JP3456254B2 - Epitaxial wafer for Hall element and method of manufacturing the same - Google Patents

Epitaxial wafer for Hall element and method of manufacturing the same

Info

Publication number
JP3456254B2
JP3456254B2 JP11888194A JP11888194A JP3456254B2 JP 3456254 B2 JP3456254 B2 JP 3456254B2 JP 11888194 A JP11888194 A JP 11888194A JP 11888194 A JP11888194 A JP 11888194A JP 3456254 B2 JP3456254 B2 JP 3456254B2
Authority
JP
Japan
Prior art keywords
inp
substrate
layer
crystal
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11888194A
Other languages
Japanese (ja)
Other versions
JPH07326806A (en
Inventor
晃嗣 岩崎
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11888194A priority Critical patent/JP3456254B2/en
Publication of JPH07326806A publication Critical patent/JPH07326806A/en
Application granted granted Critical
Publication of JP3456254B2 publication Critical patent/JP3456254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】InP結晶を基板としたヘテロ接
合ホール素子、特にGaInAsとのヘテロ接合からな
るGaInAsヘテロ接合ホール素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heterojunction Hall element using an InP crystal as a substrate, and particularly to a GaInAs heterojunction Hall element composed of a heterojunction with GaInAs.

【0002】[0002]

【従来の技術】磁電変換素子の一つとしてホール(Ha
ll)素子が知られている。このホール素子は一種の磁
気センサーであり、回転検出センサーや電流センサー等
として既に利用されている。ホール素子用の半導体材料
としてはSiやGeなどの元素半導体の他、InSb、
InAsやGaAs等の III−V族化合物半導体も使用
される。最近では、自動車エンジンの精密な回転検出
等、高温環境下に於ける精密センシング技術の必要性が
高まり、高いホール電圧を出力する能力を有し、且つ温
度による素子特性の変化を低く抑制した新たな高性能ホ
ール素子が要望されている。
2. Description of the Related Art Hall (Ha) is one of the magnetoelectric conversion elements.
11) elements are known. This Hall element is a kind of magnetic sensor and is already used as a rotation detection sensor, a current sensor, or the like. In addition to elemental semiconductors such as Si and Ge, semiconductor materials for Hall elements include InSb,
III-V group compound semiconductors such as InAs and GaAs are also used. Recently, the need for precision sensing technology in high temperature environments, such as precise rotation detection of automobile engines, has increased, and it has the ability to output high Hall voltage and has suppressed the change in element characteristics due to temperature to a low level. There is a demand for a high-performance Hall element.

【0003】ホール電圧は半導体材料のホール(Hal
l)係数に依存し、ホール係数が大きい程ホール電圧の
出力能力は高い。また、このホール係数は半導体材料の
電子移動度に比例して増加する。従って、高いホール出
力電圧を得るには、即ち高感度なホール素子を得るに
は、高い電子移動度を発現する半導体材料を使用する必
要がある。このため、最近ではGaX In1-X As(x
は組成比を表す。)三元混晶を感磁部層とした、InP
とのヘテロ接合材料からなる高感度なホール素子が実現
されている(奥山 忍他、1992年秋季第53回応用
物理学会学術講演会予稿集No.3、1078頁、講演
番号16a−SZC−16)。この新たなGaInAs
ヘテロ接合ホール素子は特性の温度変化も比較的小さ
く、且つまた室温電子移動度が極めて高いために優れた
感度特性を有している。
The Hall voltage is the hole (Hal) of a semiconductor material.
l) Depending on the coefficient, the larger the Hall coefficient, the higher the Hall voltage output capability. Moreover, this Hall coefficient increases in proportion to the electron mobility of the semiconductor material. Therefore, in order to obtain a high Hall output voltage, that is, to obtain a highly sensitive Hall element, it is necessary to use a semiconductor material exhibiting a high electron mobility. Therefore, recently, Ga X In 1-X As (x
Represents the composition ratio. ) InP using a ternary mixed crystal as a magnetic sensing layer
A high-sensitivity Hall element made of a hetero-junction material has been realized (Okuyama Shinobu et al., Autumn 1992 53rd Annual Meeting of the Society of Applied Physics, Proceedings No. 3, page 1078, lecture number 16a-SZC-16 ). This new GaInAs
The heterojunction Hall element has an excellent sensitivity characteristic because the characteristic temperature change is relatively small and the room temperature electron mobility is extremely high.

【0004】このGaInAsヘテロ接合ホール素子
は、半絶縁性のInP単結晶を基板として使用している
(奥山 忍他、1992年秋季第53回応用物理学会学
術講演会予稿集No.3、1078頁、講演番号16a
−SZC−16)。従来から基板として利用されている
InP単結晶基板の厚さは、250〜450μmとする
のが一般的である。これは基板としてハンドリングに支
障を来さず、エピタキシャル成長等の後続の加工工程に
便ならしめると共に、熱的環境下での基板の『反り』を
抑制するためでもある。InP単結晶基板は、通常チョ
クラルスキー法により得られた単結晶を切断して表面を
研磨して使用する。InP結晶中には炭素、硫黄、鉄、
マンガン等の不純物が含まれ、インゴット中に一定の分
配係数に従って分布している。これらの不純物は、熱的
環境により影響を受けて移動し、素子にした場合の電子
移動度に影響する。
This GaInAs heterojunction Hall element uses a semi-insulating InP single crystal as a substrate (Okuyama Shinobu et al., Autumn 1992, 53rd Annual Meeting of the Society of Applied Physics, Proceedings No. 3, page 1078). , Lecture number 16a
-SZC-16). The thickness of the InP single crystal substrate conventionally used as a substrate is generally 250 to 450 μm. This is because it does not hinder the handling as a substrate, facilitates subsequent processing steps such as epitaxial growth, and suppresses "warp" of the substrate in a thermal environment. The InP single crystal substrate is usually used by cutting a single crystal obtained by the Czochralski method and polishing the surface. InP crystal contains carbon, sulfur, iron,
It contains impurities such as manganese and is distributed in the ingot according to a certain distribution coefficient. These impurities move under the influence of the thermal environment and affect the electron mobility in the device.

【0005】また、基板として使用されるInP結晶の
表面、即ち緩衝層や感磁層を堆積する側の結晶表面は、
平坦性に優れた成長層を得るために、平坦に精密研磨さ
れている。一方InP基板結晶の裏面側は、通常は表面
側程平滑には研磨を施されてはいない。一般的には研磨
粉によるラッピング後、エッチング処理する程度の加工
に留まっている。一般に両面研磨と称して表裏面共に鏡
面状の加工を施す場合もあるが、この場合にあっても加
工時の基板結晶のハンドリングの関係で表裏面共に同一
の粗度とすることはない。両面研磨の場合は、粗さの少
ない側の面を表面として利用し、エピタキシャル層を堆
積させている。
The surface of the InP crystal used as the substrate, that is, the crystal surface on the side where the buffer layer and the magneto-sensitive layer are deposited, is
In order to obtain a growth layer with excellent flatness, it is precisely polished flat. On the other hand, the back side of the InP substrate crystal is not usually polished as smoothly as the front side. Generally, after lapping with polishing powder, the processing is limited to etching. In general, there is a case where both front and back surfaces are mirror-finished, which is generally called double-side polishing, but even in this case, the front and back surfaces are not made to have the same roughness due to the handling of the substrate crystal during processing. In the case of double-sided polishing, the surface with less roughness is used as the surface to deposit the epitaxial layer.

【0006】表面の粗さ(粗度)を定量的に表すのに
は、自乗平均平方根値(rmsと略される。)が利用さ
れる。表面に凹凸が存在する場合、これらの凹凸の程度
の平均値を示す線をym と仮定すると、各凹凸とym
の直線距離をyn とすれば、平均の粗さを示すrmsは
次式で与えられる。 rms={(y1 2+y2 2+y3 2+・・+yn 2)/n}1/2 ・・・(1) 基板として利用される従来の極く一般的なInP結晶の
表面のrmsは10nm未満である。一方、裏面側の粗
さはrmsにして100nm前後である。
The root mean square value (abbreviated as rms) is used to quantitatively express the surface roughness (roughness). When unevenness is present on the surface, assuming that a line showing the average value of the degree of these unevenness is y m, and letting the straight line distance between each unevenness and y m be y n , the rms showing the average roughness is It is given by the following formula. rms = {(y 1 2 + y 2 2 + y 3 2 + ·· + y n 2 ) / n} 1/2 (1) The rms of the surface of a conventional, very general InP crystal used as a substrate. Is less than 10 nm. On the other hand, the roughness on the back surface side is about 100 nm in rms.

【0007】従来、GaInAsとInPとのヘテロ接
合系は、上記の様な粗度の結晶表面上に形成されてい
た。しかし、このヘテロ接合系は室温で高い電子移動度
を発現すると報告されているものの(例えば小沼 賢二
郎 他、第53回秋季応用物理学会学術講演会講演予稿
集No.1、1992年、講演番号18a−ZE−3、
283頁、或いはHilde Hardtdegen
他、J.Cryst.Growth、Vol.116
(1992)、p.p.521〜523.)、この高電
子移動度を安定的に得るにあたっては、単にヘテロ接合
を構成すれば常に安定して高電子移動度特性が付与され
るとは限らない。確かにヘテロ界面での組成の急峻性も
高い電子移動度を得るための一つの重要な因子である
が、更に安定して高電子移動度を獲得するための方法は
未だ提示されていない。このため、高い積感度を有する
高品位のGaInAs/InP等のヘテロ接合からなる
ホール素子の安定的な供給に支障を来たしているのが現
状である。
Conventionally, a heterojunction system of GaInAs and InP has been formed on the crystal surface having the above roughness. However, although this heterojunction system is reported to exhibit high electron mobility at room temperature (for example, Kenjiro Konuma et al., Proceedings of the 53rd Autumn Meeting of the Applied Physics Academic Conference, No. 1, 1992, Lecture No. 18a). -ZE-3,
283 pages, or Hilde Hardtdegen
J. J. et al. Cryst. Growth, Vol. 116
(1992), p. p. 521-523. ), In order to obtain this high electron mobility in a stable manner, simply forming a heterojunction does not always give a stable high electron mobility characteristic. Certainly, the steepness of the composition at the hetero interface is one of the important factors for obtaining a high electron mobility, but a method for more stably obtaining a high electron mobility has not been presented yet. For this reason, the current situation is that the stable supply of the Hall element composed of a high-quality GaInAs / InP heterojunction having a high product sensitivity is hindered.

【0008】GaInAs/InP或いはGaInAs
/AlInAs等のヘテロ接合の形成には、格子整合の
観点から前記の如く半絶縁性のInP単結晶が利用され
ている。ところで、半絶縁性のInPを得るには通常鉄
(Fe)が添加される。FeはInP結晶内で熱拡散し
易い。このためFeドープInP結晶のrmsの小さい
表面上に堆積した成長層へも拡散する。エピタキシャル
成長層へ拡散したFe不純物はトラップとして働き、電
子移動度を低下させる。従って、GaInAs/InP
等のヘテロ接合系の高電子移動度特性を如何なく発揮さ
せるには、Fe不純物の成長層内への浸透を抑制する必
要がある。また、ドーパントであるFe不純物の他に
も、例えばInP基板内に残留するドナー不純物となる
不純物の、エピタキシャル層内への拡散も電子移動度を
低下させる要因となり得る。
GaInAs / InP or GaInAs
In order to form a heterojunction such as / AlInAs, a semi-insulating InP single crystal is used as described above from the viewpoint of lattice matching. By the way, iron (Fe) is usually added to obtain semi-insulating InP. Fe easily diffuses thermally within the InP crystal. Therefore, it diffuses into the growth layer deposited on the surface of Fe-doped InP crystal having a small rms. The Fe impurity diffused into the epitaxial growth layer functions as a trap and reduces electron mobility. Therefore, GaInAs / InP
In order to fully exhibit the high electron mobility characteristics of the heterojunction system, it is necessary to suppress the penetration of Fe impurities into the growth layer. In addition to Fe impurities as a dopant, for example, diffusion of impurities serving as donor impurities remaining in the InP substrate into the epitaxial layer may also be a factor that lowers the electron mobility.

【0009】本発明者が鋭意検討を重ねた結果では、I
nP単結晶基板上に設けたヘテロ接合界面近傍にInP
基板中の残留ドナー不純物の熱拡散に因る高いキャリア
濃度領域が存在すると、得られる電子移動度が極端に低
下することを新たに見出した。また、この高キャリア濃
度の領域はInP単結晶基板内に含まれる、主として硫
黄(元素記号:S)からなるInP結晶中で比較的大き
な拡散定数を有するn形不純物が蓄積するためと判明し
た。従って、当該ヘテロ接合に高電子移動度特性を付与
するには、この様な拡散し易い不純物のInP結晶基板
の表面からエピタキシャル成長層への拡散を抑制する必
要がある。
As a result of intensive studies by the present inventors, I
InP near the heterojunction interface provided on the nP single crystal substrate
It has been newly found that the electron mobility obtained is extremely reduced in the presence of a high carrier concentration region due to thermal diffusion of residual donor impurities in the substrate. It was also found that this high carrier concentration region was accumulated in the InP crystal mainly composed of sulfur (elemental symbol: S) contained in the InP single crystal substrate, where n-type impurities having a relatively large diffusion constant were accumulated. Therefore, in order to impart high electron mobility characteristics to the heterojunction, it is necessary to suppress the diffusion of such easily diffused impurities from the surface of the InP crystal substrate to the epitaxial growth layer.

【0010】[0010]

【発明が解決しようとする課題】高感度のGaInAs
/InP等からなるヘテロ接合ホール素子を安定して得
るために、即ち、ヘテロ接合材料に再現性良く高電子移
動度特性を簡便に付与するために、Feや残留ドナー不
純物のエピタキシャル成長層への拡散浸透を抑制するこ
とを目的とする。
Highly sensitive GaInAs
In order to stably obtain a heterojunction Hall element made of / InP or the like, that is, in order to easily impart high electron mobility characteristics to the heterojunction material with good reproducibility, diffusion of Fe and residual donor impurities into the epitaxial growth layer is performed. The purpose is to suppress permeation.

【0011】[0011]

【課題を解決するための手段】即ち、本発明はInP単
結晶基板の裏面の粗さを粗くしておき、エピタキシャル
成長工程の熱によって結晶中の不純物を粗面部分にゲッ
タリングした後、裏面を一部除去して不純物の影響を排
除するようにしたものである。具体的には、自乗平均平
方根値(rmsと略す。)で表される表面粗さが100
0nm以上8000nm以下の裏面を有する半絶縁性I
nP基板結晶上に、GaX In1-X As(xは組成比を
表す。)層とInP層若しくはAlX In1- X As(x
は組成比を表す。)層とのヘテロ接合を設け、然る後I
nP結晶基板の裏面を厚さの半分以上を研磨除去する。
このエピタキシャルウェーハを母体材料として感度特性
に優れるGaInAsホール素子を安定して得る。
That is, according to the present invention, the roughness of the back surface of the InP single crystal substrate is made rough, and impurities in the crystal are gettered to the rough surface portion by the heat of the epitaxial growth process, and then the back surface is polished. It is designed to be partially removed to eliminate the influence of impurities. Specifically, the surface roughness represented by the root mean square value (abbreviated as rms) is 100.
Semi-insulating property I having a back surface of 0 nm or more and 8000 nm or less I
On the nP substrate crystal, a Ga x In 1-x As (x represents a composition ratio) layer and an InP layer or an Al x In 1- x As (x) layer.
Represents the composition ratio. ) Layer with a heterojunction and then I
The back surface of the nP crystal substrate is removed by polishing at least half the thickness.
Using this epitaxial wafer as a base material, a GaInAs Hall element having excellent sensitivity characteristics can be stably obtained.

【0012】GaInAs/InP若しくはGaInA
s/AlInAsヘテロ接合を構成する各成長層は有機
金属熱分解法(MOVPE法)やMBE法等で得られ
る。成長法に拘らず、成長層を得るにあたっての成長温
度は可能な限り低温とした方が都合が良い。半絶縁性I
nP基板結晶中のFeや残留ドナー不純物の成長層側へ
の拡散を抑制できるからである。また、InP層を例え
ばMOVPE法で成長させ、Pを含まないGaX In
1-X As層はMBE法で成長させるなど、層毎に成長方
法を異にしても支障は無く、唯一の成長法で当該ヘテロ
接合を形成する各層を設ける必要はない。
GaInAs / InP or GaInA
Each growth layer forming the s / AlInAs heterojunction is obtained by a metal organic thermal decomposition method (MOVPE method), an MBE method, or the like. Regardless of the growth method, it is convenient to set the growth temperature to obtain the growth layer as low as possible. Semi-insulating I
This is because diffusion of Fe and residual donor impurities in the nP substrate crystal to the growth layer side can be suppressed. Further, the InP layer is grown by, for example, the MOVPE method, and Ga x In containing no P is formed.
There is no problem even if the growth method is different for each layer, such as growing the 1-X As layer by the MBE method, and it is not necessary to provide each layer forming the heterojunction by the only growth method.

【0013】エピタキシャル層の積層順序に制限はな
く、InP単結晶基板上に先ずInP層を成長させ、然
る後、GaX In1-X Asを堆積させても良く、これと
は逆の順序で堆積させても差し支えはない。しかし、通
常は感磁部とするGaX In1-X As層の電子移動度を
少なからず向上させるために、InP単結晶基板からの
Fe不純物の感磁部層とするGaX In1-X Asエピタ
キシャル成長層への拡散の抑制などを期して、先ずIn
P単結晶基板上にInPを緩衝層(バッファ)層として
堆積するのが一般的である。このバッファ層を設けるこ
とにより結晶欠陥等のGaX In1-X Asエピタキシャ
ル成長層への伝幡を抑制するなどの効果を生じるためG
X In1-X As層の電子移動度をいたずらに低下させ
ずに、GaInAsホール素子の高感度特性を保持でき
るなどの利点を招く。
There is no limitation on the stacking order of the epitaxial layers, and the InP layer may be first grown on the InP single crystal substrate, and then Ga X In 1-X As may be deposited. There is no problem in depositing with. However, in order to improve the electron mobility of the Ga x In 1 -x As layer, which is normally used as the magnetic sensing part, to a considerable extent, the Ga x In 1 -x containing the Fe impurity from the InP single crystal substrate is used as the magnetic sensing part layer. In order to suppress diffusion into the As epitaxial growth layer, the In
InP is generally deposited as a buffer layer on a P single crystal substrate. By providing this buffer layer, the effect of suppressing the propagation of crystal defects and the like to the Ga X In 1-X As epitaxial growth layer is produced, so that G
The electron mobility of a X In 1-X As layer without unnecessarily lowering, leading to advantages such as to hold the high-sensitivity characteristics of GaInAs Hall element.

【0014】また、前記GaX In1-X Asの組成比x
については、0.37≦x≦0.57とするのが望まし
い。何故ならば、InPに格子整合するGaX In1-X
Asの組成比x=0.47から組成比がずれるに伴い、
GaX In1-X AsとInPとの格子定数の差、即ち格
子不整合度も顕著となり、多量の結晶欠陥等を誘発し結
晶性の低下を招くばかりか、電子移動度の低下等の電気
的特性をも悪化させ、ホール素子の特性上積感度の改善
に多大な支障を来すからである。緩衝層としてInPと
格子整合するAlX In1-X As等の III−V族化合物
半導体材料を用いた場合にあってもGaX In1-X As
の望ましい組成比に変わりない。
In addition, the composition ratio x of the Ga x In 1 -x As
With respect to, it is desirable that 0.37 ≦ x ≦ 0.57. Because, Ga X In 1-X lattice-matched to InP
As the composition ratio of As deviates from x = 0.47,
The difference in lattice constant between Ga X In 1-X As and InP, that is, the degree of lattice mismatch becomes remarkable, and induces a large amount of crystal defects and the like, which leads to deterioration of crystallinity and also causes reduction of electron mobility. This is also because the characteristic characteristics of the Hall element are deteriorated and the product sensitivity is greatly hindered due to the characteristics of the Hall element. Even when a III-V group compound semiconductor material such as Al X In 1-X As that lattice-matches with InP is used as the buffer layer, Ga X In 1-X As is used.
The composition ratio does not change.

【0015】上記のヘテロ接合系は半絶縁性のInP単
結晶基板結晶上に堆積させる。通常は比抵抗が概ね10
4 Ω・cmから108 Ω・cm程度のInP単結晶を基
板に用いるのが一般的である。基板結晶の表面は面方位
が{001}若しくは{001}から角度にして数度、
傾斜している面とする。基板の厚さについては厳密な規
定はないが、300〜500μmが一般的である。基板
として用いるInP単結晶基板の裏面の加工精度は、r
msにして1000nm以上で8000nm以下とす
る。結晶裏面のrmsに規定を加えるのは、故意に粗度
を悪化させることによって、InP基板結晶の裏面側に
選択的に結晶中の不純物を蓄積でき、よって基板表面側
から成長層へのS等の不純物の拡散、蓄積を防止できる
からである。基板結晶裏面側のrmsを基板表面のそれ
と同一とすると、いわゆるゲッタリングの起こる確率が
双方の面でほぼ同一となり、優先的にInP単結晶の裏
面側でゲッタリングを起こさせるには至らない。従っ
て、InP基板結晶の表裏面では加工精度を等しくせ
ず、裏面側のrmsを故意に大きくする。rmsを10
00nm以上としないと基板裏面側への不純物の優先的
なゲッタリングは顕著に現れない。
The above heterojunction system is deposited on a semi-insulating InP single crystal substrate crystal. Normally the specific resistance is about 10
It is common to use an InP single crystal of 4 Ω · cm to 10 8 Ω · cm for the substrate. The surface of the substrate crystal has a plane orientation of {001} or an angle of several degrees from {001},
The surface is inclined. The thickness of the substrate is not strictly defined, but is generally 300 to 500 μm. The processing accuracy of the back surface of the InP single crystal substrate used as the substrate is r
The time in ms is 1000 nm or more and 8000 nm or less. The definition of rms on the back surface of the crystal is to intentionally deteriorate the roughness so that impurities in the crystal can be selectively accumulated on the back surface side of the InP substrate crystal, so that S etc. from the substrate front surface side to the growth layer can be increased. This is because the diffusion and accumulation of the impurities can be prevented. If the rms on the back side of the substrate crystal is the same as that on the front side of the substrate, the probability of so-called gettering is almost the same on both sides, and gettering does not occur preferentially on the back side of the InP single crystal. Therefore, the processing precision is not made equal on the front and back surfaces of the InP substrate crystal, and the rms on the back surface side is intentionally increased. 10 rms
If the thickness is not more than 00 nm, preferential gettering of impurities to the back surface side of the substrate does not significantly appear.

【0016】裏面のrmsが上記の数値範囲にあるFe
を添加した半絶縁性InP単結晶基板をエピタキシャル
成長層の成長に要する温度に加熱し保持した後のS不純
物の濃度分布を図4に例示する。同図に示す如く基板結
晶の厚さの約半分を越え裏面側に至る領域にS不純物が
ゲッタリングされ蓄積されている。基板結晶の裏面側で
のS濃度は1017cm-3を越えている。また、基板結晶
の表面から基板結晶の厚さの約1/2以内の領域では、
不純物の顕著な蓄積は生じていない。即ち、本発明に従
って表面加工を施した場合、基板結晶の表面から基板の
厚さの1/2を残存させ、裏面側の不純物がゲッタリン
グされた領域を除去すれば、InP基板結晶内部のドナ
ー不純物の濃度は深さ方向にほぼ一定となる。
Fe whose backside rms is in the above numerical range
FIG. 4 exemplifies the concentration distribution of the S impurity after the semi-insulating InP single crystal substrate added with is heated to and held at the temperature required for the growth of the epitaxial growth layer. As shown in the figure, the S impurity is gettered and accumulated in a region that exceeds about half the thickness of the substrate crystal and reaches the back surface side. The S concentration on the back surface side of the substrate crystal exceeds 10 17 cm -3 . In a region within about 1/2 of the thickness of the substrate crystal from the surface of the substrate crystal,
No significant accumulation of impurities has occurred. That is, when the surface processing is performed according to the present invention, if the half of the thickness of the substrate is left from the surface of the substrate crystal and the region on the back surface side where the impurities are gettered is removed, the donor inside the InP substrate crystal is removed. The impurity concentration is almost constant in the depth direction.

【0017】但し、InP裏面のrmsが8000nm
を越える様な乱雑な表面加工を施すと、この様な粗い加
工に伴い逆に加工歪がInP基板結晶内に残存する。歪
を有する基板上に堆積した成長層では、高い電子移動度
は得られない。従って、InP単結晶の裏面側のrms
は1000nm以上、8000nm以下に規定する。こ
れにより高電子移動度特性が安定して付与されるからで
ある。基板表面はrmsが100nm以下となるよう
に、精密研磨して仕上げる。
However, the rms of the back surface of InP is 8000 nm
If a rough surface processing is performed to exceed the range, processing strain remains in the InP substrate crystal due to such rough processing. High electron mobility cannot be obtained with a grown layer deposited on a strained substrate. Therefore, the rms on the back side of the InP single crystal
Is specified to be 1000 nm or more and 8000 nm or less. This is because high electron mobility characteristics are stably imparted. The substrate surface is finished by precision polishing so that the rms is 100 nm or less.

【0018】所望のエピタキシャル成長層を得た後、上
記の表面粗度のInP単結晶基板の裏面を厚さの1/2
以上を除去する。この様に図ることにより、図4に例示
した不純物の濃度分布から判断される様に、InP単結
晶基板の主に硫黄からなるドナー不純物の濃度が1016
cm-3以下であり、且つ基板結晶の厚さ方向に対してほ
ぼ均一なドナー濃度分布を有する基板上に形成されたホ
ール素子用エピタキシャルウェーハを製造することがで
きる。InP単結晶基板の厚さ方向、特に基板とその直
上に設けるエピタキシャル成長層との界面近傍に1016
cm-3を越えるドナー不純物が存在すると高い電子移動
度を備えたホール素子用エピタキシャルウェーハを安定
して得るのが困難となる。半絶縁性で高抵抗である高純
度のInP単結晶の場合、ドナー濃度はほぼキャリア濃
度と考えて差し支えはない。
After obtaining the desired epitaxial growth layer, the back surface of the InP single crystal substrate having the above-mentioned surface roughness is ½ of the thickness.
Remove the above. By doing so, as can be judged from the concentration distribution of the impurities illustrated in FIG. 4, the concentration of the donor impurity mainly composed of sulfur in the InP single crystal substrate is 10 16
It is possible to manufacture an epitaxial wafer for Hall elements formed on a substrate having a donor concentration of cm −3 or less and a substantially uniform donor concentration distribution in the thickness direction of the substrate crystal. 10 16 in the thickness direction of the InP single crystal substrate, particularly in the vicinity of the interface between the substrate and the epitaxial growth layer provided immediately above
The presence of donor impurities exceeding cm −3 makes it difficult to stably obtain an epitaxial wafer for Hall devices having a high electron mobility. In the case of a high-purity InP single crystal having a semi-insulating property and a high resistance, the donor concentration may be considered to be a carrier concentration.

【0019】[0019]

【作用】基板結晶内に含まれる不純物が、ヘテロ接合を
構成する半導体層のエピタキシャル成長工程等比較的高
温に曝されることによって生じる不純物のゲッタリング
効果を利用し、不純物濃度の高くなった基板部分を研磨
除去することにより、ヘテロ接合を構成するエピタキシ
ャル成長層側への不純物の拡散を防止し、高電子移動度
のホール素子用のエピタキシャルウェーハとする。
The substrate portion having a high impurity concentration is utilized by utilizing the gettering effect of the impurities contained in the substrate crystal exposed to a relatively high temperature such as the epitaxial growth process of the semiconductor layer forming the heterojunction. Are removed by polishing to prevent impurities from diffusing to the epitaxial growth layer side forming the heterojunction, thus providing an epitaxial wafer for a Hall element having high electron mobility.

【0020】[0020]

【実施例】以下、本発明を実施例を基に具体的に説明す
る。図1は本発明に係わるGaInAs/InPヘテロ
構造ホール素子の模式的な平面図を示す。また、図2は
図1の破線A−A’に沿う垂直方向の断面模式図であ
る。ヘテロ接合を形成するにあたっては、基板として鉄
(Fe)を添加してなる面方位が{100}の半絶縁性
のInP単結晶(101)を使用した。該InP単結晶
(101)の比抵抗は1×107 Ω・cmであり、厚さ
は約350μmであった。
EXAMPLES The present invention will be specifically described below based on examples. FIG. 1 shows a schematic plan view of a GaInAs / InP heterostructure Hall element according to the present invention. Further, FIG. 2 is a schematic cross-sectional view in the vertical direction taken along the broken line AA ′ in FIG. In forming the heterojunction, a semi-insulating InP single crystal (101) having a plane orientation of {100} and containing iron (Fe) was used as a substrate. The specific resistance of the InP single crystal (101) was 1 × 10 7 Ω · cm, and the thickness was about 350 μm.

【0021】上記のInP単結晶基板(101)の表裏
面(101a及び101b)は、本発明により加工さ
れ、表面(101a)のrmsは0.2nmであり、裏
面(101b)のそれは1214nmであった。従っ
て、裏面のrmsは表面側に比較し約6070倍であっ
た。尚、表面側の粗度については、当初表裏面共にほぼ
同じrmsの表面粗度を有する結晶につき、表面側に選
択的に研磨並びにエッチングを施すことにより、上記の
rmsに至らしめたものである。
The front and back surfaces (101a and 101b) of the above InP single crystal substrate (101) were processed according to the present invention, the rms of the front surface (101a) was 0.2 nm, and that of the back surface (101b) was 1214 nm. It was Therefore, the rms on the back surface was about 6070 times that on the front surface side. Regarding the roughness on the front surface side, the above-mentioned rms was achieved by selectively performing polishing and etching on the front surface side of a crystal having a surface roughness of almost the same rms on both front and back surfaces. .

【0022】上記のrmsの結晶基板(101)上に
は、シクロペンタジエニルインジウム(分子式:C5
5 In)をIn源とする常圧(大気圧)のMOVPE法
で成長させた、膜厚が約100nmのアンドープのn形
のInP層(102)を堆積した。緩衝層とするInP
層(102)は温度610℃で成長させた。
On the rms crystal substrate (101), cyclopentadienylindium (molecular formula: C 5 H
An undoped n-type InP layer (102) having a film thickness of about 100 nm, which was grown by the MOVPE method of atmospheric pressure (atmospheric pressure) using 5 In as an In source, was deposited. InP used as a buffer layer
Layer (102) was grown at a temperature of 610 ° C.

【0023】InP緩衝層(102)上には感磁層とし
て組成比が0.47で、約400nmの膜厚のn形のG
0.47In0.53As層(103)を堆積し、InP層
(102)とでヘテロ接合を形成した。感磁層(10
3)層も上記の常圧MOVPE成長法で設け、成長温度
もInP層(102)と同じく610℃とした。
An n-type G having a composition ratio of 0.47 and a film thickness of about 400 nm is formed on the InP buffer layer (102) as a magnetic sensitive layer.
An a 0.47 In 0.53 As layer (103) was deposited to form a heterojunction with the InP layer (102). Magnetic layer (10
The layer 3) was also formed by the atmospheric pressure MOVPE growth method described above, and the growth temperature was also 610 ° C. like the InP layer (102).

【0024】InP層(102)及びn形GaX In
1-X As層(103)のキャリア濃度は各々、2×10
15cm-3及び2×1016cm-3であった。GaX In
1-X As層(103)のキャリア濃度はSのドーピング
により達成した。このヘテロ構造での電子移動度は、室
温に於いて11,000cm2 /V・sであった。
InP layer (102) and n-type Ga x In
The carrier concentration of the 1-X As layer (103) is 2 × 10 each.
It was 15 cm −3 and 2 × 10 16 cm −3 . Ga X In
The carrier concentration of the 1-X As layer (103) was achieved by S doping. The electron mobility in this heterostructure was 11,000 cm 2 / V · s at room temperature.

【0025】この様な構造のウェーハを前述の如く公知
のフォトリソグラフィー技術を駆使して、先ず感磁機能
を発揮する感磁部を含むホールクロス領域と電極形成領
域をパターニングし、当該領域に限りフォトレジスト材
を残存させた。然る後、当該領域にいわゆるメサエッチ
ングを施し、当該素子機能領域をメサ状に残存させた。
このメサ加工に際し、十字形に交差する2つの半導体の
メサ層は各々、互いに直交する<0バー11>並びに<
0バー1バー1>方向に平行に設けた。このエッチング
により電極形成部及び感磁部領域の鉛直方向の断面は、
それを<0バー11>と<0バー1バー1>の互いに直
交する結晶軸の方向から見れば、<0バー11>方向の
断面にあっては台形状、いわゆる順メサ形状の断面とな
り、逆に<0バー1バー1>結晶軸方向にあっては逆台
形状のいわゆる逆メサ状の断面となった。
As described above, the hole crossing region including the magnetically sensitive portion exhibiting the magnetically sensitive function and the electrode forming region are patterned on the wafer having such a structure by utilizing the well-known photolithography technique. The photoresist material was left. Then, so-called mesa etching was applied to the region to leave the element functional region in a mesa shape.
During this mesa processing, the two semiconductor mesa layers crossing each other in a cross shape are perpendicular to each other at <0 bar 11> and <0 bar 11>.
0 bar 1 bar 1> were provided parallel to the direction. By this etching, the vertical cross section of the electrode forming portion and the magnetic sensing portion area is
When viewed from the directions of crystal axes of <0 bar 11> and <0 bar 1 bar 1> which are orthogonal to each other, the cross section in the <0 bar 11> direction has a trapezoidal shape, that is, a so-called forward mesa shape cross section, Conversely, in the <0 bar 1 bar 1> crystal axis direction, an inverted trapezoidal so-called inverted mesa cross section was formed.

【0026】然る後、一般的なフォトレジスト材でウェ
ーハ表面を覆い、パターニング、レジスト剥離、リフト
オフ等の工程を経て入力用並びに出力用電極となすべ
く、Geを重量にして13%含有してなるAu・Ge合
金を約600nmの厚さに真空蒸着し、これによりオー
ミック性入・出力電極(104)を形成した。これらの
電極(104)の形状は全て同一で平面は長辺が約0.
2mmで短辺が約0.07mmの長方形となっている。
ちなみに、得られたホール素子の入力抵抗は1KΩを中
心に分布していた。
After that, the wafer surface is covered with a general photoresist material, and 13% by weight of Ge is contained so as to form an input electrode and an output electrode through steps such as patterning, resist stripping, and lift-off. The Au / Ge alloy was vacuum-deposited to a thickness of about 600 nm to form the ohmic input / output electrode (104). All of these electrodes (104) have the same shape, and the plane has a long side of about 0.
The rectangle is 2 mm and the short side is about 0.07 mm.
By the way, the input resistance of the obtained Hall element was distributed around 1 KΩ.

【0027】更に、ウェーハの表、裏面をプラズマCV
D法によるSiO2 絶縁膜(105)で被覆した。表、
裏面共にSiO2 膜(105)の厚さは約300nmと
した。次に、ウェーハ表面側の当該絶縁膜(105)上
に一般のフォトレジスト材を塗布し、前述の如くのフォ
トリソグラフィー、パターニング各工程等を経て入・出
力用電極(104)の表面を後の電気結線のために露出
させた。これに続いて個々のホール素子に分離するため
のダイシングライン(106)を形成した。このダイシ
ングライン(106)の形成と併行して、InP結晶基
板(101)の裏面側をエッチングし、当初の350μ
mの厚さから約150μmとなる迄薄層化した。即ち、
基板結晶(101)の厚さを当初の厚さの1/2以下と
すべく、基板結晶裏面側を約200μm除去した。この
薄層化に際してInP結晶基板(101)の裏面(10
1b)のrmsは、当初の1214nmから85nmへ
と改良された。この裏面エッチングは、裏面側の不純物
が蓄積した層を取り除くために行ったものである。然る
後、ダイシングライン(106)に沿ってスクライブを
施し、個々の素子(チップ)に分離した。次に、当該チ
ップを一般的な外囲用エポキシ樹脂で外囲し、モールド
品とした。
Further, the front and back surfaces of the wafer are plasma CV
It was covered with a SiO 2 insulating film (105) by the D method. table,
The thickness of the SiO 2 film (105) was about 300 nm on both back surfaces. Next, a general photoresist material is applied onto the insulating film (105) on the wafer surface side, and the surface of the input / output electrode (104) is left behind after the photolithography and patterning steps as described above. Exposed for electrical connections. Following this, a dicing line (106) for separating into individual Hall elements was formed. In parallel with the formation of the dicing line (106), the back surface side of the InP crystal substrate (101) was etched to obtain the initial 350 μm.
The thickness was reduced from the thickness of m to about 150 μm. That is,
About 200 μm was removed from the back side of the substrate crystal (101) so that the thickness of the substrate crystal (101) was ½ or less of the initial thickness. During this thinning, the back surface (10) of the InP crystal substrate (101) was
The rms of 1b) was improved from the original 1214 nm to 85 nm. This back surface etching is performed to remove the layer on the back surface side where impurities are accumulated. After that, scribing was performed along the dicing line (106) to separate into individual devices (chips). Next, the chip was surrounded with a general surrounding epoxy resin to obtain a molded product.

【0028】製作したGaInAsホール素子の電気的
な特性を評価した。また、従来例のInP単結晶基板上
を使用したGaInAsホール素子との特性を比較をし
た。本発明と従来例の積感度を表1に掲げる。従来例で
は462V・A/Tであった。一方、本発明に依るGa
InAsホール素子では、積感度は約740V・A/T
であり、従来例より優れていた。
The electrical characteristics of the manufactured GaInAs Hall element were evaluated. Further, the characteristics were compared with that of a GaInAs Hall element using a conventional InP single crystal substrate. Table 1 shows the product sensitivities of the present invention and the conventional example. In the conventional example, it was 462 V · A / T. On the other hand, Ga according to the present invention
The product sensitivity of the InAs Hall element is about 740V ・ A / T.
Was superior to the conventional example.

【0029】二次イオン質量分析法(SIMS)による
基板結晶の厚さ方向の不純物の濃度分布測定では、本発
明に依る場合はSの濃度は基板の厚さ方向でほぼ一定で
1016cm-3未満であった。逆に従来例にあっては、I
nP結晶基板とInP緩衝層との界面近傍でおおよそ約
2×1017cm-3のS不純物が検出された。また、図3
に示す如く通常のC−V法による電気的な測定法から
も、従来例にあってはInP結晶基板の表層部に於いて
主にSの蓄積に伴う最高で約1×1017cm-3の高いキ
ャリア濃度の領域が存在した。逆に、本発明では、In
P結晶基板表層部で高キャリア濃度の領域は認められな
かった。これは、InP単結晶基板の裏側のrmsを規
定したことによってもたらされるS不純物等のゲッタリ
ングによることが判明した。
In the measurement of the impurity concentration distribution in the thickness direction of the substrate crystal by secondary ion mass spectrometry (SIMS), the concentration of S according to the present invention is substantially constant in the thickness direction of the substrate of 10 16 cm −. It was less than 3 . On the contrary, in the conventional example, I
About 2 × 10 17 cm −3 S impurity was detected near the interface between the nP crystal substrate and the InP buffer layer. Also, FIG.
As can be seen from the electric measurement method by the ordinary CV method as shown in Fig. 1, in the conventional example, the maximum is about 1 × 10 17 cm -3 mainly due to the accumulation of S in the surface layer portion of the InP crystal substrate. There was a region of high carrier concentration. On the contrary, in the present invention, In
No region of high carrier concentration was observed in the surface layer of the P crystal substrate. It was found that this is due to gettering of S impurities and the like caused by defining the rms on the back side of the InP single crystal substrate.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】感度特性に優れる高品位のGaInAs
ホール素子を得ることができる。尚、本実施例に於いて
は、GaX In1-X AsとInPとのヘテロ接合を具備
したGaInAsホール素子を例に挙げ説明したが、G
X In1-X AsとAlX In1-X Asとのヘテロ接合
からなるGaInAsホール素子についてもInP単結
晶基板を使用するが故に、本発明の効果は発揮される。
また、GaInAsホール素子に拘らず、他の例えばG
aAs、InAsやInSb等からなるホール素子にも
適用出来る。特に、ヘテロ接合によりもたらされる物性
を利用するヘテロ接合を具備してなるホール素子の場合
には、更に本発明の効果が発揮される。
EFFECT OF THE INVENTION High-quality GaInAs excellent in sensitivity characteristics
A Hall element can be obtained. Incidentally, in the present embodiment has been described taking a GaInAs Hall element comprising a heterojunction between Ga X In 1-X As and InP as an example, G
Thus although using InP single crystal substrate also GaInAs Hall element comprising a heterojunction between a X In 1-X As and Al X In 1-X As, the effect of the present invention is exhibited.
In addition, regardless of the GaInAs Hall element, other elements such as G
It can also be applied to a Hall element made of aAs, InAs, InSb, or the like. In particular, the effect of the present invention is further exerted in the case of a Hall element including a heterojunction that utilizes the physical properties brought by the heterojunction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるGaInAsホール素子の平面
の概略図である。
FIG. 1 is a schematic plan view of a GaInAs Hall element according to the present invention.

【図2】図1の破線A−A’に沿う断面の模式図であ
る。
FIG. 2 is a schematic view of a cross section taken along a broken line AA ′ in FIG.

【図3】本発明に係わる場合と従来例に於けるキャリア
濃度プロファイルを比較する図である。
FIG. 3 is a diagram comparing carrier concentration profiles of a case according to the present invention and a conventional example.

【図4】本発明に係わる表面加工を施した場合に於ける
ドナー不純物の蓄積を示す図である。
FIG. 4 is a diagram showing accumulation of donor impurities in the case where the surface processing according to the present invention is performed.

【符号の説明】[Explanation of symbols]

(101) 結晶基板 (101a) 結晶基板表面 (101b) 結晶基板裏面 (102) 緩衝層 (103) 感磁層 (104) オーミック入・出力電極 (105) 絶縁膜 (106) ダイシングライン (107) 結晶基板の厚さの1/2に相当する基板表
面からの深さ位置
(101) Crystal substrate (101a) Crystal substrate front surface (101b) Crystal substrate back surface (102) Buffer layer (103) Magnetosensitive layer (104) Ohmic input / output electrode (105) Insulating film (106) Dicing line (107) Crystal Depth position from the substrate surface corresponding to 1/2 of the substrate thickness

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−275767(JP,A) 特開 昭60−233831(JP,A) 特開 平4−267339(JP,A) 特開 平4−302139(JP,A) 特開 平7−94803(JP,A) 特開 平7−162057(JP,A) 特開 昭63−17577(JP,A) 特開 昭63−17576(JP,A) 1992年秋季第53回応用物理学会学術講 演会講演予稿集,No.3,p.1078 電総研ニュース,511号,pp.6−10 (58)調査した分野(Int.Cl.7,DB名) H01L 43/06 H01L 43/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-275767 (JP, A) JP-A-60-233831 (JP, A) JP-A-4-267339 (JP, A) JP-A-4-27339 302139 (JP, A) JP 7-94803 (JP, A) JP 7-162057 (JP, A) JP 63-17577 (JP, A) JP 63-17576 (JP, A) 1992 Autumn Proceedings of 53rd Annual Meeting of the Society of Applied Physics, No. 3, p. 1078 Electrotechnical Laboratory News, No. 511, pp. 6-10 (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 43/06 H01L 43/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】厚さ200μm以下で、厚さ方向に対して
濃度にして1016cm-3以下の硫黄濃度分布を有する
nP単結晶基板の表面上に、ヒ化ガリウム・インジウム
層とInP層若しくはヒ化アルミニウム・インジウム層
とのヘテロ接合を具備したことを特徴とするホール素子
用エピタキシャルウェーハ。
In claim 1 a thickness 200μm or less, I having 10 16 cm -3 or less of sulfur concentration distribution in the concentration with respect to the thickness direction
An epitaxial wafer for Hall devices, comprising a heterojunction of a gallium arsenide / indium layer and an InP layer or an aluminum arsenide / indium arsenide layer on the surface of an nP single crystal substrate.
【請求項2】裏面の表面粗さが自乗平均平方根値(rm
s)で1000nm以上8000nm以下であるInP
単結晶基板の表面上に、ヒ化ガリウム・インジウム層と
InP層若しくはヒ化アルミニウム・インジウム層との
ヘテロ接合を形成した後、InP単結晶基板の裏面側か
ら該基板の厚さの2分の1以上除去することを特徴と
するホール素子用エピタキシャルウェーハの製造方法。
2. The surface roughness of the back surface is the root mean square value (rm
s) is 1000 nm or more and 8000 nm or less InP
On the surface of the single crystal substrate to form a heterojunction between gallium arsenide, indium layer and the InP layer or aluminum arsenide, indium layer, or back side of the InP single crystal substrate
A method for manufacturing an epitaxial wafer for Hall devices, characterized by removing ½ or more of the thickness of the substrate .
JP11888194A 1994-05-31 1994-05-31 Epitaxial wafer for Hall element and method of manufacturing the same Expired - Fee Related JP3456254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11888194A JP3456254B2 (en) 1994-05-31 1994-05-31 Epitaxial wafer for Hall element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11888194A JP3456254B2 (en) 1994-05-31 1994-05-31 Epitaxial wafer for Hall element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07326806A JPH07326806A (en) 1995-12-12
JP3456254B2 true JP3456254B2 (en) 2003-10-14

Family

ID=14747448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11888194A Expired - Fee Related JP3456254B2 (en) 1994-05-31 1994-05-31 Epitaxial wafer for Hall element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3456254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363406A1 (en) 2015-02-09 2017-12-21 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747498B1 (en) * 1996-04-12 1998-07-17 Silmag Sa METHOD FOR PRODUCING A MAGNETIC HEAD WITH A SEMICONDUCTOR FIELD DETECTOR AND HEAD OBTAINED BY THIS METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1992年秋季第53回応用物理学会学術講演会講演予稿集,No.3,p.1078 電総研ニュース,511号,pp.6−10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363406A1 (en) 2015-02-09 2017-12-21 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate
US10473445B2 (en) 2015-02-09 2019-11-12 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate
US10663277B2 (en) 2015-02-09 2020-05-26 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate

Also Published As

Publication number Publication date
JPH07326806A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP2636840B2 (en) Semiconductor device
JP3456254B2 (en) Epitaxial wafer for Hall element and method of manufacturing the same
JP3069545B2 (en) Laminate including compound semiconductor and method of manufacturing the same
JP3404815B2 (en) GaInAs two-dimensional electron Hall element
JP3172958B2 (en) Method for manufacturing compound semiconductor thin film
JP3289371B2 (en) Heterojunction Hall element
JP2597105Y2 (en) Hall element
JP3399053B2 (en) Heterojunction Hall element
JP3044835B2 (en) Magnetoelectric conversion element
JP2597774Y2 (en) Hall element
JP3395277B2 (en) Magnetoelectric conversion element
JP3399042B2 (en) Hall element
CN215527756U (en) Substrate structure for preparing InSb functional layer
JP3399046B2 (en) Hall element
JP3399044B2 (en) Hall element and method of manufacturing the same
JP3404843B2 (en) Manufacturing method of Hall element
JP3287054B2 (en) Magnetoelectric conversion element
JP3399057B2 (en) Magnetoelectric conversion element
JP3287053B2 (en) GaInAs magnetoelectric transducer
JPH077194A (en) Hall element
JP3038509B2 (en) Manufacturing method of light receiving element
JPH06232475A (en) Magnetoelectric conversion element
JP3438294B2 (en) Hall element
JP3220879B2 (en) Magnetoelectric conversion element
CN112802961A (en) Method for preparing InSb functional layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees