JP3339340B2 - 高加工性軟質冷延鋼板の製造方法 - Google Patents

高加工性軟質冷延鋼板の製造方法

Info

Publication number
JP3339340B2
JP3339340B2 JP00145797A JP145797A JP3339340B2 JP 3339340 B2 JP3339340 B2 JP 3339340B2 JP 00145797 A JP00145797 A JP 00145797A JP 145797 A JP145797 A JP 145797A JP 3339340 B2 JP3339340 B2 JP 3339340B2
Authority
JP
Japan
Prior art keywords
temperature
heating
steel sheet
rolled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00145797A
Other languages
English (en)
Other versions
JPH10195541A (ja
Inventor
義正 船川
邦和 冨田
潤 谷合
弘 澤田
康英 石黒
尚志 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP00145797A priority Critical patent/JP3339340B2/ja
Publication of JPH10195541A publication Critical patent/JPH10195541A/ja
Application granted granted Critical
Publication of JP3339340B2 publication Critical patent/JP3339340B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、特に自動車や家電
製品等に適したコイルエンド性の小さい高加工性低炭素
冷延鋼板の製造方法に関する。
【0002】
【従来の技術】自動車や家電製品などに使用される鋼板
には高い成形性が要求され、軟質、高r値化が精力的に
進められている。連続焼鈍において低炭素鋼を用いて高
加工性軟質冷延鋼板を製造する場合、焼鈍中に炭化物が
再溶解することによって多量に固溶Cが存在すること、
急速加熱、急速冷却を行うため、粒成長性が悪いこと等
の理由より硬質、低r値等の問題点があった。そこで、
固溶Cの低減と粒成長性を目的としてCを極めて低減し
た極低炭素鋼板が用いられるようになった。特公昭50
−31531号公報には、RH脱ガス装置によってCを
0.001〜0.02%に低減した鋼にTiを添加した
IF鋼が提案されている。これは、鋼中のC量をできる
だけ低減した後に、Tiにより固溶Cを完全に析出物と
して固定するとともに、固溶Tiにより再結晶集合組織
を制御するものである。さらに、特開昭61−2818
24号公報には、Ti量をCやNより規定したIF鋼を
直送圧延する方法が開示されている。この方法において
は、直送圧延により微細なMnSやTiNを析出させ、
炭化物の析出サイトとすることにより、炭化物の凝集を
促進し、良好な集合組織を形成させる。さらには、特公
昭62−33291号公報にはα域圧延により非時効、
高r値を得る連続焼鈍冷延鋼板の製造方法が開示されて
いる。これらの発明は、IF鋼を前提にしており製鋼で
RH脱ガスなどの設備を使用するとともに、TiやNb
等の元素をCの4〜20倍程度添加するなどの理由で、
その製造コストは高価であると言う問題点がある。
【0003】一方、廉価に低炭素鋼を用いて加工性に優
れた冷延鋼板を製造する方法については、特開昭51−
138516号公報に、B添加低炭素鋼を低温加熱し、
窒化物の大部分をBNとして粒成長性を上げ、好ましい
集合組織を形成させる方法が開示されている。さらに
は、特公昭56−8891号公報に低炭素鋼の加熱温度
と巻取温度を規定して、AlNやMnSの析出状態を変
化させ、好ましい集合組織を形成させる方法が開示され
ている。しかし、このように単純にBを添加したり加熱
温度を下げる方法により実際に冷延板を製造しても1.
6程度のr値しか得られず、深絞りに対して十分である
とは言いがたい。さらには、これらの発明により製造さ
れたコイルはその中央部では良好な加工性を持つもの
の、コイルの先端部と後端部における材質劣化が激しい
のが現状である。
【0004】
【発明が解決しようとする課題】上記したように、高加
工性を得る方法が開示されているが、未だどの発明にお
いても、平易に、廉価に高加工性を得るには及んでいな
い。また、通常高加工性を得るために高温巻取が行われ
ているが、高温巻取を行うと、コイルの先頭(T部)と
コイルの尾部(B部)の材質が中央部(M部)よりも劣
化してしまう。これは、常温のマンドレルに巻き付くT
部と巻取後直接大気に触れるB部の冷却速度がM部に対
して速いこと(コイルエンド性)に起因している。本発
明の目的は、平易かつ廉価に従来以上の加工性を有し、
コイルエンド性の小さい低炭素冷延鋼板の製造方法を提
供することにある。
【0005】
【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の冷延鋼板の製造方法は、重量%で、C≦
0.05%と、Mn≦0.5%と、Si≦0.1%と、
P≦0.025%と、S≦0.03%と、Sol.Al
≦0.04%と、N≦0.0035%と、B≦0.00
3%とを含有し、かつ原子比でB/N=0.6〜1.3
を満足し、残部がFe及び不可避的不純物からなる鋼板
を製造する方法において、鋼を1150℃以下に加熱
し、粗圧延して粗バーとする工程と、950℃以下の粗
バーを980℃以上に加熱し、Ar3 点以上で仕上げ圧
延を行い、650℃超えで巻き取る工程と、巻き取った
熱延鋼板を冷間圧延し、焼鈍する工程と、を備えたこと
を特徴とする高加工性軟質冷延鋼板の製造方法である。
【0006】(2)本発明の冷延鋼板の製造方法は、上
記(1)に記載の組成を有する鋼板を製造する方法にお
いて、連続鋳造した鋼を750℃以上で加熱炉に挿入し
て1150℃以下に加熱し、粗圧延して粗バーとする工
程と、950℃以下の粗バーを980℃以上に加熱し、
Ar3 点以上で仕上げ圧延を行い、650℃超えで巻き
取る工程と、巻き取った熱延鋼板を冷間圧延し、焼鈍す
る工程と、を備えたことを特徴とする高加工性軟質冷延
鋼板の製造方法である。
【0007】
【発明の実施の形態】本発明者は、従来以上の加工性を
有し、コイルエンド性の小さい低炭素鋼板を平易かつ廉
価に得るために、従来のB添加アルミキルド鋼を低温加
熱した場合に生じるコイルエンド性の原因を調査し、仕
上げ圧延時のコイル両端部の粒成長性を阻害する微細析
出物を減少させる製造方法について、鋭意研究を重ね
た。
【0008】すなわち、r値を向上させる良好な集合組
織を得るには、焼鈍時の固溶Cの低減と粒成長性が必要
条件と考えられてきた。このうち、焼鈍中の固溶Cの低
減には、熱延板における炭化物の凝集粗大化が有効であ
る。炭化物は、熱延時の巻取後、粒成長が飽和したの
ち、ある程度コイルの温度が低くなってから粒界に析出
するため、炭化物の凝集粗大化を促進するには、粒成長
性を良好にし、炭化物析出前の粒径を大きくし炭化物の
析出サイトである粒界面積を低減することが考えられ
る。よって、焼鈍中の固溶Cの低減と焼鈍板の良好な粒
成長性をともに満足するには、熱延板と冷延板の両者を
通じて良好な粒成長性を実現すればよい。
【0009】本発明者は、以下のようなコイルエンドに
おける粒成長阻害因子を発見した。第1に、いかに低温
加熱といえどもある程度のMnSは固溶してしまうこ
と。第2に固溶したMnSは高温加熱した場合よりも固
溶量が少ないため、析出駆動力が小さく、熱間圧延時の
粗圧延時に析出を開始し、析出は仕上げ圧延まで引き続
き微細に析出すること。第3にBNは加熱時に一部は固
溶し一部は未固溶のまま残るが、固溶したBNは仕上げ
圧延時に析出し、その一部は粗圧延時にすでに析出した
MnSを核に析出するものの仕上げ圧延開始時は微細M
nSの量があまりにも少ないため、BN単独で微細に析
出するものが存在すること。第4に、仕上げ圧延時に析
出したMnSはBNの析出核とならないことである。こ
の仕上げ圧延時に微細析出したMnSと単独に微細析出
したBNが粒成長を抑制するため、コイル両端部では十
分に粒成長せず、コイルエンド性が発生する。そこで、
発明者らは鋭意研究を重ねた結果、粗圧延後の粗バーを
一度950℃以下にした後、980℃以上に加熱するこ
とによって微細MnSを仕上げ圧延前に完全に析出させ
ることが可能であり、それにより仕上げ圧延時に析出す
る微細MnSがなくなり、すべての微細MnSがBNの
析出核となって粗大な複合析出物となり無害化できるこ
とと、BNの微細単独析出がなくなることによって、鋼
板全長にわたって良好な粒成長性が確保されるという知
見を得た。
【0010】以下にその基礎となった実験結果を示す。
重量%で、C:約0.025%、Si:約0.01%、
Mn:約0.15%、P:約0.01%、S:約0.0
1%、Sol.Al:約0.02%、N:約0.002
%、B:約0.0015%を含む鋼を溶解し、鋳造後、
加熱温度1130℃、粗圧延後890℃の粗バーを加熱
し、仕上温度870℃、巻取温度700℃を基本条件と
して、粗バー加熱条件を変化させて熱間圧延を行った。
得られた熱延板を酸洗し、冷圧率80%で冷間圧延を行
い、750℃で焼鈍を行った。さらに調圧率1%で調質
圧延を行い、r値を測定した。測定位置はコイル先端部
(T部)3mと中央部(M部)、後端部(B部)3mの
3箇所とした。M部のr値、ならびにM部とT、B部の
r値の差と粗バー加熱温度の関係を図1に示す。粗バー
を980℃以上に加熱することにより、r値が従来以上
に良好になるとともにM部とT、B部の差が0.4以下
となり、コイルエンド性が小さくなることがわかる。こ
の現象の理由は未だ完全には明らかとなっていないが、
粗バーを950℃以下に冷却することによりMnSの析
出駆動力を上げた状態で加熱するため、粗バー加熱後に
MnSが完全に析出するものと考えられる。ここで、9
50℃以下で保持しても温度が低いため、仕上げ圧延な
どによる大きな歪みがない限り微細MnSの析出はほと
んど起こらない。BNは仕上げ圧延時に粗バー加熱後に
完全に析出した微細MnSを核に析出し、微細MnSは
粗大複合析出物となるため粒成長性に悪影響を及ぼすこ
とはなく、また、BNの単独微細析出はない。このよう
にして得られた良好な粒成長性は冷延・焼鈍後も引き継
がれるため、冷延板も良好な粒成長性を持つ。従って、
本発明では従来以上の高加工性と小さいコイルエンド性
を両立することができる。
【0011】また、B/Nの原子比を一定範囲に制御す
ることにより、Bの過剰添加による鋼の硬質化を抑え
て、良好なr値を得ることができるという知見も得た。
B/N比が1以下の場合AlNが析出するが、量が少な
いため粒成長性に悪影響を及ぼすことはない。
【0012】さらに、連続鋳造後のスラブ温度が750
℃以上で加熱炉に挿入すれば、スラブ中にAlNが析出
しないまま、すなわち、固溶Nが十分存在する状態で高
温に保たれるため、スラブ中のBNの粗大化が促進さ
れ、より良好な粒成長性を実現できる。スラブ中のBN
の粗大化はスラブ加熱時間を長くすれば同様な効果が期
待できるが、スラブ加熱時間を長くするとスラブ表面の
粒界酸化による表面品質の低下やエネルギーコストがか
かるという問題点がある。このように、連続鋳造後のス
ラブ温度が750℃以上で加熱炉に挿入すれば、本発明
の効果をさらに増加させることができる。
【0013】以上のような知見に基づき、本発明者は、
B添加低炭素鋼のB/Nの原子比を一定範囲に制御し、
仕上げ圧延時のコイル両端部の粒成長性を阻害する微細
析出物を減少させるために、鋼(スラブ)の加熱温度、
粗圧延後の粗バーの加熱温度、仕上げ圧延温度及び巻取
温度を制御するようにして、コイルエンド性の小さい本
発明の高加工性軟質冷延鋼板の製造方法を見出し、本発
明を完成した。
【0014】すなわち、本発明は、鋼組成及び製造条件
を下記範囲に限定することにより、従来以上の加工性を
有し、コイルエンド性の小さい低炭素冷延鋼板を平易か
つ廉価に得ることができる。
【0015】以下に本発明の成分添加理由、成分限定理
由、及び製造条件の限定理由について説明する。 (1)成分組成範囲 C≦0.05% Cはあまり多いと炭化物が多量に析出し、r値や伸び
(EL)を低下させ、成形性を阻害することから、0.
05%以下である。
【0016】Mn≦0.5% MnはSをMnSの形で固定し、熱間延性を向上させる
働きがあることから0.05%以上は添加することが望
ましいが、過剰な添加は鋼の硬質化をもたらし、成形性
を劣化させるため、上限は0.5%である。
【0017】Si≦0.1% Siは過剰に添加すると強度が上がり成形性を劣化させ
ることから、0.1%以下である。
【0018】P≦0.025% Pは固溶強化元素であり、過剰な添加は鋼の硬質化をも
たらすことから上限は0.025%である。
【0019】S≦0.03% Sは熱間延性や成形性を阻害する元素であることからM
nSとして固定される。それゆえ、低い方が望ましい。
また、MnS量があまり多くなるとELの低下を招くこ
とから、上限は0.03%である。
【0020】Sol.Al≦0.04% Alは脱酸剤として使用されることから、ある程度は含
まれる。本発明においては、B添加によりNのかなりの
量がBNとして固定されることから、AlNの析出量は
少ないが、過剰に添加されると冷延後の焼鈍時にAlN
が過剰に微細析出して粒成長性を阻害するため、上限は
0.04%である。
【0021】N≦0.0035% NはAlNとして微細に析出するとコイルエンド性増加
の原因となる。本発明においてはBNとして固定される
が、BN量が多いと加工性が低下することから、上限は
0.0035%である。
【0022】B≦0.003% Bは本発明において重要な役割を演じる元素である。B
が添加されないとたとえ低温加熱であってもある程度は
MnSやAlNが溶解してしまい、微細なMnSやAl
Nが析出してしまう。Bは微細MnSを核としてBNと
して析出し、粗大複合析出物となるとともにNを固定し
て微細AlNの析出を抑制する。その結果、本発明にお
いては従来にない粒成長性が実現される。しかし、BN
が過剰に存在すると加工性が低下することから、添加量
の上限は0.003%である。
【0023】B/N(原子比)=0.6〜1.3 Bは、Nに対し過剰に添加されると固溶B量が多くなり
鋼が硬質化するため、BとNの原子%の比は0.6〜
1.3である。これ以外の原子比では、良好な加工性
(r値)が得られない。これは以下に示す本発明の実験
により明らかとなった。重量%で、C:約0.03%、
Si:約0.01%、Mn:約0.15%、P:約0.
01%、S:約0.01%、Sol.Al:約0.01
5%、N:約0.002%、Bの添加量を各種変化させ
た材料を溶解し、熱間圧延を行った。スラブ加熱温度を
1110℃とし、粗圧延後930℃になったとき105
0℃に粗バー加熱を行い、巻取温度は680℃とした。
得られた熱延板を酸洗し、冷圧率80%で冷間圧延を行
った後、720℃で連続焼鈍を行い、得られた材料のr
値を測定した。結果を図2に示す。B/N比が0.6以
上で、良好なr値が得られること、B/N比1.3超え
では過剰Bにより逆にr値が低下することがわかる。さ
らに、B/Nは0.8〜1.2で効果が大きいことか
ら、この範囲が好ましい。
【0024】本発明の対象とする鋼には、種々の目的に
応じてCu、Ni、Cr、Sn、Mo、Pb等を添加し
ても本発明の効果が失われることはない。ただし、T
i、V、Nb、Zrなど、微細な窒化物を形成する元素
を添加するとこれらの微細析出物が粒成長性を阻害する
ことから、これらの元素の添加又は混入は0.01%以
下とするのが望ましい。
【0025】上記の成分範囲に調整することにより、従
来以上の加工性を有し、コイルエンド性の小さい低炭素
冷延鋼板を平易かつ廉価に得ることが可能となる。この
ような特性の鋼板は以下の製造方法により製造すること
ができる。
【0026】(2)鋼板製造工程 (2−1)態様1の製造条件 (製造方法)上記の成分範囲に調整した鋼を転炉にて溶
製した後、連続鋳造によりスラブにし、1150℃以下
に加熱し、粗圧延して粗バーとし、その後950℃以下
の粗バーを980℃以上に加熱し、Ar3 点以上で仕上
げ圧延を行い、650℃超えで巻き取る。次に、巻き取
った熱延鋼板を冷間圧延し、焼鈍する。 a.スラブの加熱温度 スラブを1150℃以下に加熱し、粗圧延して粗バーと
する。
【0027】本発明においては、スラブの加熱温度は重
要な役割を演ずる。本発明ではMnSを粗大化してコイ
ルエンド性を解消している。そこで、スラブ中に粗大析
出したMnSについては、可能な限り粗大なままとする
ため低温加熱を指向している。加熱温度があまり高い
と、加熱時にMnSが多量に固溶してしまい、微細Mn
Sが過剰に析出するため、BNによる粗大化効果が低下
してしまうことから、加熱温度は1150℃以下であ
る。また、あまり低いと圧延負荷が過剰となることか
ら、1050℃以上が好ましい。
【0028】b.粗バー加熱温度 粗圧延した粗バーを950℃以下とした後、980℃以
上に加熱する。粗バー加熱はMnSの析出を促進し、粗
バー両端の温度差やスキッドマークを解消するなど、本
発明の中核をなすものである。MnSを微細析出させる
ため、粗バー加熱前温度の上限は950℃以下である。
また、粗バー加熱前温度については、仕上げ圧延前にA
lNが析出すると、再結晶を遅延させるとともに再結晶
核となることで結晶粒を細かくすることから750℃以
上が望ましい。さらに好ましくは、粗バー加熱前温度が
Ar3 点以下になるとγ/α変態により粗バー加熱後の
γ粒径が、Ar3 以下に冷却しない場合と比べて若干微
細となり、結果的に熱延板粒径が若干小さくなることか
ら、粗バー加熱前温度はAr3 以上がよい。
【0029】また、粗バー加熱温度を980℃未満とし
た場合には、微細MnSを仕上げ圧延前に完全に析出さ
せることができず、本発明の効果が得られない。従っ
て、加熱温度の下限は980℃以上である。一方、粗バ
ー加熱温度が高いと微細析出したMnSが再び固溶し、
本発明の効果が失われることから、粗バー加熱温度はス
ラブ加熱温度以下が望ましく、さらに1050℃以下が
好ましい。
【0030】加熱方法については特に限定しないが、M
nSの析出駆動力を保持したまま急速に、かつ均一に加
熱できる誘導加熱や電気抵抗加熱などが望ましい。ま
た、粗バー加熱前の粗バーをコイル状に一度巻取り、巻
き戻してから粗バー加熱を行うと、MnSの析出駆動力
が向上することから粗バー加熱前にコイルボックス使用
しても良い。
【0031】c.仕上圧延温度 本発明においては、仕上圧延温度はAr3 点以上であ
る。仕上圧延温度がAr3 点未満となると、r値を低下
させる集合組織が発達してしまうため、下限はAr3
以上である。
【0032】d.巻取温度 仕上げ圧延を行った熱延鋼板を650℃超えで巻き取
る。巻取温度は本発明において重要である。r値を向上
させるには熱延板の炭化物を凝集粗大化する必要があ
る。従って、巻取温度は650℃超えである。ただし、
過剰な高温巻取は著しい酸洗性の低下を招くことから、
800℃以下が望ましい。
【0033】(2−2)態様2の製造条件 (製造方法)上記の成分範囲に調整した鋼を連続鋳造に
よりスラブにし、温度が750℃以上で加熱炉に挿入
し、1150℃以下に加熱して、粗圧延し、粗バーと
し、その後950℃以下の粗バーを980℃以上に加熱
し、Ar3 点以上で仕上げ圧延を行い、650℃超えで
巻き取る。次に、巻き取った熱延鋼板を冷間圧延し、焼
鈍する。 a.スラブの加熱炉挿入温度 連続鋳造後のスラブ温度が750℃以上で加熱炉に挿入
する。
【0034】連続鋳造後、スラブ温度が750℃未満に
なるとスラブ中にAlNが析出する。AlNが析出する
とスラブ中のNが消費され、BNの粗大化が促進されな
くなり、それ以上のBNが粗大化しなくなる。AlNの
析出を抑制しBNの粗大析出を促進するために、連続鋳
造後スラブの加熱炉挿入温度の下限は、AlNが析出を
開始する750℃以上である。また、特定するものでは
ないが、1000℃以下に冷却しないとMnSやBNの
粗大析出が逆に遅延することから、1000℃以下で加
熱炉に挿入することが望ましい。
【0035】このように、連続鋳造後のスラブ温度が7
50℃以上で加熱炉に挿入すれば、本発明の効果をさら
に増加させることができる。 b.スラブの加熱温度 態様1の製造条件と同様。
【0036】c.粗バー加熱温度 態様1の製造条件と同様。 d.仕上温度 態様1の製造条件と同様。
【0037】e.巻取温度 態様1の製造条件と同様。以上、本発明において、態様
1及び2の各工程の温度は重要な意味を持っており、こ
のどれか一つでもかけた場合、本発明の効果は得られな
い。
【0038】なお、酸洗後の冷間圧延については、加工
性、特に深絞り性から圧延率は30〜90%が好まし
い。焼鈍についても軟質化のため600℃以上、粗大粒
抑制のため900℃以下とする。焼鈍方法は連続焼鈍で
ある。ただし、箱焼鈍を行ってもなんら問題は生じな
い。調質圧延の条件についての制限はないが、あまり高
いとELの低下が激しいことから、2%以下が望まし
い。また、本発明鋼の成分調整には、転炉と電気炉のど
ちらも使用可能である。以下に本発明の実施例を挙げ、
本発明の効果を立証する。
【0039】
【実施例】
(実施例1)表1に示す成分の鋼(本発明鋼:No.1
〜19、比較鋼:No.20〜25)を溶解し、表2に
示す製造条件(本発明例:No.1〜19、比較例:N
o.20〜25)にて熱延を行った。粗バーの加熱につ
いては誘導加熱で行い、昇温に要した時間は5秒以内で
ある。さらに得られた熱延板を冷圧率70%で冷間圧延
を行い、750℃で連続焼鈍熱サイクルにより焼鈍を行
った。調圧率は0.8%、板厚は0.8mmである。製
造したコイルの熱延時の長手方向先端部(T部)3mと
中央部(M部)さらには後端部(B部)3mからJIS
5号引張試験片を採取し、引張試験による引張強度(T
S)及び平均のr値を測定した。さらに、T部、B部の
小さい方のr値とM部のr値との差を算出した。
【0040】なお、平均のr値は、JIS5号引張試験
片を鋼板の圧延方向、圧延直角方向及び圧延45°方向
に採取し、15%歪みを引張りにより付与した時のr
値、r0 、r90、r45から、mean-r=(r0 +2r45
90)/4により算出された値である。
【0041】結果を表2にまとめて示す。本発明例N
o.1〜19においては、M部のr値は1.7以上であ
り、かつコイル端部とM部のr値の差は0.3以下にな
った。一方、比較例No.20〜25においては、スラ
ブ加熱温度、粗バー加熱温度、巻取温度及びB量のいず
れか一つの条件でもかけた場合であり、r値の著しい向
上もしくはコイルエンド性の低減が認められない。以上
より、本発明により製造された低炭素冷延鋼板は従来に
ない高いr値を有し、かつコイルエンド性が小さい。
【0042】
【表1】
【0043】
【表2】
【0044】(実施例2)表3に示す成分の鋼(本発明
鋼:No.1〜19、比較鋼:No.20〜25)を溶
解し、表4に示す温度で加熱炉に挿入し、同表に示す条
件で熱延を行った。さらに得られた熱延板を冷圧率85
%で冷間圧延を行い、700℃で連続焼鈍熱サイクルに
より焼鈍を行った。板厚は1.2mmとした。製造した
コイルの熱延時の長手方向先端部(T部)3mと中央部
(M部)さらには後端部(B部)3mからJIS5号引
張試験片を採取し、引張試験による引張強度(TS)及
び平均のr値を実施例1と同様に測定した。さらに、T
部、B部の小さい方のr値とM部のr値との差を算出し
た。
【0045】結果を表4にまとめて示す。本発明例N
o.1〜19においては、M部のr値は1.8以上であ
り、かつコイル端部とM部のr値の差は0.2以下にな
った。一方、比較例No.20〜25においては、スラ
ブ加熱温度、粗バー加熱温度、巻取温度及びB量のいず
れか一つの条件でもかけた場合であり、r値の著しい向
上もしくはコイルエンド性の低減が認められない。以上
より、本発明により製造された低炭素冷延鋼板は従来に
ない高いr値を有し、かつコイルエンド性が小さい。
【0046】
【表3】
【0047】
【表4】
【0048】
【発明の効果】本発明によれば、鋼組成及び製造条件を
特定することにより、廉価な低炭素鋼を用いて加工性、
特に深絞り性に優れたコイルエンド性の小さい軟質冷延
鋼板を製造することが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る粗バー加熱温度とM
部のr値及びM部とT,B部のr値の差との関係を示す
図。
【図2】本発明の実施の形態に係るB/N比とM部のr
値及びM部とT,B部のr値の差との関係を示す図。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 弘 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 石黒 康英 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 村山 尚志 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/10 C22C 38/00 - 38/60

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 重量%で、C≦0.05%と、Mn≦
    0.5%と、Si≦0.1%と、P≦0.025%と、
    S≦0.03%と、Sol.Al≦0.04%と、N≦
    0.0035%と、B≦0.003%とを含有し、かつ
    原子比でB/N=0.6〜1.3を満足し、残部がFe
    及び不可避的不純物からなる鋼板を製造する方法におい
    て、 鋼を1150℃以下に加熱し、粗圧延して粗バーとする
    工程と、 950℃以下の粗バーを980℃以上に加熱し、Ar3
    点以上で仕上げ圧延を行い、650℃超えで巻き取る工
    程と、 巻き取った熱延鋼板を冷間圧延し、焼鈍する工程と、 を備えたことを特徴とする高加工性軟質冷延鋼板の製造
    方法。
  2. 【請求項2】 請求項1に記載の組成を有する鋼板を製
    造する方法において、 連続鋳造した鋼を750℃以上で加熱炉に挿入して11
    50℃以下に加熱し、粗圧延して粗バーとする工程と、 950℃以下の粗バーを980℃以上に加熱し、Ar3
    点以上で仕上げ圧延を行い、650℃超えで巻き取る工
    程と、 巻き取った熱延鋼板を冷間圧延し、焼鈍する工程と、 を備えたことを特徴とする高加工性軟質冷延鋼板の製造
    方法。
JP00145797A 1997-01-08 1997-01-08 高加工性軟質冷延鋼板の製造方法 Expired - Fee Related JP3339340B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00145797A JP3339340B2 (ja) 1997-01-08 1997-01-08 高加工性軟質冷延鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00145797A JP3339340B2 (ja) 1997-01-08 1997-01-08 高加工性軟質冷延鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPH10195541A JPH10195541A (ja) 1998-07-28
JP3339340B2 true JP3339340B2 (ja) 2002-10-28

Family

ID=11501992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00145797A Expired - Fee Related JP3339340B2 (ja) 1997-01-08 1997-01-08 高加工性軟質冷延鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP3339340B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694818A (zh) * 2015-03-26 2015-06-10 攀钢集团西昌钢钒有限公司 碳素结构钢冷轧钢板生产方法
CN104694817B (zh) * 2015-03-26 2016-11-09 攀钢集团西昌钢钒有限公司 超低碳冷轧钢板生产方法
KR20180018804A (ko) * 2015-07-10 2018-02-21 제이에프이 스틸 가부시키가이샤 냉연강판 및 그 제조 방법

Also Published As

Publication number Publication date
JPH10195541A (ja) 1998-07-28

Similar Documents

Publication Publication Date Title
JP4464811B2 (ja) 延性に優れた高強度低比重鋼板の製造方法
JPH0635619B2 (ja) 延性の良い高強度鋼板の製造方法
EP0905267B1 (en) Soft cold-rolled steel sheet and method for making the same
JP3339340B2 (ja) 高加工性軟質冷延鋼板の製造方法
JP2987815B2 (ja) プレス成形性および耐二次加工割れ性に優れた高張力冷延鋼板の製造方法
JP3339343B2 (ja) 高加工性軟質熱延鋼板の製造方法
JP3379404B2 (ja) コイル長手方向の形状に優れた軟質冷延鋼板の製造方法
JP3339341B2 (ja) コイルエンド性の小さい軟質冷延鋼板の製造方法
JPH0570836A (ja) 深絞り用高強度冷延鋼板の製造方法
JP3339342B2 (ja) コイルエンド性の小さい軟質熱延鋼板の製造方法
JP3508491B2 (ja) 組織安定性に優れた軟質冷延鋼板およびその製造方法
JP2669188B2 (ja) 深絞り用高強度冷延鋼板の製造法
JP3818024B2 (ja) 耐時効性に優れた軟質冷延鋼板の製造方法
JP3762085B2 (ja) 加工性に優れた直送圧延による軟質冷延鋼板の製造方法
JP3126851B2 (ja) 深絞り性に優れた薄鋼板の製造方法
JP4332960B2 (ja) 高加工性軟質冷延鋼板の製造方法
JP3271655B2 (ja) けい素鋼板の製造方法およびけい素鋼板
JP3224732B2 (ja) 耐時効性の良好な冷延鋼板とその製造方法
JP3704790B2 (ja) 耐時効性の良好な冷延鋼板
JP3471407B2 (ja) 加工性に優れた熱延鋼板の製造方法
JP2002003951A (ja) 異方性の小さい冷延鋼板の製造方法
JP2000199031A (ja) 加工性に優れた冷間圧延鋼板およびその製造方法
JP3612109B2 (ja) 異方性の小さい加工用薄手熱延鋼板の製造方法
JPS59123721A (ja) 加工性にすぐれた冷延鋼板の製造方法
JP3261037B2 (ja) 耐時効性の良好な冷延鋼板の製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees