JP3287054B2 - Magnetoelectric conversion element - Google Patents

Magnetoelectric conversion element

Info

Publication number
JP3287054B2
JP3287054B2 JP05251393A JP5251393A JP3287054B2 JP 3287054 B2 JP3287054 B2 JP 3287054B2 JP 05251393 A JP05251393 A JP 05251393A JP 5251393 A JP5251393 A JP 5251393A JP 3287054 B2 JP3287054 B2 JP 3287054B2
Authority
JP
Japan
Prior art keywords
layer
hall element
gainas
crystal
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05251393A
Other languages
Japanese (ja)
Other versions
JPH06268278A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP05251393A priority Critical patent/JP3287054B2/en
Publication of JPH06268278A publication Critical patent/JPH06268278A/en
Application granted granted Critical
Publication of JP3287054B2 publication Critical patent/JP3287054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はIII−V族化合物半導体
を磁界を検知するための機能を果たす結晶層(感磁部層
と称す。)として利用するホール素子に係わり、特にヒ
化ガリウム・インジウム(GaInAs)層を感磁部層
として備えた高感度なホール素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Hall element which uses a group III-V compound semiconductor as a crystal layer (referred to as a magneto-sensitive layer) which functions to detect a magnetic field. The present invention relates to a high-sensitivity Hall element provided with an indium (GaInAs) layer as a magnetic sensing layer.

【0002】[0002]

【従来の技術】磁界を検知しその強度を電気信号に変換
する、いわゆる磁電変換素子の一つとしてホール(Ha
ll)素子が知られている。ホール素子には通常シリコ
ン(Si)、ゲルマニウム(Ge)など元素周期律の第
IV族に属する単体(元素)半導体や、ヒ化ガリウム
(GaAs)、ヒ化インジウム(InAs)などの周期
律の第 III族と第V族元素を化合してなる III−V族2
元化合物半導体、或はまたそれらを混合させた(混晶)
半導体が利用されている。いずれの半導体材料を用いた
場合に於いても、ホール素子はそれを構成する半導体材
料に磁場を印加した際に、これら半導体内の電子の運動
によって発生するホール(Hall)電圧を利用した一
種のセンサーであり、回転センサー、位置センサーなど
として産業界で広く利用されるに至っている。
2. Description of the Related Art A hole (Ha) is used as one of so-called magneto-electric conversion elements for detecting a magnetic field and converting the intensity into an electric signal.
11) Elements are known. The Hall element usually includes a simple (element) semiconductor belonging to Group IV of the periodic rule such as silicon (Si) and germanium (Ge), and a periodic rule such as gallium arsenide (GaAs) and indium arsenide (InAs). III-V group 2 obtained by combining group III and group V elements
Original compound semiconductors or a mixture of them (mixed crystal)
Semiconductors are used. Regardless of which semiconductor material is used, a Hall element is a type of device that utilizes a Hall (Hall) voltage generated by the movement of electrons in these semiconductors when a magnetic field is applied to the semiconductor material constituting the Hall element. It is a sensor that has been widely used in industry as a rotation sensor and position sensor.

【0003】ホール素子には上述の如くSi単体半導体
の他、アンチモン化インジウム(InSb)、InAs
やGaAs等の III−V族化合物半導体も使用されてい
が、実際のホール素子にあっては例えばInSbホール
素子に見られる様に、InSbバルク結晶そのものをホ
ール素子の磁気を検出する機能を有する部位(感磁部)
として利用する場合も有るが、多くは例えばGaAsホ
ール素子の如く高抵抗の半導体単結晶基板等へのイオン
注入により、或はまた同様の単結晶基板上にVPE(Va
por Phase Epitaxy )、MOVPE(Metal-Organiic V
apor Phase Epitaxy、MOCVD、OMVPEとも称さ
れる。)、MBE(Molecular Beam Epitaxy)法等の気
相エピタキシャル成長法や液相エピタキシャル成長(L
PE)法により形成された半導体層が感磁部として利用
している。
As described above, in addition to a simple substance semiconductor of Si as described above, indium antimonide (InSb), InAs
Although a III-V compound semiconductor such as GaAs or GaAs is also used, in an actual Hall element, for example, an InSb bulk crystal itself has a function of detecting the magnetism of the Hall element as seen in an InSb Hall element. (Magnetic sensing part)
In many cases, VPE (Va (Va) is applied by ion implantation into a high-resistance semiconductor single crystal substrate such as a GaAs Hall element, or on a similar single crystal substrate.
por Phase Epitaxy), MOVPE (Metal-Organiic V)
Also called apor Phase Epitaxy, MOCVD, OMVPE. ), Vapor phase epitaxial growth methods such as MBE (Molecular Beam Epitaxy) and liquid phase epitaxial growth (L
A semiconductor layer formed by the (PE) method is used as a magnetic sensing part.

【0004】これら半導体層からなる感磁部はホール素
子の諸特性を担う重要な部位である。特に、高い磁界検
出能力を有する、いわゆる高感度(高い積感度)のホー
ル素子にあっては、この感磁部に半導体の物性の一つで
あるホール(Hall)係数の大きな半導体材料を選択
する必要がある。ホール係数はまた、半導体材料の有す
る電子移動度に比例し、電子移動度が大きい程、大きな
ホール係数が得られ、しいては高感度のホール素子の実
現を促す。
[0004] The magneto-sensitive part made of these semiconductor layers is an important part that bears various characteristics of the Hall element. In particular, in the case of a so-called high-sensitivity (high product sensitivity) Hall element having a high magnetic field detecting ability, a semiconductor material having a large Hall coefficient, which is one of the physical properties of a semiconductor, is selected for the magnetic sensing portion. There is a need. The Hall coefficient is also proportional to the electron mobility of the semiconductor material, and the larger the electron mobility, the larger the Hall coefficient is obtained, which promotes the realization of a highly sensitive Hall element.

【0005】このため、最近では従来の2つの元素から
なるGaAsやInSbの様な2元III−V族化合物半
導体材料を感磁部とするホール素子ではなく、異なる3
つ或は4つの元素から構成される III−V族化合物半導
体多元素(多元)混晶を用いヘテロ(異種)接合を形成
し、これにより高い電子移動度を保有させ、もって高感
度ホール素子のための新たな材料とする試みもなされて
いる。この様なヘテロ接合を設けることによって、ヘテ
ロ接合を構成する各単一半導体材料には見られない新た
な物性が得られ、電子移動度の向上がもたらされる場合
があるからである。
For this reason, recently, instead of a conventional Hall element using a binary III-V compound semiconductor material such as GaAs or InSb made of two elements as a magnetically sensitive part, a different three element is used.
A hetero-junction is formed by using a multi-element (multi-element) mixed crystal of a group III-V compound semiconductor composed of one or four elements, thereby retaining a high electron mobility, thereby providing a high sensitivity Hall element. Attempts have been made to use them as new materials. By providing such a heterojunction, new physical properties not found in each single semiconductor material forming the heterojunction can be obtained, and the electron mobility can be improved in some cases.

【0006】周期律表の第III族元素であるガリウム
(Ga)とインジウム(In)並びに第族のヒ素(A
s)からなるGax In1-x As(xは混晶比(組成
比)を示す。)も III−V族化合物半導体混晶の一つで
あり、InPとのヘテロ接合の形成により高移動度化が
果たされることから(例えば、小沼 賢二郎他、199
2年秋季第53回応用物理学会学術講演会講演予稿集N
o.1(応用物理学会発行)、講演番号18a−ZE−
3、283頁)、最近では、当該GaInAs/InP
ヘテロ接合材料を利用して従来になく高い感度の新規な
化合物半導体ホール素子を得ようとする試みもなされて
いる(奥山 忍他、1992年秋季第53回応用物理学
会学術講演会講演予稿集No.3(1992年応用物理
学会発行)、講演番号16a−SZC−16、1078
頁)。
Gallium (Ga) and indium (In), which are Group III elements of the periodic table, and arsenic (A) of Group V
Gas In1-x As (x indicates a mixed crystal ratio (composition ratio)) is also one of the group III-V compound semiconductor mixed crystals, and has a high mobility by forming a heterojunction with InP. Is fulfilled (for example, Kenjiro Onuma et al., 199
2nd Autumn 53rd JSAP Symposium Preprints N
o. 1 (published by the Japan Society of Applied Physics), lecture number 18a-ZE-
3, p. 283), and recently, the GaInAs / InP
Attempts have also been made to obtain novel compound semiconductor Hall elements with higher sensitivity than ever before using heterojunction materials (Okuyama Shinobu, et al., Proceedings of the 53rd JSAP Autumn Meeting, 1992 No. .3 (issued by the Japan Society of Applied Physics, 1992), Lecture Number 16a-SZC-16, 1078
page).

【0007】上記ヘテロ接合は具体的にはFeを添加し
てなる高抵抗の半絶縁性InP単結晶基板上に堆積させ
たInPバッファ層とGaInAs層から構成されてい
る(奥山 忍他、1992年秋季第53回応用物理学会
学術講演会講演予稿集No.3、講演番号16a−SZ
C−16、1078頁)。この様に従来例としてはn形
の伝導を呈するInP結晶層をバッファ層として応用し
ている場合が多いが、本来、ホール素子用のバッファ層
としてはGaInAs感磁部層からInPバッファ層へ
の動作電流の漏れを防ぐためにも高抵抗であることが望
ましい。しかし、この様な2元系のInP結晶層をバッ
ファ層として利用する場合、多元混晶の成長に見受けら
れる如くの混晶比(組成比)の制御の煩わしさが回避で
きるなどの利点はあるものの、通常、InPは不純物を
故意にドーピング(doping)しない、いわゆるアンドー
プ(undope)の状態でもn形の伝導を呈し高抵抗とはな
り難い欠点を有していた。
The above heterojunction is specifically composed of an InP buffer layer and a GaInAs layer deposited on a high-resistance semi-insulating InP single crystal substrate to which Fe is added (Shinobu Okuyama et al., 1992) Proceedings of the 53rd JSAP Autumn Meeting No.3, Lecture No. 16a-SZ
C-16, p. 1078). As described above, in the conventional example, an InP crystal layer exhibiting n-type conduction is often used as a buffer layer. However, originally, a buffer layer for a Hall element is used to transfer a GaInAs magnetosensitive layer from an InP buffer layer to an InP buffer layer. It is desirable that the resistance is high in order to prevent the leakage of the operating current. However, when such a binary InP crystal layer is used as a buffer layer, there is an advantage that troublesome control of a mixed crystal ratio (composition ratio) as observed in the growth of a multi-element mixed crystal can be avoided. However, InP usually has a drawback in that it does not intentionally doping impurities, that is, it exhibits n-type conduction even in a so-called undoped state, and is unlikely to have high resistance.

【0008】この様な電気的な絶縁性が不完全な結晶層
をバッファ層とした場合、ホール素子を動作させるため
の動作電流を流通せしめた場合、当該バッファ層への動
作電流のリーク(leak)が発生し、信頼性のある素子動
作が果たせない場合が多いという問題も発生していた。
When such a crystal layer having incomplete electrical insulation is used as a buffer layer, and when an operating current for operating a Hall element is passed, a leak (leak) of the operating current to the buffer layer occurs. ) Occurs, and reliable device operation cannot be achieved in many cases.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の従来の
欠点に鑑み、感磁部となす半導体結晶層からの動作電流
の不必要な漏洩を防止する新たな施策を見い出し、ホー
ル素子の安定的な動作を得ると共に、従来に無く高い感
度を有するホール素子の実現を可能ならしめるためにな
されたものである。
SUMMARY OF THE INVENTION In view of the above-mentioned disadvantages of the prior art, the present invention has found a new measure for preventing unnecessary leakage of operating current from a semiconductor crystal layer serving as a magnetic sensing portion, and has found a stable measure for a Hall element. The purpose of the present invention is to make it possible to realize a Hall element having a higher sensitivity than ever before as well as to obtain an efficient operation.

【0010】[0010]

【課題を解決するための手段】即ち、本発明はGaIn
As層を感磁部層とするホール素子に於いて、感磁部層
と当該感磁部層を堆積せしめるために使用された高抵抗
のInP基板との中間に、従来の如くの単一の化合物半
導体材料からなる単一結晶層ではなく、各々膜厚が1n
m以上100nm以下で且つキャリア濃度が1×1015
cm-3未満の、バンドギャップが互いに異なる2種類の
半導体材料からなる結晶層を交互に積層させてなるバッ
ファ層を挿入せしめることによりリーク電流が極めて少
なく、もってホール素子の特性の一つである不平衡率の
増大を抑制し、また高信頼性の新規なホール素子を提供
するものである。
That is, the present invention provides a GaIn
In a Hall element having an As layer as a magnetic sensing layer, a single element as in the related art is provided between the magnetic sensing layer and the high-resistance InP substrate used for depositing the magnetic sensing layer. Instead of a single crystal layer made of a compound semiconductor material, each has a thickness of 1n
m to 100 nm and a carrier concentration of 1 × 10 15
By inserting a buffer layer formed by alternately laminating crystal layers made of two kinds of semiconductor materials having different band gaps of less than cm -3 , the leak current is extremely small, which is one of the characteristics of the Hall element. An object of the present invention is to provide a novel Hall element that suppresses an increase in the unbalance rate and has high reliability.

【0011】通常、高感度のホール素子への応用を考慮
したGaInAsとAlInAsから成るヘテロ接合を
形成する場合には、格子整合性と電気的な絶縁の必要性
などの観点から半絶縁性の高抵抗InP単結晶基板が使
用される。実用上は比抵抗が106 Ω・cm程度以上の
InP基板を用いるのが一般的であり、これらは液体カ
プセル引上げ法(Liquid Encapsulated Czochralski ;
LEC法)やVB(Vertical Bridgman )法などと称さ
れる垂直ブリッジマン法などにより容易に製作でき、本
発明の実施にあたって材料の入手に困難が伴うことはな
い。
Usually, when a heterojunction made of GaInAs and AlInAs is formed in consideration of application to a high-sensitivity Hall element, a semi-insulating material having a high semi-insulating property is required from the viewpoints of lattice matching and the need for electrical insulation. A resistive InP single crystal substrate is used. In practice, it is common to use an InP substrate having a specific resistance of about 10 6 Ω · cm or more, and these are used in a liquid encapsulation method (Liquid Encapsulated Czochralski;
It can be easily manufactured by a vertical Bridgman method called LEC method or VB (Vertical Bridgman) method and the like, and there is no difficulty in obtaining the material when implementing the present invention.

【0012】この様な高抵抗InP基板上にInP、A
X In1-X As並びにGaX In1-X As(xはいず
れも混晶比を示し、通常は格子整合度の観点から〜0.
4≦x≦〜0.6が望ましい。)を成長させる。これら
の成長方法に特に制限はなく液相エピタキシャル成長法
(Liquid Phase Epitaxial;LPE法)に依っても、ま
た分子線エピタキシャル成長法(Molecular Beam Epita
xial;MBE法)や有機金属熱分解気相成長法、いわゆ
るMOVPE(Metal Organic Chemical VaporDepositi
on ;MOCVD、OMCVDやOMVPE法とも呼ば
れる。)法、MBE法とMOVPE法双方を複合させた
MO・MBE法などに依っても良い。しかし、現状では
基板として蒸気圧が比較的高いリン(元素記号P)を含
むInP結晶を用いていることから、結晶層の成長前に
加熱されたInP基板からのPの蒸発、離散を低減する
に都合の良いMOVPE法が多用されており、特にIn
の出発原料として結合価が1価のシクロペンタジエニル
インジウム(C55 In)を使用する常圧(大気圧)
MOCVD法では高品位のInP並びにGaInAsな
どを得ることが出来る。
On such a high-resistance InP substrate, InP, A
l x In 1 -x As and Ga x In 1 -x As (x each indicate a mixed crystal ratio, and usually from the viewpoint of lattice matching degree.
4 ≦ x ≦ 40.6 is desirable. Grow). These growth methods are not particularly limited, and may be based on a liquid phase epitaxial growth (LiPE) method or a molecular beam epitaxial growth method (Molecular Beam). Epita
xial; MBE method) or a metal organic decomposition vapor phase growth method, the so-called MOVPE (Me ta l Organic Chemical VaporDepositi
on: also called MOCVD, OMCVD or OMVPE method. ) Method, may be I Yi in such as MBE method and MOVPE method MO · MBE method was complex both. However, at present, since an InP crystal containing phosphorus (element symbol P) having a relatively high vapor pressure is used as a substrate, evaporation and separation of P from an InP substrate heated before growing a crystal layer are reduced. The MOVPE method, which is convenient for
Pressure (atmospheric pressure) using cyclopentadienyl indium (C 5 H 5 In) having a monovalent valence as a starting material for
By MOCVD, high-quality InP, GaInAs, and the like can be obtained.

【0013】更に具体的に説明を加えるに、例えばIn
PとGaX In1-X As(xは混晶比(組成比)を表
す。)とからなる積層された結晶層を得る場合、上述の
高抵抗InP単結晶基板上に先ず特定の膜厚とキャリア
濃度を有するGaX In1-X As結晶層を堆積させ、然
る後に特定の膜厚とキャリア濃度のInP結晶層を積層
させ、これらの半導体からなる交互に積層された結晶層
を得れば良い。この積層に際しては、堆積する順序に制
限は無く、また交互に積層させる結晶層の膜厚が同一で
あっても異なっていても良く、また同じ半導体材料から
なる結晶層に於いても結晶層の膜厚を積層する層毎に変
化させても構わない。要は、異なる半導体材料からなる
結晶層を交互に積層することにあり、その積層の数につ
いては、ホール素子の素子化工程等を勘案し考慮すれば
良い。同様に積層する半導体材料がGaX In1-X As
とAlX In1-X As、或はInPとAlX In1-X
sとである場合に於いても何等の差し支えは生じない。
[0013] To be more specific, for example, In
When obtaining a laminated crystal layer composed of P and Ga X In 1 -X As (x represents a mixed crystal ratio (composition ratio)), first, a specific thickness is formed on the above-described high-resistance InP single crystal substrate. And a Ga x In 1 -x As crystal layer having a carrier concentration are deposited, and then an InP crystal layer having a specific thickness and a carrier concentration is laminated to obtain alternately laminated crystal layers made of these semiconductors. Just do it. In this lamination, the order of deposition is not limited, and the thickness of the crystal layers alternately laminated may be the same or different, and even in the case of a crystal layer made of the same semiconductor material, The film thickness may be changed for each layer to be laminated. The point is that crystal layers made of different semiconductor materials are alternately stacked, and the number of the stacked layers may be considered in consideration of the element-forming process of the Hall element and the like. Similarly, the semiconductor material to be laminated is Ga x In 1 -x As.
And Al X In 1-X As, or InP and Al X In 1-X A
Even in the case of s, no problem occurs.

【0014】但し、上記の様な積層構造を構成する半導
体材料の各結晶層の膜厚は1nm以上とする。これは、
膜厚が1nm未満と極めて薄く、且つ積層する結晶層の
数が極端に少ない場合、本発明者らが鋭意、検討を加え
た結果では、InP単結晶基板からの不純物や結晶欠陥
のGaX In1-X As結晶層への伝幡、拡散を充分に防
止できず、感磁部層の品質の向上を妨げる事態を招いた
からである。従って、本発明に係わる積層構造を構成す
る各半導体層が少なくとも備えるべき最低の膜厚は1n
mとした。逆に、積層構造を構成する各半導体結晶層の
膜厚に上方の限界を設け100nmとするのは、後述す
るように素子化の際に採用されるメサエッチング工程の
煩雑さを回避することなど、主に素子化プロセスを勘案
してのことによる。即ち、上記の如くヘテロ接合を内包
する積層構造の結晶層の合計膜厚は、概ね5μm以下と
することにより、ホール素子の製作上必要とされるメサ
エッチングによるエッチング形状の差異に主に起因する
不平衡電圧の増大を防ぎ、しいては素子特性に於る不平
衡率の増大を抑制できる利点が生まれるからである。
However, the thickness of each crystal layer of the semiconductor material constituting the above-mentioned laminated structure is 1 nm or more. this is,
When the film thickness is extremely thin, less than 1 nm, and the number of stacked crystal layers is extremely small, the present inventors have conducted intensive studies and found that Ga x In of impurities and crystal defects from the InP single crystal substrate. This is because propagation and diffusion to the 1-X As crystal layer cannot be sufficiently prevented, and a situation that hinders improvement in the quality of the magnetosensitive layer has been caused. Therefore, the minimum film thickness that each semiconductor layer constituting the laminated structure according to the present invention should have at least is 1n.
m. Conversely, the upper limit of the thickness of each semiconductor crystal layer constituting the laminated structure is set to 100 nm to avoid complication of a mesa etching step employed in device fabrication as described later. This is mainly due to the consideration of the device fabrication process. That is, as described above, the total film thickness of the crystal layer having the laminated structure including the hetero junction is approximately 5 μm or less, which is mainly caused by the difference in the etching shape by the mesa etching required for manufacturing the Hall element. This is because there is an advantage that an increase in the unbalance voltage can be prevented, and an increase in the unbalance rate in the element characteristics can be suppressed.

【0015】また、積層構造を形成する各結晶層のキャ
リア濃度は、半導体材料の種類に拘らず1015cm-3
満とする。これはキャリア濃度を低く規定することによ
り当該積層構造に高抵抗性を付与させ、感磁部層からの
動作電流の外部層への漏洩を抑制するためである。異な
る半導体材料を各々、1層ずつ堆積させてなるのを1周
期とすれば、一般的には2から5周期からなる積層構造
を設ければ充分でる。
The carrier concentration of each crystal layer forming the laminated structure is less than 10 15 cm -3 irrespective of the kind of the semiconductor material. This is because by setting the carrier concentration to be low, high resistance is given to the laminated structure, and the leakage of the operating current from the magneto-sensitive layer to the external layer is suppressed. Each different semiconductor materials, if from being depositing one layer as one cycle, typically Ru Oh and enough to provide a laminated structure of two five periods.

【0016】以上の如くの構成によりホール素子用ウエ
ハの有する電子移動度の格段の向上が果たされる。この
原因につき、2次イオン質量分析法、オージェ(Auger
)電子分光法などの種々の物理分析法やフォトルミネ
ッセンス法などの光学的な分析法により解析を進めた結
果、積層構造を構成する各半導体材料のバンドギャップ
の差に起因して電子的な作用による閉じ込め効果も移動
度の向上に寄与していることが判明した。
With the above structure, the electron mobility of the Hall element wafer is remarkably improved. For this reason, secondary ion mass spectrometry, Auger
) As a result of conducting analysis by various physical analysis methods such as electron spectroscopy and optical analysis methods such as photoluminescence, the electronic action caused by the difference in band gap of each semiconductor material constituting the laminated structure It has been found that the confinement effect due to also contributes to the improvement of the mobility.

【0017】この様なヘテロ接合材料からホール素子を
製作するわけであるが、製作に際しては、別段、特殊な
工夫は必要とせず、公知のフォトリソグラフィー技術、
エッチング技術等による加工技術を駆使して所望の形状
に加工し、然る後に素子の動作電流を入力するための入
力電極及びホール電圧を出力するための出力電極となる
オーミック電極を形成し、最終的にはダイシング工程を
経て個々の素子に分離すれば良い。このオーミック性電
極の形成について工程を追って若干の説明を加えるに、
先ず、感磁部材料の表面に各々一対の入力及び出力電極
となす金属膜を真空蒸着法などに依り被着させる。一般
にホール素子では電子移動度の観点から感磁部層として
n形の伝導を呈する層を用いていることに対応して、n
形層に対しオーミック性電極を形成し得る金(Au)・
ゲルマニウム(Ge)合金などの金属電極材料がもっぱ
ら使用される。本発明に係わるホール素子に於ても、通
常の電極形成方法に従い入・出力電極を形成すれば良
く、オーミック電極の形成上、本発明の材料に係わる特
異な技術上の問題点、課題等は付与されない。尚、オー
ミック電極用の金属材料として上記のAu・Ge合金を
用いるのが一般的であるが、電極材料は特にこれに限定
する必要はないのは勿論である。然る後、被着せしめた
金属電極をオーミック電極となすべく熱処理を施す。こ
の熱処理は一般にアロイング(alloying)処理
と称され通常、Au・Ge合金のアロイイングは温度4
00℃前後で適宣、時間を設定して実施される。
A Hall element is manufactured from such a heterojunction material. However, no special device is required for manufacturing the Hall element.
Process into the desired shape by making full use of the processing technology such as etching technology, and then form the ohmic electrode which will be the input electrode for inputting the operating current of the element and the output electrode for outputting the Hall voltage. Specifically, it is only necessary to separate the individual devices through a dicing process. To add a little explanation for the formation of this ohmic electrode step by step,
First, a metal film forming a pair of input and output electrodes is deposited on the surface of the magnetic sensing part material by a vacuum deposition method or the like. In general, in the Hall element, from the viewpoint of electron mobility, a layer exhibiting n-type conduction is used as the magnetosensitive layer,
(Au), which can form an ohmic electrode for the shaped layer
Metal electrode materials such as germanium (Ge) alloys are used exclusively. In the Hall element according to the present invention, the input and output electrodes may be formed in accordance with a normal electrode forming method. Unique technical problems and problems related to the material of the present invention in forming an ohmic electrode are as follows. Not granted. The Au.Ge alloy described above is generally used as the metal material for the ohmic electrode, but it is needless to say that the electrode material is not particularly limited to this. After that, heat treatment is performed so that the deposited metal electrode becomes an ohmic electrode. This heat treatment is generally called an alloying treatment, and the alloying of the Au.Ge alloy is usually performed at a temperature of 4 ° C.
It is carried out at about 00 ° C. for an appropriate time.

【0018】上記のアロイング工程は、オーミック電極
の直下にキャリア濃度の高い層を設けることによって省
くことができる。例えば、本発明に係わるヘテロ接合材
料の場合には、感磁部層の上部に1019〜1020cm-3
程度の高キャリア濃度の低抵抗GaInAs層をエピタ
キシャル成長法により設け、当該低抵抗層にAu・Ge
合金を被着させれば、アロイングを施さずともオーミッ
ク電極と成すことが出来る。この方法をノンアロイコン
BR>タクト(non−alloy contact)と
言う。或はまた、エピタキシャル成長法ではなくイオン
注入法に依り、シリコン(Si)等を電極形成領域に選
択的に注入し、高キャリア濃度の低抵抗層を形成しても
良い。また、選択的な領域にイオン注入する、いわゆる
選択イオン注入に限らず感磁部層の表面全面に亘りSi
等を注入して高キャリア濃度層を形成し、然る後、電極
部となる領域以外の当該高キャリア濃度層を除去しても
ノンアロイコンタクトは形成され得る。
The above alloying step can be omitted by providing a layer having a high carrier concentration immediately below the ohmic electrode. For example, in the case of the heterojunction material according to the present invention, 10 19 to 10 20 cm −3 is provided on the magneto-sensitive layer.
A low-resistance GaInAs layer having a high carrier concentration is provided by an epitaxial growth method.
If an alloy is applied, an ohmic electrode can be formed without alloying. Use this method for non-alloycon
BR> tact (non-alloy contact). Alternatively, silicon (Si) or the like may be selectively implanted into the electrode formation region by an ion implantation method instead of the epitaxial growth method to form a low resistance layer having a high carrier concentration. Further, the ion implantation is not limited to the selective region, that is, so-called selective ion implantation.
A non-alloy contact can also be formed by forming a high carrier concentration layer by injecting, for example, and then removing the high carrier concentration layer other than a region to be an electrode portion.

【0019】上述の如くのプロセスを経て製作した新た
なホール素子を電気的な特性の評価に供した。また、従
来のGaInAs感磁部層とInPからなるバッファ層
との単純なヘテロ接合を設けてなるホール素子の特性も
併せて評価した。この特性の比較により、本発明に依る
材料では、メサエッチングによる隣接素子相互間の絶縁
分離以前の状態に於いて隣接する入力電極相互間のリー
ク電流が低減され、絶縁分離の完全化が果たされるばか
りか、バッファ層へ漏れる動作電流が削減されるため、
不平衡率の極めて低いホール素子が顕現されていること
が如実に示された。
A new Hall element manufactured through the above-described process was subjected to evaluation of electrical characteristics. Further, the characteristics of a conventional Hall element having a simple heterojunction between a GaInAs magnetic sensing layer and a buffer layer made of InP were also evaluated. By comparing the characteristics, in the material according to the present invention, the leak current between the adjacent input electrodes is reduced in the state before the isolation between the adjacent elements by the mesa etching, and the complete isolation is achieved. In addition, since the operating current leaking to the buffer layer is reduced,
It was clearly shown that a Hall element having an extremely low unbalance rate was revealed.

【0020】[0020]

【作用】バンドギャップ(band gap)の異なる
半導体材料を積層することにより、電子の閉じ込め効果
を利用して動作電流の不要な漏れを防止でき、不平衡率
の極めて低い高性能のGaInAsホール素子を提供で
きる。
By stacking semiconductor materials having different band gaps, unnecessary leakage of operating current can be prevented by utilizing the electron confinement effect, and a high-performance GaInAs Hall element having an extremely low unbalance ratio can be obtained. Can be provided.

【0021】[0021]

【実施例】本発明を実施例を基に詳細に説明する。図1
は本発明に係わるGaInAs結晶層とAlInAs結
晶層とを交互に積層させた上に感磁部となるヘテロ接合
構造を設けてなるホール素子の模式的な平面図である。
また、図2は図1に示した平面模式図の線A−A’の方
向に沿った垂直断面を拡大した概略図である。上記の構
造のエピタキシャルウエハの形成に当たっては、先ず鉄
(Fe)を添加してなる比抵抗が約10 7 Ω・cmの面
方位(100)の半絶縁性高抵抗InP単結晶基板(1
01)に、第一の層としてアンドープAlInAs層
(103)を約90nmの厚さで成長させた。当該Al
InAs層(103)のキャリア濃度をホール(Hal
l)効果法により測定した結果、1014cm-3であっ
た。然る後、この高抵抗AlInAs(103)とヘテ
ロ接合を形成する層としてキャリア濃度は8×1014
-3で混晶比を0.47としたアンドープn形Ga0.47
In0.53As(102)を10nmの厚さに堆積し、G
aInAsとAlInAsとからなるヘテロ接合を形成
した。本実施例に於いてはこの様なキャリア濃度と膜厚
を有するGaInAs結晶層を合計5層、またAlIn
As結晶層を合計6層連続させて堆積させた5周期か
なるバッファ(buffer)層となした。このバッファ層の
最表面は図2の拡大した断面模式図に示す如くAlIn
As(103)となっている。本実施例では、InP基
板上に先ずAlInAs結晶層を堆積し、この結晶層を
合計6層設けたが、結晶層の堆積の順序並びに積層する
結晶層の数についてはこの限りでなく、GaInAs結
晶層を先ず堆積し、その後AlInAs結晶層を堆積し
ても支障はない。但し、感磁部層としてGaInAsを
使用する関係から、積層構造の最表面はGaInAsで
はなくAlInAsとなる様に構成するとホール素子の
特性を設計する上でも好都合である。
EXAMPLES The present invention will be described in detail based on examples. FIG.
FIG. 2 is a schematic plan view of a Hall element according to the present invention in which a GaInAs crystal layer and an AlInAs crystal layer are alternately stacked and a heterojunction structure serving as a magnetic sensing portion is provided.
FIG. 2 is an enlarged schematic view of a vertical cross section along the line AA ′ in the schematic plan view shown in FIG . In forming the epitaxial wafer of the structure of the above SL, first semi-insulating high resistance InP single crystal substrate of iron added comprising specific resistance (Fe) is a plane orientation of about 10 7 Ω · cm (100) (1
01), an undoped AlInAs layer (103) was grown as a first layer to a thickness of about 90 nm. The Al
The carrier concentration of the InAs layer (103) is adjusted to a hole (Hal).
l) The result of measurement by the effect method was 10 14 cm -3 . Thereafter, the carrier concentration of the high resistance AlInAs (103) is 8 × 10 14 c as a layer for forming a heterojunction.
Undoped n-type Ga 0.47 with m −3 and mixed crystal ratio of 0.47
In 0.53 As (102) is deposited to a thickness of 10 nm,
A heterojunction composed of aInAs and AlInAs was formed. In this embodiment, a total of five GaInAs crystal layers having such a carrier concentration and a film thickness,
The As crystal layer without a total of six layers is continuously 5 deposited periodically whether we <br/> consisting buffer (buffer) layer. The outermost surface of this buffer layer is AlIn as shown in the enlarged schematic cross-sectional view of FIG.
As (103). In this embodiment, an AlInAs crystal layer was first deposited on the InP substrate, and a total of six crystal layers were provided. However, the order of deposition of the crystal layers and the number of crystal layers to be laminated are not limited thereto. There is no harm in depositing the layer first and then depositing the AlInAs crystal layer. However, from the viewpoint of using GaInAs as the magnetic sensing layer, it is convenient to design the characteristics of the Hall element if the outermost surface of the laminated structure is formed of AlInAs instead of GaInAs.

【0022】更に、積層構造の最表面をなすAlInA
s結晶層上に、硫黄(元素記号S)を添加してなるキャ
リア濃度が3×1016cm-3で膜厚が400nmである
感磁部層となるn形GaInAs結晶層(104)を設
けた。本実施例ではGaInAs、AlInAs双方共
に、結合価が一価のシクロペンタジエニルインジウム
(化学式:C55 In)をIn源とする常圧(大気
圧)MOVPE法で成長させたが、両層の成長方法は別
にこれに限定される必要性はなく、またAlInAs層
とGaInAs層とで成長方法が異なっても差し支えは
無い。
Further, AlInA which forms the outermost surface of the laminated structure
On the s crystal layer, an n-type GaInAs crystal layer (104) serving as a magneto-sensitive layer having a carrier concentration of 3 × 10 16 cm −3 and a thickness of 400 nm obtained by adding sulfur (element symbol S) is provided. Was. In this example, both GaInAs and AlInAs were grown by the atmospheric pressure (atmospheric pressure) MOVPE method using a monovalent cyclopentadienyl indium (chemical formula: C 5 H 5 In) as a source of valence. The method for growing the layer does not need to be limited to this, and the growth method may be different between the AlInAs layer and the GaInAs layer.

【0023】次に、最表層のn形GaInAs感磁部層
(104)を通常の有機フォトレジスト材で全面を被覆
し、その後、公知のフォトリソグラフィー技術とエッチ
ング技術を駆使し、入・出力電極を形成すべき領域並び
に感磁部となす領域(105)をメサ(mesa)形状
に加工した。本実施例ではメサエッチング加工には無機
酸を使用しているがエッチング溶剤はこれに限定される
ことはない。但し、GaInAs層の膜厚が厚過ぎると
前述した様にメサエッチングによる結晶層の剥離、除去
が進行するに伴い、結晶の方位(結晶軸)の違いに起因
するメサ形状の差異が顕著となり、このことがしいては
ホール素子の特性の一つである不平衡率の増大を招くこ
ととなる。
Next, the entire surface of the n-type GaInAs magnetic sensing portion layer (104) as the outermost layer is covered with a normal organic photoresist material. The region in which is to be formed and the region (105) to be a magnetically sensitive portion were processed into a mesa shape. In this embodiment, an inorganic acid is used for the mesa etching, but the etching solvent is not limited to this. However, if the thickness of the GaInAs layer is too thick, as described above, as the separation and removal of the crystal layer by mesa etching progress, the difference in the mesa shape due to the difference in the crystal orientation (crystal axis) becomes remarkable, This leads to an increase in the unbalance rate, which is one of the characteristics of the Hall element.

【0024】その後、GaInAs層(104)の表面
を再び有機レジスト材で全面に亘り被覆した。次に各
々、一対をなす入力電極(106)と出力電極(10
7)を形成すべき領域に存在する上記レジスト材のみを
公知のフォトリソグラフィ技術を利用して除去し、Ga
InAs層(104)の表面を露出せしめた。然る後、
Geを重量で約13%程度含むAu・Ge合金を真空蒸
着した。その後、当該ヘテロ接合材料を有機溶剤混合液
に浸し、レジストを剥離すると同時に蒸着によってレジ
スト材上に被着した素子の製作上、不要となるAu・G
e合金膜をいわゆるリフトオフ(lift-off)法で除去し
た。次に、電極となる合金膜を被着させたウエハを温度
420℃で数分間、オーミック性電極を得るために熱処
理(アロイング;alloying)した。ここでは、
感磁部としてn形を呈するGaInAs結晶層を用いて
いる関係から、上記のAu・Ge合金をオーミック性電
極材料として利用しているが、電極とする材料はこれに
限定されることはない上に、電極の構造の面からもAu
・Ge合金電極の表面上に更に金属膜を被着させた2層
構造、或は多層構造としても良い。更には、GaInA
s感磁部結晶層上に〜1019cm-3と高いキャリア濃度
を有する低抵抗のGaInAs結晶層を堆積させ、アル
ミニウム(Al)やAu等の単体を被着してもオーミッ
ク性電極、いわゆるノンアロイ(non-alloy )オーミッ
クコンタクトを得ることも出来る。
Thereafter, the entire surface of the GaInAs layer (104) was again covered with an organic resist material. Next, a pair of the input electrode (106) and the output electrode (10
7) Only the above-mentioned resist material existing in the region to be formed is removed using a known photolithography technique, and Ga is removed.
The surface of the InAs layer (104) was exposed. After that,
An Au.Ge alloy containing about 13% by weight of Ge was vacuum deposited. Thereafter, the heterojunction material is immersed in an organic solvent mixture, the resist is peeled off, and at the same time Au / G becomes unnecessary in the manufacture of an element deposited on the resist material by vapor deposition.
The e-alloy film was removed by a so-called lift-off method. Next, the wafer on which the alloy film serving as an electrode was deposited was subjected to heat treatment (alloying) at 420 ° C. for several minutes to obtain an ohmic electrode. here,
The Au.Ge alloy is used as an ohmic electrode material because of the use of an n-type GaInAs crystal layer as the magnetic sensing portion, but the material for the electrode is not limited to this. Also, from the viewpoint of the electrode structure, Au
A two-layer structure in which a metal film is further adhered on the surface of the Ge alloy electrode, or a multilayer structure may be used. Further, GaInA
A low-resistance GaInAs crystal layer having a carrier concentration as high as −10 19 cm −3 is deposited on the s magnetic sensing part crystal layer, and an ohmic electrode, so-called, is formed even when a simple substance such as aluminum (Al) or Au is deposited. A non-alloy ohmic contact can also be obtained.

【0025】更に、上記工程を経たヘテロ接合材料の上
記の入・出力電極部以外の領域の表面をプラズマCVD
法を用いて二酸化珪素(SiO2 )膜(108)により
被覆した。次に、酸化膜(108)上に一般的なフォト
レジスト材を塗布し、素子を個別に分離させるための直
線上の溝(109)(通常、ダイシングライン(dic
ing line)と称す。)に相当する部分のフォト
レジスト材を公知のフォトリソグラフィー法に依って剥
離し、GaInAs結晶層(104)の表面を選択的に
露出せしめた。然る後、ダイシングライン(109)に
相当する露出したGaInAs結晶層(104)の表面
を無機酸によりエッチングし、素子を個別に分離するに
適する深さ迄、当該GaInAs結晶層(104)を除
去した。
Further, the surface of the region other than the above-mentioned input / output electrode portion of the heterojunction material having undergone the above-mentioned steps is subjected to plasma CVD.
It was covered with a silicon dioxide (SiO 2 ) film (108) using the method. Next, a general photoresist material is applied on the oxide film (108), and a linear groove (109) (typically a dicing line (dic) is used to separate the elements.
ing line). The portion of the photoresist material corresponding to ()) was peeled off by a known photolithography method to selectively expose the surface of the GaInAs crystal layer (104). Thereafter, the surface of the exposed GaInAs crystal layer (104) corresponding to the dicing line (109) is etched with an inorganic acid, and the GaInAs crystal layer (104) is removed to a depth suitable for individually separating the elements. did.

【0026】かくの如く製作したホール素子の電気的特
性、特に隣接するホール素子間に於ける入力電極間のリ
ーク電流の大小を比較した。その結果、本発明に依るG
aInAsホール素子ではダイシングラインを挟む最近
接の入力電極間に10Vの電圧を印加した際に測定され
るリーク電流は、従来例に比較し約1桁以上低減され数
百pAから数nAとなった。ここで、従来例とはキャリ
ア濃度が2×1015cm-3程度のn形のInPをバッフ
ァ層として採用し、これとGa0.47In0.53As感磁部
層とからなるヘテロ接合を設けてなるGaInAsホー
ル素子を指す。また、本発明に係わるホール素子では不
平衡率が約6%と従来のホールの8〜10%の不平衡率
に比べ低減されていることが確認された。
The electrical characteristics of the Hall elements manufactured as described above, in particular, the magnitude of the leak current between the input electrodes between adjacent Hall elements were compared. As a result, G according to the present invention
In the aInAs Hall element, the leakage current measured when a voltage of 10 V is applied between the nearest input electrodes sandwiching the dicing line is reduced by about one digit or more compared to the conventional example, and changes from several hundred pA to several nA. . Here, the conventional example employs an n-type InP having a carrier concentration of about 2 × 10 15 cm −3 as a buffer layer, and a heterojunction comprising this and a Ga 0.47 In 0.53 As magnetosensitive layer. GaInAs refers to a Hall element. Further, it was confirmed that the unbalance rate of the Hall element according to the present invention was reduced to about 6%, which was 8 to 10% of the conventional hole.

【0027】[0027]

【発明の効果】本発明によれば動作電流のリークを防止
でき、安定的な動作を示し不平衡率の低い高感度なホー
ル素子を提供できる。
According to the present invention, it is possible to prevent leakage of operating current, provide a stable operation, and provide a highly sensitive Hall element having a low unbalance ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるGaInAsホール素子の概略
を示す平面図である。
FIG. 1 is a plan view schematically showing a GaInAs Hall element according to the present invention.

【図2】図1に掲げる本発明に係わるホール素子の直線
A−A’の方向に沿った垂直断面を拡大して示した模式
図である。
FIG. 2 is an enlarged schematic view showing a vertical cross section of the Hall element according to the present invention shown in FIG. 1 along a direction of a line AA ′.

【符号の説明】[Explanation of symbols]

(101) Fe添加高抵抗InP単結晶基板 (102) GaInAs結晶層 (103) AlInAs結晶層 (104) GaInAs感磁部層 (105) メサ領域 (106) 入力電極 (107) 出力電極 (108) 酸化膜 (109) ダイシングライン (101) Fe-doped high-resistance InP single crystal substrate (102) GaInAs crystal layer (103) AlInAs crystal layer (104) GaInAs magnetosensitive layer (105) Mesa region (106) Input electrode (107) Output electrode (108) Oxidation Membrane (109) Dicing line

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−5882(JP,A) 特開 昭60−198877(JP,A) 特開 昭57−177583(JP,A) 特開 平5−275767(JP,A) 1992年秋季応用物理学会学術講演会講 演予稿集,No.3,p.1078,16a− SZC−16 (58)調査した分野(Int.Cl.7,DB名) H01L 43/06 G01R 33/07 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-5882 (JP, A) JP-A-60-198877 (JP, A) JP-A-57-177583 (JP, A) JP-A-5-1982 275767 (JP, A) Proceedings of the 1992 Fall Meeting of the Japan Society of Applied Physics, No. 3, p. 1078, 16a- SZC-16 (58) Fields investigated (Int. Cl. 7 , DB name) H01L 43/06 G01R 33/07 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高抵抗のリン化インジウム(InP)単結
晶基板と、該InP単結晶基板上に設けられたバッファ
層と、該バッファ層上に設けられたヒ化ガリウム・イン
ジウム(GaInAs)からなる感磁部層とを備えたホ
ール素子に於いて、前記バッファ層が、各々膜厚が1n
m以上100nm以下で且つキャリア濃度が1×1015
cm-3未満の、バンドギャップが互いに異なる2種類の
半導体材料からなる結晶層を交互に積層させてなること
を特徴とするホール素子。
1. A high-resistance indium phosphide (InP) single crystal substrate, a buffer layer provided on the InP single crystal substrate, and gallium indium arsenide (GaInAs) provided on the buffer layer. Wherein the buffer layers each have a thickness of 1n.
m to 100 nm and a carrier concentration of 1 × 10 15
A Hall element comprising crystal layers made of two kinds of semiconductor materials having different band gaps, each having a band gap of less than cm -3 , which are alternately stacked.
【請求項2】上記のバッファ層は、InPとGaInA
sからなる結晶層を交互に積層させてなることを特徴と
する請求項1に記載のホール素子。
2. The method according to claim 1, wherein the buffer layer comprises InP and GaInA.
2. The Hall element according to claim 1, wherein crystal layers made of s are alternately stacked.
【請求項3】上記のバッファ層は、ヒ化アルミニウム・
インジウム(AlInAs)とGaInAsからなる結
晶層を交互に積層させてなることを特徴とする請求項1
に記載のホール素子。
3. The method according to claim 1, wherein the buffer layer is made of aluminum arsenide.
2. The method according to claim 1, wherein crystal layers made of indium (AlInAs) and GaInAs are alternately stacked.
2. A Hall element according to claim 1.
【請求項4】上記のバッファ層は、AlInAsとIn
Pからなる結晶層を交互に積層させてなることを特徴と
する請求項1に記載のホール素子。
4. The method according to claim 1, wherein the buffer layer comprises AlInAs and In.
2. The Hall element according to claim 1, wherein crystal layers made of P are alternately stacked.
JP05251393A 1993-03-12 1993-03-12 Magnetoelectric conversion element Expired - Fee Related JP3287054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05251393A JP3287054B2 (en) 1993-03-12 1993-03-12 Magnetoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05251393A JP3287054B2 (en) 1993-03-12 1993-03-12 Magnetoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH06268278A JPH06268278A (en) 1994-09-22
JP3287054B2 true JP3287054B2 (en) 2002-05-27

Family

ID=12916823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05251393A Expired - Fee Related JP3287054B2 (en) 1993-03-12 1993-03-12 Magnetoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3287054B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1992年秋季応用物理学会学術講演会講演予稿集,No.3,p.1078,16a−SZC−16

Also Published As

Publication number Publication date
JPH06268278A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
US4978938A (en) Magnetoresistor
US4926154A (en) Indium arsenide magnetoresistor
Delfanazari et al. On-chip hybrid superconducting-semiconducting quantum circuit
JP3069545B2 (en) Laminate including compound semiconductor and method of manufacturing the same
JP3287054B2 (en) Magnetoelectric conversion element
EP0375107A2 (en) Improved magnetoresistors
US5117543A (en) Method of making indium arsenide magnetoresistor
JP3404815B2 (en) GaInAs two-dimensional electron Hall element
JP2597774Y2 (en) Hall element
JP2000138403A (en) Thin film magnetic sensor
JPH0342707B2 (en)
JP2597105Y2 (en) Hall element
JPH077194A (en) Hall element
JP3395277B2 (en) Magnetoelectric conversion element
JP3456254B2 (en) Epitaxial wafer for Hall element and method of manufacturing the same
JP3404843B2 (en) Manufacturing method of Hall element
JP3287053B2 (en) GaInAs magnetoelectric transducer
JP3399053B2 (en) Heterojunction Hall element
JP3289371B2 (en) Heterojunction Hall element
JP3438294B2 (en) Hall element
JP3399046B2 (en) Hall element
JP3399044B2 (en) Hall element and method of manufacturing the same
JP2600682Y2 (en) Heterojunction Hall element
JP3399057B2 (en) Magnetoelectric conversion element
JP3220879B2 (en) Magnetoelectric conversion element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees