JP2017069356A - Electric power conversion device and railway vehicle equipped with the same - Google Patents

Electric power conversion device and railway vehicle equipped with the same Download PDF

Info

Publication number
JP2017069356A
JP2017069356A JP2015192502A JP2015192502A JP2017069356A JP 2017069356 A JP2017069356 A JP 2017069356A JP 2015192502 A JP2015192502 A JP 2015192502A JP 2015192502 A JP2015192502 A JP 2015192502A JP 2017069356 A JP2017069356 A JP 2017069356A
Authority
JP
Japan
Prior art keywords
heat
conversion device
duct
power conversion
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015192502A
Other languages
Japanese (ja)
Inventor
舟越 砂穂
Saho Funakoshi
砂穂 舟越
田中 健
Takeshi Tanaka
健 田中
秀一 寺門
Shuichi Terakado
秀一 寺門
陽介 安田
Yosuke Yasuda
陽介 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015192502A priority Critical patent/JP2017069356A/en
Publication of JP2017069356A publication Critical patent/JP2017069356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a motor of an axial fan installed at a downstream side of a cooler.SOLUTION: An electric power conversion device includes: power semiconductor elements; a heat receiving member in which the power semiconductor elements are provided on one surface; and heat radiation members provided on the other surface of the heat receiving member. The electric power conversion device includes fans for flowing cooling air to areas between the heat radiation members. The fans are disposed at the cooling air downstream side of the heat radiation members. The electric power conversion device includes a duct which guides the cooling air from the heat radiation members to the fans. An opening part which communicates with outer air is provided at a part of the duct.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換装置およびそれを搭載した鉄道車両に関する。   The present invention relates to a power conversion device and a railway vehicle equipped with the same.

電力変換装置は、電気鉄道車両等の車両を駆動する電動機を制御するためのもので、車両の床下等に設置されている。車両の床下等のスペースは限られているため、電力変換装置を小型化することが望まれている。従来の電力変換装置においては、特許文献1のように、半導体素子を受熱部材に取付け、受熱部材から立ち上げたヒートパイプにフィンを取り付けて、フィンの上流側に設けたブロアによってフィン間に送風することによりパワー半導体素子を冷却する構造が知られている。また、特許文献2には、複数の軸流ファンをフィンの上流側に設け、フィンに取り付けた電子部品を冷却する構造が見られる。   The power conversion device is for controlling an electric motor that drives a vehicle such as an electric railway vehicle, and is installed under the floor of the vehicle. Since the space under the floor of the vehicle is limited, it is desired to reduce the size of the power conversion device. In a conventional power conversion device, as in Patent Document 1, a semiconductor element is attached to a heat receiving member, a fin is attached to a heat pipe raised from the heat receiving member, and air is blown between the fins by a blower provided on the upstream side of the fin. A structure for cooling the power semiconductor element by doing so is known. Further, Patent Document 2 shows a structure in which a plurality of axial fans are provided on the upstream side of a fin to cool an electronic component attached to the fin.

特開2014−17488号公報JP 2014-17488 A 特開2002−280779号公報Japanese Patent Laid-Open No. 2002-280779

ヒートパイプとそれに取り付けたフィンからなる放熱部の上流側に設けたブロアによってフィン間に送風する方式の場合、十分な冷却性能を得るためには、大型のブロアを設ける必要があり、ブロアおよびブロアからヒートパイプ放熱部分までのダクトに大きなスペースを要するという問題があった。そこで、ブロアやダクトスペースを小さくするために、特許文献2のように、小型の軸流ファンを上流側に分散して配置する構造が考えられる。この構造をフィンとヒートパイプから構成されるヒートパイプ放熱部に適用した場合、装置を小型化するために、ファンとヒートシンクの距離を小さくしようとすると冷却風が均等に流れず、十分な冷却性能が得られないという問題があった。そこで、ファンをヒートパイプ放熱部の下流側に設けることが考えられる。しかしながら、ファンをヒートパイプ放熱部の下流に設置した場合には、半導体素子の発熱によって加熱された空気がファンモータに当たるため、ファンモータの信頼性、さらには寿命が低下するという問題があった。   In the case of a system in which air is blown between fins by a blower provided on the upstream side of a heat radiating portion consisting of a heat pipe and a fin attached thereto, in order to obtain sufficient cooling performance, it is necessary to provide a large blower. There was a problem that a large space was required for the duct from the heat pipe to the heat-radiating part. Therefore, in order to reduce the blower and duct space, a structure in which small axial fans are dispersed and arranged on the upstream side as in Patent Document 2 is conceivable. When this structure is applied to a heat pipe heat dissipation unit consisting of fins and heat pipes, cooling air will not flow evenly if the distance between the fan and heat sink is reduced in order to reduce the size of the device. There was a problem that could not be obtained. Therefore, it is conceivable to provide a fan on the downstream side of the heat pipe heat dissipation unit. However, when the fan is installed downstream of the heat pipe heat radiating section, air heated by the heat generated by the semiconductor element hits the fan motor, and there is a problem that the reliability and life of the fan motor are reduced.

本発明の目的は、冷却装置の小型化を図ると共に、風速分布を良好に保って冷却性能を確保し、かつファンモータの信頼性を向上することにある。   An object of the present invention is to reduce the size of a cooling device, to maintain a good wind speed distribution to ensure cooling performance, and to improve the reliability of a fan motor.

前記目的を達成するために、本発明の電力変換装置では、複数のパワー半導体素子と、複数のパワー半導体素子が一方の面に備えられた受熱部材と、受熱部材の他方の面に備えられた複数の放熱部材と、を備えた電力変換装置において、複数の放熱部材の間に冷却風を流すための複数のファンを備え、複数のファンを放熱部材の冷却風下流側に配置するとともに、放熱部材からファンまで冷却風を導くダクトを備え、ダクトの一部分に外気と通じた開口部を設ける構造とした。   In order to achieve the above object, in the power conversion device of the present invention, a plurality of power semiconductor elements, a heat receiving member provided on one surface with the plurality of power semiconductor elements, and provided on the other surface of the heat receiving member are provided. A power conversion device comprising a plurality of heat dissipating members, comprising a plurality of fans for flowing cooling air between the heat dissipating members, disposing the plurality of fans downstream of the heat dissipating members and dissipating heat. A duct that guides cooling air from the member to the fan is provided, and an opening that communicates with the outside air is provided in a part of the duct.

良好な風速分布を得て冷却性能を確保するとともに、パワー半導体素子の発熱によって上昇した空気の温度を低下させて、ファンモータの空気による加熱を抑制して、ファンモータの信頼性を向上することができる。   To improve the reliability of the fan motor by obtaining a good wind speed distribution and ensuring cooling performance, and by reducing the temperature of the air that has risen due to the heat generated by the power semiconductor elements, thereby suppressing the heating of the fan motor by the air. Can do.

本発明の一実施形態における電力変換装置の車両の進行方向と垂直な方向の鉛直断面図である。It is a vertical sectional view of the direction perpendicular to the advancing direction of vehicles of the power converter in one embodiment of the present invention. 本発明の一実施形態における電力変換装置の水平方向の断面図である。It is sectional drawing of the horizontal direction of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の車両の枕木方向と垂直な方向の鉛直断面図である。It is a vertical sectional view of a direction perpendicular to a sleeper direction of a vehicle of a power converter in one embodiment of the present invention. 本発明の電力変換装置を鉄道車両に搭載した構成を示す図である。It is a figure which shows the structure which mounted the power converter device of this invention in the rail vehicle. 本発明の他の実施形態(第2の実施形態)における電力変換装置の進行方向と垂直な方向の鉛直断面図である。It is a vertical sectional view in a direction perpendicular to the traveling direction of the power converter according to another embodiment (second embodiment) of the present invention. 本発明の他の実施形態(第2の実施形態)における電力変換装置の水平方向の断面図である。It is sectional drawing of the horizontal direction of the power converter device in other embodiment (2nd Embodiment) of this invention. 本発明の他の実施形態(第2の実施形態)における電力変換装置の図5におけるA−A断面図である。It is AA sectional drawing in FIG. 5 of the power converter device in other embodiment (2nd Embodiment) of this invention. 本発明のさらに他の実施形態(第3の実施形態)における電力変換装置の進行方向と垂直な方向の鉛直断面図である。It is a vertical sectional view of a direction perpendicular to the advancing direction of a power converter in still another embodiment (third embodiment) of the present invention. 本発明のさらに他の実施形態(第3の実施形態)における電力変換装置の図8におけるB−B断面図である。It is BB sectional drawing in FIG. 8 of the power converter device in further another embodiment (3rd Embodiment) of this invention. 本発明におけるファンモータ付近の空気温度の計算結果を示す表である。It is a table | surface which shows the calculation result of the air temperature of the fan motor vicinity in this invention.

本発明の実施の形態を以下、図面を用いて説明する。図4に本発明の一実施形態(第1の実施形態)における電力変換装置を鉄道車両に搭載したときの構成図を示す。本発明の電力変換装置は鉄道車両の床下等に設けられ、車両を駆動する電動機に供給する交流電力の周波数を変えることにより、床下の台車に搭載されて車輪を駆動する電動機の回転速度の制御を行う。図4において、電力変換装置1000は、車体1001の床材に吊り下げられた状態で固定され、床下のスペースに搭載されている。また、ファンを設け、車両の進行方向とおおよそ直交する左右方向に風を流すことにより、電力変換装置のパワー半導体モジュール7、8から発生する熱を大気に放出している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows a configuration diagram when the power conversion device according to one embodiment (first embodiment) of the present invention is mounted on a railway vehicle. The power conversion device of the present invention is provided under the floor of a railway vehicle, etc., and controls the rotational speed of the electric motor mounted on the undercarriage and driving the wheels by changing the frequency of AC power supplied to the electric motor driving the vehicle. I do. In FIG. 4, the power conversion device 1000 is fixed in a state where it is suspended from the floor material of the vehicle body 1001, and is mounted in a space under the floor. In addition, a fan is provided, and the heat generated from the power semiconductor modules 7 and 8 of the power converter is released to the atmosphere by flowing wind in the left-right direction approximately perpendicular to the traveling direction of the vehicle.

図1に本実施形態における電力変換装置の車両の進行方向と垂直な方向の鉛直断面図を、図2に水平方向の断面図を、図3に枕木方向と垂直な方向の鉛直断面図を示す。図1から図3における矢印40はファンによる空気の流れのおおまかな方向を示す。図1から図3において、アルミニウム合金等の金属からなる受熱部材6の一方の側には、複数のIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体素子を含むパワー半導体モジュール7、8が設置されている。例えば、電力変換装置が交流電力を直流電力へ変換する3レベル回路のコンバータの場合、7はIGBTモジュール、8はクランプダイオードモジュールである。さらに複数のパワー半導体モジュール7、8が電力変換装置を構成している。以下、これらのパワー半導体モジュールについてもパワー半導体素子と呼称する。パワー半導体素子7、8は、グリース等の部材(図示せず)を介して受熱部材6とねじ等(図示せず)によって固定される。受熱部材6のパワー半導体素子7、8の側には、パワー半導体素子7、8を内側に密閉するケース21,22が設けられ、ケース内にはフィルタコンデンサやIGBT駆動回路等の電気部品25がパワー半導体素子7、8と共に設置されている。受熱部材6のパワー半導体素子設置面の反対側には、U字形状のヒートパイプ3、4の受熱部分が埋め込まれ、受熱部分はハンダ付け等により受熱部材6と熱的に接続されている。U字形状ヒートパイプ3、4の放熱部には、アルミニウムや銅等の金属でできた複数のフィン5が圧入等によって接続されている。   FIG. 1 shows a vertical sectional view in a direction perpendicular to the traveling direction of the vehicle of the power conversion device in the present embodiment, FIG. 2 shows a horizontal sectional view, and FIG. 3 shows a vertical sectional view in a direction perpendicular to the sleeper direction. . The arrows 40 in FIGS. 1 to 3 indicate the general direction of air flow by the fan. 1 to 3, power semiconductor modules 7 and 8 including a plurality of power semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) are installed on one side of a heat receiving member 6 made of a metal such as an aluminum alloy. Yes. For example, when the power converter is a three-level circuit converter that converts AC power into DC power, 7 is an IGBT module, and 8 is a clamp diode module. Further, the plurality of power semiconductor modules 7 and 8 constitute a power conversion device. Hereinafter, these power semiconductor modules are also referred to as power semiconductor elements. The power semiconductor elements 7 and 8 are fixed by a heat receiving member 6 and screws (not shown) through a member (not shown) such as grease. Cases 21 and 22 for sealing the power semiconductor elements 7 and 8 on the inner side are provided on the power semiconductor elements 7 and 8 side of the heat receiving member 6, and electrical components 25 such as filter capacitors and IGBT drive circuits are provided in the case. It is installed together with the power semiconductor elements 7 and 8. On the opposite side of the power semiconductor element installation surface of the heat receiving member 6, heat receiving portions of the U-shaped heat pipes 3 and 4 are embedded, and the heat receiving portions are thermally connected to the heat receiving member 6 by soldering or the like. A plurality of fins 5 made of a metal such as aluminum or copper are connected to the heat radiating portions of the U-shaped heat pipes 3 and 4 by press fitting or the like.

受熱部材6に設置されたパワー半導体素子がに電流が通流するとパワー半導体素子は発熱し、その熱は受熱部材6に埋め込まれたヒートパイプ3の蒸発部301に伝えられる。ヒートパイプには純水等の作動液が封入されており、作動液は蒸発部301において蒸発してパワー半導体素子の熱を奪う。蒸発した作動液は、ヒートパイプの放熱部302に移動し、放熱部302で凝縮して液に戻りながら放熱する。放熱された熱はヒートパイプ放熱部302から直接またはフィン5を介して空気に伝えられる。ヒートパイプ放熱部302で凝縮した液は再び蒸発部301に戻って蒸発するという動作が連続的に行われる。ヒートパイプは放熱部が長いものと短いものを設置する。図1のヒートパイプ3の放熱部は、ヒートパイプ4の放熱部よりも長く、ヒートパイプ4の放熱部はヒートパイプ3の放熱部よりも短い。放熱部の短いヒートパイプ4は、外気が低温時でヒートパイプ内の作動流体が凍結しているときに、起動後、早く融解してヒートパイプが動作することにより、パワー半導体素子の冷却性能を維持する役割を果たしている。   When a current flows through the power semiconductor element installed in the heat receiving member 6, the power semiconductor element generates heat, and the heat is transmitted to the evaporation portion 301 of the heat pipe 3 embedded in the heat receiving member 6. A working fluid such as pure water is sealed in the heat pipe, and the working fluid evaporates in the evaporating unit 301 and takes heat of the power semiconductor element. The evaporated working fluid moves to the heat radiating section 302 of the heat pipe, condenses in the heat radiating section 302 and radiates heat while returning to the liquid. The radiated heat is transmitted to the air directly from the heat pipe heat radiating portion 302 or via the fins 5. The operation of the liquid condensed in the heat pipe heat radiating unit 302 returning to the evaporating unit 301 and evaporating is continuously performed. Install heat pipes with long and short heat sinks. The heat radiation part of the heat pipe 3 in FIG. 1 is longer than the heat radiation part of the heat pipe 4, and the heat radiation part of the heat pipe 4 is shorter than the heat radiation part of the heat pipe 3. The heat pipe 4 having a short heat radiating portion has a cooling performance of the power semiconductor element by operating the heat pipe by melting quickly after starting when the working fluid in the heat pipe is frozen when the outside air is at a low temperature. Plays the role of maintaining.

フィン5やヒートパイプ3,4は、ダクト9の中に収納される。ダクト9の天井面は、支柱32によって支持されている。軸流ファン1が駆動すると、外気は吸込グリル23から入口ダクト10に入り、フィルタ24を通り、放熱フィン5に達する。吸込グリル23とフィルタ24は、外部からの異物がフィン部分に侵入してフィンが目詰まりしたり、フィンやヒートパイプを破壊したりするのを防いでいる。放熱フィン5の間に導かれた空気は、ヒートパイプ3,4とフィン5を通じてパワー半導体素子7,8の熱を奪い、温度が上昇する。ファン1にはファンを駆動するためのファンモータ2が取り付けられており、そこに高温の空気が当たるとファンモータの信頼性が低下し、寿命が短くなる恐れがある。そこで、フィン5の出口とファン1の間の出口ダクト11の上下に開口部12および16を設けた。これらの開口部からはダクト外部から外気が導入され、導入された外気は、フィン5の間から流出する加熱された空気と混合し、加熱された空気の温度が低下する。したがって、加熱された高温の空気が直接ファンモータ2に当たることがないので、ファンモータ2の信頼性を向上することができる。開口部12の上部には雨滴等が直接侵入するのを防ぐためのカバー13、14を設ける。また、開口部16の下部にも同様に、カバー17、18を設ける。開口部12および16には、異物の侵入を防ぐために、金網等20を設ける。よって、開口部15から取り込まれた空気は金網20が設けられた開口部12を介して出口ダクト11に流入する。同様に、開口部19から取り込まれた空気は金網20が設けられた開口部16を介して出口ダクト11に流入する。   The fins 5 and the heat pipes 3 and 4 are accommodated in the duct 9. The ceiling surface of the duct 9 is supported by the support column 32. When the axial fan 1 is driven, outside air enters the inlet duct 10 from the suction grille 23, passes through the filter 24, and reaches the radiating fins 5. The suction grille 23 and the filter 24 prevent foreign matters from entering the fin portion and clogging the fins and destroying the fins and the heat pipe. The air guided between the heat radiating fins 5 takes heat from the power semiconductor elements 7 and 8 through the heat pipes 3 and 4 and the fins 5 and the temperature rises. A fan motor 2 for driving the fan is attached to the fan 1, and if high-temperature air hits the fan 1, the reliability of the fan motor is lowered and the life may be shortened. Therefore, openings 12 and 16 are provided above and below the outlet duct 11 between the outlet of the fin 5 and the fan 1. From these openings, outside air is introduced from the outside of the duct, and the introduced outside air is mixed with the heated air flowing out between the fins 5, and the temperature of the heated air is lowered. Therefore, since the heated high-temperature air does not directly hit the fan motor 2, the reliability of the fan motor 2 can be improved. Covers 13 and 14 for preventing raindrops and the like from directly entering are provided above the opening 12. Similarly, covers 17 and 18 are provided below the opening 16. The openings 12 and 16 are provided with a wire mesh or the like 20 to prevent intrusion of foreign matter. Therefore, the air taken in from the opening 15 flows into the outlet duct 11 via the opening 12 provided with the wire mesh 20. Similarly, the air taken in from the opening 19 flows into the outlet duct 11 through the opening 16 provided with the wire mesh 20.

出口ダクト11の開口部12および16がある場合とない場合のファンモータ付近の空気温度の計算結果を図10の表に示す。当該表によると、ファンを出口に設け出口ダクトに開口部を設けない場合(左列)は、ファンの入口部の空気温度の外気温度からの温度上昇が28.1Kとなる。一方、ファンを出口に設け出口ダクトに開口部を設ける場合(中央列)には、ファンの入口部の空気温度の外気温度からの温度上昇が18.5Kとなるため、開口部12、16を設けることにより、ファンモータ2の周辺のファン入口部空気温度を10℃程度下げることができることが分かる。   The calculation results of the air temperature in the vicinity of the fan motor with and without the openings 12 and 16 of the outlet duct 11 are shown in the table of FIG. According to the table, when the fan is provided at the outlet and the opening is not provided at the outlet duct (left column), the temperature rise from the outside air temperature of the inlet of the fan is 28.1K. On the other hand, when the fan is provided at the outlet and the opening is provided in the outlet duct (center row), the temperature rise from the outside air temperature at the inlet of the fan is 18.5K, so the openings 12 and 16 are provided. Thus, it can be seen that the air temperature at the fan inlet around the fan motor 2 can be lowered by about 10 ° C.

また、開口部12、16を設ける場合(中央列)の放熱部の風量40.8は出口ダクトに開口部を設けない左列41.8や右列41.5よりもやや減少しているため、この風量の減少に起因して受熱部材6の半導体素子取付面の温度は、ファンを出口に設け出口ダクトに開口部を設けない場合(左列)よりも上昇するが、その上昇量は0.6%であり、ファン入口部の空気温度の減少率に対して比較的小さい。表の右列に記載のように放熱部よりも上流側のダクトの入口にファンを設置した場合、冷却風に偏りが生じるために、放熱部の風量に対してモジュール取付面の温度上昇が大きくなっており、パワー半導体素子の冷却性能が低下していることが分かる。   Further, when the openings 12 and 16 are provided (center row), the air volume 40.8 of the heat radiating section is slightly smaller than the left row 41.8 and the right row 41.5 where no opening is provided in the outlet duct. As a result, the temperature of the semiconductor element mounting surface of the heat receiving member 6 is higher than that in the case where the fan is provided at the outlet and the opening is not provided in the outlet duct (left column). It is relatively small with respect to the reduction rate of the air temperature of the part. As shown in the right column of the table, when a fan is installed at the inlet of the duct upstream of the heat radiating section, the cooling air is biased, so the temperature rise on the module mounting surface is larger than the air volume of the heat radiating section. It can be seen that the cooling performance of the power semiconductor element is degraded.

以上のように、本実施形態によれば、パワー半導体素子に対する冷却性能を確保しながら、ファンモータ周辺の空気温度を下げることができるので、ファンモータの信頼性や寿命を向上させることができる。   As described above, according to the present embodiment, the air temperature around the fan motor can be lowered while ensuring the cooling performance for the power semiconductor element, so that the reliability and life of the fan motor can be improved.

図5に本発明の他の実施形態(第2の実施形態)における鉄道車両の進行方向に垂直な電力変換装置の鉛直断面図を、図6に水平断面図を、図7に図5におけるA−A断面図を示す。本実施形態では、実施例1のように出口ダクト11の上下面に設けた開口部12,16に加えて、出口ダクト11の側面にも開口部26を設けている。開口部26に直接、走行風が当たるのを防止するために、カバー28、29、30、31を設ける。また、開口部26からの異物の侵入を防ぐために、開口部26には金網等27が設けられる。出口ダクトの上下の他に側面にも開口部26を設けることにより、ファンモータ2の冷却効果を高めることが可能である。この実施形態では、第1の実施形態よりも冷却風の流路幅が狭く、設置されるファンの数が少ない。このように、ファンの数が少ない場合には、出口ダクト11の上下には開口部を設けずに、側面のみに開口部を設けても良い。また、本実施形態では、各パワー半導体素子の発熱がほぼ同等となる2レベルインバータにおいて、冷却風の流れ方向とU字型ヒートパイプの長手方向が一致するようにヒートパイプを設置した例を示している。本実施形態で言及していない構造については、第1の実施形態と同様であるものとする。   FIG. 5 is a vertical sectional view of a power converter perpendicular to the traveling direction of a railway vehicle in another embodiment (second embodiment) of the present invention, FIG. 6 is a horizontal sectional view, and FIG. -A shows a cross-sectional view. In the present embodiment, in addition to the openings 12 and 16 provided on the upper and lower surfaces of the outlet duct 11 as in the first embodiment, the openings 26 are also provided on the side surfaces of the outlet duct 11. Covers 28, 29, 30, and 31 are provided to prevent the traveling wind from directly hitting the opening 26. In addition, in order to prevent foreign matter from entering from the opening 26, the opening 26 is provided with a wire net 27 or the like. By providing the opening 26 on the side surface in addition to the upper and lower sides of the outlet duct, the cooling effect of the fan motor 2 can be enhanced. In this embodiment, the flow path width of the cooling air is narrower than in the first embodiment, and the number of fans installed is small. As described above, when the number of fans is small, the openings may be provided only on the side surfaces without providing the openings above and below the outlet duct 11. Further, in the present embodiment, an example in which a heat pipe is installed so that the flow direction of the cooling air and the longitudinal direction of the U-shaped heat pipe coincide with each other in a two-level inverter in which the heat generation of each power semiconductor element is substantially equal. ing. The structures not mentioned in the present embodiment are the same as those in the first embodiment.

以上のように本実施形態によれば、出口ダクトの上下の他に側面にも開口部26を設けることにより、ファンモータ2の冷却効果を高めることが可能である。   As described above, according to the present embodiment, the cooling effect of the fan motor 2 can be enhanced by providing the opening 26 on the side surface in addition to the upper and lower sides of the outlet duct.

図8に本発明のさらに他の実施形態(第3の実施形態)における鉄道車両の進行方向に垂直な電力変換装置の鉛直断面図を、図9に図8におけるB−B断面図を示す。図8、9において、ヒートシンクのフィンベース50にパワー半導体素子7、8を取付け、フィンベース50には複数のフィン51を接続する。フィンベース50およびフィン51の材質は、アルミニウムや銅が用いられる。本実施形態で言及していない構造については、第1の実施形態と同様であるものとする。   FIG. 8 shows a vertical cross-sectional view of a power conversion device perpendicular to the traveling direction of a railway vehicle in still another embodiment (third embodiment) of the present invention, and FIG. 9 shows a cross-sectional view along BB in FIG. 8 and 9, the power semiconductor elements 7 and 8 are attached to the fin base 50 of the heat sink, and a plurality of fins 51 are connected to the fin base 50. As the material of the fin base 50 and the fin 51, aluminum or copper is used. The structures not mentioned in the present embodiment are the same as those in the first embodiment.

本実施形態のように、フィンを用いたヒートシンクにより冷却する構造においても、第1の実施形態と同様、パワー半導体素子の冷却性能を確保しながら、ファンモータ周辺の空気温度を下げることができるので、ファンモータの信頼性や寿命を向上させることができる。   As in the first embodiment, even in a structure that is cooled by a heat sink using fins, the air temperature around the fan motor can be lowered while ensuring the cooling performance of the power semiconductor element, as in the first embodiment. The reliability and life of the fan motor can be improved.

また、本実施形態のように、フィンを用いたヒートシンクにより冷却する構造において、第2の実施形態のように出口ダクトの上下及び左右に開口部を設けることも可能である。   Moreover, in the structure cooled by the heat sink using a fin like this embodiment, it is also possible to provide an opening part on the upper and lower sides and right and left of an exit duct like 2nd Embodiment.

1…軸流ファン
2…ファンモータ
3、4…ヒートパイプ
5…フィン
6…受熱部材
7、8…パワー半導体素子
9、10,11…ダクト
12,16…ダクト開口部
13、14、15、17,18,19…開口部カバー
20…金網
DESCRIPTION OF SYMBOLS 1 ... Axial fan 2 ... Fan motor 3, 4 ... Heat pipe 5 ... Fin 6 ... Heat receiving member 7, 8 ... Power semiconductor element 9, 10, 11 ... Duct 12, 16 ... Duct opening 13, 14, 15, 17 , 18, 19 ... opening cover 20 ... wire mesh

Claims (6)

複数のパワー半導体素子と、
前記複数のパワー半導体素子が一方の面に備えられた受熱部材と、
前記受熱部材の他方の面に備えられた複数の放熱部材と、を備えた電力変換装置において、
前記複数の放熱部材の間に冷却風を流すための複数のファンを備え、前記複数のファンを前記放熱部材の冷却風下流側に配置するとともに、
前記放熱部材から前記ファンまで前記冷却風を導くダクトを備え、
前記ダクトの一部分に外気と通じた開口部を設けたことを特徴とする電力変換装置。
A plurality of power semiconductor elements;
A heat receiving member provided on one surface with the plurality of power semiconductor elements;
A plurality of heat dissipating members provided on the other surface of the heat receiving member;
A plurality of fans for flowing cooling air between the plurality of heat radiating members; and disposing the plurality of fans on the cooling air downstream side of the heat radiating members;
A duct for guiding the cooling air from the heat dissipation member to the fan;
An electric power converter comprising an opening communicating with outside air in a part of the duct.
請求項1に記載の電力変換装置において、
前記放熱部材と前記ファンの間の前記ダクトに外気と通じた開口部を設けた
ことを特徴とする電力変換装置。
The power conversion device according to claim 1,
An opening communicating with outside air is provided in the duct between the heat dissipation member and the fan.
The power converter characterized by the above-mentioned.
請求項1または請求項2に記載の電力変換装置において、
前記開口部は、前記ダクトの上面、下面、側面の少なくともいずれかに設けられたことを特徴とする電力変換装置。
In the power converter device according to claim 1 or 2,
The power converter according to claim 1, wherein the opening is provided on at least one of an upper surface, a lower surface, and a side surface of the duct.
前記開口部にカバーを設けたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電力変換装置。   The power converter according to any one of claims 1 to 3, wherein a cover is provided in the opening. 前記開口部を網状の部材で覆うことを特徴とする請求項1ないし請求項4のいずれか1項に記載の電力変換装置。   The power converter according to any one of claims 1 to 4, wherein the opening is covered with a net-like member. 請求項1ないし請求項5のいずれか1項に記載の電力変換装置を床下に搭載した鉄道車両。   A railway vehicle in which the power conversion device according to any one of claims 1 to 5 is mounted under a floor.
JP2015192502A 2015-09-30 2015-09-30 Electric power conversion device and railway vehicle equipped with the same Pending JP2017069356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192502A JP2017069356A (en) 2015-09-30 2015-09-30 Electric power conversion device and railway vehicle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192502A JP2017069356A (en) 2015-09-30 2015-09-30 Electric power conversion device and railway vehicle equipped with the same

Publications (1)

Publication Number Publication Date
JP2017069356A true JP2017069356A (en) 2017-04-06

Family

ID=58495090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192502A Pending JP2017069356A (en) 2015-09-30 2015-09-30 Electric power conversion device and railway vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP2017069356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016079A (en) * 2020-07-10 2022-01-21 トヨタ自動車株式会社 Cooling unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016079A (en) * 2020-07-10 2022-01-21 トヨタ自動車株式会社 Cooling unit
JP7306342B2 (en) 2020-07-10 2023-07-11 トヨタ自動車株式会社 cooling unit

Similar Documents

Publication Publication Date Title
JP5560182B2 (en) Cooling device and power conversion device including the same
KR101159992B1 (en) Power converter
JP5581119B2 (en) Cooling device, power converter, railway vehicle
JP6674538B2 (en) Cooling system
US20060243422A1 (en) Liquid-cooled semiconductor unit for cooling high-power semiconductor elements that are enclosed in modules
JP5941741B2 (en) Power converter
KR101609934B1 (en) Traction converter and railway vehicle
JP6741561B2 (en) Electric power conversion device for railway vehicles
KR20130085981A (en) Cooler of power converter for railway vehicle
JP2016225530A (en) Liquid-cooled cooling device
EP3900500B1 (en) An arrangement for cooling power semiconductor devices of a converter
JP5466073B2 (en) Power converter and railway vehicle
JP2016502280A (en) Printed circuit board cooling device
JP2017069356A (en) Electric power conversion device and railway vehicle equipped with the same
JP2016078654A (en) Electric power conversion system and railway vehicle mounted with the same
JP6652467B2 (en) Power conversion device and railway vehicle equipped with power conversion device
JP2014055702A (en) Power conversion device and railway vehicle mounted with the same
KR20140057046A (en) Cooling system of power semiconductor device
JP2015156411A (en) Power converter and railway vehicle mounting the same
JP2016517262A (en) Power converter using heat exchange type power element module
JP2016047692A (en) Power conversion device and railroad vehicle equipped with the same
JP2020171196A (en) Electric power conversion apparatus of railway vehicle
JP6837565B2 (en) Railroad vehicle power converters and railroad vehicles equipped with power converters
JP2011135649A (en) Inverter device
JP2015198214A (en) Cooler and freezer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113