JP3289371B2 - Heterojunction Hall element - Google Patents

Heterojunction Hall element

Info

Publication number
JP3289371B2
JP3289371B2 JP05251493A JP5251493A JP3289371B2 JP 3289371 B2 JP3289371 B2 JP 3289371B2 JP 05251493 A JP05251493 A JP 05251493A JP 5251493 A JP5251493 A JP 5251493A JP 3289371 B2 JP3289371 B2 JP 3289371B2
Authority
JP
Japan
Prior art keywords
layer
hall element
inp
gainas
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05251493A
Other languages
Japanese (ja)
Other versions
JPH06268279A (en
Inventor
隆 宇田川
賢二郎 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP05251493A priority Critical patent/JP3289371B2/en
Publication of JPH06268279A publication Critical patent/JPH06268279A/en
Application granted granted Critical
Publication of JP3289371B2 publication Critical patent/JP3289371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】ヒ化ガリウム(GaAs)とヒ化
アルミニウム・ガリウム(AlGaAs)、或はまたG
aInAsとInPなどから成る半導体異種接合(ヘテ
ロ接合)を具備してなるヘテロ接合ホール素子に係わ
り、特にその素子の母体材料となる結晶層の電子移動度
を向上させ、もってホール素子の感度を上昇させる方法
に関する。
BACKGROUND OF THE INVENTION Gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) or G
The present invention relates to a heterojunction Hall element having a semiconductor heterojunction (heterojunction) made of, for example, InAs and InP. In particular, the electron mobility of a crystal layer serving as a base material of the element is improved, thereby increasing the sensitivity of the Hall element. On how to make it.

【0002】[0002]

【従来の技術】磁界を検知し、その強度に応じて電気信
号を発生する、いわゆる磁電変換素子の一つとしてホー
ル(Hall)素子が知られている。このホール素子は
磁場を印加した際に、ホール素子を構成する半導体内の
電子の運動によって発生するホール(Hall)電圧を
被検知量とする一種の磁気センサーであり、回転、位置
検出センサー等として産業界の広範囲に亘り利用されて
いる。
2. Description of the Related Art A Hall element is known as one of the so-called magnetoelectric conversion elements which detects a magnetic field and generates an electric signal according to the strength. This Hall element is a kind of magnetic sensor that uses a Hall (Hall) voltage generated by the movement of electrons in the semiconductor constituting the Hall element when a magnetic field is applied as a detection amount. It is used extensively in industry.

【0003】ホール素子用の半導体材料としてはシリコ
ン(Si)、ゲルマニウム(Ge)などの元素半導体の
他、アンチモン化インジウム(InSb)、ヒ化インジ
ウム(InAs)やヒ化ガリウム(GaAs)等の元素
周期律表の第III族に属する元素と同じく第V族に属
する二つの元素を化合させてなるIII−V族2元化合
物半導体も使用される。
As semiconductor materials for the Hall element, in addition to elemental semiconductors such as silicon (Si) and germanium (Ge), elements such as indium antimonide (InSb), indium arsenide (InAs) and gallium arsenide (GaAs) are used. A III-V binary compound semiconductor obtained by combining two elements belonging to Group V as well as an element belonging to Group III of the periodic table is also used.

【0004】しかし、従来の化合物半導体からなるホー
ル素子を見れば、用いる半導体の物性に依ってホール素
子の特性上に一長一短が存在する。例えば、GaAsか
ら成るホール素子はGaAs半導体のバンドギャップが
比較的大きい事により素子特性の温度変化は少ないもの
の、逆に電子移動度が多少低いため積感度はInSbか
ら成るホール素子に比較して低いという欠点がある。一
方、InSbホール素子はInSb半導体のバンドギャ
ップが低いため特性の温度変化は大きいが、高い積感度
が得られる利点を有している。
However, looking at conventional Hall elements made of compound semiconductors, there are advantages and disadvantages in the characteristics of Hall elements depending on the physical properties of the semiconductor used. For example, a Hall element made of GaAs has a small temperature change in element characteristics due to a relatively large band gap of a GaAs semiconductor. On the contrary, the product sensitivity is lower than that of a Hall element made of InSb because electron mobility is somewhat low. There is a disadvantage that. On the other hand, the InSb Hall element has a large temperature change in characteristics due to the low band gap of the InSb semiconductor, but has an advantage of obtaining high product sensitivity.

【0005】最近では、自動車エンジンの精密な回転制
御等、高温環境下に於ける精密センシング技術の必要性
が高まり、高いホール電圧を出力する能力を有し、且つ
温度による素子特性の変化を低く抑制した新たな高性能
ホール素子が要望されるに至っている。ここで、ホール
電圧は半導体材料のホール(Hall)係数に依存し、
ホール係数が大きい程ホール電圧の出力能力は高い。ま
た、このホール係数は半導体材料の移動度に比例して増
加する。従って、高いホール出力電圧を得るには、即ち
高感度なホール素子を得るには高い電子移動度を発現す
る半導体材料を使用する必要がある。
Recently, the need for precision sensing technology in a high-temperature environment, such as precise rotation control of an automobile engine, has increased, and the device has a capability of outputting a high Hall voltage and has a low change in element characteristics due to temperature. There has been a demand for a new suppressed high-performance Hall element. Here, the Hall voltage depends on the Hall coefficient of the semiconductor material,
The larger the Hall coefficient, the higher the output capability of the Hall voltage. The Hall coefficient increases in proportion to the mobility of the semiconductor material. Therefore, in order to obtain a high Hall output voltage, that is, to obtain a high-sensitivity Hall element, it is necessary to use a semiconductor material that exhibits high electron mobility.

【0006】このため、産業界からの高性能ホール素子
の要望と相まって半導体材料の物性面からの検討も進
み、極く最近では従来と同様の III−V族化合物半導体
でも三種類の元素を混合させてなるヒ化ガリウム・イン
ジウム(GaInAs)三元混晶とリン化インジウム
(InP)から構成されるヘテロ接合を具備した材料を
高感度ホール素子の材料として応用する試みもなされて
いる(奥山 忍他、1992年秋季第53回応用物理学
会学術講演会予稿集No.3(応用物理学会発行)、1
6a−SZC−16、1078頁)。この新たなGaI
nAsホール素子は特性の温度変化も比較的小さく、且
つまた室温での電子移動度が極めて高いために優れた積
感度を有する。以下、ヘテロ接合ホール素子の一例とし
てこのGaInAsヘテロ接合ホール素子を挙げ、本発
明に説明を加える。
[0006] For this reason, in consideration of the demand for high-performance Hall elements from the industry, studies have been made on the physical properties of semiconductor materials. More recently, three types of elements have been mixed even in the same group III-V compound semiconductors as before. Attempts have also been made to apply a material having a heterojunction composed of ternary mixed crystal of gallium indium arsenide (GaInAs) and indium phosphide (InP) as a material for a high-sensitivity Hall element (Shinobu Okuyama) Et al., Proceedings of the 53rd Autumn Meeting of the Japan Society of Applied Physics, 1992, No. 3
6a-SZC-16, p. 1078). This new GaI
An nAs Hall element has a relatively small change in characteristics with temperature and an extremely high electron mobility at room temperature, so that it has excellent product sensitivity. Hereinafter, this GaInAs heterojunction Hall element will be described as an example of the heterojunction Hall element, and the present invention will be described.

【0007】この様なGaInAsホール素子は、通常
Feを適量、添加してなる高抵抗の半絶縁性InP単結
晶基板上に成長させたGaX In1-X As(x は混晶比
(組成比)を表す。)膜を感磁部として構成される。し
かしながら、単にGaX In1-X As膜をFe添加In
P単結晶基板上に堆積させただけではこのGaX In
1-X As膜に高移動度が安定的に付与されるとは限らな
い。それは主に、基板として利用する高抵抗InP単結
晶中に含有されるFe不純物が、当該InP単結晶上に
所望のGaX In1-X As膜をエピタキシャル成長させ
るべく或る高温の成長環境下に曝した際に、InP単結
晶基板側より成長しつつあるGaX In1- X As膜の内
部へ熱拡散することに起因している。即ち、Fe不純物
がいわゆる電子トラップ(trap)として働き、電子の移
動を妨げるために移動度の向上を阻害するからである。
これを防止する目的で通常は、高抵抗の例えば、InP
層をバッファ(buffer)層(緩衝層)としてGaX In
1-X As感磁部膜とInP基板との中間に挿入し、In
P基板結晶中の不純物なり或はまた結晶欠陥なりの感磁
部層への伝幡を低減し、電子移動度を上昇させる試みも
なされている。
[0007] Such a GaInAs Hall element is generally composed of Ga x In 1 -x As (x is a mixed crystal ratio (composition) which is grown on a high-resistance semi-insulating InP single crystal substrate to which an appropriate amount of Fe is added. The film is configured as a magnetically sensitive portion. However, the Ga x In 1-x As film is simply made of Fe-added In.
This Ga x In is merely deposited on a P single crystal substrate.
High mobility is not always provided stably to the 1-X As film. This is mainly because Fe impurities contained in a high-resistance InP single crystal used as a substrate are exposed to a certain high-temperature growth environment to epitaxially grow a desired Ga X In 1-X As film on the InP single crystal. This is due to thermal diffusion into the Ga x In 1- x As film growing from the InP single crystal substrate side when exposed. That is, the Fe impurity acts as a so-called electron trap and hinders the movement of electrons, thereby hindering the improvement of the mobility.
In order to prevent this, a high resistance, for example, InP
Ga x In as a buffer layer (buffer layer)
1-X As inserted between the magneto-sensitive film and the InP substrate,
Attempts have also been made to reduce the propagation of impurities or crystal defects in the P-substrate crystal to the magnetosensitive layer and increase the electron mobility.

【0008】しかし、この様なInP結晶からなるバッ
ファ層を高抵抗のInP結晶上に設けても、安定的にG
XIn1-XAs感磁部層の電子移動度を向上させるに至
っていないのが現状である。GaInAs感磁部層に高
移動度特性を安定的に付与するには、例えば基板として
使用するFe添加半絶縁性InP単結晶内のFe濃度を
或る範囲に規定し、その条件を満たす基板のみを使用す
ることも考えられ、且つまたフレームレス(flameles
s)原子吸光分光分析法や高周波誘導アルゴンプラズマ
分光分析法などの微量定量分析手法によるFe不純物の
定量分析結果を基に、所望のFe濃度を有するInP半
絶縁性基板を適宣選択すれば良いが、基板結晶中のFe
不純物の分析や基板結晶の選択分別の操作のための工程
を付与しなければならず、工程の複雑さを伴うのも事実
である。
However, even if such a buffer layer made of InP crystal is provided on a high-resistance InP crystal, the G layer can be stably formed.
not yet been improve the electron mobility of a X In 1-X As sensing section layers at present. In order to stably impart high mobility characteristics to the GaInAs magnetosensitive layer, for example, the Fe concentration in a Fe-added semi-insulating InP single crystal used as a substrate is defined within a certain range, and only a substrate satisfying the conditions is specified. It is also conceivable to use flameless and flameless
s) An InP semi-insulating substrate having a desired Fe concentration may be appropriately selected based on the results of quantitative analysis of Fe impurities by a micro-quantitative analysis technique such as atomic absorption spectroscopy or high-frequency induction argon plasma spectroscopy. Is Fe in the substrate crystal
It is necessary to provide a process for analyzing impurities and for selectively separating the substrate crystal, and it is a fact that the process is complicated.

【0009】一方、半絶縁性InP結晶基板中に添加さ
れてなるFe不純物の量に対応して、InP結晶層をバ
ッファ層として利用する場合にあってはこのFe濃度の
大小に応じてバッファ層の膜厚を適宣増減させれば良い
と考えられる。しかし、これまた煩雑な操作であり、G
aInAs感磁部層の電子移動度の低下の防止を目的と
して、当該GaInAs結晶層へのInP基板側から拡
散してくるFe不純物の混入量を一定にせんがために、
InP基板結晶毎にバッファ層の層厚を変化させるのは
容易なことではなく、GaInAsホール素子の高感度
化のためにGaInAs感磁部層が具備すべき電子移動
度を基準にした良品収率から判断しても、安定して良品
収率を上昇させ得る方法とはなり得ていないのが現状で
ある。
On the other hand, when the InP crystal layer is used as a buffer layer in accordance with the amount of Fe impurities added to the semi-insulating InP crystal substrate, the buffer layer is used in accordance with the magnitude of the Fe concentration. It is thought that the thickness of the film may be appropriately increased or decreased. However, this is also a complicated operation, and G
In order to prevent a decrease in the electron mobility of the aInAs magnetosensitive layer, the amount of Fe impurities diffused from the InP substrate side into the GaInAs crystal layer is kept constant.
It is not easy to change the thickness of the buffer layer for each InP substrate crystal, and a good yield based on the electron mobility that should be provided in the GaInAs magnetosensitive layer in order to increase the sensitivity of the GaInAs Hall element. Judging from the above, at present, it cannot be a method capable of stably increasing the yield of non-defective products.

【0010】係る事態を克服し、GaInAs感磁部層
の電子移動度を向上させるべく、GaInAs感磁部結
晶層の電子移動度に強く影響を与える因子につき鋭意検
討を加えた結果、当該電子移動度はヘテロ接合界面近傍
のキャリア濃度の分布に極めて大きく左右されることを
見出し、本発明に至ったものである。
In order to overcome such a situation and to improve the electron mobility of the GaInAs magnetically sensitive layer, the inventors conducted intensive studies on factors that strongly influence the electron mobility of the GaInAs magnetically sensitive crystal layer. The inventors have found that the degree is greatly influenced by the distribution of the carrier concentration near the heterojunction interface, and have reached the present invention.

【0011】[0011]

【発明が解決しようとする課題】煩雑な操作や工程を伴
わずに、ヘテロ接合ホール素子の母体材料となるヘテロ
接合結晶層の高移動度化を達成する新たな手法を提供す
る。
SUMMARY OF THE INVENTION The present invention provides a new technique for achieving a high mobility of a heterojunction crystal layer serving as a base material of a heterojunction Hall element without complicated operations and steps.

【0012】[0012]

【課題を解決するための手段】バンドギャップを異にす
る半導体結晶層から成るヘテロ接合ホール素子に於い
て、バンドギャップの小さい半導体結晶層のキャリア濃
度をバンドギャップの大きい半導体結晶層のそれよりも
大きくし、且つバンドギャップの小さい半導体結晶層の
ヘテロ界面近傍に於けるキャリア濃度を、該バンドギャ
ップの小さな半導体結晶層の内部のヘテロ界面近傍以外
の部分のキャリア濃度に比較し高く設定することによ
り、ヘテロ接合ホール素子に高い電子移動度を付与する
ことができる。
SUMMARY OF THE INVENTION In a heterojunction Hall element comprising semiconductor crystal layers having different band gaps, the carrier concentration of a semiconductor crystal layer having a small band gap is made larger than that of a semiconductor crystal layer having a large band gap. By increasing the carrier concentration in the vicinity of the hetero-interface of the semiconductor crystal layer having a small band gap and making it higher than that in the portion other than the vicinity of the hetero-interface in the semiconductor crystal layer having the small band gap, High electron mobility can be imparted to the heterojunction Hall element.

【0013】以下、上述と同じくGaInAs/InP
ヘテロ接合ホール素子を例にしてより詳細に説明する。
通常、GaInAs/InPヘテロ接合ホール素子の形
成に当たっては、半絶縁性を有する高抵抗のInP単結
晶基板が使用される。実用上は比抵抗が106 Ω・cm
以上のInP単結晶を基板を用いるのが一般的であり、
これらの結晶は液体封止チョクラルスキー(Liquid Enc
apsulated Czochralski;LEC)法や、最近ではVB
(Vertical Bridgman)法と称される垂直ブリッジマン
法等により容易に製作できる。また、Fe添加InP単
結晶中のFe不純物が結晶層の電子移動度等の電気的特
性に与える悪影響が懸念される場合にあっては、InP
単結晶を塩酸等により溶解し、純水などで定溶とし原子
吸光分光分析法や高周波誘導アルゴンプラズマ分光分析
法などの湿式機器分析法、或は2次イオン質量分析法な
ど固体機器分析法等によりFe不純物の濃度を定量分析
し、所望のFe濃度を有する結晶を選択すれば事足り
る。従って、本発明に係わるGaInAs/GaInA
sホール素子の実現に必要な、Fe濃度がある程度の範
囲にあるInP基板結晶の入手に支障を来す恐れはな
い。
Hereinafter, GaInAs / InP as described above is used.
This will be described in more detail by taking a heterojunction Hall element as an example.
Usually, in forming a GaInAs / InP heterojunction Hall element, a high-resistance semi-insulating InP single crystal substrate is used. Practical resistance is 10 6 Ω · cm
It is common to use a substrate of the above InP single crystal,
These crystals are liquid sealed Czochralski (Liquid Enc
apsulated Czochralski (LEC) method and recently VB
(Vertical Bridgman) method can be easily manufactured by the vertical Bridgman method or the like. In addition, when there is a concern that the Fe impurity in the Fe-doped InP single crystal may adversely affect the electrical characteristics such as the electron mobility of the crystal layer, the InP
A single crystal is dissolved with hydrochloric acid, etc., and is dissolved in pure water, etc., and wet instrument analysis such as atomic absorption spectrometry or high-frequency induction argon plasma spectrometry, or solid instrument analysis such as secondary ion mass spectrometry It suffices to quantitatively analyze the concentration of the Fe impurity by using and select a crystal having a desired Fe concentration. Therefore, the GaInAs / GaInA according to the present invention.
There is no danger of obstructing the acquisition of an InP substrate crystal having an Fe concentration within a certain range necessary for realizing the s Hall element.

【0014】このInP単結晶基板上にInP層とn形
GaX In1-X As層とを堆積しヘテロ接合を形成する
が、これらのエピタキシャル層の積層順序に制限はな
く、InP単結晶基板上に先ずInP層を成長させ、然
る後GaInAsを堆積させても良く、これとは逆の順
序で堆積させても差し支えはない。しかし、通常は感磁
部とするGaInAs層の電子移動度を少なからず向上
させるために、InP単結晶基板からのFe不純物のG
aInAsエピタキシャル成長層への拡散の抑制などを
期して、先ずInP単結晶基板上にInPをバッファ
(buffer)層として堆積するのが一般的である。このバ
ッファ層を設けることにより結晶欠陥等のエピタキシャ
ル成長層への伝幡を抑制するなどの効果を生じるため、
GaInAs層の電子移動度をいたずらに低下させずに
GaInAsホール素子の高感度特性を保持できるなど
の利点を招く。
[0014] While forming the deposited heterojunction the InP layer and the n-type Ga X In 1-X As layer to the InP single crystal substrate is not limited to the stacking order of these epitaxial layers, the InP single crystal substrate An InP layer may be first grown on it, followed by GaInAs deposition, or it may be deposited in the reverse order. However, in order to improve the electron mobility of the GaInAs layer, which is usually a magnetic sensing portion, the Fe impurity G from the InP single crystal substrate is required.
Generally, first, InP is generally deposited as a buffer layer on an InP single crystal substrate in order to suppress diffusion into the aInAs epitaxial growth layer. Providing this buffer layer produces effects such as suppressing propagation of crystal defects and the like to the epitaxial growth layer.
The advantage is that the high sensitivity characteristic of the GaInAs Hall element can be maintained without unnecessarily reducing the electron mobility of the GaInAs layer.

【0015】上記のInPバッファ層並びにGaInA
s層の成長方法には、特に制限はなく、液相エピタキシ
ャル成長法(Liquid Phase Epitaxial;LPE法)、分
子線エピタキシャル成長法(Molecular Beam Eptaxial
;MBE法)や有機金属熱分解気相成長法、いわゆる
MOVPE(Metal Organic Vapor Phase Epitaxial;M
OCVD法とかOMVPE法とも呼ばれる場合もあ
る。)、或はまたMOVPEとMBE双方を複合させた
MO・MBE法などが適用できると考えられる。しか
し、現状では蒸気圧が比較的高いリン(P)を含むIn
P等の半導体薄膜の成長にはMBE法よりも化学量論的
な組成制御性の観点からもっぱらMOVPE法が多用さ
れており、特にInの出発原料として結合価が1価のシ
クロペンタジエニルインジウム(C55In)を使用す
るMOVPE法では、従来困難とされていた常圧(大気
圧)下に於いても高品位のInP並びにGaInAsな
どを得ることができる。また、InP層をMOVPE法
で成長させ、Pを含まないGaXIn1-XAs層はMB
E法で成長させるなど層毎に成長方法を異にしても支障
は無く、一つの成長法で当該ヘテロ接合を形成する各層
を設ける必要はなく、層毎に成長方法を異にしても良い
のは勿論である。
The above InP buffer layer and GaInA
The growth method of the s layer is not particularly limited, and is, for example, a liquid phase epitaxial growth method (LPE method) or a molecular beam epitaxial growth method (Molecular Beam Eptaxial method).
A metal organic vapor phase epitaxy (MOVPE) method or a metal organic vapor phase epitaxy (MOVPE) method.
It may be called OCVD or OMVPE. ) Or an MO / MBE method in which both MOVPE and MBE are combined. However, at present, In containing phosphorus (P) having a relatively high vapor pressure In
The MOVPE method is frequently used for growing a semiconductor thin film such as P from the viewpoint of stoichiometric composition control rather than the MBE method. In particular, a monovalent cyclopentadienyl indium having a valence of 1 is used as a starting material for In. In the MOVPE method using (C 5 H 5 In), high-quality InP, GaInAs, and the like can be obtained even under normal pressure (atmospheric pressure), which has been conventionally difficult. Further, an InP layer is grown by the MOVPE method, and a Ga x In 1 -x As layer containing no P is formed by MB.
There is no problem even if the growth method is different for each layer such as by the E method, and it is not necessary to provide each layer forming the heterojunction by one growth method, and the growth method may be different for each layer. Of course.

【0016】また、前記GaX In1-X Asの混晶比x
については、0.37≦x≦0.57とするのが望まし
い。何故ならばInPに格子整合するGaX In1-X
sの混晶比x=0.47 から混晶比がずれるに伴い、Ga
X In1-X AsとInPとの格子定数の差、即ち格子不
整合度も顕著となり、多量の結晶欠陥等を誘発し結晶性
の低下を招くばかりか電子移動度の低下等の電気的特性
をも悪化させ、ホール素子の特性上積感度の改善に多大
な支障を来すからである。
Further, the mixed crystal ratio x of Ga x In 1 -x As is as follows.
Is desirably 0.37 ≦ x ≦ 0.57. Because Ga x In 1 -x A lattice-matched to InP
As the mixed crystal ratio deviates from the mixed crystal ratio x = 0.47, Ga
The difference between the lattice constants of X In 1 -X As and InP, that is, the degree of lattice mismatch, is also remarkable, causing a large number of crystal defects and the like, leading to a decrease in crystallinity as well as electrical properties such as a decrease in electron mobility. Is also deteriorated, which greatly impairs the improvement of the product sensitivity due to the characteristics of the Hall element.

【0017】更に、上記の感磁部層となるn形GaX
1-XAs結晶層は、InP結晶層とのヘテロ界面に向
かう深さ方向にキャリア濃度を上昇させる。この様なキ
ャリア濃度の分布を形成するのは比較的容易で、例えば
InP結晶の成長後に当該GaXIn1-XAs結晶層を成
長するに当りn形のドーパントとなる硫黄(元素記号
S)やシリコン(元素記号Si)などを含有してなるド
ーピングガスの成長系への添加量を、即ち、ドーピング
ガスの流量を時間的に変化せしめることにより達成し得
る。
Further, the n-type Ga X I serving as the above-mentioned magneto-sensitive section layer
The n 1-x As crystal layer increases the carrier concentration in the depth direction toward the hetero interface with the InP crystal layer. It is relatively easy to form such a carrier concentration distribution. For example, sulfur (element symbol S) which becomes an n-type dopant when growing the Ga x In 1 -x As crystal layer after growing the InP crystal It can be achieved by changing the amount of doping gas containing silicon or silicon (element symbol Si) to the growth system, that is, by changing the flow rate of the doping gas with time.

【0018】また、上記のドーピングガスの成長系への
添加流量は変化させずに、GaX In1-X As結晶層の
成長の初期にGaやInの III族元素を含む原料ガスの
供給量に対するV族元素であるAsを含む原料ガスの供
給量の比率、いわゆるV/III 比を漸次変化させてもキ
ャリア濃度分布を保有させることができる。具体的には
例えばGa源として使用するトリメチルガリム(trimet
yl gallium:(CH33 Ga)とIn源とするC55
Inの供給量の総計に対するアルシン(AsH3 )の
供給比率を適宣変化させれば良い。このV/III 比を高
比率側から低比率側へと変化させるか、或は逆に低比率
側から高比率側に変化させるかは、アンドープ(無添
加)状態でのバックグランドの成長層の伝導形、キャリ
ア濃度、ドーピング時のドーピング効率等の種々の因子
を勘案して決定すれば良い。更にドーピングを施さない
アンドープ状態でGaInAs結晶層が既に適当な電子
濃度を保有している場合にあっては、何もドーピング操
作を実施せずにV/III 比を適宣変化させキャリア濃度
に分布を持たせることも可能である。
Further, the supply amount of the source gas containing the group III element such as Ga or In at the initial stage of the growth of the Ga x In 1-x As crystal layer without changing the flow rate of the doping gas added to the growth system. The carrier concentration distribution can be maintained even if the ratio of the supply amount of the source gas containing As, which is a group V element, to the so-called V / III ratio is gradually changed. Specifically, for example, trimethylgalim (trimet) used as a Ga source
yl gallium: (CH 3 ) 3 Ga) and C 5 H 5 as In source
The supply ratio of arsine (AsH 3 ) to the total supply amount of In may be changed appropriately. Whether the V / III ratio is changed from the high ratio side to the low ratio side, or conversely, from the low ratio side to the high ratio side, depends on whether the background growth layer in the undoped (non-added) state. What is necessary is just to determine in consideration of various factors, such as a conductivity type, a carrier density, and the doping efficiency at the time of doping. Further, when the GaInAs crystal layer already has an appropriate electron concentration in an undoped state without doping, the V / III ratio is appropriately changed without performing any doping operation to distribute the carrier concentration. It is also possible to have.

【0019】また、GaX In1-X As結晶層とInP
結晶層との界面に於けるキャリア濃度は、基本的にはG
X In1-X As結晶層の表面のそれを上回っていれば
良いが、表面でのキャリア濃度の2倍から20倍程度に
増加させると電子移動度の顕著な向上が果たせる。
Further, the Ga x In 1-x As crystal layer and the InP
The carrier concentration at the interface with the crystal layer is basically G
a X In 1-X As it is sufficient that exceeded that of the surface of the crystal layer, but is increased from 2-fold of the carrier concentration at the surface to about 20 times a significant improvement in electron mobility can play.

【0020】次に、本発明に係わる上記GaXIn1-X
s層の膜厚については特段の制限はない。但し、ホール
素子の実際の製作に当たっては素子間を電気的に絶縁す
るため、メサエッチングと称する特定領域の結晶層を除
去するための工程が一般的に採用されるが、この際素子
間絶縁のためにメサエッチングにより除去すべき導電性
を呈する層の膜厚、とりもなおさずエピタキシャル成長
層の全体的な厚みが増すと必然的にメサエッチングに要
する時間の増大を伴い、結晶方位に因るエッチング量並
びにエッチング形状に顕著な差異を生じさせる。このこ
とがしいては、ホール素子の重要な特性の一つである不
平衡率の増大をもたらし、素子特性の高品位化を妨げる
と共に良品素子収率の低下を招く。従って、本発明に記
すヘテロ構造を構成するにあたっては、その構成要素で
あるGaXIn1-XAs層やInP層の合計の膜厚をおお
よそ5μmより薄く設定すると好結果が得られる。
Next, the Ga X In 1 -X A according to the present invention is used.
There is no particular limitation on the thickness of the s layer. However, in the actual manufacture of the Hall element, a step called mesa etching for removing a crystal layer in a specific region is generally adopted in order to electrically insulate the elements. Therefore, if the thickness of the layer exhibiting conductivity to be removed by mesa etching and the overall thickness of the epitaxial growth layer increase, the time required for mesa etching necessarily increases, and etching due to the crystal orientation is inevitable. Significant differences in volume as well as in etched shape. This leads to an increase in the unbalance rate, which is one of the important characteristics of the Hall element, which hinders the improvement of the element characteristics and lowers the yield of non-defective elements. Accordingly, in forming the heterostructure described in the present invention, good results can be obtained by setting the total thickness of the Ga x In 1 -x As layer and the InP layer, which are the constituent elements, to be less than about 5 μm.

【0021】上述の如く、InP単結晶基板上に成長さ
せたGaInAs感磁部層及びInPバッファ層から構
成されてなるヘテロ接合エピタキシャルウエハを母体材
料とし、GaInAsホール素子を製作した。この製作
に当たっては公知のフォトリソグラフィ技術、エッチン
グ技術等の加工技術を駆使し、先ずホール素子としての
機能を発揮するGaInAs感磁部層並びにInP層に
いわゆるメサ(mesa)エッチングを施し、当該素子
機能領域をメサ状に加工する。このメサ構造を得る方法
につきここで説明を加えるに、先ず当該母体材料の最表
面であるGaXIn1-XAs層の表面に一般的なフォトレ
ジスト材を塗布し、その後、通常のフォトリソグラフィ
ー技術により感磁部及び入力用並びに出力用電極の形成
領域のみの該レジスト材を残存させ、それ以外の領域に
あるレジスト材は剥離除去する。然る後、無機酸を用い
てレジスト材を除去した領域のGaInAs層及びIn
Pバッファ層をエッチングにより除去する。このエッチ
ングにより電極形成部及び感磁部領域はそれらの領域を
垂直方向の断面から見れば台形状、いわゆる順メサ形状
か、結晶の軸方向に依っては逆台形状いわゆる逆メサ状
の台地(メサ)として残存する。このメサエッチングに
より電極形成部並びに感磁部領域からなる素子機能部の
電気的絶縁性を確保できる。しかし、当該メサエッチン
グについては成長層の全厚が5μmを超えると上記の如
く結晶軸(結晶方位)に基づくエッチング形状の差異が
顕著となり、これにより、ホール素子の特性の一つであ
る不平衡電圧の増加を招き、もって不平衡率の悪化をも
たらす。よって、前述の様に当該ホール素子の製作に供
するエピタキシャル成長層の全体の膜厚は、概ね5μm
以下に設定した方が不平衡率を増大させないという点で
好都合である。
As described above, a GaInAs Hall element was manufactured using a heterojunction epitaxial wafer composed of a GaInAs magnetosensitive layer and an InP buffer layer grown on an InP single crystal substrate as a base material. In this fabrication, a well-known processing technique such as a photolithography technique and an etching technique is used, and first, a so-called mesa etching is performed on the GaInAs magnetic sensing portion layer and the InP layer exhibiting a function as a Hall element, and the element function is improved. The area is processed into a mesa shape. A method of obtaining the mesa structure will be described here. First, a general photoresist material is applied to the surface of the Ga x In 1-x As layer which is the outermost surface of the base material, and then, the usual photolithography is performed. According to the technique, the resist material is left only in the area where the magnetic sensing portion and the input and output electrodes are formed, and the resist material in the other areas is peeled off. Then, the GaInAs layer and the In in the region where the resist material was removed by using an inorganic acid were
The P buffer layer is removed by etching. By this etching, the electrode forming portion and the magneto-sensitive portion region are trapezoidal, a so-called regular mesa shape, or an inverted trapezoidal shape, a so-called inverted mesa plateau (depending on the axial direction of the crystal). Mesa). By this mesa etching, the electrical insulation of the electrode function part and the element function part including the magnetic sensing part area can be secured. However, in the mesa etching, when the total thickness of the growth layer exceeds 5 μm, the difference in the etching shape based on the crystal axis (crystal orientation) becomes remarkable as described above. This leads to an increase in the voltage, which leads to a worsening of the unbalance rate. Therefore, as described above, the overall thickness of the epitaxial growth layer used for manufacturing the Hall element is approximately 5 μm.
The setting below is more advantageous in that the imbalance rate is not increased.

【0022】メサエッチングを施した後、入力用並びに
出力用電極を形成する。この形成に当たってはメサエッ
チイングされたウエハの表面全体に一般のフォトレジス
ト材を塗布する。然る後、電極を形成すべき領域を公知
のフォトリソグラフィー法によりパターニング(patter
ning)して入・出力電極を形成する領域に在るフォトレ
ジスト材のみを剥離除去し、直下に存在するGaInA
s感磁部層表面を露出させる。
After mesa etching, input and output electrodes are formed. In this formation, a general photoresist material is applied to the entire surface of the mesa-etched wafer. Thereafter, the area where the electrode is to be formed is patterned by a known photolithography method (pattern).
ning) to remove and remove only the photoresist material in the region where the input / output electrodes are formed, and to remove the GaInA
s Exposing the magnetic sensing layer layer surface.

【0023】次に電極材料となす金(Au)・ゲルマニ
ウム(Ge)合金を当該加工を施したレジスト材上に真
空蒸着する。ここでは電極材料としてAu・Ge合金を
使用したが、電極材料としては別段これに限定されるこ
とはなく、他の金属材料であっても勿論差し支えはな
い。更に、レジスト材を剥離するのと併行していわゆる
リフトオフ(lift off)法を利用して、当該レジスト材
上に被着された素子製作上不要の合金膜を除去する。ち
なみに電極の形状は長方形や多角形、円形でも、或はま
た楕円形などであっても支障はない。
Next, a gold (Au) -germanium (Ge) alloy serving as an electrode material is vacuum-deposited on the processed resist material. Here, an Au.Ge alloy was used as the electrode material, but the electrode material is not particularly limited to this, and other metal materials may of course be used. Further, in parallel with the stripping of the resist material, a so-called lift-off method is used to remove an alloy film unnecessary on device fabrication, which is adhered on the resist material. Incidentally, there is no problem even if the shape of the electrode is rectangular, polygonal, circular, or elliptical.

【0024】次に公知のプラズマCVD法により絶縁性
を有する二酸化珪素(SiO2)を堆積させ、ウエハ表
面を被覆する。本発明では一般的なSiO2を絶縁被覆
膜として採用したが、他の絶縁性を有する膜、例えば窒
化珪素(SiN)などであっても良い。次に、上記の如
く製作されたSiO2絶縁膜を一般的なレジスト材で被
覆する。然る後、電極部と個々の素子に分離する、いわ
ゆるダイシング(dicing)のために必要なダイシングラ
インを形成するための位置に相当する部分のレジスト材
を、公知のフォトリソグラフィー技術によるパターニン
グ法を利用して除去し、直下のSiO2絶縁膜を露出さ
せる。更に、露出したSiO2絶縁膜をフッ化水素酸
(化学式HF)に浸し、当該部分のSiO2絶縁膜を溶
解し除去する。これにより入・出力電極の表面とダイシ
ングラインの形成部にあってはGaInAs層表面を露
出させる。
Next, silicon dioxide (SiO 2 ) having an insulating property is deposited by a known plasma CVD method to cover the wafer surface. In the present invention, general SiO 2 is used as the insulating coating film, but another insulating film such as silicon nitride (SiN) may be used. Next, the SiO 2 insulating film manufactured as described above is covered with a general resist material. After that, the resist material at a position corresponding to a position for forming a dicing line necessary for so-called dicing, which is separated into an electrode portion and an individual element, is subjected to a patterning method using a known photolithography technique. Utilization is used to expose the underlying SiO 2 insulating film. Further, the exposed SiO 2 insulating film is immersed in hydrofluoric acid (chemical formula HF) to dissolve and remove the SiO 2 insulating film in that portion. As a result, the surface of the GaInAs layer is exposed at the surface of the input / output electrode and the portion where the dicing line is formed.

【0025】実際に個々の素子に分離するにあっては、
ダイシングラインに相当する部分に露出しているGaI
nAs層を、適当な無機酸を利用しエッチング除去すれ
ば良い。然る後、GaInAs層の直下にあるInP層
を無機酸により除去する。通常は、更にエッチングを進
行させInP単結晶基板の表層部の一部迄除去する。こ
の様にするのはダイシングに使用するスクライバー(su
criber)やブレード(brade)などが、素子の分離の際
にエピタキシャル成長層やヘテロ界面に機械的な損傷を
与えるのを予め低減するためである。
In actual separation into individual elements,
GaI exposed at the portion corresponding to the dicing line
The nAs layer may be removed by etching using a suitable inorganic acid. Thereafter, the InP layer immediately below the GaInAs layer is removed with an inorganic acid. Usually, etching is further advanced to remove a part of the surface layer of the InP single crystal substrate. The scriber used for dicing (su
This is to reduce in advance the occurrence of mechanical damage to the epitaxial growth layer and the hetero interface at the time of element isolation by a criber or a blade.

【0026】本発明に係る新たなGaInAsホール素
子の電気的主要特性、特に積感度につき従来のGaIn
Asホール素子のそれらと比較した。ここで言う従来の
ホール素子とはGaInAs感磁部層内のキャリア濃度
プロファイルが、同層の表面側よりInP結晶層のヘテ
ロ界面に至る迄ほぼ平坦であり、ヘテロ界面で特にキャ
リア濃度に変化を持たせていないウエハからなるホール
素子を指す。但し、従来例と言えどもキャリア濃度の深
さ方向の分布を異にするのみで、その他の結晶層の厚さ
等の構成要素は同一である。双方を比較結果した結果、
ホール素子の優劣を決定付ける重要な特性である積感度
に関し顕著な差異が認められ、本発明による新規なGa
InAsホール素子に於いては格段の積感度の向上が果
たされた。この原因を従来例との材料面からの比較検討
により探るに、高い電子移動度を発現させんがためにG
aInAs/InPヘテロ界面近傍に於てキャリア濃度
に分布を保有させたために因るものと判断される。
The main electrical characteristics of the new GaInAs Hall element according to the present invention, especially the product sensitivity,
These were compared with those of the As Hall element. In the conventional Hall element, the carrier concentration profile in the GaInAs magneto-sensitive layer is almost flat from the surface side of the layer to the hetero interface of the InP crystal layer. Refers to a Hall element made of a wafer that is not provided. However, even in the conventional example, only the distribution of the carrier concentration in the depth direction is different, and other components such as the thickness of the crystal layer are the same. As a result of comparing both,
There is a remarkable difference in the product sensitivity, which is an important characteristic that determines the superiority of the Hall element, and the novel Ga
In the InAs Hall element, the product sensitivity was remarkably improved. To find out the cause of this problem by comparing and examining the material with the conventional example, it was found that G
This is considered to be due to the distribution of the carrier concentration in the vicinity of the aInAs / InP hetero interface.

【0027】[0027]

【作用】GaInAs感磁部層内のキャリア濃度に分布
を付けることにより、当該感磁部層の電子移動度を向上
させる作用を有し、もって簡便に高感度のGaInAs
ホール素子を提供する。
The distribution of the carrier concentration in the GaInAs magnetic sensing layer has a function of improving the electron mobility of the magnetic sensing layer, so that the high sensitivity GaInAs can be easily obtained.
Provide a Hall element.

【0028】[0028]

【実施例】以下、本発明の実施例をGaInAs/In
Pヘテロ接合ホール素子を例にして具体的に説明する。
図1は本発明に係わるGaInAs/InPヘテロ構造
ホール素子の模式的な平面図の一例を示す。また、図2
は図1に掲げるホール素子の破線A−A’に沿う垂直方
向の断面模式図である。当該ヘテロ接合を形成するにあ
たっては、基板として鉄(Fe)を添加してなる面方位
が(100)の半絶縁性のInP単結晶(101)を使
用した。該InP単結晶(101)の厚さは約350μ
mであった。図1で(102)は結晶基板(101)上
にC55InをIn源とする常圧(大気圧)のMOCV
D法で成長させた、膜厚が約100nmの無添加(アン
ドープ)InPエピタキシャル結晶層である。バッファ
層とするInP層(102)は温度610℃にて成長さ
せた。更に、InPバッファ層(102)上に、混晶比
が0.47で、約400nmの膜厚を有するn形のGa
0.47In0.53Asエピタキシャル層(103)を上記の
常圧MOCVD成長法を利用して設けた。この感磁部層
となるGa0.47In0.53Asエピタキシャル層(10
3)の成長温度もInP層(102)と同じく610℃
であり上記のInP層(102)及びn形GaInAs
層(103)のキャリア濃度は各々、2×1015cm-3
及び2×1016cm-3であった。尚、このGaInAs
層(103)のキャリア濃度は、周期律表の第VI族に
属する硫黄(S)を故意に添加する、いわゆるドーピン
グにより達成したもので、且つInP層(102)と当
該GaInAs層(103)とのヘテロ界面近傍でのG
aInAs層(103)のキャリア濃度は、上記の表面
でのキャリア濃度である2×1016cm-3の4倍にあた
る8×1016cm-3となる様にドーピング量を変化させ
た。GaInAs層(103)の表面側からInP層
(102)とのヘテロ界面を経てInP単結晶基板(1
01)に至る係るキャリア濃度の分布を、図3に従来例
のそれと対比させて示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described with reference to GaInAs / In.
A specific description will be given using a P heterojunction Hall element as an example.
FIG. 1 shows an example of a schematic plan view of a GaInAs / InP heterostructure Hall element according to the present invention. FIG.
FIG. 2 is a schematic cross-sectional view of the Hall element shown in FIG. 1 in a vertical direction along a broken line AA ′. In forming the heterojunction, a semi-insulating InP single crystal (101) having a plane orientation of (100) obtained by adding iron (Fe) was used as a substrate. The thickness of the InP single crystal (101) is about 350 μm.
m. In FIG. 1, reference numeral (102) denotes a MOCV at normal pressure (atmospheric pressure) using C 5 H 5 In as an In source on a crystal substrate (101).
This is an undoped (undoped) InP epitaxial crystal layer having a thickness of about 100 nm and grown by the method D. The InP layer (102) serving as a buffer layer was grown at a temperature of 610 ° C. Further, an n-type Ga having a mixed crystal ratio of 0.47 and a thickness of about 400 nm is formed on the InP buffer layer (102).
A 0.47 In 0.53 As epitaxial layer (103) was provided using the normal pressure MOCVD growth method described above. The Ga 0.47 In 0.53 As epitaxial layer (10
The growth temperature of 3) is 610 ° C. like the InP layer (102).
And the above InP layer (102) and n-type GaInAs
The carrier concentration of each layer (103) is 2 × 10 15 cm −3.
And 2 × 10 16 cm −3 . In addition, this GaInAs
The carrier concentration of the layer (103) is achieved by so-called doping by intentionally adding sulfur (S) belonging to Group VI of the periodic table, and the InP layer (102) and the GaInAs layer (103) Near the hetero interface of
The doping amount was changed so that the carrier concentration of the aInAs layer (103) was 8 × 10 16 cm −3 , which is four times the carrier concentration on the surface, 2 × 10 16 cm −3 . From the surface side of the GaInAs layer (103) to the InP single crystal substrate (1) through the hetero interface with the InP layer (102).
FIG. 3 shows the distribution of the carrier concentration up to 01) in comparison with that of the conventional example.

【0029】この様なキャリア濃度の分布を持つウエハ
の電子移動度は、室温に於いて11、000cm2 /V
・sであった。一方、従来例の平坦なキャリア濃度プロ
ファイルを有するウエハのそれは約8,000cm2
V ・s であった。
The electron mobility of a wafer having such a carrier concentration distribution is 11,000 cm 2 / V at room temperature.
-It was s. On the other hand, that of a conventional wafer having a flat carrier concentration profile is about 8,000 cm 2 /
V · s.

【0030】この様な構造のウエハを公知のフォトリソ
グラフィー法並びにエッチング法を駆使して、先ずホー
ル素子の機能を発揮する素子機能部領域を台形状に残存
させるメサエッチングを施し、感磁部等を含むメサ領域
(104)を形成した。然る後、フォトレジスト材でウ
エハ表面を覆い、パターニング、レジスト剥離、リフト
オフ等の工程を経て、入力用並びに出力用電極となるG
eを13wt%含有してなるAu・Ge合金を、約600
nmの厚さに真空蒸着してオーミック性入・出力電極
(105)を形成した。これらの電極(105)の形状
は全て同一で、平面は長辺が約200μmで短辺が約7
0μmの長方形となっている。
First, the wafer having such a structure is subjected to mesa etching using a well-known photolithography method and an etching method to leave a trapezoidal element function area exhibiting the function of the Hall element, and to perform a magnetic sensing section and the like. The mesa region (104) containing is formed. Thereafter, the surface of the wafer is covered with a photoresist material, and through processes such as patterning, resist peeling, and lift-off, G serving as an input and output electrode is formed.
Au-Ge alloy containing 13wt%
An ohmic input / output electrode (105) was formed by vacuum evaporation to a thickness of nm. The shape of each of these electrodes (105) is the same, and the plane has a long side of about 200 μm and a short side of about 7 μm.
It has a rectangular shape of 0 μm.

【0031】更にウエハ全面を一旦プラズマCVD法に
よるSiO2 絶縁膜(106)で被覆した。SiO2
(106)の厚さは約300nmとした。次に当該絶縁
膜(106)上にフォトレジスト材を塗布し、フォトリ
ソグラフィー、パターニング各工程等を経て入・出力用
電極(105)の表面を露出させた。個々のホール素子
に分離するためのダイシングライン(107)を形成し
た。然る後、ダイシングライン(107)に沿ってスク
ライブを施し、個々の素子(チップ)に分離した。この
チップ化に際しては、InP単結晶基板(101)の裏
面の一部をエッチング除去することにより当該基板の厚
さを初期厚さ350μmから約130μmの厚さとし、
スクライブを容易ならしめた。
Further, the entire surface of the wafer was once covered with an SiO 2 insulating film (106) by a plasma CVD method. The thickness of the SiO 2 film (106) was about 300 nm. Next, a photoresist material was applied on the insulating film (106), and the surface of the input / output electrode (105) was exposed through photolithography, patterning, and other steps. A dicing line (107) for separating into individual Hall elements was formed. Thereafter, scribing was performed along the dicing line (107) to separate the individual elements (chips). In forming the chip, a part of the back surface of the InP single crystal substrate (101) is removed by etching to reduce the thickness of the substrate from an initial thickness of 350 μm to about 130 μm,
Scribing made easy.

【0032】スクライビングによるチップ化後、チップ
を極く一般的な金属フレームにマウント(mount )し、
超音波ボンデング法によりリード線の一端をパッド電極
にボンデングし、リード線の他端を金属フレームに付随
してなるリード端子に結線した。然る結線操作の後、当
該ホール素子をエポキシ樹脂で囲繞しモールドした。
After chipping by scribing, the chip is mounted on a very common metal frame,
One end of the lead wire was bonded to a pad electrode by an ultrasonic bonding method, and the other end of the lead wire was connected to a lead terminal attached to a metal frame. After the appropriate connection operation, the Hall element was surrounded with epoxy resin and molded.

【0033】上述の如く作製したホール素子の電気的な
特性を評価した。特性上の比較を行うため従来のGaI
nAsホール素子の特性も評価した。ここで、従来のホ
ール素子とはウエハの積層構造は同一であって、キャリ
ア濃度の分布がヘテロ界面方向に分布を呈しない、ほぼ
平坦なプロファイルを有しているウエハからなるGaI
nAsホール素子を言う。特性を比較した結果の中で、
特にホール素子の感度に関して本発明のホール素子と従
来のホール素子とでは、顕著な差異が認められた。本発
明に基づくホール素子にあっては、得られる感度は従来
のホール素子に比し約20%程上昇していた。この上昇
率は、電子移動度の増加と極めて良い一致を示し、本発
明がホール素子の母体材料の電子移動度を向上させ、し
いてはホール素子の感度を上昇させる結果をもたらして
いることが確認された。尚、上述の実施例に於いてはG
aInAs/InPヘテロ接合ホール素子を例にしてそ
の効果を示したが、この様な効果はGaAs/AlGa
As、GaInAs/AlInAsヘテロ接合ホール素
子についても発揮し得る。
The electrical characteristics of the Hall element manufactured as described above were evaluated. The conventional GaI
The characteristics of the nAs Hall element were also evaluated. Here, the conventional Hall element has the same laminated structure of the wafer, and the carrier concentration distribution does not show a distribution in the hetero-interface direction.
Refers to nAs Hall element. Among the results of comparing the characteristics,
Particularly, regarding the sensitivity of the Hall element, a remarkable difference was recognized between the Hall element of the present invention and the conventional Hall element. In the Hall element according to the present invention, the obtained sensitivity is increased by about 20% as compared with the conventional Hall element. This rate of increase is in very good agreement with the increase in electron mobility, indicating that the present invention has improved the electron mobility of the base material of the Hall element and, consequently, has increased the sensitivity of the Hall element. confirmed. In the above-described embodiment, G
The effect was shown by taking an aInAs / InP heterojunction Hall element as an example.
As, GaInAs / AlInAs heterojunction Hall elements can also be exhibited.

【0034】[0034]

【発明の効果】ヘテロ接合を構成する半導体感磁部層の
キャリア濃度の分布に新たな制限を加えることにより、
当該感磁部層の電子移動度の向上を果たせ、もって簡便
にヘテロ接合ホール素子の高感度化を達成できる効果を
もたらす。
According to the present invention, a new limitation is added to the distribution of the carrier concentration of the semiconductor magneto-sensitive layer constituting the hetero junction.
This improves the electron mobility of the magnetosensitive layer, thereby providing an effect of easily achieving high sensitivity of the heterojunction Hall element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるGaInAsホール素子の平面
の概略図である。
FIG. 1 is a schematic plan view of a GaInAs Hall element according to the present invention.

【図2】図1に掲げる平面模式図の破線A−A’に沿う
断面の模式図である。
FIG. 2 is a schematic diagram of a cross section taken along a broken line AA ′ of the schematic plan view shown in FIG.

【図3】本発明並びに従来例のGaInAsホール素子
の母体材料のキャリア濃度の深さ方向の分布を示す図で
ある。
FIG. 3 is a diagram illustrating a distribution of a carrier concentration of a base material of a GaInAs Hall element according to the present invention and a conventional example in a depth direction.

【符号の説明】[Explanation of symbols]

(101) InP半絶縁性単結晶基板 (102) アンドープInPバッファ層 (103) 混晶比0.47のGa0.47In0.53As感
磁部層 (104) メサ状に加工された素子機能部領域 (105) オーミック性入力・出力電極 (106) SiO2 絶縁膜 (107) ダイシングライン
(101) InP semi-insulating single crystal substrate (102) Undoped InP buffer layer (103) Ga 0.47 In 0.53 As magnetic sensing part layer with a mixed crystal ratio of 0.47 (104) Mesa-shaped element function part region ( 105) Ohmic input / output electrodes (106) SiO 2 insulating film (107) Dicing line

フロントページの続き (56)参考文献 特開 平5−275767(JP,A) 特開 昭60−198877(JP,A) 1992年秋季第53回応用物理学会学術講 演会講演予稿集,No.3,p.1078 Revue de Physiqu e Appliquee,Vol.18, No.12(1983),pp.757−761 (58)調査した分野(Int.Cl.7,DB名) H01L 43/06 G01R 33/07 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-5-275767 (JP, A) JP-A-60-198877 (JP, A) The 53rd Autumn Meeting of the Japan Society of Applied Physics, Proc. 3, p. 1078 Revue de Physique Applique, Vol. 18, No. 12 (1983) pp. 757-761 (58) Field surveyed (Int. Cl. 7 , DB name) H01L 43/06 G01R 33/07 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体単結晶基板上に第一の半導体結晶層
と第一の半導体結晶層よりも大きなバンドギャップを有
し、且つ第一の半導体結晶層より低いキャリア濃度を有
する第二の半導体結晶層とからなるヘテロ接合を具備
し、当該ヘテロ界面近傍に於ける該第一の半導体結晶層
のキャリア濃度を、第一の半導体結晶層の内部の当該ヘ
テロ界面近傍以外の部分のキャリア濃度よりも高くした
ことを特徴とするヘテロ接合ホール素子。
A first semiconductor crystal layer and a second semiconductor having a larger band gap than the first semiconductor crystal layer on the semiconductor single crystal substrate and having a lower carrier concentration than the first semiconductor crystal layer; A heterojunction comprising a crystal layer, and the carrier concentration of the first semiconductor crystal layer in the vicinity of the hetero interface is determined by comparing the carrier concentration in a portion of the first semiconductor crystal layer other than the vicinity of the hetero interface. A heterojunction Hall element characterized by having a higher height.
【請求項2】 上記第一の半導体結晶層がヒ化ガリウム
・インジウム(GaInAs)結晶層であり、上記第二
の半導体結晶層がリン化インジウム(InP)結晶層で
あることをを特徴とする請求項1に記載のヘテロ接合ホ
ール素子。
2. The method according to claim 1, wherein the first semiconductor crystal layer is a gallium indium arsenide (GaInAs) crystal layer, and the second semiconductor crystal layer is an indium phosphide (InP) crystal layer. The heterojunction Hall element according to claim 1.
JP05251493A 1993-03-12 1993-03-12 Heterojunction Hall element Expired - Fee Related JP3289371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05251493A JP3289371B2 (en) 1993-03-12 1993-03-12 Heterojunction Hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05251493A JP3289371B2 (en) 1993-03-12 1993-03-12 Heterojunction Hall element

Publications (2)

Publication Number Publication Date
JPH06268279A JPH06268279A (en) 1994-09-22
JP3289371B2 true JP3289371B2 (en) 2002-06-04

Family

ID=12916850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05251493A Expired - Fee Related JP3289371B2 (en) 1993-03-12 1993-03-12 Heterojunction Hall element

Country Status (1)

Country Link
JP (1) JP3289371B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1992年秋季第53回応用物理学会学術講演会講演予稿集,No.3,p.1078
Revue de Physique Appliquee,Vol.18,No.12(1983),pp.757−761

Also Published As

Publication number Publication date
JPH06268279A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JPH0677556A (en) Semiconductor sensor and manufacturing method thereof
WO2007058265A1 (en) Bipolar transistor and its manufacturing method
JP3289371B2 (en) Heterojunction Hall element
JP2597105Y2 (en) Hall element
JP2597774Y2 (en) Hall element
JP3404815B2 (en) GaInAs two-dimensional electron Hall element
JP3456254B2 (en) Epitaxial wafer for Hall element and method of manufacturing the same
JP3287053B2 (en) GaInAs magnetoelectric transducer
JPH06232475A (en) Magnetoelectric conversion element
JP3395277B2 (en) Magnetoelectric conversion element
JP3399042B2 (en) Hall element
JP3404843B2 (en) Manufacturing method of Hall element
JP3399046B2 (en) Hall element
JP3399044B2 (en) Hall element and method of manufacturing the same
JP3044835B2 (en) Magnetoelectric conversion element
JP3399057B2 (en) Magnetoelectric conversion element
JP3287054B2 (en) Magnetoelectric conversion element
JP2600682Y2 (en) Heterojunction Hall element
JP3399053B2 (en) Heterojunction Hall element
JPH077194A (en) Hall element
JP3220879B2 (en) Magnetoelectric conversion element
JP3404838B2 (en) GaInAs / InP heterojunction Hall element
JP4794022B2 (en) Semiconductor device
JP3417009B2 (en) Hall element
JP3246067B2 (en) Field effect transistor wafer and transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees