の長手方向が前記鉄道車両の上下方向と略垂直の方向で、かつ隣接する前記複数の第1のヒートパイプの受熱部との間に設置され、
前記第2のヒートパイプの受熱部は、発熱量の異なる複数の素子に跨って配置された自然対流冷却式の電力変換装置を搭載したこと
を特徴とする鉄道車両。
A heat receiving member;
A plurality of power semiconductor elements attached to one side of the heat receiving member;
A plurality of heat pipes attached to the other side of the heat receiving member;
In a railway vehicle provided with a power converter provided with a vehicle driving motor driven by the power converter,
The plurality of heat pipes include a heat receiving portion that comes into contact with the heat receiving member,
The plurality of heat pipes includes a plurality of first heat pipes each having the heat receiving portion installed on the same surface, and a second heat pipe,
The plurality of first heat pipes are installed such that the longitudinal direction of the heat receiving portions of the plurality of first heat pipes is arranged in substantially the same direction as the vertical direction of the railcar,
In the second heat pipe, the longitudinal direction of the heat receiving portion of the second heat pipe is substantially perpendicular to the vertical direction of the railway vehicle, and the heat receiving portions of the plurality of first heat pipes adjacent to each other. Installed between
The railway vehicle, wherein the heat receiving portion of the second heat pipe is mounted with a natural convection cooling type power conversion device arranged across a plurality of elements having different calorific values.
請求項14ないし請求項16のいずれかに記載の鉄道車両において、
前記電力変換装置は、前記複数の第1のヒートパイプの受熱部、及び前記第2のヒートパイプの受熱部と同一面上であって、前記受熱部材の端部に沿って、前記受熱部材の熱を平均化させる均熱パイプを有すること
を特徴とする鉄道車両。
The railway vehicle according to any one of claims 14 to 16,
The power converter is on the same plane as the heat receiving portions of the plurality of first heat pipes and the heat receiving portions of the second heat pipes , and extends along the end of the heat receiving member. A railway vehicle characterized by having a soaking pipe that averages heat.
JP2010129520A 2010-06-07 2010-06-07 Cooling device, power converter, railway vehicle Expired - Fee Related JP5581119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129520A JP5581119B2 (en) 2010-06-07 2010-06-07 Cooling device, power converter, railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129520A JP5581119B2 (en) 2010-06-07 2010-06-07 Cooling device, power converter, railway vehicle

Publications (2)

Publication Number Publication Date
JP2011259536A JP2011259536A (en) 2011-12-22
JP5581119B2 true JP5581119B2 (en) 2014-08-27

Family

ID=45475099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129520A Expired - Fee Related JP5581119B2 (en) 2010-06-07 2010-06-07 Cooling device, power converter, railway vehicle

Country Status (1)

Country Link
JP (1) JP5581119B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560182B2 (en) * 2010-12-27 2014-07-23 株式会社日立製作所 Cooling device and power conversion device including the same
JP5941741B2 (en) * 2012-04-26 2016-06-29 株式会社日立製作所 Power converter
JP5940170B2 (en) * 2012-12-11 2016-06-29 三菱電機株式会社 Automotive cooler
WO2014092176A1 (en) * 2012-12-14 2014-06-19 古河電気工業株式会社 Cooling apparatus
WO2014104204A1 (en) * 2012-12-27 2014-07-03 古河電気工業株式会社 Cooling device
JP2015156411A (en) * 2014-02-20 2015-08-27 株式会社日立製作所 Power converter and railway vehicle mounting the same
WO2015198642A1 (en) * 2014-06-23 2015-12-30 日本電気株式会社 Heat sink and method for dissipating heat using heat sink
JP7133044B2 (en) * 2019-01-31 2022-09-07 株式会社日立製作所 Self-oscillating heat pipe cooler
JP7404652B2 (en) * 2019-05-16 2023-12-26 富士電機株式会社 power converter
JP7134376B2 (en) * 2020-03-31 2022-09-09 三菱電機株式会社 power converter
JP2022124623A (en) * 2021-02-16 2022-08-26 株式会社東芝 Railway vehicle power conversion device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223814A (en) * 1997-02-07 1998-08-21 Hitachi Cable Ltd Heat pipe-type heat sink for cooling semiconductor element
JP3367411B2 (en) * 1998-03-06 2003-01-14 株式会社日立製作所 Power converter
JP2000161880A (en) * 1998-11-26 2000-06-16 Toshiba Corp Heat pipe type cooler
JP2003188321A (en) * 2001-12-18 2003-07-04 Furukawa Electric Co Ltd:The Heat sink
JP2004254387A (en) * 2003-02-19 2004-09-09 Hitachi Ltd Power converter
JP4714434B2 (en) * 2004-07-20 2011-06-29 古河スカイ株式会社 Heat pipe heat sink

Also Published As

Publication number Publication date
JP2011259536A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5581119B2 (en) Cooling device, power converter, railway vehicle
KR101409102B1 (en) Cooling apparatus and power converter having the same
JP4929325B2 (en) Power converter
TWI525300B (en) Composite heat sink assembly for power module
JP6097648B2 (en) Power conversion device and railway vehicle equipped with the same
JP6741561B2 (en) Electric power conversion device for railway vehicles
JP5941741B2 (en) Power converter
JP2010187504A (en) Inverter device
JP5028822B2 (en) Power module cooling device
JP2012070525A (en) Power supply unit for vehicle
US8860213B2 (en) Power converter
JP2017112151A (en) Cooling structure of power unit
JP2008278576A (en) Cooling device of power semiconductor element
JP2009277699A (en) Heat sink, heat sink assembly, semiconductor module, and semiconductor device with cooling device
JP5466073B2 (en) Power converter and railway vehicle
JP2015156411A (en) Power converter and railway vehicle mounting the same
JP5705570B2 (en) Electronic component cooling system
JP5594784B2 (en) Heat sink cooler
JP2013048151A (en) Semiconductor cooling device for vehicle
JP2020171196A (en) Electric power conversion apparatus of railway vehicle
JP2018037557A (en) Power converter and rolling stock mounting power converter
JP2011135649A (en) Inverter device
JP2016078654A (en) Electric power conversion system and railway vehicle mounted with the same
JP2010087016A (en) Heat sink for natural air cooling
JP5494637B2 (en) Power module cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5581119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees