JP2015156411A - Power converter and railway vehicle mounting the same - Google Patents

Power converter and railway vehicle mounting the same Download PDF

Info

Publication number
JP2015156411A
JP2015156411A JP2014030166A JP2014030166A JP2015156411A JP 2015156411 A JP2015156411 A JP 2015156411A JP 2014030166 A JP2014030166 A JP 2014030166A JP 2014030166 A JP2014030166 A JP 2014030166A JP 2015156411 A JP2015156411 A JP 2015156411A
Authority
JP
Japan
Prior art keywords
heat
heat receiving
receiving member
power semiconductor
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014030166A
Other languages
Japanese (ja)
Inventor
舟越 砂穂
Saho Funakoshi
砂穂 舟越
田中 健
Takeshi Tanaka
健 田中
洋 大河原
Hiroshi Ogawara
洋 大河原
漆原 法美
Norimi Urushibara
法美 漆原
秀一 寺門
Shuichi Terakado
秀一 寺門
陽介 安田
Yosuke Yasuda
陽介 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014030166A priority Critical patent/JP2015156411A/en
Priority to GB1421746.7A priority patent/GB2523625B/en
Priority to CN201510011509.0A priority patent/CN104867915A/en
Priority to DE102015202487.3A priority patent/DE102015202487A1/en
Publication of JP2015156411A publication Critical patent/JP2015156411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • H05K7/20163Heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Abstract

PROBLEM TO BE SOLVED: To efficiently cool a power semiconductor of a power converter.
SOLUTION: A power converter includes: a heat receiving member; a plurality of power semiconductor elements having different calorific values; a plurality of heat pipes; and a plurality of fins attached to the heat pipes. The plurality of power semiconductor elements are provided on one surface of the heat receiving member; and the plurality of heat pipes are provided on the other surface of the heat receiving member. The plurality of heat pipes in the power converter with the heat radiating parts are constructed so that: the plurality of heat pipes consist of two types of heat pipes whose heat receiving part has a length different depending on its type; the heat receiving part is arranged so that its longitudinal direction is orthogonal to a flow direction of cooling air flowing through heat radiating members; a heat pipe whose heat receiving part has the short length is arranged inside a region obtained by projecting a power semiconductor element having a large calorific value on the heat receiving member; and a heat pipe whose heat receiving part has the long length is arranged across the inside and the outside of a region obtained by projecting a power semiconductor element having a small calorific value on the heat receiving member.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、電力変換装置およびそれを搭載した鉄道車両に関する。 The present invention relates to a power conversion device and a railway vehicle equipped with the same.

電力変換装置は、電気鉄道車両などの車両を駆動する電動機を制御するためのもので、車両の床下等に設置されている。車両の床下等のスペースは限られているため、電力変換装置を小型化することが望まれている。従来の電力変換装置は、特許文献1のようにヒートパイプの受熱部を受熱部材に熱的に接触するように配置し、ヒートパイプの放熱部にフィンを配して冷却風をフィンに当てることによりパワー半導体素子を冷却する構造において、ヒートパイプの受熱部の長手方向の向きを冷却風に対して平行、垂直の両方向に配置した構造が知られている。   The power conversion device is for controlling an electric motor that drives a vehicle such as an electric railway vehicle, and is installed under the floor of the vehicle. Since the space under the floor of the vehicle is limited, it is desired to reduce the size of the power conversion device. In the conventional power conversion device, the heat receiving part of the heat pipe is disposed so as to be in thermal contact with the heat receiving member as in Patent Document 1, and fins are arranged on the heat radiating part of the heat pipe to apply cooling air to the fins. In the structure for cooling the power semiconductor element, a structure in which the longitudinal direction of the heat receiving portion of the heat pipe is arranged in both directions parallel and perpendicular to the cooling air is known.

特開2011−259536号公報JP 2011-259536 A

特に高速車両等の電力変換装置においては、高発熱密度のパワー半導体等の発熱素子が密接して配置される傾向にあり、高い発熱をいかに冷却して半導体素子の温度上昇を抑えるかが重要である。また、3レベル回路のインバータやコンバータ等においては、発熱量の大きい半導体素子と発熱量の小さい半導体素子が混在しており、特に発熱量の大きい半導体素子をより良く冷却することが求められる。   Particularly in power conversion devices such as high-speed vehicles, heating elements such as power semiconductors with high heat generation density tend to be closely arranged, and it is important how to cool the high heat generation to suppress the temperature rise of the semiconductor elements. is there. Further, in a three-level circuit inverter, converter, or the like, a semiconductor element having a large calorific value and a semiconductor element having a small calorific value are mixed, and it is required to cool a semiconductor element having a particularly large calorific value.

特許文献1に見られる従来構造においては、冷却風の流れに垂直な方向のヒートパイプの本数が少ないため、パワー半導体素子の発熱量に大きな分布があるときに冷却風の流れ方向に十分に熱を分散できず、冷却効果が十分に得られないことがあるという課題があった。   In the conventional structure shown in Patent Document 1, since the number of heat pipes in the direction perpendicular to the flow of cooling air is small, sufficient heat is generated in the direction of cooling air flow when there is a large distribution in the amount of heat generated by the power semiconductor elements. There was a problem that the cooling effect could not be sufficiently obtained due to the inability to disperse.

本発明の目的は、電力変換装置のパワー半導体素子の発熱に分布がある場合においても、発熱量の大きなパワー半導体素子を効果的に冷却することができる電力変換装置を提供することにある。   An object of the present invention is to provide a power conversion device capable of effectively cooling a power semiconductor element having a large calorific value even when heat generation of the power semiconductor element of the power conversion device is distributed.

前記目的を達成するために、本発明の電力変換装置では、受熱部材と、複数のパワー半導体素子と、複数のヒートパイプと、ヒートパイプに取り付けられた複数の放熱部材とを有し、複数のパワー半導体素子は受熱部材の一方の面に備えられ、複数のヒートパイプは受熱部材の他方の面に備えられ、複数のヒートパイプの少なくとも一部は受熱部材の外側に立ち上げられた放熱部を備えた電力変換装置において、複数のパワー半導体素子は、発熱量の異なる少なくとも2種類のパワー半導体素子から成り、複数のヒートパイプは、受熱部材に埋め込まれる部分である受熱部の長さが異なる少なくとも2種類のヒートパイプで構成され、受熱部は、長手方向が放熱部材に流れる冷却空気の流れ方向と概ね垂直方向になるように配置され、受熱部の長さが短いヒートパイプは、発熱量が大きいパワー半導体素子の受熱部材への投影領域の内側に配置され、受熱部の長さが長いヒートパイプは、発熱量が小さいパワー半導体素子の受熱部材への投影領域の内側と外側とに跨って配置される構成とした。   In order to achieve the above object, the power conversion device of the present invention has a heat receiving member, a plurality of power semiconductor elements, a plurality of heat pipes, and a plurality of heat radiating members attached to the heat pipe, The power semiconductor element is provided on one surface of the heat receiving member, the plurality of heat pipes are provided on the other surface of the heat receiving member, and at least a part of the plurality of heat pipes includes a heat radiating portion raised to the outside of the heat receiving member. In the power conversion device provided, the plurality of power semiconductor elements are composed of at least two types of power semiconductor elements having different calorific values, and the plurality of heat pipes have at least different lengths of the heat receiving portion that is embedded in the heat receiving member. It is composed of two types of heat pipes, and the heat receiving part is arranged so that the longitudinal direction is substantially perpendicular to the flow direction of the cooling air flowing through the heat radiating member. The heat pipe having a short length is arranged inside the projection region of the power semiconductor element having a large amount of heat generation onto the heat receiving member, and the heat pipe having a long heat receiving portion is to be a heat receiving member of the power semiconductor element having a small amount of heat generation. It was set as the structure arrange | positioned ranging over the inner side and the outer side of this projection area | region.

本発明によれば、パワー半導体素子の発熱に分布がある場合でも、高い発熱量の素子に対しては受熱部の短いヒートパイプからフィン側に集中して放熱されるとともに、比較的低い発熱量の素子や素子のない位置の受熱部材に受熱部の長いヒートパイプを設けることにより、発熱量の大きな素子から発熱量の小さな素子のある受熱部材の領域や素子のない領域に熱を移動することができるので、パワー半導体素子の発熱が効率よく分散されて冷却性能が向上する。   According to the present invention, even when there is a distribution in the heat generation of the power semiconductor element, heat is concentrated on the fin side from the heat pipe with a short heat receiving portion and a relatively low heat generation amount for an element with a high heat generation amount. Heat is transferred from the element with a large amount of heat generation to the region of the heat receiving member with the element with a small amount of heat generation or the region without the element by providing a heat pipe with a long heat receiving part on the heat receiving member at a position where there is no element or element Therefore, the heat generated by the power semiconductor element is efficiently dispersed and the cooling performance is improved.

本発明の一実施形態における電力変換装置の冷却風の流れ方向と平行な鉛直方向断面図である。It is vertical direction sectional drawing parallel to the flow direction of the cooling wind of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置の冷却風の流れ方向と垂直の方向から見た鉛直方向断面図である。It is the vertical direction sectional view seen from the direction perpendicular to the flow direction of the cooling wind of the power converter in one embodiment of the present invention. 本発明の一実施形態における電力変換装置のヒートパイプと半導体素子の配置を示す図である。It is a figure which shows arrangement | positioning of the heat pipe and semiconductor element of the power converter device in one Embodiment of this invention. 本発明の一実施形態における電力変換装置のパワー半導体素子の配置を示す図である。It is a figure which shows arrangement | positioning of the power semiconductor element of the power converter device in one Embodiment of this invention. 従来の電力変換装置の一例におけるヒートパイプと半導体素子の配置を示す図である。It is a figure which shows arrangement | positioning of the heat pipe and semiconductor element in an example of the conventional power converter device. 図5の構造と本発明の一実施形態における構造(図3)の電力変換装置の冷却性能の数値シミュレーション結果を示す図である。It is a figure which shows the numerical simulation result of the cooling performance of the power converter device of the structure of FIG. 5 and the structure (FIG. 3) in one Embodiment of this invention. 本発明の電力変換装置を鉄道車両に搭載した構成を示す図である。It is a figure which shows the structure which mounted the power converter device of this invention in the rail vehicle.

本発明の実施の形態を以下、図面を用いて説明する。図7に本発明の一実施形態における電力変換装置を鉄道車両に搭載したときの構成を示す。本発明の電力変換装置は、鉄道車両の床下等に設けられ、コンバータによって架線の交流電源を直流に変換し、さらにインバータによって車両を駆動する電動機に供給する電力の周波数等を制御することにより、電動機の回転速度の制御を行う。図7において、電力変換装置1000は、車体1002と固定されている。矢印30は冷却風の流れを示す。冷却風は、送風機40によって吸込みグリル41から吸い込まれ、電力変換装置1000の冷却装置1001に供給される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 7 shows a configuration when the power conversion device according to the embodiment of the present invention is mounted on a railway vehicle. The power conversion device of the present invention is provided under the floor of a railway vehicle, etc., by converting the AC power of the overhead wire to DC by a converter, and further by controlling the frequency of power supplied to the electric motor that drives the vehicle by an inverter, etc. Control the rotation speed of the motor. In FIG. 7, the power conversion apparatus 1000 is fixed to the vehicle body 1002. An arrow 30 indicates the flow of cooling air. The cooling air is sucked from the suction grille 41 by the blower 40 and supplied to the cooling device 1001 of the power conversion device 1000.

図1に本実施形態(第1の実施形態)における電力変換装置の冷却風の流れ方向に平行な方向から見た鉛直断面図を、図2に冷却風の流れ方向と垂直な方向から見た鉛直断面図を示す。図1、2において、アルミニウム合金等の金属からなる受熱部材5の一方の側には、複数のIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体素子を含むいわゆるパワー半導体モジュール(以下、モジュールについてもパワー半導体素子と呼ぶ)70、71、72、73等が設置されている。図1で、1000は電力変換器全体、1001は電力変換器の冷却装置を示す。冷却装置は、受熱部材5、ヒートパイプ1、2、3、4、放熱フィン6等から構成される。パワー半導体素子70、71、72、73等は、グリース等の部材(図示せず)を介して受熱部材5とねじ等(図示せず)によって固定される。受熱部材5のパワー半導体素子の側には、IGBT駆動回路やフィルタコンデンサ等の電子部品10が設置されている。また、受熱部材5に装着されたパワー半導体素子の周囲は、ケース11、12、13により密閉されている。受熱部材5のパワー半導体素子設置面の反対側には、U字形状のヒートパイプ1の受熱部101が埋め込まれ、受熱部101はハンダ付け等により受熱部材5と熱的に接続されている。U字形状ヒートパイプ1の受熱部101の両側からは、放熱部102が立ち上がっている。放熱部102には、アルミニウムや銅等の金属でできた複数のフィン6が圧入等によって接続されている。U字形状のヒートパイプは、受熱部の長さや放熱部の長さが異なる形状のパイプを組み合わせて使用する。   FIG. 1 is a vertical sectional view of the power conversion device according to the present embodiment (first embodiment) viewed from a direction parallel to the flow direction of the cooling air, and FIG. 2 is viewed from a direction perpendicular to the flow direction of the cooling air. A vertical sectional view is shown. 1 and 2, a so-called power semiconductor module (hereinafter also referred to as a power semiconductor module) including a plurality of power semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) on one side of a heat receiving member 5 made of a metal such as an aluminum alloy. 70, 71, 72, 73, etc. are provided. In FIG. 1, reference numeral 1000 denotes an entire power converter, and 1001 denotes a cooling device for the power converter. The cooling device includes a heat receiving member 5, heat pipes 1, 2, 3, 4, a radiation fin 6, and the like. The power semiconductor elements 70, 71, 72, 73 and the like are fixed to the heat receiving member 5 and screws or the like (not shown) via members (not shown) such as grease. Electronic components 10 such as an IGBT drive circuit and a filter capacitor are installed on the power receiving element 5 side of the power semiconductor element. The periphery of the power semiconductor element mounted on the heat receiving member 5 is sealed with cases 11, 12, and 13. A heat receiving portion 101 of a U-shaped heat pipe 1 is embedded on the opposite side of the heat receiving member 5 from the power semiconductor element installation surface, and the heat receiving portion 101 is thermally connected to the heat receiving member 5 by soldering or the like. From both sides of the heat receiving part 101 of the U-shaped heat pipe 1, the heat radiating part 102 stands up. A plurality of fins 6 made of a metal such as aluminum or copper are connected to the heat radiating portion 102 by press fitting or the like. The U-shaped heat pipe is used by combining pipes having different shapes with different lengths of the heat receiving part and the heat radiating part.

受熱部材5とヒートパイプおよびパワー半導体素子の配置を図3に示す。また、受熱部材5上のパワー半導体素子の配置を図4に示す。図3、図4において70、71、72、73、80、81、82、83、90、91、92,93はパワー半導体素子を示す。パワー半導体素子はヒートパイプと反対側の面に設置されており、図3では破線で示している。ヒートパイプの受熱部もヒートブロック内に埋め込まれているが、図面を見やすくするために実線で表示した。これらの素子の配置について、3レベル回路のコンバータを例に説明すると、パワー半導体素子70、71、72、73は複数のIGBT(Insulated Gate Bipolar Transistor)素子やフリーホイールダイオード等を含むIGBTモジュールで、パワー半導体素子80、81、82、83はクランプダイオードモジュール、パワー半導体素子90、91、92、93はIGBTモジュールで構成される。運転条件(力行運転、回生運転等)によってIGBTモジュール70、71、72、73の発熱量が大きい場合とIGBTモジュール90、91、92、93の発熱量が大きい場合があり、クランプダイオードモジュール80、81、82、83の発熱量は比較的小さい。   The arrangement of the heat receiving member 5, the heat pipe, and the power semiconductor element is shown in FIG. Further, the arrangement of the power semiconductor elements on the heat receiving member 5 is shown in FIG. 3 and 4, reference numerals 70, 71, 72, 73, 80, 81, 82, 83, 90, 91, 92, and 93 denote power semiconductor elements. The power semiconductor element is installed on the surface opposite to the heat pipe, and is indicated by a broken line in FIG. Although the heat receiving part of the heat pipe is also embedded in the heat block, it is indicated by a solid line for easy viewing of the drawing. The arrangement of these elements will be described using a three-level circuit converter as an example. The power semiconductor elements 70, 71, 72, 73 are IGBT modules including a plurality of IGBT (Insulated Gate Bipolar Transistor) elements, free wheel diodes, and the like. The power semiconductor elements 80, 81, 82 and 83 are constituted by clamp diode modules, and the power semiconductor elements 90, 91, 92 and 93 are constituted by IGBT modules. Depending on the operating conditions (power running operation, regenerative operation, etc.), the heat generation amount of the IGBT modules 70, 71, 72, 73 may be large and the heat generation amount of the IGBT modules 90, 91, 92, 93 may be large, the clamp diode module 80, The calorific values of 81, 82 and 83 are relatively small.

図1〜3に示すようにヒートパイプ1、3の受熱部101、301はヒートパイプ2、4の受熱部201、401よりも短い長さに設定する。また、ヒートパイプ1、2の放熱部102、202は、ヒートパイプ3、4の放熱部302、402よりも長さを長く設定する。ヒートパイプ1、3の受熱部101、301は、パワー半導体素子90を受熱部材5に投影した部分の内側に入る長さに設定する。受熱部が長いヒートパイプ2、4は、受熱部が短いヒートパイプ1、3群同士の中間に並べて配置される。   As shown in FIGS. 1 to 3, the heat receiving portions 101 and 301 of the heat pipes 1 and 3 are set to be shorter than the heat receiving portions 201 and 401 of the heat pipes 2 and 4. Further, the heat radiating portions 102 and 202 of the heat pipes 1 and 2 are set longer than the heat radiating portions 302 and 402 of the heat pipes 3 and 4. The heat receiving portions 101 and 301 of the heat pipes 1 and 3 are set to a length that enters the inside of the portion where the power semiconductor element 90 is projected onto the heat receiving member 5. The heat pipes 2 and 4 having a long heat receiving portion are arranged side by side in the middle of the heat pipes 1 and 3 having a short heat receiving portion.

冷却装置1001の周囲にはダクト14が設けられ、図7に示すように、送風機40によってダクト14に冷却風が送られる。なお、本実施形態では冷却風を冷却ファンによって強制的に送風する構造について説明するが、車両が走行することにより発生する走行風によって電力変換装置を冷却する構造や、熱せられた空気が上昇するという自然対流を利用して電力変換装置を冷却する構造にも本発明は適用できる。走行風を利用する構造の場合は、冷却風は走行方向とほぼ同一方向となるため、ヒートパイプ1,2の受熱部の長手方向は車両の走行方向と垂直な方向に配置される。また、自然対流を利用する構造では、ヒートパイプ1,2の受熱部の長手方向は鉄道車両の上下方向(重力方向)と垂直な方向、つまりほぼ水平方向に配置される。   A duct 14 is provided around the cooling device 1001, and cooling air is sent to the duct 14 by the blower 40 as shown in FIG. 7. In the present embodiment, the structure for forcibly blowing the cooling air with the cooling fan will be described. However, the structure for cooling the power conversion device by the traveling air generated when the vehicle travels, and the heated air rises. The present invention can also be applied to a structure that cools the power converter using natural convection. In the case of a structure using traveling air, the cooling air is substantially in the same direction as the traveling direction, so the longitudinal direction of the heat receiving portions of the heat pipes 1 and 2 is arranged in a direction perpendicular to the traveling direction of the vehicle. In the structure using natural convection, the longitudinal direction of the heat receiving portions of the heat pipes 1 and 2 is arranged in a direction perpendicular to the vertical direction (gravity direction) of the railway vehicle, that is, in a substantially horizontal direction.

次に、各パワー半導体素子を冷却する動作について、パワー半導体素子90を例に取って説明する。図2において、パワー半導体素子90の内部に設けられたパワー半導体等が動作することによって発生した熱は受熱部材5に熱伝導によって伝えられ、ヒートパイプ1の受熱部101に達する。ヒートパイプ1には冷媒(純水等)が封入されている。受熱部101において加熱された冷媒は蒸発して気体となり、放熱部102に移動する。放熱部102において空気によって冷却された冷媒は凝縮して液体に戻る。放熱部102で凝縮した冷媒は重力によって受熱部101に戻ってくる。このように蒸発、凝縮を繰り返して冷媒が移動することにより、受熱部材5の熱が大気などの電力変換装置の外に放熱される。ヒートパイプ2、3、4にも冷媒が封入されており、同様に蒸発、凝縮を繰り返して冷媒が移動することにより、受熱部材5の熱が大気などの電力変換装置の外に放熱される。   Next, the operation of cooling each power semiconductor element will be described taking the power semiconductor element 90 as an example. In FIG. 2, heat generated by the operation of a power semiconductor or the like provided inside the power semiconductor element 90 is transmitted to the heat receiving member 5 by heat conduction and reaches the heat receiving portion 101 of the heat pipe 1. A refrigerant (pure water or the like) is sealed in the heat pipe 1. The refrigerant heated in the heat receiving unit 101 evaporates into a gas and moves to the heat radiating unit 102. The refrigerant cooled by the air in the heat radiating unit 102 is condensed and returned to the liquid. The refrigerant condensed in the heat radiating unit 102 returns to the heat receiving unit 101 by gravity. Thus, by repeating evaporation and condensation and moving the refrigerant, the heat of the heat receiving member 5 is dissipated outside the power conversion device such as the atmosphere. The heat pipes 2, 3, and 4 are also filled with a refrigerant. Similarly, when the refrigerant moves by repeatedly evaporating and condensing, the heat of the heat receiving member 5 is dissipated outside the power converter such as the atmosphere.

パワー半導体素子80、81、82,83の発熱量が、パワー半導体素子70、71、72、73やパワー半導体素子90、91、92、93よりも小さい場合、受熱部が短いヒートパイプ1、3で放熱部102、302の本数を多くしてフィン側に放熱するとともに、受熱部が長いヒートパイプ2、4によって、受熱部材5の発熱量が多い素子の近辺の熱を発熱量が少ない素子のある領域や素子が存在しない領域に移動することにより、発熱量の多い素子を効果的に冷却することができる。   When the amount of heat generated by the power semiconductor elements 80, 81, 82, 83 is smaller than that of the power semiconductor elements 70, 71, 72, 73 and the power semiconductor elements 90, 91, 92, 93, the heat pipes 1, 3 having a short heat receiving portion. In this case, the number of the heat dissipating parts 102 and 302 is increased to dissipate heat to the fin side, and the heat pipes 2 and 4 having a long heat receiving part are used to generate heat in the vicinity of the element that generates a large amount of heat from the heat receiving member 5. By moving to a region or a region where no element exists, an element with a large amount of heat generation can be effectively cooled.

放熱部の短いヒートパイプ3、4は、外気温度が氷点下の低い温度の場合でも比較的凍結し難い。そこで、ヒートパイプ1、2に加えて、さらに受熱部が短く放熱部も短いヒートパイプ3と、受熱部が長く放熱部は短いヒートパイプ4とを設けることにより、外気が低温のときでも受熱部が短く放熱部も短いヒートパイプ3によって発熱量が大きいパワー半導体素子からフィン側への放熱を確保するとともに、受熱部が長く放熱部は短いヒートパイプ4によって、受熱部材5の発熱量が多い素子の近辺の熱を発熱量が小さい素子のある領域や素子が存在しない領域に移動することにより、発熱量の大きい素子を効果的に冷却することができる。   The heat pipes 3 and 4 having a short heat radiating portion are relatively difficult to freeze even when the outside air temperature is a low temperature below freezing. Therefore, in addition to the heat pipes 1 and 2, a heat pipe 3 having a short heat receiving portion and a short heat radiating portion and a heat pipe 4 having a long heat receiving portion and a short heat radiating portion are provided, so that the heat receiving portion even when the outside air is at a low temperature. A heat pipe 3 that has a short heat dissipation part and a short heat pipe 3 ensures heat dissipation from the power semiconductor element that generates a large amount of heat to the fin side, and a heat pipe 4 that has a long heat receiving part and a short heat dissipating part causes a large amount of heat generated by the heat receiving member 5 By moving the heat in the vicinity of the element to a region where an element with a small amount of heat generation is present or a region where no element exists, an element with a large amount of heat generation can be effectively cooled.

また、放熱部の短いヒートパイプ(例えば本実施例でのヒートパイプ3、4)を、一個のパワー半導体素子の投影される受熱部材の領域に対して少なくとも一本は配置することにより、特定の素子のヒートパイプが全く動作せずに半導体チップの温度が上昇してしまうことを避けられる。特に、外気が高温時と低温時の冷却性能のパランスを取るには、一個の素子の投影される受熱部材の領域において、放熱部の短いヒートパイプの全ヒートパイプに対する割合は20%〜60%の範囲が望ましい。   In addition, by disposing at least one heat pipe (for example, heat pipes 3 and 4 in this embodiment) with a short heat radiating portion with respect to the region of the heat receiving member to be projected of one power semiconductor element, a specific heat pipe is provided. It is possible to prevent the temperature of the semiconductor chip from rising without any operation of the element heat pipe. In particular, in order to balance the cooling performance when the outside air is at a high temperature and a low temperature, the ratio of the heat pipe having a short heat radiating portion to the total heat pipe is 20% to 60% in the region of the heat receiving member projected by one element. A range of is desirable.

このように、冷却すべき素子の発熱量と素子の配置に基づいて、受熱部の長さが異なるヒートパイプを組み合わせて配置することで、素子の発熱量に分布があるときであっても、効率よく冷却することができる。更に、それら異なる長さの受熱部を備えるヒートパイプにおいて、放熱部を異なる長さに設定することで、寒冷時における冷却性能を担保する効果が更に得られる。また、冷却空気は、下流域では上流域での放熱部との熱交換によって温度が高くなってしまうため、図1に記載のように、放熱部材である放熱フィン6の枚数を、冷却空気の流れる下流域において枚数を増やすことで、下流域でのパワー半導体素子への冷却性能をより保つことができる。   In this way, by arranging the heat pipes having different heat receiving portion lengths based on the heat generation amount of the element to be cooled and the arrangement of the elements, even when there is a distribution in the heat generation amount of the element, It can be cooled efficiently. Furthermore, in the heat pipe including the heat receiving portions having different lengths, by setting the heat radiating portions to different lengths, the effect of ensuring the cooling performance during cold weather can be further obtained. In addition, since the temperature of the cooling air becomes higher due to heat exchange with the heat radiating portion in the upstream area in the downstream area, the number of the radiating fins 6 that are heat radiating members is set as shown in FIG. By increasing the number of sheets in the flowing downstream region, the cooling performance of the power semiconductor element in the downstream region can be further maintained.

図5に示すように受熱部の長さがほぼ均等な3本のヒートパイプを配置した場合と、図2の本実施形態のヒートパイプ配置の場合において、受熱部材の素子取付面の温度分布を比較した数値シミュレーションの結果を図6に示す。   As shown in FIG. 5, the temperature distribution on the element mounting surface of the heat receiving member in the case where three heat pipes having substantially the same length of the heat receiving portion are arranged and in the case of the heat pipe arrangement of the present embodiment shown in FIG. The result of the numerical simulation compared is shown in FIG.

図6では図5の配置のときの受熱部材の最高温度と入口空気温度の温度差を100として、温度差を相対表示した。図6から分かるように、図2の本実施形態のヒートパイプの構成のほうが図5の構成よりも受熱部材と入口空気との温度差を7%小さくすることができる。ただし、図5では、図3のヒートパイプ1、3とヒートパイプ2、4との受熱部の長さがほぼ等しい場合を示すものであって、以下で説明するように放熱部の長さを異ならせたヒートパイプ2、4を備えることによる効果は得られるものであり、本発明から除外するものではない。   In FIG. 6, the temperature difference between the maximum temperature of the heat receiving member and the inlet air temperature in the arrangement of FIG. As can be seen from FIG. 6, the temperature difference between the heat receiving member and the inlet air can be reduced by 7% in the configuration of the heat pipe of the present embodiment in FIG. 2 than in the configuration in FIG. 5. However, FIG. 5 shows a case where the heat receiving portions of the heat pipes 1 and 3 and the heat pipes 2 and 4 in FIG. 3 are substantially equal, and the length of the heat radiating portion is set as described below. The effect of providing the different heat pipes 2 and 4 is obtained, and is not excluded from the present invention.

なお、図3における支柱16は図1における梁15に接続されてダクト14を保持する役割がある。梁15は支柱16を固定するとともに、放熱部材である放熱フィン6の上部をバイパスする冷却風の通過を抑える役割も果たしている。支柱16のある部分に入るヒートパイプの長さが短すぎる場合は、図3に示すように、支柱の部分のヒートパイプ17は受熱部の長さを長めにしてもよい。   3 is connected to the beam 15 in FIG. 1 to hold the duct 14. The beam 15 fixes the support column 16 and also plays a role of suppressing the passage of cooling air that bypasses the upper portion of the radiating fin 6 that is a radiating member. In the case where the length of the heat pipe entering the part with the support column 16 is too short, as shown in FIG. 3, the heat pipe 17 at the support column part may have a longer heat receiving part.

支柱と支柱の間、または支柱と受熱部材の端部との間に配置されるヒートパイプ17は、支柱の位置に応じた長さに調整すれば、冷却性能は向上し、一方、ヒートパイプ1〜4のいずれかで構成すれば、ヒートパイプの種類を増やすことなく製造できるため、製造コストが安くなる効果がある。   If the heat pipe 17 disposed between the columns or between the columns and the end of the heat receiving member is adjusted to a length corresponding to the position of the columns, the cooling performance is improved, while the heat pipe 1 Since it can manufacture without increasing the kind of heat pipe if it comprises in any one of ~ 4, there exists an effect which manufacturing cost becomes cheap.

このように、本実施形態に拠れば、冷却風の流れ方向と概ね垂直方向にヒートパイプの受熱部の長手方向を配置し、受熱部の受熱部材に埋め込まれた部分が発熱量の大きなパワー半導体素子の受熱部材における投影領域に入る受熱部が短いヒートパイプと、受熱部が比較的発熱量の小さなパワー半導体素子の受熱部材における投影領域とパワー半導体が存在しない部分に跨る受熱部が比較的長いヒートパイプとを配置する構成とすることにより、パワー半導体素子の発熱に分布がある場合でも、大きな発熱量の素子に対しては受熱部の短い受熱部のヒートパイプからフィン側に集中して放熱されるとともに、比較的小さな発熱量の素子や素子のない位置の受熱部材に受熱部の長いヒートパイプを設けることにより、発熱量の大きな素子から発熱量の小さい部分に熱を移動することができるので、パワー半導体素子の発熱が効率よく分散されて冷却性能が向上する。   As described above, according to the present embodiment, the longitudinal direction of the heat receiving portion of the heat pipe is arranged in a direction substantially perpendicular to the flow direction of the cooling air, and the portion embedded in the heat receiving member of the heat receiving portion has a large calorific value. A heat pipe that has a short heat receiving part that enters the projection region of the heat receiving member of the element, and a heat receiving part that has a relatively long heat straddling the portion of the heat receiving member of the power semiconductor element in which the heat receiving part has a relatively small amount of heat generation and the power semiconductor does not exist By arranging the heat pipe, even if there is a distribution of heat generation in the power semiconductor element, heat is concentrated on the fin side from the heat pipe of the heat receiving part with a short heat receiving part for elements with a large heat generation amount. In addition, a heat pipe having a long heat receiving portion is provided on a heat receiving member at a position where there is no element or a element with a relatively small heat generation amount, so It is possible to transfer heat into a small portion of the amount, heat generation of the power semiconductor element is efficiently dispersed to improve cooling performance.

1…短い受熱部と長い放熱部を持つU字型ヒートパイプ
2…長い受熱部と長い放熱部を持つU字型ヒートパイプ
3…短い受熱部と短い放熱部を持つU字型ヒートパイプ
4…長い受熱部と短い放熱部を持つU字型ヒートパイプ
5…受熱部材
6…フィン
10…電気部品
11、12、13…ケース
14…ダクト
17…支柱部分のヒートパイプ
40…送風機
70〜73、80〜83、90〜93…パワー半導体素子
DESCRIPTION OF SYMBOLS 1 ... U-shaped heat pipe 2 with short heat receiving part and long heat radiating part ... U-shaped heat pipe 3 with long heat receiving part and long heat radiating part ... U-shaped heat pipe 4 with short heat receiving part and short heat radiating part ... U-shaped heat pipe 5 having a long heat receiving portion and a short heat radiating portion ... Heat receiving member 6 ... Fin 10 ... Electrical components 11, 12, 13 ... Case 14 ... Duct 17 ... Heat pipe 40 in the column portion ... Blowers 70-73, 80 -83, 90-93 ... Power semiconductor element

Claims (6)

受熱部材と、複数のパワー半導体素子と、複数のヒートパイプと、前記ヒートパイプに取り付けられた複数の放熱部材とを有し、
前記複数のパワー半導体素子は前記受熱部材の一方の面に備えられ、
前記複数のヒートパイプは前記受熱部材の他方の面に備えられ、
前記複数のヒートパイプの少なくとも一部は前記受熱部材の外側に立ち上げられた放熱部を備えた電力変換装置において、
前記複数のパワー半導体素子は、発熱量の異なる少なくとも2種類のパワー半導体素子から成り、
前記複数のヒートパイプは、前記受熱部材に埋め込まれる部分である受熱部の長さが異なる少なくとも2種類のヒートパイプで構成され、
前記受熱部は、長手方向が前記放熱部材に流れる冷却空気の流れ方向と概ね垂直方向になるように配置され、
前記受熱部の長さが短いヒートパイプは、前記発熱量が大きいパワー半導体素子の受熱部材への投影領域の内側に配置され、
前記受熱部の長さが長いヒートパイプは、前記発熱量が小さいパワー半導体素子の受熱部材への投影領域の内側と外側とに跨って配置される
ことを特徴とする電力変換装置。
A heat receiving member, a plurality of power semiconductor elements, a plurality of heat pipes, and a plurality of heat dissipating members attached to the heat pipe,
The plurality of power semiconductor elements are provided on one surface of the heat receiving member,
The plurality of heat pipes are provided on the other surface of the heat receiving member,
In the power conversion device including a heat radiating portion raised at the outside of the heat receiving member, at least a part of the plurality of heat pipes,
The plurality of power semiconductor elements are composed of at least two types of power semiconductor elements having different calorific values,
The plurality of heat pipes are composed of at least two types of heat pipes having different lengths of a heat receiving portion which is a portion embedded in the heat receiving member,
The heat receiving portion is disposed so that the longitudinal direction is substantially perpendicular to the flow direction of the cooling air flowing through the heat radiating member,
The heat pipe having a short length of the heat receiving portion is disposed inside a projection region on the heat receiving member of the power semiconductor element having a large calorific value,
The heat conversion apparatus according to claim 1, wherein the heat pipe having a long heat receiving portion is disposed across an inner side and an outer side of a projection region onto the heat receiving member of the power semiconductor element having a small heat generation amount.
請求項1記載の電力変換装置において、
前記複数のヒートパイプは、前記放熱部の長さが異なるヒートパイプから構成される
ことを特徴とする電力変換装置。
The power conversion device according to claim 1,
The plurality of heat pipes are composed of heat pipes having different lengths of the heat radiation part.
The power converter characterized by the above-mentioned.
請求項2記載の電力変換装置において、
前記複数のパワー半導体素子の各々の前記受熱部材への投影領域に、前記放熱部が短いヒートパイプを少なくとも1つ配置すること
ことを特徴とする電力変換装置。
The power conversion device according to claim 2,
At least one heat pipe having a short heat radiating portion is disposed in a projection region of each of the plurality of power semiconductor elements onto the heat receiving member.
請求項1ないし請求項3のいずれかに記載の電力変換装置において、
前記冷却空気の流れる上流側よりも下流側に多くの前記放熱部材を備える
ことを特徴とする電力変換装置。
In the power converter device in any one of Claims 1 thru | or 3,
The power conversion device comprising a larger number of the heat radiating members on the downstream side than the upstream side on which the cooling air flows.
請求項1ないし請求項4のいずれかに記載の電力変換装置において、
前記冷却空気が流れる空間を覆い、前記ヒートパイプの外側に備えられるダクトと、
前記ダクトと前記受熱部材の間に、前記ダクトを保持する複数の支柱と、
前記支柱同士の間または前記支柱と前記受熱部材の端部との間の長さに基づく受熱部を備えたヒートパイプを有する
ことを特徴とする電力変換装置。
In the power converter device in any one of Claims 1 thru | or 4,
A duct that covers a space through which the cooling air flows and is provided outside the heat pipe;
Between the duct and the heat receiving member, a plurality of pillars holding the duct;
It has a heat pipe provided with the heat receiving part based on the length between the said support | pillars or between the said support | pillar and the edge part of the said heat receiving member. The power converter device characterized by the above-mentioned.
請求項1ないし請求項5のいずれかに記載の電力変換装置を搭載した鉄道車両。   A railway vehicle equipped with the power conversion device according to any one of claims 1 to 5.
JP2014030166A 2014-02-20 2014-02-20 Power converter and railway vehicle mounting the same Pending JP2015156411A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014030166A JP2015156411A (en) 2014-02-20 2014-02-20 Power converter and railway vehicle mounting the same
GB1421746.7A GB2523625B (en) 2014-02-20 2014-12-08 Power conversion device and railway vehicle equipped with the same
CN201510011509.0A CN104867915A (en) 2014-02-20 2015-01-09 Power conversion device and railway vehicle equipped with the same
DE102015202487.3A DE102015202487A1 (en) 2014-02-20 2015-02-12 ENERGY CONVERSION DEVICE AND RAIL VEHICLE EQUIPPED WITH THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030166A JP2015156411A (en) 2014-02-20 2014-02-20 Power converter and railway vehicle mounting the same

Publications (1)

Publication Number Publication Date
JP2015156411A true JP2015156411A (en) 2015-08-27

Family

ID=53759149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030166A Pending JP2015156411A (en) 2014-02-20 2014-02-20 Power converter and railway vehicle mounting the same

Country Status (4)

Country Link
JP (1) JP2015156411A (en)
CN (1) CN104867915A (en)
DE (1) DE102015202487A1 (en)
GB (1) GB2523625B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131814A1 (en) * 2017-12-28 2019-07-04 古河電気工業株式会社 Heat sink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222148A1 (en) * 2017-12-07 2019-06-13 Siemens Mobility GmbH Fanless cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050166A (en) * 2009-08-27 2011-03-10 Hitachi Ltd Power conversion device
JP2012138439A (en) * 2010-12-27 2012-07-19 Hitachi Ltd Cooling apparatus and power converter having the same
JP2013030736A (en) * 2011-06-21 2013-02-07 Furukawa Electric Co Ltd:The Cooling device
JP2013230010A (en) * 2012-04-26 2013-11-07 Hitachi Ltd Power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251859A (en) * 2000-03-07 2001-09-14 Toshiba Transport Eng Inc Power converter
JP5581119B2 (en) * 2010-06-07 2014-08-27 株式会社日立製作所 Cooling device, power converter, railway vehicle
JP5705570B2 (en) * 2011-02-02 2015-04-22 古河電気工業株式会社 Electronic component cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050166A (en) * 2009-08-27 2011-03-10 Hitachi Ltd Power conversion device
JP2012138439A (en) * 2010-12-27 2012-07-19 Hitachi Ltd Cooling apparatus and power converter having the same
JP2013030736A (en) * 2011-06-21 2013-02-07 Furukawa Electric Co Ltd:The Cooling device
JP2013230010A (en) * 2012-04-26 2013-11-07 Hitachi Ltd Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131814A1 (en) * 2017-12-28 2019-07-04 古河電気工業株式会社 Heat sink
JPWO2019131814A1 (en) * 2017-12-28 2019-12-26 古河電気工業株式会社 heatsink

Also Published As

Publication number Publication date
DE102015202487A1 (en) 2015-08-20
GB2523625B (en) 2016-06-08
GB2523625A (en) 2015-09-02
GB201421746D0 (en) 2015-01-21
CN104867915A (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5560182B2 (en) Cooling device and power conversion device including the same
JP5581119B2 (en) Cooling device, power converter, railway vehicle
JP4929325B2 (en) Power converter
TWI525300B (en) Composite heat sink assembly for power module
JP5941741B2 (en) Power converter
JP6741561B2 (en) Electric power conversion device for railway vehicles
JP2000092819A (en) Semiconductor cooling apparatus
JP6097648B2 (en) Power conversion device and railway vehicle equipped with the same
KR20130085981A (en) Cooler of power converter for railway vehicle
US8860213B2 (en) Power converter
JP2010284033A (en) Power supply device for railroad vehicle
JP2017112151A (en) Cooling structure of power unit
JP5466073B2 (en) Power converter and railway vehicle
JP2015156411A (en) Power converter and railway vehicle mounting the same
JP2004254387A (en) Power converter
JP5705570B2 (en) Electronic component cooling system
JP6652467B2 (en) Power conversion device and railway vehicle equipped with power conversion device
JP2016078654A (en) Electric power conversion system and railway vehicle mounted with the same
JP2017069356A (en) Electric power conversion device and railway vehicle equipped with the same
JP2007244130A (en) Power converter
JP2016047692A (en) Power conversion device and railroad vehicle equipped with the same
JP2014152983A (en) Cooler
JP2013083399A (en) Cooling device, and electronic apparatus with the same, and electric vehicle
JP2020171196A (en) Electric power conversion apparatus of railway vehicle
JP2023014671A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704