WO2016157533A1 - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
WO2016157533A1
WO2016157533A1 PCT/JP2015/060657 JP2015060657W WO2016157533A1 WO 2016157533 A1 WO2016157533 A1 WO 2016157533A1 JP 2015060657 W JP2015060657 W JP 2015060657W WO 2016157533 A1 WO2016157533 A1 WO 2016157533A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
switching element
terminal
switching
power
Prior art date
Application number
PCT/JP2015/060657
Other languages
French (fr)
Japanese (ja)
Inventor
浩昭 尾谷
裕一 寺田
怜子 鈴木
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/060657 priority Critical patent/WO2016157533A1/en
Priority to TW104113036A priority patent/TWI558075B/en
Publication of WO2016157533A1 publication Critical patent/WO2016157533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • Embodiments according to the present invention relate to a power conversion device.
  • a power converter is used to operate a drive system such as a main motor (motor) of an electric car.
  • the power conversion device converts the power obtained from the overhead line into the power required for the drive system in order to rotate the wheels of the electric vehicle.
  • Such a power conversion device includes a converter and an inverter constituted by a plurality of switching elements (for example, GTO (Gate Turn Off Thyristor), IGBT (Insulated Gate Bipolar Transistor), etc.).
  • a metal wiring plate is used to connect terminals of a plurality of switching elements.
  • the switching element has not been arranged so as to reduce the inductance of the metal wiring plate.
  • a power conversion device in which the inductance of wiring between a plurality of switching elements constituting a converter or an inverter is reduced.
  • the power conversion device includes an inverter or a converter, and generates power to be supplied to the load of the electric vehicle.
  • the first and second switching elements are connected in series between the positive electrode wiring for DC power and the first phase wiring for AC power.
  • the third and fourth switching elements are connected in series between the first phase wiring of AC power and the negative wiring of DC power.
  • the first clamp element is connected between a first node between the first switching element and the second switching element and a neutral point wiring of the DC power.
  • the second clamp element is connected between the second node between the third switching element and the fourth switching element and the neutral point wiring.
  • the first to fourth switching elements, the first clamp element, and the second clamp element are disposed on the support plate.
  • the first and second switching elements are adjacent to each other in the traveling direction of the electric vehicle.
  • the third and fourth switching elements are adjacent to each other in the traveling direction and are adjacent to the second and first switching elements in a direction substantially perpendicular to the traveling direction, respectively.
  • the first and second clamp elements are adjacent to any one of the first to fourth switching elements in a substantially vertical direction.
  • Schematic which shows an example of a structure of the power converter device 100 mounted in an electric vehicle.
  • the perspective view which shows an example of arrangement
  • 3 is an equivalent circuit diagram illustrating an example of a configuration of a switching unit 41.
  • FIG. The top view which shows each arrangement
  • the side view which looked at the switching part 41 from the 1st clamp element CD1 side.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a power conversion device 100 mounted on an electric vehicle.
  • An electric vehicle is, for example, a vehicle that travels with electric power on a railway line.
  • the power converter 100 receives AC power from the overhead line 13 via the pantograph 12, converts the AC power into three-phase AC power, and supplies the three-phase AC power to an electric motor (for example, a three-phase AC motor) 11. To do.
  • the power converter 100 includes a control unit 10, a transformer 20, a converter 30, an inverter 40, a circuit breaker 50, charging resistors 61 and 62, contactors 71 to 74, and voltage dividing capacitors 81 and 82.
  • the current detector 90 is provided. Note that the transformer 20 and the circuit breaker 50 may be separate from the power converter 100.
  • the transformer 20 receives the AC power from the overhead line 13 via the pantograph 12 by the primary coil, transforms the AC power, and supplies the AC power from the secondary coil to the converter 30.
  • the transformer 20 supplies U-phase and V-phase single-phase AC power to the converter 30 from the secondary coil.
  • Two wires (U-phase wire and V-phase wire) are provided between transformer 20 and converter 30, and these wires transmit single-phase AC power to converter 30.
  • Converter 30 receives AC power from the secondary coil of transformer 20 and converts the AC power into DC power.
  • the converter 30 includes, for example, a U-phase switching unit 31 and a V-phase switching unit 32.
  • the U-phase switching unit 31 converts the U-phase power into DC power by switching the U-phase of the single-phase AC power.
  • the V-phase switching unit 32 converts the V-phase power into DC power by switching the V-phase of the single-phase AC power.
  • Three wires (positive wire P, negative wire N and neutral point wire C) are provided between converter 30 and inverter 40, and these wires transmit DC power to inverter 40.
  • the inverter 40 receives DC power from the converter 30 and converts the DC power into three-phase AC power.
  • the inverter 40 includes, for example, a U-phase switching unit 41, a V-phase switching unit 42, and a W-phase switching unit 43.
  • the U-phase switching unit 41 receives DC power and outputs U-phase AC power among the three-phase AC power.
  • the V-phase switching unit 42 receives DC power and outputs V-phase AC power among the three-phase AC power.
  • the W-phase switching unit 43 receives DC power and outputs W-phase AC power among the three-phase AC power.
  • Three wirings (U-phase wiring, V-phase wiring, and W-phase wiring) are provided between the inverter 40 and the electric motor 11, and these wirings transmit three-phase AC power to the electric motor 11. Three-phase AC power is used to drive the electric motor 11.
  • the circuit breaker 50 is a main power switch provided between the pantograph 12 and the transformer 20, and is, for example, a VCB (Vacuum Circuit Breaker).
  • Contactor 72 and contactor 74 are provided in the U-phase wiring and V-phase wiring between the secondary coil of transformer 20 and converter 30, respectively.
  • the contactor 72 and the contactor 74 are, for example, high-speed circuit breakers that cut off power when a serious failure occurs.
  • the contactor 71 and the charging resistor 61 are connected in series and are connected in parallel to the contactor 72.
  • the contactor 73 and the charging resistor 62 are also connected in series and connected in parallel to the contactor 74.
  • the contactors 71 and 72 and the charging resistors 61 and 62 are used for slowly charging the voltage dividing capacitors 81 and 82 when the power converter 100 is activated.
  • the voltage dividing capacitor 81 is connected between the positive electrode wiring P and the neutral point wiring C.
  • the voltage dividing capacitor 82 is connected between the neutral point wiring C and the negative electrode wiring N. Due to the voltage dividing capacitors 81 and 82, the neutral point wiring C becomes a voltage (for example, intermediate voltage) between the positive wiring P and the negative wiring N.
  • the current detector 90 is connected to the neutral point wiring C, the ground, and the control unit 10, detects a current flowing through the neutral point wiring C or a current flowing in the opposite direction, and measures a current measurement value thereof. Is output to the control unit 10.
  • the control unit 10 controls each component of the power conversion device such as the converter 30, the inverter 40, the circuit breakers 50, and 71 to 74.
  • the control unit 10 controls the switching state (on state or off state) of the switching elements constituting the converter 30 and the inverter 40.
  • the electric motor 11 as a load is driven by receiving the three-phase AC power from the power converter 100.
  • the electric motor 11 rotates the wheels of the electric vehicle, the electric vehicle can travel on a railroad track or the like.
  • FIG. 2 is a perspective view showing an example of the arrangement of each component of the power conversion apparatus 100.
  • FIG. The components of the power conversion device 100 are accommodated in the housing 200.
  • An arrow X indicates the traveling direction of the electric vehicle (longitudinal direction of the electric vehicle).
  • An arrow Y indicates a direction substantially perpendicular to the traveling direction of the electric vehicle.
  • the converter unit 201 is a part including the converter 30.
  • the inverter unit 202 is a part including the inverter 40.
  • the control unit 203 is a part including the control unit 10.
  • the switch / sensor unit 204 is a part including the contactors 71 to 74 and the current detector 90.
  • the converter unit 201, the inverter unit 202, the control unit 203, and the switch / sensor unit 204 are a group of devices that are installed relatively close to each other according to characteristics such as wiring and heat resistance, and are unitized. It does not indicate that.
  • the power converter device 100 can be comprised at least by the converter part 201, the inverter part 202, and the radiation fin 300.
  • the converter unit 201 and the inverter unit 202 are arranged side by side in the traveling direction X of the electric vehicle. Further, by placing the converter unit 201 and the inverter unit 202 close to one side surface of the electric vehicle, the converter unit 201 and the inverter unit 202 can be easily opened from the opening of the power conversion device 100 provided on the side surface side of the electric vehicle. Can be accessed. Thereby, taking in and out of the converter part 201 and the inverter part 202 becomes easy. Furthermore, since there are many operations such as inspections performed on the side surface of the electric vehicle, the operation can be made more efficient by continuously performing the operation on the side surface of the electric vehicle.
  • switching units 31 and 32 in converter unit 201 are attached to a heat receiving plate (see 350 in FIG. 4), and are thermally connected to radiating fins 300 extending from the heat receiving plate to the outside of housing 200. Yes.
  • the switching units 41 to 43 in the inverter unit 202 are also attached to the heat receiving plate and are thermally connected to the radiating fins 300 extending from the heat receiving plate to the outside of the housing 200.
  • the heat generated in the switching units 31, 32, 41 to 43 is conducted to the heat radiating fin 300 through the heat receiving plate and is radiated from the heat radiating fin 300.
  • the heat receiving plate of the converter unit 201 and the heat receiving plate of the inverter unit 202 may be separate from each other or may be integrated.
  • FIG. 3 is an equivalent circuit diagram showing an example of the configuration of the switching unit 41.
  • the switching units 31, 32, 41 to 43 are connected to AC power wiring (U phase wiring, V phase wiring, W phase wiring) and DC power wiring (positive wiring P, negative wiring N, neutral point wiring C). Although they are different in connection relation, each has the same configuration.
  • the switching unit 41 will be described, and description of the other switching units 31, 32, 42, and 43 will be omitted.
  • the switching unit 41 includes a first switching element Q1, a second switching element Q2, a third switching element Q3, a fourth switching element Q4, a first clamp element CD1, and a second clamp element CD2. .
  • the first switching element Q1 and the second switching element Q2 are connected in series between the positive electrode wiring P for DC power and the U-phase wiring (first phase wiring) for AC power.
  • the third switching element Q3 and the fourth switching element Q4 are connected in series between the U-phase wiring of AC power and the negative wiring N of DC power.
  • the first to fourth switching elements Q1 to Q4 are connected in series from the positive electrode wiring P to the negative electrode wiring N in the order of Q1, Q2, Q3, and Q4.
  • a node between second switching element Q2 and third switching element Q3 is connected to the U-phase wiring.
  • the switching elements Q1 to Q4 are each configured by a power semiconductor transistor such as GTO or IGBT, for example.
  • the first clamp element CD1 is connected between the first node N1 between the first switching element Q1 and the second switching element Q2 and the neutral point wiring C of the DC power.
  • the second clamp element CD2 is connected between the second node N2 between the third switching element Q3 and the fourth switching element Q4 and the neutral point wiring C of the DC power.
  • the first and second clamp elements CD1 and CD2 are connected in series between the first node N1 and the second node N2.
  • a node between the first clamp element CD1 and the second clamp element CD2 is connected to the neutral point wiring C.
  • the clamp elements CD1 and CD2 are constituted by clamp diodes, for example.
  • the anode of the first clamp element CD1 is connected to the neutral point wiring C, and the cathode is connected to the node N1.
  • the anode of the second clamp element CD2 is connected to the node N2, and the cathode is connected to the neutral point wiring C.
  • the switching unit 41 having such a configuration receives DC power from the positive wiring P, the negative wiring N, and the neutral wiring C, and generates a U-phase power sine wave of three-phase AC power.
  • the U-phase wiring is connected to the neutral point wiring C via the first and second clamp elements CD1 and CD2 and is in the middle Receive voltage (voltage between positive and negative voltage).
  • the first switching element Q1 is The first on period in the on state and the third on period in which the third switching element Q3 is in the on state are changed as follows.
  • the third switching element Q3 is almost continuously turned on. At this time, the voltage of the U-phase wiring is almost equal to the voltage of the neutral point wiring C of the DC power.
  • the third on-period in which the third switching element Q3 is in the on-state is gradually shortened.
  • the first on-period in which the first switching element Q3 is in the on-state is gradually lengthened.
  • the first on-period becomes gradually longer than the third on-period, and the first switching element Q1 is almost continuously turned on. Thereby, the voltage of the U-phase wiring becomes substantially equal to the voltage of the positive electrode wiring P of DC power.
  • the third on-period becomes gradually longer than the first on-period, and the third switching element Q3 is almost continuously turned on.
  • the voltage of the U-phase wiring returns to the voltage of the neutral point wiring C.
  • the voltage of the U-phase wiring temporarily rises from the voltage of the neutral point wiring C to the voltage of the positive wiring P and changes so as to return to the voltage of the neutral point wiring C.
  • the voltage of the U-phase wiring changes in a sine wave shape between the voltage of the neutral point wiring C and the voltage of the positive wiring P. That is, the voltage of the U-phase wiring is a positive side sine wave (curved curve).
  • the second switching element Q2 and the fourth switching element Q4 perform a switching operation in a complementary and alternating manner. . That is, the second switching element Q2 repeats an on state and an off state, and the fourth switching element Q4 repeats an off state and an on state, contrary to the second switching element Q2.
  • the U-phase wiring is connected to the neutral point wiring C via the first and second clamp elements CD1 and CD2, and is in the middle Receive voltage (voltage between positive and negative voltage).
  • the fourth switching element Q4 is on and the second switching element Q2 is off, the U-phase wiring is connected to the negative wiring N and receives a negative voltage.
  • the second switching element Q2 is turned on in order to make the voltage of the U-phase wiring a sine wave.
  • the second on-period that is in the state and the fourth on-period in which the fourth switching element Q4 is in the on state are changed as follows.
  • the second and third switching elements Q2, Q3 are in the on state, and the first and fourth switching elements Q1, Q4 are in the on state.
  • the voltage of the U-phase wiring is almost equal to the voltage of the neutral point wiring C of the DC power.
  • the second on-period in which the second switching element Q2 is in the on-state is gradually shortened, and conversely, the fourth on-period in which the fourth switching element Q4 is in the on-state is gradually lengthened.
  • the voltage of the U-phase wiring gradually approaches the voltage of the negative electrode wiring N from the voltage of the neutral point wiring C.
  • the fourth on-period becomes gradually longer than the second on-period, and the fourth switching element Q4 is almost continuously turned on.
  • the voltage of the U-phase wiring becomes substantially equal to the voltage of the negative electrode wiring N of DC power.
  • the second on-period becomes gradually longer than the fourth on-period, and the second switching element Q2 is almost continuously turned on.
  • the voltage of the U-phase wiring returns to the voltage of the neutral point wiring C.
  • the voltage of the U-phase wiring temporarily decreases from the voltage of the neutral point wiring C to the voltage of the negative wiring N and changes so as to return to the voltage of the neutral point wiring C.
  • the voltage of the U-phase wiring changes in a sine wave shape between the voltage of the neutral point wiring C and the voltage of the negative wiring N. That is, the voltage of the U-phase wiring is a negative sine wave (valley-shaped curve).
  • the switching unit 41 can make the U-phase voltage a sine wave by repeatedly generating the positive-side sine wave and the negative-side sine wave.
  • the switching units 42 and 43 can operate in the same manner as the switching unit 41 to make the V-phase and W-phase voltages sine waves, respectively. However, the switching units 41 to 43 each generate a sine wave by shifting the phase by about 120 degrees. Thereby, the inverter 40 including the switching units 41 to 43 can convert DC power into three-phase AC power.
  • the switching units 31 and 32 can basically convert the single-phase AC power from the transformer 20 into DC power by operating in the same manner as the switching unit 41.
  • the switching unit 31 receives the U phase of the single-phase AC power at a node between the second switching element Q2 and the third switching element Q3 in FIG.
  • the switching elements Q1 to Q4 of the switching unit 31 perform a switching operation so that a positive voltage is output from the positive electrode wiring P and a negative voltage is output from the negative electrode wiring N in FIG.
  • the switching part 31 can convert the U phase of single phase alternating current power into direct current power.
  • the switching unit 32 operates in the same manner as the switching unit 31 and converts the V phase of the single-phase AC power into DC power.
  • the switching units 31 and 32 execute the switching operation at timings suitable for the U phase and the V phase, respectively. Thereby, converter 30 including switching units 31 and 32 can convert single-phase AC power into DC power.
  • FIG. 4 is a plan view showing the arrangement of the first to fourth switching elements Q1 to Q4, the first and second clamp elements CD1 and CD2, and the first to sixth wiring plates PL1 to PL6.
  • FIG. 4 is a plan view seen from above the heat receiving plate 350 as a support plate. P, C, N, N1, N2, and U shown by bold lines in FIG. 4 are shown for easy understanding of the electrical connection relationship of the terminals, and do not show actual wiring.
  • the first to fourth switching elements Q1 to Q4 and the first and second clamp elements CD1 and CD2 are disposed on the heat receiving plate 350 and fixed to the heat receiving plate 350.
  • the first and second switching elements Q1, Q2 are adjacent to each other in the traveling direction X of the electric vehicle.
  • the third and fourth switching elements Q3 and Q4 are also adjacent to each other in the traveling direction X.
  • the third and fourth switching elements Q3 and Q4 are adjacent to the second switching element Q2 and the first switching element Q1, respectively, in the direction Y substantially perpendicular to the traveling direction X. That is, the first to fourth switching elements Q1 to Q4 are drawn in a U shape on the heat receiving plate 350, so that the first switching element Q1, the second switching element Q2, the third switching element Q3, and the fourth switching element Q4 are drawn.
  • the traveling direction X of the electric vehicle is two directions along the track, and may indicate the front of the electric vehicle or the rear of the electric vehicle depending on the traveling direction of the electric vehicle.
  • the first switching element Q1 has a collector terminal C1 and an emitter terminal E1 on its upper surface. Three collector terminals C1 and three emitter terminals E1 are provided in parallel in the Y direction. The three collector terminals C1 are electrically connected in common to the first wiring plate PL1 that functions as the positive wiring P. The three emitter terminals E1 are electrically connected in common to the second wiring plate PL2 that functions as the first node N1.
  • the second switching element Q2 has a collector terminal C2 and an emitter terminal E2 on its upper surface. Three collector terminals C2 and three emitter terminals E2 are also provided in parallel in the Y direction. The three collector terminals C2 are electrically connected in common to the second wiring plate PL2, similarly to the emitter terminal E1. The three emitter terminals E2 are electrically connected in common to a third wiring plate PL3 that functions as a U-phase wiring.
  • the third switching element Q3 has a collector terminal C3 and an emitter terminal E3 on its upper surface. Three collector terminals C3 and three emitter terminals E3 are also provided in parallel in the Y direction. The three collector terminals C3 are electrically connected in common to the third wiring plate PL3, similarly to the emitter terminal E2. The three emitter terminals E3 are electrically connected in common to the fifth wiring plate PL5 functioning as the second node N2.
  • the fourth switching element Q4 has a collector terminal C4 and an emitter terminal E4 on its upper surface. Three collector terminals C4 and three emitter terminals E4 are also provided in parallel in the Y direction. The three collector terminals C4 are electrically connected in common to the fifth wiring plate PL5, similarly to the emitter terminal E3. The three emitter terminals E4 are electrically connected in common to the sixth wiring plate PL6 functioning as the negative electrode wiring N.
  • the first clamp element CD1 has a cathode terminal K1 and an anode terminal A1 on its upper surface. Two cathode terminals K1 and two anode terminals A1 are provided in parallel in the X direction. The two cathode terminals K1 are electrically connected in common to the second wiring plate PL2, similarly to the emitter terminal E1 and the collector terminal C2. The two anode terminals A1 are electrically connected in common to the fourth wiring plate PL4 functioning as the neutral point wiring C.
  • the second clamp element CD2 has a cathode terminal K2 and an anode terminal A2 on its upper surface. Two cathode terminals K2 and two anode terminals A2 are provided in parallel in the X direction. The two cathode terminals K2 are electrically connected in common to the fourth wiring plate PL4 functioning as the neutral point wiring C, similarly to the anode terminal A1. The two anode terminals A2 are electrically connected in common to the fifth wiring plate PL5, similarly to the emitter terminal E3 and the collector terminal C4.
  • the first and second clamp elements CD1 and CD2 are arranged adjacent to both sides in the direction Y of the first to fourth switching elements.
  • the first clamp element CD1 is disposed so as to be adjacent to the side surfaces in the Y direction of the first switching element Q1 and the second switching element Q2.
  • One half of the first clamp element CD1 is adjacent to the first switching element Q1, and the other half of the first clamp element CD1 is adjacent to the second switching element Q2.
  • the first clamp element CD1 is arranged so that the center line thereof substantially coincides with the boundary portion between the first switching element Q1 and the second switching element Q2.
  • the terminals A1 and K1 of the first clamp CD1 are substantially equal distances from the respective terminals of the first and second switching elements Q1 and Q2 electrically connected to the terminals A1 and K1.
  • the cathode terminal K1 of the first clamp CD1 is disposed at an approximately equal distance from the emitter terminal E1 of the first switching element Q1 and the collector terminal C2 of the second switching element Q2 that are electrically connected to the cathode terminal K1. More preferably, as shown in FIG. 4, the cathode terminal K1 is adjacent to the emitter terminal E1 and / or the collector terminal C2 connected thereto in the Y direction.
  • the second wiring plate PL2 becomes shorter (smaller), and the inductance of the second wiring plate PL2 decreases.
  • the second clamp element CD2 is disposed so as to be adjacent to the side surface in the Y direction of the third switching element Q3 and the fourth switching element Q4.
  • One half of the second clamp element CD2 is adjacent to the third switching element Q3, and the other half of the second clamp element CD2 is adjacent to the fourth switching element Q4.
  • the second clamp element CD2 is arranged such that the center line thereof substantially coincides with the boundary portion between the third switching element Q3 and the fourth switching element Q4.
  • the terminals A2 and K2 of the second clamp CD2 are at substantially equal distances from the respective terminals of the third and fourth switching elements Q3 and Q4 that are electrically connected to the terminals A2 and K2.
  • the anode terminal A2 of the second clamp CD2 is disposed at an approximately equal distance from the emitter terminal E3 of the third switching element Q3 and the collector terminal C4 of the fourth switching element Q4 that are electrically connected to the anode terminal A2. More preferably, as shown in FIG. 4, the anode terminal A2 is adjacent to the emitter terminal E3 and / or the collector terminal C4 connected thereto in the Y direction. As a result, the fifth wiring plate PL5 becomes shorter (smaller), and the inductance of the fifth wiring plate PL5 decreases.
  • the first to sixth wiring plates PL1 to PL6 are conductors made of a flat low resistance metal or the like.
  • the first wiring plate PL1 is disposed on the collector terminal C1 of the first switching element Q1, and is electrically connected to the collector terminal C1. Thereby, the first wiring plate PL1 functions as the positive electrode wiring P.
  • the second wiring plate PL2 is disposed on the emitter terminal E1 of the first switching element Q1, the collector terminal C2 of the second switching element Q2, and the cathode terminal K1 of the first clamp element CD1, and the emitter terminal E1, the collector terminal C2 and the cathode. It is electrically connected to the terminal K1. Thereby, the second wiring plate PL2 functions as the first node N1.
  • the third wiring plate PL3 is disposed on the emitter terminal E2 of the second switching element Q2 and the collector terminal C3 of the third switching element Q3, and is electrically connected to the emitter terminal E2 and the collector terminal C3. Thereby, the third wiring plate PL3 functions as a U-phase wiring.
  • the fourth wiring plate PL4 is disposed on the anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2, and is electrically connected to the anode terminal A1 and the cathode terminal K2.
  • the fourth wiring plate PL4 functions as a neutral point wiring C.
  • the fifth wiring plate PL5 is disposed on the emitter terminal E3 of the third switching element Q3, the collector terminal C4 of the fourth switching element Q4, and the anode terminal A2 of the second clamp element CD2, and the emitter terminal E3, collector terminal C4 and anode It is electrically connected to the terminal A2. Thereby, the fifth wiring plate PL5 functions as the second node N2.
  • the sixth wiring plate PL6 is disposed on the emitter terminal E4 of the fourth switching element Q4 and is electrically connected to the emitter terminal E4. Thereby, the sixth wiring plate PL6 functions as the negative electrode wiring N.
  • FIG. 5 is a side view of the switching unit 41 of FIG. 4 as viewed from the first clamp element CD1 side. Since FIG. 5 is a side view seen from the first clamp element CD1, the first clamp element CD1, the first and second switching elements Q1, Q2 appear. However, the third and fourth switching elements Q3 and Q4 do not appear in FIG. 5 because they overlap the second and first switching elements Q2 and Q1, respectively, in FIG. Also, the second clamp element CD2 does not appear in FIG. 5 because it overlaps with the third and fourth switching elements Q3 and Q4 in FIG.
  • the switching units 31, 32, 41 to 43 have the same configuration. Therefore, the switching unit 41 will be described below, and the description of the other switching units 31, 32, 42, and 43 will be omitted.
  • the first clamp element CD1, the first and second switching elements Q1, Q2 are fixed on the heat receiving plate 350 by bolts 351.
  • a collector terminal C1 is provided on the first switching element Q1.
  • a first wiring plate PL1 is electrically connected on the collector terminal C1.
  • the first wiring plate PL1 is attached to the collector terminal C1.
  • the first wiring plate PL1 is drawn out in the traveling direction X of the electric vehicle, is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at one end of the heat receiving plate 350, and rises upward.
  • the drawing direction of the first wiring plate PL1 can be either forward or backward of the electric vehicle depending on the traveling direction of the electric vehicle.
  • the sixth wiring plate PL6 does not appear in FIG. 5 because it overlaps the first wiring plate PL1 in FIG. However, the sixth wiring plate PL6 is attached to the emitter terminal E4. Similarly to the first wiring plate PL1, the sixth wiring plate PL6 is also drawn out in the traveling direction X of the electric vehicle, and is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at the end of the heat receiving plate 350. Standing upwards.
  • the second wiring plate PL2 is provided on the emitter terminal E1, the collector terminal C2, and the cathode terminal K1, and electrically connects them.
  • the second wiring plate PL2 is a wiring inside the switching unit 41 and is not drawn out of the switching unit 41.
  • the fifth wiring plate PL5 does not appear in FIG. 5 because it overlaps the second wiring plate PL2 in FIG.
  • the fifth wiring plate PL5 is provided on the emitter terminal E3, the collector terminal C4, and the anode terminal A2, and electrically connects them.
  • the fifth wiring plate PL5 is a wiring inside the switching unit 41 and is not drawn out of the switching unit 41.
  • the fourth wiring plate PL4 has the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6 so as not to contact the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6 with reference to the surface of the heat receiving plate 350. It is provided above the fifth and sixth wiring plates PL1, PL2, PL5 and PL6.
  • the fourth wiring plate PL4 is attached to the anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2 by means of bolts (not shown) provided in the collar 360. . Thereby, the fourth wiring plate PL4 is electrically connected to the anode terminal A1 and the cathode terminal K2.
  • the fourth wiring plate PL4 is drawn out in the traveling direction X of the electric vehicle, similarly to the first wiring plate PL1.
  • the fourth wiring plate PL4 is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at one end portion of the heat receiving plate 350 and rises upward.
  • the fourth wiring plate PL4 extends substantially parallel to the first wiring plate PL1 while maintaining a distance from the first wiring plate PL1 at the end of the heat receiving plate 350 so as not to be short-circuited with the first wiring plate PL1. is doing.
  • the third wiring plate PL3 is arranged so as not to contact the first, second, fourth, fifth, and sixth wiring plates PL1, PL2, PL4, PL5, and PL6 with reference to the surface of the heat receiving plate 350.
  • the first, second, fourth, fifth, and sixth wiring plates PL1, PL2, PL4, PL5, and PL6 are provided above.
  • the third wiring plate PL3 is attached to the emitter terminal E2 of the second switching element and the collector terminal C3 of the third switching element Q3 by bolts (not shown) or the like provided inside the collar 361. Thereby, the third wiring plate PL3 is electrically connected to the emitter terminal E2 and the collector terminal C3.
  • the third wiring plate PL3 is drawn out in the traveling direction X of the electric vehicle, but is opposite to the drawing direction of the first, fourth and sixth wiring plates PL1, PL4, PL6 (hereinafter also referred to as the reverse direction). Has been drawn to. Third wiring plate PL3 is bent in a direction substantially perpendicular to the surface of heat receiving plate 350 at the other end of heat receiving plate 350, and rises upward.
  • the first, third, fourth, and sixth wiring plates PL1, PL3, PL4, and PL6 are drawn out in the traveling direction (or reverse direction) of the electric vehicle.
  • the positive wiring P first wiring plate PL1
  • the U-phase wiring third wiring plate PL3
  • the neutral wiring C fourth wiring plate PL4
  • the negative wiring N sixth wiring plate PL6
  • the third wiring plate PL3 is drawn in the direction opposite to the drawing direction of the first, fourth, and sixth wiring plates PL1, PL4, and PL6. Therefore, it is possible to clearly distinguish the positive wiring P, the neutral wiring C and the negative wiring N that input DC power from the converter 30 side, and the U-phase wiring that outputs AC power to the motor 11. Thereby, attachment and wiring of the switching part 41 become easy.
  • the fourth wiring plate PL4 is disposed above the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6, and the third wiring plate PL3 is disposed above the fourth wiring plate PL4. Be placed.
  • the first and fourth switching elements Q1, Q4 are arranged such that the collector terminal C1 and the emitter terminal E4 are adjacent to each other in the Y direction. Yes. Accordingly, the first and sixth wiring plates PL1 and PL6 can be drawn out in the X direction while being adjacent to each other. Further, the collector terminal C1 and the emitter terminal E4 are arranged at a position closer to one end portion in the X direction of the heat receiving plate 350 than the other terminals. Accordingly, the first and sixth wiring plates PL1 and PL6 are shortened (smaller), and both can be connected to the collector terminal C1 and the emitter terminal E4 with low inductance. Further, the first and sixth wiring plates PL1, PL6 can be easily pulled out from one end in the X direction.
  • the second and third switching elements Q2, Q3 are arranged so that the emitter terminal E2 and the collector terminal C3 are adjacent to each other in the Y direction. Therefore, the third wiring plate PL3 can be easily connected to the emitter terminal E2 and the collector terminal C3. Further, the emitter terminal E2 and the collector terminal C3 are arranged at a position closer to the other end portion in the X direction of the heat receiving plate 350 than the other terminals. Therefore, the third wiring plate PL3 becomes shorter (smaller) and can be connected to the emitter terminal E2 and the collector terminal C3 with low inductance. Further, the third wiring plate PL3 can be easily pulled out to the other end portion in the X direction.
  • the first and second switching elements Q1, Q2 are arranged so that the emitter terminal E1 and the collector terminal C2 are adjacent to each other in the X direction.
  • the first clamp element CD1 is arranged such that the cathode terminal K1 is adjacent to the emitter terminal E1 and the collector terminal C2 in the Y direction. Therefore, the second wiring plate PL2 can be easily connected to the emitter terminal E1, the collector terminal C2, and the cathode terminal K1. Further, since the size of the second wiring plate PL2 can be reduced, the second wiring plate PL2 can connect the emitter terminal E1, the collector terminal C2, and the cathode terminal K1 with low inductance with low inductance.
  • the third and fourth switching elements Q3 and Q4 are arranged so that the emitter terminal E3 and the collector terminal C4 are adjacent to each other in the X direction.
  • the second clamp element CD2 is arranged such that the anode terminal A2 is adjacent to the emitter terminal E3 and the collector terminal C4 in the Y direction. Therefore, the fifth wiring plate PL5 can be easily connected to the emitter terminal E3, the collector terminal C4, and the anode terminal A2. Further, since the size of the fifth wiring plate PL5 can be reduced, the fifth wiring plate PL5 can connect the emitter terminal E3, the collector terminal C4, and the anode terminal A2 with low inductance with low inductance.
  • the anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2 are separated from each other, and are drawn from one end in the X direction of the heat receiving plate 350 by the relatively large fourth wiring plate PL4. Yes.
  • the first to sixth wiring plates PL1 to PL6 can be connected to the terminals of the switching elements Q1 to Q4 and the terminals of the clamp elements CD1 and CD2 with low inductance. Thereby, a surge (overshoot) voltage generated transiently in the switching operation can be suppressed.
  • a switching element formed of SiC or the like can be switched at a higher speed than a switching element formed of Si or the like.
  • the switching element when the switching element is turned on, the voltage rises quickly (dV / dt is large), so that the surge (overshoot) voltage becomes high. Therefore, it is considered that the effect of the present embodiment appears more prominently by applying the arrangement of the switching elements and the configuration of the wiring plate according to the present embodiment to the switching elements formed using SiC or the like as a material.

Abstract

First to fourth switching elements (Q1-Q4) and first and second clamp elements (CD1, CD2) are arranged upon a supporting plate (350). When viewed from above the supporting plate (350), the first and second switching elements (Q1, Q2) are adjacent to each other in the progression direction (X) of an electric vehicle. The third and fourth switching elements (Q3, Q4) are adjacent in the progression direction (X) and are each adjacent, in a direction (Y) substantially perpendicular to the progression direction (X), to the second and first switching elements (Q2, Q1). The first and second clamp elements (CD1, CD2) are adjacent, in the substantially perpendicular direction (Y), to one of the first to fourth switching elements (Q1-Q4).

Description

電力変換装置Power converter
 本発明による実施形態は、電力変換装置に関する。 Embodiments according to the present invention relate to a power conversion device.
 従来から電気車の主電動機(モータ)等の駆動システムを動作させるために電力変換装置が用いられている。電力変換装置は、電気車の車輪を回転させるために、架線から得た電力を駆動システムに必要な電力に変換する。 Conventionally, a power converter is used to operate a drive system such as a main motor (motor) of an electric car. The power conversion device converts the power obtained from the overhead line into the power required for the drive system in order to rotate the wheels of the electric vehicle.
 このような電力変換装置は、複数のスイッチング素子(例えば、GTO(Gate Turn Off Thyristor)、IGBT(Insulated Gate Bipolar Transistor)等)により構成されたコンバータやインバータを含む。このようなコンバータおよびインバータにおいて、複数のスイッチング素子の端子間を接続するために、金属配線プレートが用いられる。 Such a power conversion device includes a converter and an inverter constituted by a plurality of switching elements (for example, GTO (Gate Turn Off Thyristor), IGBT (Insulated Gate Bipolar Transistor), etc.). In such a converter and inverter, a metal wiring plate is used to connect terminals of a plurality of switching elements.
 しかし、複数のスイッチング素子の端子間の距離が長くなり、金属配線プレートのインダクタンスが大きくなると、スイッチング動作において、過渡的に生じるサージ(オーバーシュート)電圧が大きくなる。従来、スイッチング素子は、金属配線プレートのインダクタンスを小さくするように配置されていなかった。 However, when the distance between the terminals of the plurality of switching elements is increased and the inductance of the metal wiring plate is increased, a transient surge (overshoot) voltage is increased in the switching operation. Conventionally, the switching element has not been arranged so as to reduce the inductance of the metal wiring plate.
特開2000-092819号公報JP 2000-092819 A
 コンバータまたはインバータを構成する複数のスイッチング素子の間の配線のインダクタンスを低下させた電力変換装置を提供する。 Provided is a power conversion device in which the inductance of wiring between a plurality of switching elements constituting a converter or an inverter is reduced.
 本実施形態による電力変換装置は、インバータまたはコンバータを備え、電気車の負荷に供給する電力を生成する。第1および第2スイッチング素子は、直流電力の正極配線と交流電力の第1相配線との間に直列に接続されている。第3および第4スイッチング素子は、交流電力の第1相配線と直流電力の負極配線との間に直列に接続されている。第1クランプ素子は、第1スイッチング素子と第2スイッチング素子との間の第1ノードと直流電力の中性点配線との間に接続されている。 The power conversion device according to the present embodiment includes an inverter or a converter, and generates power to be supplied to the load of the electric vehicle. The first and second switching elements are connected in series between the positive electrode wiring for DC power and the first phase wiring for AC power. The third and fourth switching elements are connected in series between the first phase wiring of AC power and the negative wiring of DC power. The first clamp element is connected between a first node between the first switching element and the second switching element and a neutral point wiring of the DC power.
 第2クランプ素子は、第3スイッチング素子と第4スイッチング素子との間の第2ノードと中性点配線との間に接続されている。第1から第4スイッチング素子、第1クランプ素子および第2クランプ素子は、支持板上に配置されている。支持板の上方から見たときに、第1および第2スイッチング素子は、電気車の進行方向に互いに隣接する。第3および第4スイッチング素子は、進行方向に互いに隣接しかつそれぞれ進行方向に対して略垂直方向に第2および第1スイッチング素子に隣接する。第1および第2クランプ素子は、略垂直方向に第1から第4スイッチング素子のいずれかに隣接する。 The second clamp element is connected between the second node between the third switching element and the fourth switching element and the neutral point wiring. The first to fourth switching elements, the first clamp element, and the second clamp element are disposed on the support plate. When viewed from above the support plate, the first and second switching elements are adjacent to each other in the traveling direction of the electric vehicle. The third and fourth switching elements are adjacent to each other in the traveling direction and are adjacent to the second and first switching elements in a direction substantially perpendicular to the traveling direction, respectively. The first and second clamp elements are adjacent to any one of the first to fourth switching elements in a substantially vertical direction.
電気車に搭載される電力変換装置100の構成の一例を示す概略図。Schematic which shows an example of a structure of the power converter device 100 mounted in an electric vehicle. 電力変換装置100の各構成要素の配置の一例を示す斜視図。The perspective view which shows an example of arrangement | positioning of each component of the power converter device. スイッチング部41の構成の一例を示す等価回路図。3 is an equivalent circuit diagram illustrating an example of a configuration of a switching unit 41. FIG. 第1~第4スイッチング素子Q1~Q4、第1および第2クランプ素子CD1、CD2、第1~第6配線プレートPL1~PL6の各配置を示す平面図。The top view which shows each arrangement | positioning of 1st-4th switching element Q1-Q4, 1st and 2nd clamp element CD1, CD2, and 1st-6th wiring plate PL1-PL6. スイッチング部41を第1クランプ素子CD1の側から見た側面図。The side view which looked at the switching part 41 from the 1st clamp element CD1 side.
実施形態Embodiment
 以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。 Embodiments according to the present invention will be described below with reference to the drawings. This embodiment does not limit the present invention.
(第1の実施形態)
 図1は、電気車に搭載される電力変換装置100の構成の一例を示す概略図である。電気車は、例えば、鉄道等の線路上を電力で走行する車両である。電力変換装置100は、架線13からパンタグラフ12を介して交流電力を受け、該交流電力を三相交流電力に変換して、該三相交流電力を電動機(例えば、三相交流モータ)11に供給する。
(First embodiment)
FIG. 1 is a schematic diagram illustrating an example of a configuration of a power conversion device 100 mounted on an electric vehicle. An electric vehicle is, for example, a vehicle that travels with electric power on a railway line. The power converter 100 receives AC power from the overhead line 13 via the pantograph 12, converts the AC power into three-phase AC power, and supplies the three-phase AC power to an electric motor (for example, a three-phase AC motor) 11. To do.
 電力変換装置100は、制御部10と、変圧器20と、コンバータ30と、インバータ40と、遮断器50と、充電抵抗61、62と、接触器71~74と、分圧コンデンサ81、82と、電流検出器90とを備えている。尚、変圧器20および遮断器50は、電力変換装置100とは別体であってもよい。 The power converter 100 includes a control unit 10, a transformer 20, a converter 30, an inverter 40, a circuit breaker 50, charging resistors 61 and 62, contactors 71 to 74, and voltage dividing capacitors 81 and 82. The current detector 90 is provided. Note that the transformer 20 and the circuit breaker 50 may be separate from the power converter 100.
 変圧器20は、パンタグラフ12を介して架線13からの交流電力を1次コイルで受け、その交流電力を変圧して2次コイルからコンバータ30へ供給する。例えば、変圧器20は、2次コイルからU相およびV相の単相交流電力をコンバータ30へ供給する。変圧器20とコンバータ30との間には、2本の配線(U相配線およびV相配線)が設けられており、これらの配線が単相交流電力をコンバータ30へ伝達する。 The transformer 20 receives the AC power from the overhead line 13 via the pantograph 12 by the primary coil, transforms the AC power, and supplies the AC power from the secondary coil to the converter 30. For example, the transformer 20 supplies U-phase and V-phase single-phase AC power to the converter 30 from the secondary coil. Two wires (U-phase wire and V-phase wire) are provided between transformer 20 and converter 30, and these wires transmit single-phase AC power to converter 30.
 コンバータ30は、変圧器20の2次コイルから交流電力を受けて、その交流電力を直流電力へ変換する。コンバータ30は、例えば、U相のスイッチング部31と、V相のスイッチング部32とを備えている。U相のスイッチング部31は、単相交流電力のうちU相をスイッチングすることによって該U相の電力を直流電力へ変換する。V相のスイッチング部32は、単相交流電力のうちV相をスイッチングすることによって該V相の電力を直流電力へ変換する。コンバータ30とインバータ40との間には、3本の配線(正極配線P、負極配線Nおよび中性点配線C)が設けられており、これらの配線が直流電力をインバータ40へ伝達する。 Converter 30 receives AC power from the secondary coil of transformer 20 and converts the AC power into DC power. The converter 30 includes, for example, a U-phase switching unit 31 and a V-phase switching unit 32. The U-phase switching unit 31 converts the U-phase power into DC power by switching the U-phase of the single-phase AC power. The V-phase switching unit 32 converts the V-phase power into DC power by switching the V-phase of the single-phase AC power. Three wires (positive wire P, negative wire N and neutral point wire C) are provided between converter 30 and inverter 40, and these wires transmit DC power to inverter 40.
 インバータ40は、コンバータ30からの直流電力を受けて、その直流電力を三相交流電力へ変換する。インバータ40は、例えば、U相のスイッチング部41と、V相のスイッチング部42と、W相のスイッチング部43とを備えている。U相のスイッチング部41は、直流電力を受けて三相交流電力のうちU相の交流電力を出力する。V相のスイッチング部42は、直流電力を受けて三相交流電力のうちV相の交流電力を出力する。W相のスイッチング部43は、直流電力を受けて三相交流電力のうちW相の交流電力を出力する。インバータ40と電動機11との間には、3本の配線(U相配線、V相配線およびW相配線)が設けられており、これらの配線が三相交流電力を電動機11へ伝達する。三相交流電力は、電動機11を駆動するために用いられる。 The inverter 40 receives DC power from the converter 30 and converts the DC power into three-phase AC power. The inverter 40 includes, for example, a U-phase switching unit 41, a V-phase switching unit 42, and a W-phase switching unit 43. The U-phase switching unit 41 receives DC power and outputs U-phase AC power among the three-phase AC power. The V-phase switching unit 42 receives DC power and outputs V-phase AC power among the three-phase AC power. The W-phase switching unit 43 receives DC power and outputs W-phase AC power among the three-phase AC power. Three wirings (U-phase wiring, V-phase wiring, and W-phase wiring) are provided between the inverter 40 and the electric motor 11, and these wirings transmit three-phase AC power to the electric motor 11. Three-phase AC power is used to drive the electric motor 11.
 遮断器50は、パンタグラフ12と変圧器20との間に設けられた主電源スイッチであり、例えば、VCB(Vacuum Circuit Breaker)である。接触器72および接触器74は、変圧器20の2次コイルとコンバータ30との間のU相配線およびV相配線にそれぞれ設けられている。接触器72および接触器74は、例えば、重大な故障が生じたときに電力を遮断する高速度遮断器である。接触器71および充電抵抗61は、直列に接続され、接触器72に対して並列に接続されている。接触器73および充電抵抗62も、直列に接続され、接触器74に対して並列に接続されている。接触器71、72および充電抵抗61、62は、電力変換装置100の起動時に分圧コンデンサ81、82をゆっくり充電するために用いられる。 The circuit breaker 50 is a main power switch provided between the pantograph 12 and the transformer 20, and is, for example, a VCB (Vacuum Circuit Breaker). Contactor 72 and contactor 74 are provided in the U-phase wiring and V-phase wiring between the secondary coil of transformer 20 and converter 30, respectively. The contactor 72 and the contactor 74 are, for example, high-speed circuit breakers that cut off power when a serious failure occurs. The contactor 71 and the charging resistor 61 are connected in series and are connected in parallel to the contactor 72. The contactor 73 and the charging resistor 62 are also connected in series and connected in parallel to the contactor 74. The contactors 71 and 72 and the charging resistors 61 and 62 are used for slowly charging the voltage dividing capacitors 81 and 82 when the power converter 100 is activated.
 分圧コンデンサ81は、正極配線Pと中性点配線Cとの間に接続されている。分圧コンデンサ82は、中性点配線Cと負極配線Nとの間に接続されている。分圧コンデンサ81、82によって、中性点配線Cは、正極配線Pと負極配線Nとの間の電圧(例えば、中間電圧)になる。 The voltage dividing capacitor 81 is connected between the positive electrode wiring P and the neutral point wiring C. The voltage dividing capacitor 82 is connected between the neutral point wiring C and the negative electrode wiring N. Due to the voltage dividing capacitors 81 and 82, the neutral point wiring C becomes a voltage (for example, intermediate voltage) between the positive wiring P and the negative wiring N.
 電流検出器90は、中性点配線C、グランドおよび制御部10に接続されており、中性点配線Cを介してグランドに流れる電流あるいはその逆方向に流れる電流を検出し、その電流測定値を制御部10へ出力する。 The current detector 90 is connected to the neutral point wiring C, the ground, and the control unit 10, detects a current flowing through the neutral point wiring C or a current flowing in the opposite direction, and measures a current measurement value thereof. Is output to the control unit 10.
 制御部10は、コンバータ30、インバータ40、遮断器50、71~74等の電力変換装置の各構成要素を制御する。例えば、制御部10は、コンバータ30およびインバータ40を構成するスイッチング素子のスイッチング状態(オン状態またはオフ状態)を制御する。 The control unit 10 controls each component of the power conversion device such as the converter 30, the inverter 40, the circuit breakers 50, and 71 to 74. For example, the control unit 10 controls the switching state (on state or off state) of the switching elements constituting the converter 30 and the inverter 40.
 負荷としての電動機11は、電力変換装置100からの三相交流電力を受けて駆動する。電動機11が電気車の車輪を回転させることにより、電気車は、鉄道等の線路上を走行することができる。 The electric motor 11 as a load is driven by receiving the three-phase AC power from the power converter 100. When the electric motor 11 rotates the wheels of the electric vehicle, the electric vehicle can travel on a railroad track or the like.
 図2は、電力変換装置100の各構成要素の配置の一例を示す斜視図である。電力変換装置100の構成要素は、筐体200の内部に収容されている。矢印Xは、電気車の進行方向(電気車の長手方向)を示す。矢印Yは電気車の進行方向に対して略垂直方向を示す。 FIG. 2 is a perspective view showing an example of the arrangement of each component of the power conversion apparatus 100. FIG. The components of the power conversion device 100 are accommodated in the housing 200. An arrow X indicates the traveling direction of the electric vehicle (longitudinal direction of the electric vehicle). An arrow Y indicates a direction substantially perpendicular to the traveling direction of the electric vehicle.
 コンバータ部201は、コンバータ30を含む部分である。インバータ部202は、インバータ40を含む部分である。コントロール部203は、制御部10を含む部分である。スイッチ・センサ部204は、接触器71~74および電流検出器90を含む部分である。 The converter unit 201 is a part including the converter 30. The inverter unit 202 is a part including the inverter 40. The control unit 203 is a part including the control unit 10. The switch / sensor unit 204 is a part including the contactors 71 to 74 and the current detector 90.
 なお、コンバータ部201、インバータ部202、コントロール部203、およびスイッチ・センサ部204は、配線や熱耐性などの特性によって比較的近傍に設置される機器をグループ化したもので、ユニット化されていることを示すものではない。また、電力変換装置100は、少なくともコンバータ部201、インバータ部202および放熱フィン300によって構成され得る。 The converter unit 201, the inverter unit 202, the control unit 203, and the switch / sensor unit 204 are a group of devices that are installed relatively close to each other according to characteristics such as wiring and heat resistance, and are unitized. It does not indicate that. Moreover, the power converter device 100 can be comprised at least by the converter part 201, the inverter part 202, and the radiation fin 300.
 また、電力変換装置100内において、コンバータ部201およびインバータ部202は、電気車の進行方向Xに並べて配置されている。また、コンバータ部201とインバータ部202を電気車の片方の側面に寄せて配置することによって、電気車の側面側に設けられた電力変換装置100の開口部からコンバータ部201およびインバータ部202へ容易にアクセスすることができる。これにより、コンバータ部201およびインバータ部202の出し入れが容易になる。さらに電気車の側面において行う検査等の作業は多いので、電気車の側面において継続的に作業を行うことによって、作業を効率化することができる。 In the power converter 100, the converter unit 201 and the inverter unit 202 are arranged side by side in the traveling direction X of the electric vehicle. Further, by placing the converter unit 201 and the inverter unit 202 close to one side surface of the electric vehicle, the converter unit 201 and the inverter unit 202 can be easily opened from the opening of the power conversion device 100 provided on the side surface side of the electric vehicle. Can be accessed. Thereby, taking in and out of the converter part 201 and the inverter part 202 becomes easy. Furthermore, since there are many operations such as inspections performed on the side surface of the electric vehicle, the operation can be made more efficient by continuously performing the operation on the side surface of the electric vehicle.
 さらに、コンバータ部201内のスイッチング部31、32は、受熱板(図4の350参照)に取り付けられており、受熱板から筐体200の外部へ延伸する放熱フィン300に熱的に接続されている。インバータ部202内のスイッチング部41~43も、受熱板に取り付けられており、受熱板から筐体200の外部へ延伸する放熱フィン300に熱的に接続されている。これにより、スイッチング部31、32、41~43において発生する熱は、受熱板を介して放熱フィン300に伝導し、放熱フィン300から放熱される。尚、コンバータ部201の受熱板とインバータ部202の受熱板は、それぞれ別体でもよく、あるいは、一体であってもよい。 Further, switching units 31 and 32 in converter unit 201 are attached to a heat receiving plate (see 350 in FIG. 4), and are thermally connected to radiating fins 300 extending from the heat receiving plate to the outside of housing 200. Yes. The switching units 41 to 43 in the inverter unit 202 are also attached to the heat receiving plate and are thermally connected to the radiating fins 300 extending from the heat receiving plate to the outside of the housing 200. Thus, the heat generated in the switching units 31, 32, 41 to 43 is conducted to the heat radiating fin 300 through the heat receiving plate and is radiated from the heat radiating fin 300. Note that the heat receiving plate of the converter unit 201 and the heat receiving plate of the inverter unit 202 may be separate from each other or may be integrated.
 図3は、スイッチング部41の構成の一例を示す等価回路図である。スイッチング部31、32、41~43は、交流電力の配線(U相配線、V相配線、W相配線)および直流電力の配線(正極配線P、負極配線N、中性点配線C)との接続関係において異なるものの、それぞれ同様の構成を有する。以下、スイッチング部41について説明し、他のスイッチング部31、32、42、43についての説明は省略する。 FIG. 3 is an equivalent circuit diagram showing an example of the configuration of the switching unit 41. The switching units 31, 32, 41 to 43 are connected to AC power wiring (U phase wiring, V phase wiring, W phase wiring) and DC power wiring (positive wiring P, negative wiring N, neutral point wiring C). Although they are different in connection relation, each has the same configuration. Hereinafter, the switching unit 41 will be described, and description of the other switching units 31, 32, 42, and 43 will be omitted.
 スイッチング部41は、第1スイッチング素子Q1と、第2スイッチング素子Q2と、第3スイッチング素子Q3と、第4スイッチング素子Q4と、第1クランプ素子CD1と、第2クランプ素子CD2とを備えている。 The switching unit 41 includes a first switching element Q1, a second switching element Q2, a third switching element Q3, a fourth switching element Q4, a first clamp element CD1, and a second clamp element CD2. .
 第1スイッチング素子Q1および第2スイッチング素子Q2は、直流電力の正極配線Pと交流電力のU相配線(第1相配線)との間に直列に接続されている。第3スイッチング素子Q3および第4スイッチング素子Q4は、交流電力のU相配線と直流電力の負極配線Nとの間に直列に接続されている。換言すると、等価回路において、第1から第4スイッチング素子Q1~Q4は、Q1、Q2、Q3、Q4の順番で正極配線Pから負極配線Nまで直列に接続されている。第2スイッチング素子Q2と第3スイッチング素子Q3との間のノードがU相配線に接続されている。スイッチング素子Q1~Q4は、それぞれ、例えば、GTO、IGBT等のパワー半導体トランジスタにより構成されている。 The first switching element Q1 and the second switching element Q2 are connected in series between the positive electrode wiring P for DC power and the U-phase wiring (first phase wiring) for AC power. The third switching element Q3 and the fourth switching element Q4 are connected in series between the U-phase wiring of AC power and the negative wiring N of DC power. In other words, in the equivalent circuit, the first to fourth switching elements Q1 to Q4 are connected in series from the positive electrode wiring P to the negative electrode wiring N in the order of Q1, Q2, Q3, and Q4. A node between second switching element Q2 and third switching element Q3 is connected to the U-phase wiring. The switching elements Q1 to Q4 are each configured by a power semiconductor transistor such as GTO or IGBT, for example.
 第1クランプ素子CD1は、第1スイッチング素子Q1と第2スイッチング素子Q2との間の第1ノードN1と直流電力の中性点配線Cとの間に接続されている。第2クランプ素子CD2は、第3スイッチング素子Q3と第4スイッチング素子Q4との間の第2ノードN2と直流電力の中性点配線Cとの間に接続されている。換言すると、第1および第2クランプ素子CD1、CD2は、第1ノードN1と第2ノードN2との間に直列に接続されている。第1クランプ素子CD1と第2クランプ素子CD2との間のノードは、中性点配線Cに接続されている。クランプ素子CD1、CD2は、例えば、クランプ用ダイオードで構成されている。第1クランプ素子CD1のアノードは、中性点配線Cに接続され、カソードは、ノードN1に接続されている。第2クランプ素子CD2のアノードはノードN2に接続されており、カソードは中性点配線Cに接続されている。 The first clamp element CD1 is connected between the first node N1 between the first switching element Q1 and the second switching element Q2 and the neutral point wiring C of the DC power. The second clamp element CD2 is connected between the second node N2 between the third switching element Q3 and the fourth switching element Q4 and the neutral point wiring C of the DC power. In other words, the first and second clamp elements CD1 and CD2 are connected in series between the first node N1 and the second node N2. A node between the first clamp element CD1 and the second clamp element CD2 is connected to the neutral point wiring C. The clamp elements CD1 and CD2 are constituted by clamp diodes, for example. The anode of the first clamp element CD1 is connected to the neutral point wiring C, and the cathode is connected to the node N1. The anode of the second clamp element CD2 is connected to the node N2, and the cathode is connected to the neutral point wiring C.
 このような構成を有するスイッチング部41は、正極配線P、負極配線Nおよび中性点配線Cから直流電力を受けて、三相交流電力のU相電力の正弦波を生成する。 The switching unit 41 having such a configuration receives DC power from the positive wiring P, the negative wiring N, and the neutral wiring C, and generates a U-phase power sine wave of three-phase AC power.
(正極側の正弦波の生成)
 例えば、まず、第2スイッチング素子Q2が継続的にオン状態であり、第4スイッチング素子Q4がオフ状態であるときに、第1スイッチング素子Q1および第3スイッチング素子Q3が相補的かつ交互にスイッチング動作する。即ち、第1スイッチング素子Q1がオン状態とオフ状態とを繰り返し、第3スイッチング素子Q3が第1スイッチング素子Q1とは逆にオフ状態とオン状態とを繰り返す。第1スイッチング素子Q1がオン状態であり、第3スイッチング素子Q3がオフ状態のときに、U相配線は、正極配線Pに接続され正電圧を受ける。第3スイッチング素子Q3がオン状態であり、第1スイッチング素子Q1がオフ状態のときに、U相配線は、第1および第2クランプ素子CD1、CD2を介して中性点配線Cに接続され中間電圧(正電圧と負電圧との間の電圧)を受ける。
(Generation of positive side sine wave)
For example, first, when the second switching element Q2 is continuously on and the fourth switching element Q4 is off, the first switching element Q1 and the third switching element Q3 are switched in a complementary and alternating manner. To do. That is, the first switching element Q1 repeats an on state and an off state, and the third switching element Q3 repeats an off state and an on state contrary to the first switching element Q1. When the first switching element Q1 is on and the third switching element Q3 is off, the U-phase wiring is connected to the positive wiring P and receives a positive voltage. When the third switching element Q3 is in the on state and the first switching element Q1 is in the off state, the U-phase wiring is connected to the neutral point wiring C via the first and second clamp elements CD1 and CD2 and is in the middle Receive voltage (voltage between positive and negative voltage).
 第2スイッチング素子Q2が継続的にオン状態であり、第4スイッチング素子Q4が継続的にオフ状態である期間において、U相配線の電圧を正弦波にするためには、第1スイッチング素子Q1がオン状態である第1オン期間と第3スイッチング素子Q3がオン状態である第3オン期間とを以下のように変更する。 In order for the voltage of the U-phase wiring to be a sine wave during the period in which the second switching element Q2 is continuously on and the fourth switching element Q4 is continuously off, the first switching element Q1 is The first on period in the on state and the third on period in which the third switching element Q3 is in the on state are changed as follows.
 例えば、当初、第3スイッチング素子Q3がほとんど継続的にオン状態となっている。このとき、U相配線の電圧は、直流電力の中性点配線Cの電圧にほぼ等しい。 For example, initially, the third switching element Q3 is almost continuously turned on. At this time, the voltage of the U-phase wiring is almost equal to the voltage of the neutral point wiring C of the DC power.
 この状態から第3スイッチング素子Q3がオン状態である第3オン期間が次第に短くなり、逆に、第1スイッチング素子Q3がオン状態である第1オン期間が次第に長くなっていく。これにより、U相配線の電圧は、中性点配線Cの電圧から次第に正極配線Pの電圧に近づいていく。 From this state, the third on-period in which the third switching element Q3 is in the on-state is gradually shortened. Conversely, the first on-period in which the first switching element Q3 is in the on-state is gradually lengthened. Thereby, the voltage of the U-phase wiring gradually approaches the voltage of the positive electrode wiring P from the voltage of the neutral point wiring C.
 その後、第1オン期間が第3オン期間より次第に長くなり、第1スイッチング素子Q1がほとんど継続的にオン状態になる。これにより、U相配線の電圧は、直流電力の正極配線Pの電圧にほぼ等しくなる。 Thereafter, the first on-period becomes gradually longer than the third on-period, and the first switching element Q1 is almost continuously turned on. Thereby, the voltage of the U-phase wiring becomes substantially equal to the voltage of the positive electrode wiring P of DC power.
 さらにその後、第3オン期間が第1オン期間より次第に長くなり、第3スイッチング素子Q3がほとんど継続的にオン状態になる。これにより、U相配線の電圧は、中性点配線Cの電圧に戻る。このように、U相配線の電圧は、中性点配線Cの電圧から正極配線Pの電圧へ一旦上昇し、中性点配線Cの電圧へ戻るように変化する。その結果、U相配線の電圧は、中性点配線Cの電圧と正極配線Pの電圧との間で正弦波状に変化する。即ち、U相配線の電圧は、正極側の正弦波(山成りの曲線)となる。 After that, the third on-period becomes gradually longer than the first on-period, and the third switching element Q3 is almost continuously turned on. Thereby, the voltage of the U-phase wiring returns to the voltage of the neutral point wiring C. Thus, the voltage of the U-phase wiring temporarily rises from the voltage of the neutral point wiring C to the voltage of the positive wiring P and changes so as to return to the voltage of the neutral point wiring C. As a result, the voltage of the U-phase wiring changes in a sine wave shape between the voltage of the neutral point wiring C and the voltage of the positive wiring P. That is, the voltage of the U-phase wiring is a positive side sine wave (curved curve).
(負極側の正弦波の生成)
 次に、第3スイッチング素子Q3が継続的にオン状態であり、第1スイッチング素子Q1がオフ状態であるときに、第2スイッチング素子Q2および第4スイッチング素子Q4が相補的かつ交互にスイッチング動作する。即ち、第2スイッチング素子Q2がオン状態とオフ状態とを繰り返し、第4スイッチング素子Q4が第2スイッチング素子Q2とは逆にオフ状態とオン状態とを繰り返す。第2スイッチング素子Q2がオン状態であり、第4スイッチング素子Q4がオフ状態のときに、U相配線は、第1および第2クランプ素子CD1、CD2を介して中性点配線Cに接続され中間電圧(正電圧と負電圧との間の電圧)を受ける。第4スイッチング素子Q4がオン状態であり、第2スイッチング素子Q2がオフ状態のときに、U相配線は、負極配線Nに接続され負電圧を受ける。
(Generation of negative side sine wave)
Next, when the third switching element Q3 is continuously on and the first switching element Q1 is off, the second switching element Q2 and the fourth switching element Q4 perform a switching operation in a complementary and alternating manner. . That is, the second switching element Q2 repeats an on state and an off state, and the fourth switching element Q4 repeats an off state and an on state, contrary to the second switching element Q2. When the second switching element Q2 is in the on state and the fourth switching element Q4 is in the off state, the U-phase wiring is connected to the neutral point wiring C via the first and second clamp elements CD1 and CD2, and is in the middle Receive voltage (voltage between positive and negative voltage). When the fourth switching element Q4 is on and the second switching element Q2 is off, the U-phase wiring is connected to the negative wiring N and receives a negative voltage.
 第3スイッチング素子Q3が継続的にオン状態であり、第1スイッチング素子Q1が継続的にオフ状態である期間において、U相配線の電圧を正弦波にするために、第2スイッチング素子Q2がオン状態である第2オン期間と第4スイッチング素子Q4がオン状態である第4オン期間とを以下のように変更する。 During the period in which the third switching element Q3 is continuously on and the first switching element Q1 is continuously off, the second switching element Q2 is turned on in order to make the voltage of the U-phase wiring a sine wave. The second on-period that is in the state and the fourth on-period in which the fourth switching element Q4 is in the on state are changed as follows.
 例えば、正側の正弦波の生成後、第2および第3スイッチング素子Q2、Q3は、オン状態となっており、第1および第4スイッチング素子Q1、Q4はオン状態となっている。このとき、U相配線の電圧は、直流電力の中性点配線Cの電圧にほぼ等しい。 For example, after the generation of the positive sine wave, the second and third switching elements Q2, Q3 are in the on state, and the first and fourth switching elements Q1, Q4 are in the on state. At this time, the voltage of the U-phase wiring is almost equal to the voltage of the neutral point wiring C of the DC power.
 この状態から第2スイッチング素子Q2がオン状態である第2オン期間が次第に短くなり、逆に、第4スイッチング素子Q4がオン状態である第4オン期間が次第に長くなっていく。これにより、U相配線の電圧は、中性点配線Cの電圧から次第に負極配線Nの電圧に近づいていく。 From this state, the second on-period in which the second switching element Q2 is in the on-state is gradually shortened, and conversely, the fourth on-period in which the fourth switching element Q4 is in the on-state is gradually lengthened. Thereby, the voltage of the U-phase wiring gradually approaches the voltage of the negative electrode wiring N from the voltage of the neutral point wiring C.
 その後、第4オン期間が第2オン期間より次第に長くなり、第4スイッチング素子Q4がほとんど継続的にオン状態になる。これにより、U相配線の電圧は、直流電力の負極配線Nの電圧にほぼ等しくなる。 Thereafter, the fourth on-period becomes gradually longer than the second on-period, and the fourth switching element Q4 is almost continuously turned on. As a result, the voltage of the U-phase wiring becomes substantially equal to the voltage of the negative electrode wiring N of DC power.
 さらにその後、第2オン期間が第4オン期間より次第に長くなり、第2スイッチング素子Q2がほとんど継続的にオン状態になる。これにより、U相配線の電圧は、中性点配線Cの電圧に戻る。これにより、U相配線の電圧は、中性点配線Cの電圧から負極配線Nの電圧へ一旦低下し、中性点配線Cの電圧へ戻るように変化する。これにより、U相配線の電圧は、中性点配線Cの電圧と負極配線Nの電圧との間で正弦波状に変化する。即ち、U相配線の電圧は、負側の正弦波(谷型の曲線)となる。 After that, the second on-period becomes gradually longer than the fourth on-period, and the second switching element Q2 is almost continuously turned on. Thereby, the voltage of the U-phase wiring returns to the voltage of the neutral point wiring C. Thereby, the voltage of the U-phase wiring temporarily decreases from the voltage of the neutral point wiring C to the voltage of the negative wiring N and changes so as to return to the voltage of the neutral point wiring C. Thereby, the voltage of the U-phase wiring changes in a sine wave shape between the voltage of the neutral point wiring C and the voltage of the negative wiring N. That is, the voltage of the U-phase wiring is a negative sine wave (valley-shaped curve).
 スイッチング部41は、上記正極側の正弦波の生成と負極側の正弦波の生成とを繰り返し実行することによって、U相の電圧を正弦波にすることができる。 The switching unit 41 can make the U-phase voltage a sine wave by repeatedly generating the positive-side sine wave and the negative-side sine wave.
 スイッチング部42、43は、スイッチング部41と同様に動作することによって、それぞれV相およびW相の電圧を正弦波にすることができる。ただし、スイッチング部41~43は、それぞれ位相を約120度ずつずらして正弦波を生成する。これにより、スイッチング部41~43を含むインバータ40は、直流電力を三相交流電力へ変換することができる。 The switching units 42 and 43 can operate in the same manner as the switching unit 41 to make the V-phase and W-phase voltages sine waves, respectively. However, the switching units 41 to 43 each generate a sine wave by shifting the phase by about 120 degrees. Thereby, the inverter 40 including the switching units 41 to 43 can convert DC power into three-phase AC power.
 また、スイッチング部31、32も、基本的にスイッチング部41と同様に動作することによって、変圧器20からの単相交流電力を直流電力へ変換することができる。例えば、スイッチング部31は、単相交流電力のU相を図3の第2スイッチング素子Q2と第3スイッチング素子Q3との間のノードで受ける。そして、スイッチング部31のスイッチング素子Q1~Q4は、図3の正極配線Pから正電圧を出力し、負極配線Nから負電圧を出力するようにスイッチング動作する。これにより、スイッチング部31は、単相交流電力のU相を直流電力へ変換することができる。スイッチング部32は、スイッチング部31と同様に動作し、単相交流電力のV相を直流電力へ変換する。ただし、U相およびV相の各位相は、180度ずれているので、スイッチング部31、32は、それぞれU相およびV相に適合したタイミングでスイッチング動作を実行する。これにより、スイッチング部31、32を含むコンバータ30は、単相交流電力を直流電力へ変換することができる。 Also, the switching units 31 and 32 can basically convert the single-phase AC power from the transformer 20 into DC power by operating in the same manner as the switching unit 41. For example, the switching unit 31 receives the U phase of the single-phase AC power at a node between the second switching element Q2 and the third switching element Q3 in FIG. The switching elements Q1 to Q4 of the switching unit 31 perform a switching operation so that a positive voltage is output from the positive electrode wiring P and a negative voltage is output from the negative electrode wiring N in FIG. Thereby, the switching part 31 can convert the U phase of single phase alternating current power into direct current power. The switching unit 32 operates in the same manner as the switching unit 31 and converts the V phase of the single-phase AC power into DC power. However, since the phases of the U phase and the V phase are shifted by 180 degrees, the switching units 31 and 32 execute the switching operation at timings suitable for the U phase and the V phase, respectively. Thereby, converter 30 including switching units 31 and 32 can convert single-phase AC power into DC power.
 次に、第1~第4スイッチング素子Q1~Q4、第1および第2クランプ素子CD1、CD2の配置について説明する。 Next, the arrangement of the first to fourth switching elements Q1 to Q4 and the first and second clamp elements CD1 and CD2 will be described.
 図4は、第1~第4スイッチング素子Q1~Q4、第1および第2クランプ素子CD1、CD2、第1~第6配線プレートPL1~PL6の各配置を示す平面図である。尚、図4は、支持板としての受熱板350の上方から見た平面図である。図4の太線で示すP、C、N、N1、N2、Uは、端子の電気的接続関係を理解し易いように示すものであり、実際の配線を示すものではない。 FIG. 4 is a plan view showing the arrangement of the first to fourth switching elements Q1 to Q4, the first and second clamp elements CD1 and CD2, and the first to sixth wiring plates PL1 to PL6. FIG. 4 is a plan view seen from above the heat receiving plate 350 as a support plate. P, C, N, N1, N2, and U shown by bold lines in FIG. 4 are shown for easy understanding of the electrical connection relationship of the terminals, and do not show actual wiring.
 第1から第4スイッチング素子Q1~Q4、並びに、第1および第2クランプ素子CD1、CD2は、受熱板350上に配置されており、受熱板350に固定されている。 The first to fourth switching elements Q1 to Q4 and the first and second clamp elements CD1 and CD2 are disposed on the heat receiving plate 350 and fixed to the heat receiving plate 350.
 受熱板350の上方から見たときに、第1および第2スイッチング素子Q1、Q2は、電気車の進行方向Xに互いに隣接している。第3および第4スイッチング素子Q3、Q4も、進行方向Xに互いに隣接している。さらに、第3および第4スイッチング素子Q3、Q4は、それぞれ、進行方向Xに対して略垂直方向Yに、第2スイッチング素子Q2および第1スイッチング素子Q1に隣接している。即ち、第1~第4スイッチング素子Q1~Q4は、受熱板350上において、U字を描くように、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3、第4スイッチング素子Q4の順番に配列されている。尚、電気車の進行方向Xは、線路に沿った2方向であり、電気車の走行方向によって電気車の前方を示す場合もあり、電気車の後方を示す場合もある。 When viewed from above the heat receiving plate 350, the first and second switching elements Q1, Q2 are adjacent to each other in the traveling direction X of the electric vehicle. The third and fourth switching elements Q3 and Q4 are also adjacent to each other in the traveling direction X. Further, the third and fourth switching elements Q3 and Q4 are adjacent to the second switching element Q2 and the first switching element Q1, respectively, in the direction Y substantially perpendicular to the traveling direction X. That is, the first to fourth switching elements Q1 to Q4 are drawn in a U shape on the heat receiving plate 350, so that the first switching element Q1, the second switching element Q2, the third switching element Q3, and the fourth switching element Q4 are drawn. Are arranged in the order. The traveling direction X of the electric vehicle is two directions along the track, and may indicate the front of the electric vehicle or the rear of the electric vehicle depending on the traveling direction of the electric vehicle.
 第1スイッチング素子Q1は、その上面にコレクタ端子C1およびエミッタ端子E1を有する。コレクタ端子C1およびエミッタ端子E1は、それぞれY方向に3つずつ並列に設けられている。3つのコレクタ端子C1は、正極配線Pとして機能する第1配線プレートPL1に共通に電気的に接続されている。3つのエミッタ端子E1は、第1ノードN1として機能する第2配線プレートPL2に共通に電気的に接続されている。 The first switching element Q1 has a collector terminal C1 and an emitter terminal E1 on its upper surface. Three collector terminals C1 and three emitter terminals E1 are provided in parallel in the Y direction. The three collector terminals C1 are electrically connected in common to the first wiring plate PL1 that functions as the positive wiring P. The three emitter terminals E1 are electrically connected in common to the second wiring plate PL2 that functions as the first node N1.
 第2スイッチング素子Q2は、その上面にコレクタ端子C2およびエミッタ端子E2を有する。コレクタ端子C2およびエミッタ端子E2も、それぞれY方向に3つずつ並列に設けられている。3つのコレクタ端子C2は、エミッタ端子E1と同様に、第2配線プレートPL2に共通に電気的に接続されている。3つのエミッタ端子E2は、U相配線として機能する第3配線プレートPL3に共通に電気的に接続されている。 The second switching element Q2 has a collector terminal C2 and an emitter terminal E2 on its upper surface. Three collector terminals C2 and three emitter terminals E2 are also provided in parallel in the Y direction. The three collector terminals C2 are electrically connected in common to the second wiring plate PL2, similarly to the emitter terminal E1. The three emitter terminals E2 are electrically connected in common to a third wiring plate PL3 that functions as a U-phase wiring.
 第3スイッチング素子Q3は、その上面にコレクタ端子C3およびエミッタ端子E3を有する。コレクタ端子C3およびエミッタ端子E3も、それぞれY方向に3つずつ並列に設けられている。3つのコレクタ端子C3は、エミッタ端子E2と同様に、第3配線プレートPL3に共通に電気的に接続されている。3つのエミッタ端子E3は、第2ノードN2として機能する第5配線プレートPL5に共通に電気的に接続されている。 The third switching element Q3 has a collector terminal C3 and an emitter terminal E3 on its upper surface. Three collector terminals C3 and three emitter terminals E3 are also provided in parallel in the Y direction. The three collector terminals C3 are electrically connected in common to the third wiring plate PL3, similarly to the emitter terminal E2. The three emitter terminals E3 are electrically connected in common to the fifth wiring plate PL5 functioning as the second node N2.
 第4スイッチング素子Q4は、その上面にコレクタ端子C4およびエミッタ端子E4を有する。コレクタ端子C4およびエミッタ端子E4も、それぞれY方向に3つずつ並列に設けられている。3つのコレクタ端子C4は、エミッタ端子E3と同様に、第5配線プレートPL5に共通に電気的に接続されている。3つのエミッタ端子E4は、負極配線Nとして機能する第6配線プレートPL6に共通に電気的に接続されている。 The fourth switching element Q4 has a collector terminal C4 and an emitter terminal E4 on its upper surface. Three collector terminals C4 and three emitter terminals E4 are also provided in parallel in the Y direction. The three collector terminals C4 are electrically connected in common to the fifth wiring plate PL5, similarly to the emitter terminal E3. The three emitter terminals E4 are electrically connected in common to the sixth wiring plate PL6 functioning as the negative electrode wiring N.
 第1クランプ素子CD1は、その上面にカソード端子K1およびアノード端子A1を有する。カソード端子K1およびアノード端子A1は、それぞれX方向に2つずつ並列に設けられている。2つのカソード端子K1は、エミッタ端子E1およびコレクタ端子C2と同様に、第2配線プレートPL2に共通に電気的に接続されている。2つのアノード端子A1は、中性点配線Cとして機能する第4配線プレートPL4に共通に電気的に接続されている。 The first clamp element CD1 has a cathode terminal K1 and an anode terminal A1 on its upper surface. Two cathode terminals K1 and two anode terminals A1 are provided in parallel in the X direction. The two cathode terminals K1 are electrically connected in common to the second wiring plate PL2, similarly to the emitter terminal E1 and the collector terminal C2. The two anode terminals A1 are electrically connected in common to the fourth wiring plate PL4 functioning as the neutral point wiring C.
 第2クランプ素子CD2は、その上面にカソード端子K2およびアノード端子A2を有する。カソード端子K2およびアノード端子A2は、それぞれX方向に2つずつ並列に設けられている。2つのカソード端子K2は、アノード端子A1と同様に、中性点配線Cとして機能する第4配線プレートPL4に共通に電気的に接続されている。2つのアノード端子A2は、エミッタ端子E3およびコレクタ端子C4と同様に、第5配線プレートPL5に共通に電気的に接続されている。 The second clamp element CD2 has a cathode terminal K2 and an anode terminal A2 on its upper surface. Two cathode terminals K2 and two anode terminals A2 are provided in parallel in the X direction. The two cathode terminals K2 are electrically connected in common to the fourth wiring plate PL4 functioning as the neutral point wiring C, similarly to the anode terminal A1. The two anode terminals A2 are electrically connected in common to the fifth wiring plate PL5, similarly to the emitter terminal E3 and the collector terminal C4.
 第1および第2クランプ素子CD1、CD2は、第1から第4スイッチング素子の方向Yの両側に隣接するように配置される。例えば、第1クランプ素子CD1は、第1スイッチング素子Q1および第2スイッチング素子Q2のY方向の側面に隣接するように配置されている。第1クランプ素子CD1の一方の半分は、第1スイッチング素子Q1に隣接し、第1クランプ素子CD1の他の半分は、第2スイッチング素子Q2に隣接する。このように、第1クランプ素子CD1は、その中心線が第1スイッチング素子Q1と第2スイッチング素子Q2との境界部にほぼ一致するように配置される。これにより、第1クランプCD1の端子A1、K1は、端子A1、K1に電気的に接続される第1および第2スイッチング素子Q1、Q2のそれぞれの端子からほぼ等しい距離になる。例えば、第1クランプCD1のカソード端子K1は、カソード端子K1に電気的に接続される第1スイッチング素子Q1のエミッタ端子E1および第2スイッチング素子Q2のコレクタ端子C2からほぼ等しい距離に配置される。より好ましくは、図4に示すように、カソード端子K1は、それに接続されるエミッタ端子E1および/またはコレクタ端子C2にY方向に隣接する。これにより、第2配線プレートPL2が短く(小さく)なり第2配線プレートPL2のインダクタンスが低下する。 The first and second clamp elements CD1 and CD2 are arranged adjacent to both sides in the direction Y of the first to fourth switching elements. For example, the first clamp element CD1 is disposed so as to be adjacent to the side surfaces in the Y direction of the first switching element Q1 and the second switching element Q2. One half of the first clamp element CD1 is adjacent to the first switching element Q1, and the other half of the first clamp element CD1 is adjacent to the second switching element Q2. As described above, the first clamp element CD1 is arranged so that the center line thereof substantially coincides with the boundary portion between the first switching element Q1 and the second switching element Q2. Thereby, the terminals A1 and K1 of the first clamp CD1 are substantially equal distances from the respective terminals of the first and second switching elements Q1 and Q2 electrically connected to the terminals A1 and K1. For example, the cathode terminal K1 of the first clamp CD1 is disposed at an approximately equal distance from the emitter terminal E1 of the first switching element Q1 and the collector terminal C2 of the second switching element Q2 that are electrically connected to the cathode terminal K1. More preferably, as shown in FIG. 4, the cathode terminal K1 is adjacent to the emitter terminal E1 and / or the collector terminal C2 connected thereto in the Y direction. As a result, the second wiring plate PL2 becomes shorter (smaller), and the inductance of the second wiring plate PL2 decreases.
 第2クランプ素子CD2は、第3スイッチング素子Q3および第4スイッチング素子Q4のY方向の側面に隣接するように配置されている。第2クランプ素子CD2の一方の半分は、第3スイッチング素子Q3に隣接し、第2クランプ素子CD2の他の半分は、第4スイッチング素子Q4に隣接する。このように、第2クランプ素子CD2は、その中心線が第3スイッチング素子Q3と第4スイッチング素子Q4との境界部にほぼ一致するように配置される。これにより、第2クランプCD2の端子A2、K2が、端子A2、K2に電気的に接続される第3および第4スイッチング素子Q3、Q4のそれぞれの端子からほぼ等しい距離になる。例えば、第2クランプCD2のアノード端子A2は、アノード端子A2に電気的に接続される第3スイッチング素子Q3のエミッタ端子E3および第4スイッチング素子Q4のコレクタ端子C4からほぼ等しい距離に配置される。より好ましくは、図4に示すように、アノード端子A2は、それに接続されるエミッタ端子E3および/またはコレクタ端子C4にY方向に隣接する。これにより、第5配線プレートPL5が短く(小さく)なり、第5配線プレートPL5のインダクタンスが低下する。 The second clamp element CD2 is disposed so as to be adjacent to the side surface in the Y direction of the third switching element Q3 and the fourth switching element Q4. One half of the second clamp element CD2 is adjacent to the third switching element Q3, and the other half of the second clamp element CD2 is adjacent to the fourth switching element Q4. Thus, the second clamp element CD2 is arranged such that the center line thereof substantially coincides with the boundary portion between the third switching element Q3 and the fourth switching element Q4. As a result, the terminals A2 and K2 of the second clamp CD2 are at substantially equal distances from the respective terminals of the third and fourth switching elements Q3 and Q4 that are electrically connected to the terminals A2 and K2. For example, the anode terminal A2 of the second clamp CD2 is disposed at an approximately equal distance from the emitter terminal E3 of the third switching element Q3 and the collector terminal C4 of the fourth switching element Q4 that are electrically connected to the anode terminal A2. More preferably, as shown in FIG. 4, the anode terminal A2 is adjacent to the emitter terminal E3 and / or the collector terminal C4 connected thereto in the Y direction. As a result, the fifth wiring plate PL5 becomes shorter (smaller), and the inductance of the fifth wiring plate PL5 decreases.
 次に、第1~第6配線プレートPL1~PL6の構成について説明する。尚、第1~第6配線プレートPL1~PL6は、平板状の低抵抗金属等からなる導電体である。 Next, the configuration of the first to sixth wiring plates PL1 to PL6 will be described. The first to sixth wiring plates PL1 to PL6 are conductors made of a flat low resistance metal or the like.
 図4を参照して上述したように、第1配線プレートPL1は、第1スイッチング素子Q1のコレクタ端子C1上に配置され、コレクタ端子C1に電気的に接続されている。これにより、第1配線プレートPL1は、正極配線Pとして機能する。 As described above with reference to FIG. 4, the first wiring plate PL1 is disposed on the collector terminal C1 of the first switching element Q1, and is electrically connected to the collector terminal C1. Thereby, the first wiring plate PL1 functions as the positive electrode wiring P.
 第2配線プレートPL2は、第1スイッチング素子Q1のエミッタ端子E1、第2スイッチング素子Q2のコレクタ端子C2および第1クランプ素子CD1のカソード端子K1上に配置され、エミッタ端子E1、コレクタ端子C2およびカソード端子K1に電気的に接続されている。これにより、第2配線プレートPL2は、第1ノードN1として機能する。 The second wiring plate PL2 is disposed on the emitter terminal E1 of the first switching element Q1, the collector terminal C2 of the second switching element Q2, and the cathode terminal K1 of the first clamp element CD1, and the emitter terminal E1, the collector terminal C2 and the cathode. It is electrically connected to the terminal K1. Thereby, the second wiring plate PL2 functions as the first node N1.
 第3配線プレートPL3は、第2スイッチング素子Q2のエミッタ端子E2、および、第3スイッチング素子Q3のコレクタ端子C3上に配置され、エミッタ端子E2およびコレクタ端子C3に電気的に接続されている。これにより、第3配線プレートPL3は、U相配線として機能する。 The third wiring plate PL3 is disposed on the emitter terminal E2 of the second switching element Q2 and the collector terminal C3 of the third switching element Q3, and is electrically connected to the emitter terminal E2 and the collector terminal C3. Thereby, the third wiring plate PL3 functions as a U-phase wiring.
 第4配線プレートPL4は、第1クランプ素子CD1のアノード端子A1および第2クランプ素子CD2のカソード端子K2上に配置され、アノード端子A1およびカソード端子K2に電気的に接続されている。これにより、第4配線プレートPL4は、中性点配線Cとして機能する。 The fourth wiring plate PL4 is disposed on the anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2, and is electrically connected to the anode terminal A1 and the cathode terminal K2. Thus, the fourth wiring plate PL4 functions as a neutral point wiring C.
 第5配線プレートPL5は、第3スイッチング素子Q3のエミッタ端子E3、第4スイッチング素子Q4のコレクタ端子C4および第2クランプ素子CD2のアノード端子A2上に配置され、エミッタ端子E3、コレクタ端子C4およびアノード端子A2に電気的に接続されている。これにより、第5配線プレートPL5は、第2ノードN2として機能する。 The fifth wiring plate PL5 is disposed on the emitter terminal E3 of the third switching element Q3, the collector terminal C4 of the fourth switching element Q4, and the anode terminal A2 of the second clamp element CD2, and the emitter terminal E3, collector terminal C4 and anode It is electrically connected to the terminal A2. Thereby, the fifth wiring plate PL5 functions as the second node N2.
 第6配線プレートPL6は、第4スイッチング素子Q4のエミッタ端子E4上に配置され、エミッタ端子E4に電気的に接続されている。これにより、第6配線プレートPL6は、負極配線Nとして機能する。 The sixth wiring plate PL6 is disposed on the emitter terminal E4 of the fourth switching element Q4 and is electrically connected to the emitter terminal E4. Thereby, the sixth wiring plate PL6 functions as the negative electrode wiring N.
 図5は、図4のスイッチング部41を第1クランプ素子CD1の側から見た側面図である。図5は、第1クランプ素子CD1の側から見た側面であるので、第1クランプ素子CD1、第1および第2スイッチング素子Q1、Q2が現れている。しかし、第3および第4スイッチング素子Q3、Q4は、図5において、それぞれ第2および第1スイッチング素子Q2、Q1に重複するため、図5では現れていない。また、第2クランプ素子CD2も、図5において、第3および第4スイッチング素子Q3、Q4に重複するため、図5では現れていない。尚、スイッチング部31、32、41~43は、それぞれ同様の構成を有する。従って、以下、スイッチング部41について説明し、他のスイッチング部31、32、42、43についての説明は省略する。 FIG. 5 is a side view of the switching unit 41 of FIG. 4 as viewed from the first clamp element CD1 side. Since FIG. 5 is a side view seen from the first clamp element CD1, the first clamp element CD1, the first and second switching elements Q1, Q2 appear. However, the third and fourth switching elements Q3 and Q4 do not appear in FIG. 5 because they overlap the second and first switching elements Q2 and Q1, respectively, in FIG. Also, the second clamp element CD2 does not appear in FIG. 5 because it overlaps with the third and fourth switching elements Q3 and Q4 in FIG. The switching units 31, 32, 41 to 43 have the same configuration. Therefore, the switching unit 41 will be described below, and the description of the other switching units 31, 32, 42, and 43 will be omitted.
 第1クランプ素子CD1、第1および第2スイッチング素子Q1、Q2が受熱板350上にボルト351によって固定されている。 The first clamp element CD1, the first and second switching elements Q1, Q2 are fixed on the heat receiving plate 350 by bolts 351.
 第1スイッチング素子Q1上には、コレクタ端子C1が設けられている。コレクタ端子C1上には第1配線プレートPL1が電気的に接続されている。第1配線プレートPL1は、コレクタ端子C1に取り付けられる。第1配線プレートPL1は、電気車の進行方向Xに引き出されており、受熱板350の一方の端部において、受熱板350の表面に対して略垂直方向に折り曲げられ、上方へ立ち上がっている。尚、第1配線プレートPL1の引出し方向は、上述の通り、電気車の進行方向によって電気車の前方または後方のいずれにもなり得る。 A collector terminal C1 is provided on the first switching element Q1. A first wiring plate PL1 is electrically connected on the collector terminal C1. The first wiring plate PL1 is attached to the collector terminal C1. The first wiring plate PL1 is drawn out in the traveling direction X of the electric vehicle, is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at one end of the heat receiving plate 350, and rises upward. As described above, the drawing direction of the first wiring plate PL1 can be either forward or backward of the electric vehicle depending on the traveling direction of the electric vehicle.
 第6配線プレートPL6は、図5において、第1配線プレートPL1に重複しているため、図5では現れていない。しかし、第6配線プレートPL6は、エミッタ端子E4に取り付けられている。第6配線プレートPL6も、第1配線プレートPL1と同様に、電気車の進行方向Xに引き出されており、受熱板350の端部において、受熱板350の表面に対して略垂直方向に折り曲げられ、上方へ立ち上がっている。 The sixth wiring plate PL6 does not appear in FIG. 5 because it overlaps the first wiring plate PL1 in FIG. However, the sixth wiring plate PL6 is attached to the emitter terminal E4. Similarly to the first wiring plate PL1, the sixth wiring plate PL6 is also drawn out in the traveling direction X of the electric vehicle, and is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at the end of the heat receiving plate 350. Standing upwards.
 第2配線プレートPL2は、エミッタ端子E1、コレクタ端子C2およびカソード端子K1上に設けられており、それらを電気的に接続している。第2配線プレートPL2は、スイッチング部41の内部の配線であり、スイッチング部41の外部へは引き出されていない。 The second wiring plate PL2 is provided on the emitter terminal E1, the collector terminal C2, and the cathode terminal K1, and electrically connects them. The second wiring plate PL2 is a wiring inside the switching unit 41 and is not drawn out of the switching unit 41.
 第5配線プレートPL5は、図5において、第2配線プレートPL2に重複しているため、図5では現れていない。第5配線プレートPL5は、エミッタ端子E3、コレクタ端子C4およびアノード端子A2上に設けられており、それらを電気的に接続している。第5配線プレートPL5は、スイッチング部41の内部の配線であり、スイッチング部41の外部へは引き出されていない。 The fifth wiring plate PL5 does not appear in FIG. 5 because it overlaps the second wiring plate PL2 in FIG. The fifth wiring plate PL5 is provided on the emitter terminal E3, the collector terminal C4, and the anode terminal A2, and electrically connects them. The fifth wiring plate PL5 is a wiring inside the switching unit 41 and is not drawn out of the switching unit 41.
 第4配線プレートPL4は、受熱板350の表面を基準として、第1、第2、第5、および、第6配線プレートPL1、PL2、PL5、PL6に接触しないように、第1、第2、第5、および、第6配線プレートPL1、PL2、PL5、PL6の上方に設けられている。第4配線プレートPL4は、カラー(collar)360の内部に設けられたボルト(図示せず)等によって第1クランプ素子CD1のアノード端子A1および第2クランプ素子CD2のカソード端子K2に取り付けられている。これにより、第4配線プレートPL4は、アノード端子A1およびカソード端子K2に電気的に接続されている。 The fourth wiring plate PL4 has the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6 so as not to contact the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6 with reference to the surface of the heat receiving plate 350. It is provided above the fifth and sixth wiring plates PL1, PL2, PL5 and PL6. The fourth wiring plate PL4 is attached to the anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2 by means of bolts (not shown) provided in the collar 360. . Thereby, the fourth wiring plate PL4 is electrically connected to the anode terminal A1 and the cathode terminal K2.
 第4配線プレートPL4は、第1配線プレートPL1と同様に、電気車の進行方向Xに引き出されている。第4配線プレートPL4は、受熱板350の一方の端部において、受熱板350の表面に対して略垂直方向に折り曲げられ、上方へ立ち上がっている。第4配線プレートPL4は、受熱板350の端部において、第1配線プレートPL1と短絡しないように、第1配線プレートPL1に対して間隔を維持しつつ、第1配線プレートPL1と略平行に延伸している。 The fourth wiring plate PL4 is drawn out in the traveling direction X of the electric vehicle, similarly to the first wiring plate PL1. The fourth wiring plate PL4 is bent in a direction substantially perpendicular to the surface of the heat receiving plate 350 at one end portion of the heat receiving plate 350 and rises upward. The fourth wiring plate PL4 extends substantially parallel to the first wiring plate PL1 while maintaining a distance from the first wiring plate PL1 at the end of the heat receiving plate 350 so as not to be short-circuited with the first wiring plate PL1. is doing.
 第3配線プレートPL3は、受熱板350の表面を基準として、第1、第2、第4、第5、および、第6配線プレートPL1、PL2、PL4、PL5、PL6に接触しないように、第1、第2、第4、第5、および、第6配線プレートPL1、PL2、PL4、PL5、PL6の上方に設けられている。第3配線プレートPL3は、カラー361の内部に設けられたボルト(図示せず)等によって第2スイッチング素子のエミッタ端子E2および第3スイッチング素子Q3のコレクタ端子C3に取り付けられている。これにより、第3配線プレートPL3は、エミッタ端子E2およびコレクタ端子C3に電気的に接続されている。 The third wiring plate PL3 is arranged so as not to contact the first, second, fourth, fifth, and sixth wiring plates PL1, PL2, PL4, PL5, and PL6 with reference to the surface of the heat receiving plate 350. The first, second, fourth, fifth, and sixth wiring plates PL1, PL2, PL4, PL5, and PL6 are provided above. The third wiring plate PL3 is attached to the emitter terminal E2 of the second switching element and the collector terminal C3 of the third switching element Q3 by bolts (not shown) or the like provided inside the collar 361. Thereby, the third wiring plate PL3 is electrically connected to the emitter terminal E2 and the collector terminal C3.
 第3配線プレートPL3は、電気車の進行方向Xに引き出されているが、第1、第4および第6配線プレートPL1、PL4、PL6の引出方向とは逆方向(以下、後進方向ともいう)に引き出されている。第3配線プレートPL3は、受熱板350の他方の端部において、受熱板350の表面に対して略垂直方向に折り曲げられ、上方へ立ち上がっている。 The third wiring plate PL3 is drawn out in the traveling direction X of the electric vehicle, but is opposite to the drawing direction of the first, fourth and sixth wiring plates PL1, PL4, PL6 (hereinafter also referred to as the reverse direction). Has been drawn to. Third wiring plate PL3 is bent in a direction substantially perpendicular to the surface of heat receiving plate 350 at the other end of heat receiving plate 350, and rises upward.
 このように、本実施形態では、第1、第3、第4および第6配線プレートPL1、PL3、PL4、PL6は、電気車の進行方向(または後進方向)へ引き出されている。これにより、正極配線P(第1配線プレートPL1)、U相配線(第3配線プレートPL3)、中性点配線C(第4配線プレートPL4)および負極配線N(第6配線プレートPL6)への接続が容易となる。また、第3配線プレートPL3は、第1、第4および第6配線プレートPL1、PL4、PL6の引出方向とは逆方向に引き出されている。従って、コンバータ30側から直流電力を入力する正極配線P、中性点配線Cおよび負極配線Nと、電動機11へ交流電力を出力するU相配線とを明確に区別することができる。これにより、スイッチング部41の取付けおよび配線が容易になる。 Thus, in the present embodiment, the first, third, fourth, and sixth wiring plates PL1, PL3, PL4, and PL6 are drawn out in the traveling direction (or reverse direction) of the electric vehicle. Thereby, the positive wiring P (first wiring plate PL1), the U-phase wiring (third wiring plate PL3), the neutral wiring C (fourth wiring plate PL4) and the negative wiring N (sixth wiring plate PL6). Connection becomes easy. The third wiring plate PL3 is drawn in the direction opposite to the drawing direction of the first, fourth, and sixth wiring plates PL1, PL4, and PL6. Therefore, it is possible to clearly distinguish the positive wiring P, the neutral wiring C and the negative wiring N that input DC power from the converter 30 side, and the U-phase wiring that outputs AC power to the motor 11. Thereby, attachment and wiring of the switching part 41 become easy.
 また、第4配線プレートPL4は、第1、第2、第5、第6配線プレートPL1、PL2、PL5、PL6の上方に配置され、第3配線プレートPL3は、第4配線プレートPL4の上方に配置される。これにより、第1~第6配線プレートPL1~PL6をそれぞれ互いに電気的に絶縁しつつ、第1~第4スイッチング素子Q1~Q4、第1および第2クランプ素子CD1、CD2の配置に対応した配線が可能となる。 The fourth wiring plate PL4 is disposed above the first, second, fifth, and sixth wiring plates PL1, PL2, PL5, and PL6, and the third wiring plate PL3 is disposed above the fourth wiring plate PL4. Be placed. Thus, the wiring corresponding to the arrangement of the first to fourth switching elements Q1 to Q4, the first and second clamp elements CD1 and CD2 while electrically insulating the first to sixth wiring plates PL1 to PL6 from each other. Is possible.
 ここで、本実施形態による電力変換装置では、図4に示すように、第1および第4スイッチング素子Q1、Q4は、コレクタ端子C1およびエミッタ端子E4がY方向に隣接するように、配置されている。従って、第1および第6配線プレートPL1、PL6は、ともに隣接した状態でX方向に引き出され得る。また、コレクタ端子C1およびエミッタ端子E4は、他の端子よりも受熱板350のX方向の一端部に近い位置に配置される。従って、第1および第6配線プレートPL1、PL6は、短く(小さく)なり、ともに低インダクタンスでコレクタ端子C1およびエミッタ端子E4に接続され得る。また、第1および第6配線プレートPL1、PL6は、X方向の一端部から容易に引き出され得る。 Here, in the power conversion device according to the present embodiment, as shown in FIG. 4, the first and fourth switching elements Q1, Q4 are arranged such that the collector terminal C1 and the emitter terminal E4 are adjacent to each other in the Y direction. Yes. Accordingly, the first and sixth wiring plates PL1 and PL6 can be drawn out in the X direction while being adjacent to each other. Further, the collector terminal C1 and the emitter terminal E4 are arranged at a position closer to one end portion in the X direction of the heat receiving plate 350 than the other terminals. Accordingly, the first and sixth wiring plates PL1 and PL6 are shortened (smaller), and both can be connected to the collector terminal C1 and the emitter terminal E4 with low inductance. Further, the first and sixth wiring plates PL1, PL6 can be easily pulled out from one end in the X direction.
 第2および第3スイッチング素子Q2、Q3は、エミッタ端子E2およびコレクタ端子C3がY方向に隣接するように、配置されている。従って、第3配線プレートPL3は、エミッタ端子E2およびコレクタ端子C3に容易に接続可能である。また、エミッタ端子E2およびコレクタ端子C3は、他の端子よりも受熱板350のX方向の他端部に近い位置に配置される。従って、第3配線プレートPL3は、短く(小さく)なり、低インダクタンスでエミッタ端子E2およびコレクタ端子C3に接続され得る。また、第3配線プレートPL3は、X方向の他端部に容易から引き出され得る。 The second and third switching elements Q2, Q3 are arranged so that the emitter terminal E2 and the collector terminal C3 are adjacent to each other in the Y direction. Therefore, the third wiring plate PL3 can be easily connected to the emitter terminal E2 and the collector terminal C3. Further, the emitter terminal E2 and the collector terminal C3 are arranged at a position closer to the other end portion in the X direction of the heat receiving plate 350 than the other terminals. Therefore, the third wiring plate PL3 becomes shorter (smaller) and can be connected to the emitter terminal E2 and the collector terminal C3 with low inductance. Further, the third wiring plate PL3 can be easily pulled out to the other end portion in the X direction.
 第1および第2スイッチング素子Q1、Q2は、エミッタ端子E1およびコレクタ端子C2がX方向に隣接するように、配置されている。また、第1クランプ素子CD1は、カソード端子K1がエミッタ端子E1およびコレクタ端子C2にY方向に隣接するように配置されている。従って、第2配線プレートPL2は、エミッタ端子E1、コレクタ端子C2およびカソード端子K1に容易に接続可能である。また、第2配線プレートPL2のサイズを小さくすることができるので、第2配線プレートPL2は、低インダクタンスでエミッタ端子E1、コレクタ端子C2およびカソード端子K1を低インダクタンスで接続することができる。 The first and second switching elements Q1, Q2 are arranged so that the emitter terminal E1 and the collector terminal C2 are adjacent to each other in the X direction. The first clamp element CD1 is arranged such that the cathode terminal K1 is adjacent to the emitter terminal E1 and the collector terminal C2 in the Y direction. Therefore, the second wiring plate PL2 can be easily connected to the emitter terminal E1, the collector terminal C2, and the cathode terminal K1. Further, since the size of the second wiring plate PL2 can be reduced, the second wiring plate PL2 can connect the emitter terminal E1, the collector terminal C2, and the cathode terminal K1 with low inductance with low inductance.
 第3および第4スイッチング素子Q3、Q4は、エミッタ端子E3およびコレクタ端子C4がX方向に隣接するように、配置されている。また、第2クランプ素子CD2は、アノード端子A2がエミッタ端子E3およびコレクタ端子C4にY方向に隣接するように配置されている。従って、第5配線プレートPL5は、エミッタ端子E3、コレクタ端子C4およびアノード端子A2に容易に接続可能である。また、第5配線プレートPL5のサイズを小さくすることができるので、第5配線プレートPL5は、低インダクタンスでエミッタ端子E3、コレクタ端子C4およびアノード端子A2を低インダクタンスで接続することができる。 The third and fourth switching elements Q3 and Q4 are arranged so that the emitter terminal E3 and the collector terminal C4 are adjacent to each other in the X direction. The second clamp element CD2 is arranged such that the anode terminal A2 is adjacent to the emitter terminal E3 and the collector terminal C4 in the Y direction. Therefore, the fifth wiring plate PL5 can be easily connected to the emitter terminal E3, the collector terminal C4, and the anode terminal A2. Further, since the size of the fifth wiring plate PL5 can be reduced, the fifth wiring plate PL5 can connect the emitter terminal E3, the collector terminal C4, and the anode terminal A2 with low inductance with low inductance.
 第1クランプ素子CD1のアノード端子A1と第2クランプ素子CD2のカソード端子K2とは、離れており、サイズの比較的大きな第4配線プレートPL4によって、受熱板350のX方向の一端から引き出されている。 The anode terminal A1 of the first clamp element CD1 and the cathode terminal K2 of the second clamp element CD2 are separated from each other, and are drawn from one end in the X direction of the heat receiving plate 350 by the relatively large fourth wiring plate PL4. Yes.
 このように、本実施形態によれば、第1~第6配線プレートPL1~PL6は、スイッチング素子Q1~Q4の端子およびクランプ素子CD1、CD2の端子に低インダクタンスで接続され得る。これにより、スイッチング動作において、過渡的に生じるサージ(オーバーシュート)電圧を抑制することができる。 Thus, according to the present embodiment, the first to sixth wiring plates PL1 to PL6 can be connected to the terminals of the switching elements Q1 to Q4 and the terminals of the clamp elements CD1 and CD2 with low inductance. Thereby, a surge (overshoot) voltage generated transiently in the switching operation can be suppressed.
 例えば、SiC等を材料として形成されたスイッチング素子は、Siを材料として形成されたスイッチング素子に比べ高速にスイッチング可能である。この場合、スイッチング素子がオン状態になったときに電圧の立ち上がりが速い(dV/dtが大きい)ため、サージ(オーバーシュート)電圧は高くなる。従って、SiC等を材料として形成されたスイッチング素子に、本実施形態によるスイッチング素子の配置および配線プレートの構成を適用することによって、本実施形態の効果はより顕著に表れると考えられる。 For example, a switching element formed of SiC or the like can be switched at a higher speed than a switching element formed of Si or the like. In this case, when the switching element is turned on, the voltage rises quickly (dV / dt is large), so that the surge (overshoot) voltage becomes high. Therefore, it is considered that the effect of the present embodiment appears more prominently by applying the arrangement of the switching elements and the configuration of the wiring plate according to the present embodiment to the switching elements formed using SiC or the like as a material.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (8)

  1.  インバータまたはコンバータを備え、電気車の負荷に供給する電力を生成する電力変換装置であって、
     前記インバータまたは前記コンバータは、
     直流電力の正極配線と交流電力の第1相配線との間に直列に接続された第1スイッチング素子および第2スイッチング素子と、
     前記交流電力の前記第1相配線と前記直流電力の負極配線との間に直列に接続された第3スイッチング素子および第4スイッチング素子と、
     前記第1スイッチング素子と前記第2スイッチング素子との間の第1ノードと前記直流電力の中性点配線との間に接続された第1クランプ素子と、
     前記第3スイッチング素子と前記第4スイッチング素子との間の第2ノードと前記中性点配線との間に接続された第2クランプ素子とを備え、
     前記第1から第4スイッチング素子、前記第1クランプ素子および前記第2クランプ素子は、支持板上に配置され、
     前記支持板の上方から見たときに、前記第1および第2スイッチング素子は、前記電気車の進行方向に互いに隣接し、前記第3および第4スイッチング素子は、前記進行方向に互いに隣接しかつそれぞれ前記進行方向に対して略垂直方向に前記第2および第1スイッチング素子に隣接し、前記第1および前記第2クランプ素子は、前記略垂直方向に前記第1から第4スイッチング素子のいずれかに隣接する、電力変換装置。
    A power converter that includes an inverter or a converter and generates electric power to be supplied to a load of an electric vehicle,
    The inverter or the converter is
    A first switching element and a second switching element connected in series between a positive electrode wiring of DC power and a first phase wiring of AC power;
    A third switching element and a fourth switching element connected in series between the first phase wiring of the AC power and the negative wiring of the DC power;
    A first clamp element connected between a first node between the first switching element and the second switching element and a neutral point wiring of the DC power;
    A second clamp element connected between a second node between the third switching element and the fourth switching element and the neutral point wiring;
    The first to fourth switching elements, the first clamp element and the second clamp element are disposed on a support plate,
    When viewed from above the support plate, the first and second switching elements are adjacent to each other in the traveling direction of the electric vehicle, the third and fourth switching elements are adjacent to each other in the traveling direction, and The first and second clamp elements are adjacent to the second and first switching elements in a direction substantially perpendicular to the traveling direction, respectively, and the first and second clamp elements are any of the first to fourth switching elements in the substantially vertical direction. Power conversion device adjacent to
  2.  前記第1スイッチング素子の一端子に電気的に接続され、前記正極配線として機能する第1配線プレートと、
     前記第1スイッチング素子の他端子、前記第2スイッチング素子の一端子および前記第1クランプ素子の一端子に電気的に接続され、前記第1ノードとして機能する第2配線プレートと、
     前記第2スイッチング素子の他端子、および、前記第3スイッチング素子の一端子に電気的に接続され、前記第1相配線として機能する第3配線プレートと、
     前記第1クランプ素子の他端子および前記第2クランプ素子の一端子に電気的に接続され、前記中性点配線として機能する第4配線プレートと、
     前記第3スイッチング素子の他端子、前記第4スイッチング素子の一端子および前記第2クランプ素子の他端子に電気的に接続され、前記第2ノードとして機能する第5配線プレートと、
     前記第4スイッチング素子の他端子に電気的に接続され、前記負極配線として機能する第6配線プレートとを備え、
     前記第1から第6配線プレートは、互いに電気的に絶縁されている、請求項1に記載の電力変換装置。
    A first wiring plate electrically connected to one terminal of the first switching element and functioning as the positive wiring;
    A second wiring plate electrically connected to the other terminal of the first switching element, one terminal of the second switching element and one terminal of the first clamp element, and functioning as the first node;
    A third wiring plate electrically connected to the other terminal of the second switching element and one terminal of the third switching element and functioning as the first phase wiring;
    A fourth wiring plate electrically connected to the other terminal of the first clamp element and one terminal of the second clamp element and functioning as the neutral point wiring;
    A fifth wiring plate electrically connected to the other terminal of the third switching element, one terminal of the fourth switching element and the other terminal of the second clamp element, and functioning as the second node;
    A sixth wiring plate that is electrically connected to the other terminal of the fourth switching element and functions as the negative wiring;
    The power converter according to claim 1, wherein the first to sixth wiring plates are electrically insulated from each other.
  3.  前記第1、第3、第4および第6配線プレートは、前記進行方向または該進行方向とは逆の後進方向へ引き出されている、請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein the first, third, fourth, and sixth wiring plates are drawn out in the traveling direction or in a reverse direction opposite to the traveling direction.
  4.  前記第1、第4および第6配線プレートは、同一方向へ引き出され、
     前記第3配線プレートは、前記第1、第4および第6配線プレートの引出方向とは逆方向に引き出されている、請求項2または請求項3に記載の電力変換装置。
    The first, fourth and sixth wiring plates are pulled out in the same direction;
    4. The power converter according to claim 2, wherein the third wiring plate is drawn in a direction opposite to a drawing direction of the first, fourth, and sixth wiring plates. 5.
  5.  前記第3および第4配線プレートは、前記第1、第2、第5および第6配線プレートの上方に設けられている、請求項2から請求項4のいずれか一項に記載の電力変換装置。 5. The power conversion device according to claim 2, wherein the third and fourth wiring plates are provided above the first, second, fifth, and sixth wiring plates. 6. .
  6.  前記第3配線プレートは、前記第4配線プレートの上方に設けられている、請求項2から請求項5のいずれか一項に記載の電力変換装置。 The power converter according to any one of claims 2 to 5, wherein the third wiring plate is provided above the fourth wiring plate.
  7.  前記第1クランプ素子は、前記第1および第2スイッチング素子の側面に前記略垂直方向に隣接し、
     前記第2クランプ素子は、前記第3および第4スイッチング素子の側面に前記略垂直方向に隣接する、請求項1から請求項6のいずれか一項に記載の電力変換装置。
    The first clamp element is adjacent to the side surfaces of the first and second switching elements in the substantially vertical direction,
    The power converter according to any one of claims 1 to 6, wherein the second clamp element is adjacent to a side surface of the third and fourth switching elements in the substantially vertical direction.
  8.  前記第1クランプ素子の前記一端子は、前記第1スイッチング素子の前記他端子または前記第2スイッチング素子の前記一端子に前記略垂直方向に隣接し、
     前記第2クランプ素子の前記他端子は、前記第3スイッチング素子の前記他端子または前記第4スイッチング素子の前記一端子に前記略垂直方向に隣接する、請求項1から請求項7のいずれか一項に記載の電力変換装置。
    The one terminal of the first clamp element is adjacent to the other terminal of the first switching element or the one terminal of the second switching element in the substantially vertical direction,
    The other terminal of the second clamp element is adjacent to the other terminal of the third switching element or the one terminal of the fourth switching element in the substantially vertical direction. The power converter according to item.
PCT/JP2015/060657 2015-04-03 2015-04-03 Electric power conversion device WO2016157533A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/060657 WO2016157533A1 (en) 2015-04-03 2015-04-03 Electric power conversion device
TW104113036A TWI558075B (en) 2015-04-03 2015-04-23 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060657 WO2016157533A1 (en) 2015-04-03 2015-04-03 Electric power conversion device

Publications (1)

Publication Number Publication Date
WO2016157533A1 true WO2016157533A1 (en) 2016-10-06

Family

ID=57005401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060657 WO2016157533A1 (en) 2015-04-03 2015-04-03 Electric power conversion device

Country Status (2)

Country Link
TW (1) TWI558075B (en)
WO (1) WO2016157533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130409A1 (en) * 2017-01-12 2018-07-19 Danfoss Silicon Power Gmbh Three-level power module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060140A (en) * 1998-08-04 2000-02-25 Toshiba Corp Power converter
WO2012032642A1 (en) * 2010-09-09 2012-03-15 三菱電機株式会社 Power semiconductor module, power conversion apparatus, and railroad vehicle
JP2013090427A (en) * 2011-10-18 2013-05-13 Hitachi Ltd Power conversion apparatus
JP2013143812A (en) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd Power conversion device
JP2014116995A (en) * 2012-12-06 2014-06-26 Hitachi Ltd Three-level power conversion device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541419B2 (en) * 1973-07-06 1979-01-24
JP3469475B2 (en) * 1998-09-10 2003-11-25 株式会社東芝 Semiconductor cooling equipment for railway vehicles
JP4905636B2 (en) * 2005-10-03 2012-03-28 株式会社東芝 Power converter for vehicle
JP5305836B2 (en) * 2008-10-30 2013-10-02 株式会社東芝 Railway vehicle power converter
CN103931094A (en) * 2011-12-13 2014-07-16 富士电机株式会社 Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060140A (en) * 1998-08-04 2000-02-25 Toshiba Corp Power converter
WO2012032642A1 (en) * 2010-09-09 2012-03-15 三菱電機株式会社 Power semiconductor module, power conversion apparatus, and railroad vehicle
JP2013090427A (en) * 2011-10-18 2013-05-13 Hitachi Ltd Power conversion apparatus
JP2013143812A (en) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd Power conversion device
JP2014116995A (en) * 2012-12-06 2014-06-26 Hitachi Ltd Three-level power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130409A1 (en) * 2017-01-12 2018-07-19 Danfoss Silicon Power Gmbh Three-level power module

Also Published As

Publication number Publication date
TW201637330A (en) 2016-10-16
TWI558075B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
CN102403914B (en) Module switch, electricity inverter and the method for driving electricity inverter
JP6172061B2 (en) Power supply device for power conversion circuit
US10411589B2 (en) Power conversion apparatus and power semiconductor module
US9270193B2 (en) Power semiconductor module, power converting apparatus, and railway car
US11452227B2 (en) Power phase module of a converter, converter, and vehicle
JP5851267B2 (en) Inverter and vehicle control device
US20170279366A1 (en) Power module
US20160016475A1 (en) Power converter for vehicle
JP4722229B1 (en) Power semiconductor module, power conversion device and railway vehicle
EP2842791A2 (en) Power converter
JP2013131774A (en) Power semiconductor module, power conversion device, and rolling stock
TWI590570B (en) Power conversion device and vehicle control device
US11128235B2 (en) Power conversion device
WO2016157533A1 (en) Electric power conversion device
US9950898B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
US20190190390A1 (en) Power electronic module for a charging station and corresponding charging station and electricity charging station
JP5841678B2 (en) Inverter and power system with fuse protection
CA3108004C (en) Modular power converter
JP2017112690A (en) Electric power conversion system
US10819087B2 (en) Systems and methods for a vehicle inverter connection bus
US11456673B2 (en) Power conversion device of a neutral point clamp type
WO2016157532A1 (en) Electric power conversion device
JP6906431B2 (en) Flow reducer
JPWO2019064647A1 (en) Railway vehicle drive system
CN110383654B (en) Main conversion circuit, power conversion device, and moving object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP