JP3236654B2 - 機械式過給機付エンジン - Google Patents

機械式過給機付エンジン

Info

Publication number
JP3236654B2
JP3236654B2 JP7805992A JP7805992A JP3236654B2 JP 3236654 B2 JP3236654 B2 JP 3236654B2 JP 7805992 A JP7805992 A JP 7805992A JP 7805992 A JP7805992 A JP 7805992A JP 3236654 B2 JP3236654 B2 JP 3236654B2
Authority
JP
Japan
Prior art keywords
intake
valve
engine
closing timing
mechanical supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7805992A
Other languages
English (en)
Other versions
JPH05280354A (ja
Inventor
剛 後藤
耕一 畑村
正敏 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7805992A priority Critical patent/JP3236654B2/ja
Priority to KR1019930004129A priority patent/KR970007389B1/ko
Priority to DE4309627A priority patent/DE4309627C2/de
Publication of JPH05280354A publication Critical patent/JPH05280354A/ja
Priority to US08/225,490 priority patent/US5429100A/en
Application granted granted Critical
Publication of JP3236654B2 publication Critical patent/JP3236654B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/446Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/005Controlling engines characterised by their being supercharged with the supercharger being mechanically driven by the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、機械式過給機およびイ
ンタークーラを備えたエンジンであって幾何学的圧縮比
を高圧縮比化した機械式過給機付エンジンに関するもの
である。
【0002】
【従来の技術】従来から、過給機によって吸気を過給す
るようにしたエンジンは種々知られている。この種の過
給機付エンジンで、幾何学的圧縮比の高圧縮比化、およ
び吸気弁の遅閉じにより燃費ならびに出力性能の向上を
図るようにしたものとしては、例えば特開昭63−23
9312号公報に開示のものがある。このものでは、過
給機付エンジンにおけるエンジンの幾何学的圧縮比を
8.5以上に設定するとともに、バルブリフト量1mmを
もって定義した吸気弁閉時期を下死点よりクランク角で
50deg以上に遅らせることにより、エンジンのサイ
クル効率の向上、ノッキング抑制、排気温度上昇抑制等
を図っている。さらに、オーバラップを大きくすること
により掃気効果で耐ノック性等が向上されることが開示
されている。
【0003】また、特開平3−138416号公報に
も、過給機付エンジンにおけるエンジンの幾何学的圧縮
比を8.5以上に設定するとともに、バルブリフト量1
mmをもって定義した吸気弁閉時期を下死点よりクランク
角で50deg以上に遅らせるようにしたものが開示さ
れている。
【0004】
【発明が解決しようとする課題】この種の過給機付エン
ジンにおいては、次のような点で、吸気弁閉時期、過給
機の過給性能および吸・排気弁の開弁オーバラップ期間
等について改善すべき点が残されていた。
【0005】吸気弁の閉時期を遅くする吸気遅閉じを行
うことはノッキングを回避して低速高負荷域の出力性能
向上等に有利となり、またこの吸気遅閉じに加えてエン
ジンの幾何学的圧縮比を大きくすることは、膨張比増大
により排気温度上昇を抑制して高速高負荷域の出力性能
向上等に有利となる。そして、エンジンの幾何学的圧縮
比を高めるとそれに見合うように吸気遅閉じをより増大
することが望ましい。ただし、吸気遅閉じを増大する
と、高負荷時の充填量確保のため過給圧を高める必要が
あって、必要過給圧が大幅に高くなることがあるが、タ
ーボ過給機やルーツ式過給機等では、入口側圧力と出口
側圧力との圧力比が比較的低く(1.8以下)、高過給
が困難である。
【0006】また、過給圧が高められると、開弁オーバ
ラップ期間中の掃気性能が高められる反面、吸気側から
排気側への混合気の吹き抜けによるHC排出量の増大を
招き易くなるという懸念がある。
【0007】本発明は、上記の事情に鑑み、エンジンの
幾何学的圧縮比の高圧縮比化および吸気遅閉じの増大と
ともに、過給性能を高めて高過給を行うことにより、出
力性能および燃費を大幅に向上し、しかも、HC排出量
の増大を防止することができる機械式過給機付エンジン
を提供することを目的とする。
【0008】
【課題を解決するための手段】上記目的を達成するため
に、第1の発明(請求項1記載)は、機械式過給機と、
この機械式過給機の下流に配置されたインタクーラとを
備え、かつ、エンジンの幾何学的圧縮比を8.5以上の
高圧縮比に設定した機械式過給機付エンジンにおいて、
上記機械式過給機を、その入口圧力と出口圧力との圧力
比が1.8を超える内部圧縮型機械式過給機とする一
方、バルブリフト量1mmの位置まで閉じる時点をもって
定義し下死点からのクランク角で表した吸気弁閉時期Y
が50〜100degであるという条件と、バルブリフ
ト量0mmを基準とした場合の吸・排気弁の開弁オーバラ
ップ期間がクランク角で17deg以下であるという条
件と、上記吸気弁閉時期Yとバルブリフト量1mmを基準
とした場合の吸・排気弁の開弁オーバラップ期間Xとの
関係が、 Y≦−2.5X−7.5 という条件とを満足する範囲の中で、 Y≧−1.75X+10 となる部分を除く範囲内に、吸気弁閉時期及び開弁オー
バラップ期間を設定した ものである。
【0009】第2の発明(請求項2記載)は、第1の発
明において、幾何学的圧縮比を9〜15の範囲内とした
ものである。
【0010】
【0011】第の発明(請求項記載)は、第1又は
第2の発明において、吸気弁および排気弁の各開閉時期
をエンジンの全運転域にわたって一定としたものであ
る。
【0012】なお、吸気弁および排気弁の開閉時期につ
いて一般にその定義が統一されていないため、上記各発
明の説明の中で定義している。吸気弁閉時期等をバルブ
リフト1mm時をもって定義しているのは、吸気行程中の
吸入空気量や排気行程中のガス排出量との関係では有効
に吸・排気が行われる期間を特定するものとしてバルブ
リフト1mm時が妥当だからであり、また第1の発明の中
で吸・排気弁の開弁オーバラップ量をバルブリフト0mm
時をもって定義しているのは、微小開度でも高過給状態
での吸・排気弁の開弁オーバラップ期間中の掃気性や吹
き抜けには影響するからである。また、上記幾何学的圧
縮比とは、シリンダのピストン下死点での容積と隙間容
積(上死点での容積)との比をいう。
【0013】
【作用】本発明の構成によると、吸気遅閉じにより低負
荷時のポンピングロスが低減されるとともに、上記幾何
学的圧縮比が高いことと吸気遅閉じ量が大きいこととで
低速高負荷域でのノッキング防止および高速高負荷域で
の排気温度上昇防止が図られつつ、高過給とされること
で出力性能が大幅に高められる。しかも、上記オーバラ
ップ期間が小さいことでHC排出量が低減され、また高
過給により小さなオーバラップ期間においても掃気性能
が高められる。
【0014】また、バルブタイミングが固定タイミング
であっても、上記オーバラップ期間が小さいことによ
り、低負荷域で排気の吹き返しが抑制される。
【0015】
【実施例】本発明の実施例を図面に基づいて説明する。
図1は本発明の一実施例による機械式過給機付エンジン
の概略を示している。この図において、エンジン本体1
の各気筒の燃焼室2には、吸気通路3の下流端側の吸気
ポートおよび排気通路4の上流端側の排気ポートが開口
し、これらのポートに吸気弁5および排気弁6が装備さ
れている。これら吸気弁5および排気弁6は、図外の動
弁機構により後述のような所定のタイミングで開閉され
るようになっている。
【0016】上記吸気通路3の途中には、機械式過給機
10が設けられている。この機械式過給機は、とくに、
入口と出口との絶対圧力比が1.8を超える内部圧縮型
であり、図示の実施例では、一対のねじロータからなる
所謂リショルム型過給機が用いられている。そしてこの
機械式過給機10は、プーリ11および駆動ベルト12
を介して図外のクランク軸に連動されている。
【0017】吸気通路3における上記機械式過給機10
の上流にはスロットル弁13が設けられ、スロットル弁
13の上流には吸入空気量を検出するエアフローメータ
14が設けられており、さらに吸気通路3の上流端部に
はエアクリーナ15が設けられている。
【0018】一方、機械式過給機10の下流にはインタ
ークーラ16が設けられている。インタークーラ16の
下流の吸気通路3にはサージタンク17が設けられてい
る。また、吸気通路3に対し、上記機械式過給機10お
よびインタークーラ16をバイパスするバイパス通路1
8が形成され、このバイパス通路18に、サージタンク
17内の圧力に応じて開閉作動するバイパスバルブ19
が設けられ、低負荷域ではバイパスバルブ19が開かれ
るようになっている。また、吸気通路の下流端側の吸気
ポート近傍には、燃料を噴射供給するインジェクタ20
が設けられている。
【0019】このような構造において、エンジン本体1
は幾何学的圧縮比が8.5以上に設定され、望ましくは
9〜15に設定されている。また吸気弁5および排気弁
6は、図2とその一部を拡大した図3とに示すようなバ
ルブリフト特性で作動される。特に、吸気弁がバルブリ
フト量1mmの位置まで閉じる時点をもって定義した吸気
弁閉時期IC1 が、ABDC50degCA以上でAB
DC100degCA以下の範囲内に設定されるととも
に、バルブリフト量0mmを基準とした場合の吸・排気弁
の開弁オーバラップ期間OLが、17degCA以下に
設定されている。ここで、ABDCは下死点後、CAは
クランク角を意味しており、従ってABDC50deg
CAは下死点よりクランク角で50degを表してい
る。上記吸気弁閉時期と上記開弁オーバラップ期間との
望ましい関係としては、バルブリフト量1mmをもって吸
・排気弁の開閉時期を定義した場合の、下死点からのク
ランク角で表した吸気弁閉時期Yと吸・排気弁の開弁オ
ーバラップ期間Xとの関係が、 Y≦−2.5X−7.5 …… となるように設定されている。この式を書き変えれば、 X≦−(Y+7.5)/2.5 …… となる。
【0020】なお、図3の中に示すように、吸・排気弁
の開閉時期については、バルブリフト量1mmをもって定
義した場合(図3中に符号IO1 、IC1 、EO1 、E
1で示す)とバルブリフト量0mmをもって定義した場
合(図3中に符号IO0 、IC0 、EO0 、EC0 で示
す)とで、20degCAのずれがある。従って、開弁
オーバラップ期間はバルブリフト量1mmを基準とした場
合とバルブリフト量0mmを基準とした場合とで40de
gCAのずれがある。
【0021】以下の説明では、バルブリフト量1mmを基
準とした開弁オーバラップ期間を1mm基準オーバラッ
プ期間、バルブリフト量0mmを基準とした開弁オーバラ
ップ期間を0mm基準オーバラップ期間と呼ぶことと
し、また、吸気弁閉時期については具体的数値を示すと
きはバルブリフト量1mmをもって定義した値とする。
【0022】図4は、縦軸を吸気弁の閉時期、横軸を開
弁オーバラップ期間として、これらについての望ましい
範囲を示している。つまり、吸気弁閉時期がABDC5
0〜100degCAの範囲、0mm基準オーバラップ
期間が17degCA以下で、かつ上記式(式)の
条件を満足する範囲は、図4中に斜線を付した範囲であ
る。
【0023】次に、機械式過給機10の圧力比、エンジ
ンの圧縮比、吸気弁閉時期および開弁オーバラップ期間
等についての上記のような設定による場合の作用効果
を、図5〜9図を参照しつつ説明する。
【0024】吸気遅閉じ(吸気弁閉時期を遅くするこ
と)を大きくしつつ、機械式過給機による吸気の過給で
高負荷時の充填量を確保すると、ノッキング回避に有利
となり、ノッキングによって制約される低速高負荷域で
のエンジン出力の向上が可能となる。すなわち、吸気弁
閉時期を遅くするとその分だけ圧縮量が減少するが、過
給によるエンジン外部の圧縮仕事でこれを補い、かつイ
ンタークーラで冷却して、低温で高い圧力の吸気を供給
すると、圧縮上死点の温度が低下することによりノッキ
ングが抑制される。従って、過給能力を高めることで低
速高負荷域でのエンジントルクをノック限界まで高める
とした場合、そのノック限界のトルクは図5中に線A
1 ,A2 で示すように、吸気弁閉時期が遅くなるにつれ
て大きくなる。また、吸気遅閉じによって低負荷時のポ
ンピングロスを低減する作用も得られ、燃費率は図5中
の線B1 ,B2 に示すように吸気弁閉時期が遅くなるに
つれて小さくなる(燃費が良くなる)。そして、吸気弁
閉時期がABDC50degCAより小さくなるとノッ
ク限界のトルクの低下方向の変化およびポンピングロス
の増大方向の変化が大きくなるため、吸気弁閉時期はA
BDC50degCA以上が有効となる。
【0025】図5において上記のノック限界のトルクお
よびポンピングロスについては、エンジンの幾何学的圧
縮比εが9の場合(線A1 ,B1 )と、上記幾何学的圧
縮比εが10の場合(線A2 ,B2 )とが示されてい
る。幾何学的圧縮比を低くすると、圧縮上死点の温度が
低下して低速高負荷域でのノック限界のトルクが上昇す
るが、エンジンサイクル効率の低下により燃費が悪化す
るとともに、膨張比が小さくなって、排気温度の上昇が
制約となる高速高負荷時の出力向上に不利となる。そこ
で、燃費および高速高負荷域での出力の向上等の面か
ら、幾何学的圧縮比を8.5以上に大きくし、望ましく
は9〜15の範囲とする。これにより、吸気弁閉時期が
ABDC50degCA以上の吸気遅閉じ状態で、適度
の有効圧縮比が得られつつ、膨張比が大きくされる。圧
縮比の上限を15としているのは、これを超えるとフリ
クションの増加による機械効率の低下が大きくなるため
である。
【0026】図5中の線Cは、一定の最大トルクを得る
ための必要過給圧の、吸気弁閉時期に対する特性を示
し、吸気弁閉時期が遅くなるほど、有効圧縮比の低下を
補うように必要過給圧が高くなる。
【0027】また、図5中の線Dは、始動性を示すため
の連爆回転数の、吸気弁閉時期に対する特性を示してい
る。この線Dのように、吸気遅閉じが大きくなるほど、
圧縮上死点での温度上昇が小さくなるため始動性にとっ
ては不利となって連爆回転数が低下し、回転数が所定回
転数N0 以下になると始動困難となる。従って、連爆回
転数が上記所定回転数N0 まで低下したところが始動限
界吸気弁閉時期ICLとなる。そして、線Dはε=9の
場合について示しているが、幾何学的圧縮比が変わると
始動限界吸気弁閉時期が変化する。横軸を幾何学的圧縮
比、縦軸を吸気弁閉時期として、始動限界吸気弁閉時期
に相当する等有効圧縮比ラインを示すと、図10のよう
になる。この図のように、幾何学的圧縮比が上限の15
程度のときは、始動限界吸気弁閉時期がABDC100
degCAとなり、これが吸気弁閉時期の上限となる。
【0028】また、上記線Cのように、吸気遅閉じ量を
大きくすると必要過給圧が上昇し、従って過給機の入口
圧力と出口圧力との圧力比を大きくすることが要求され
るが、内部圧縮型過給機を用いることにより上記要求が
満足されるものであり、これを図6および図7によって
説明する。
【0029】図6は、過給機の入口圧力と出口圧力との
圧力比と、全断熱効率との関係を、ターボ過給機と、非
内部圧縮型の機械式過給機の一種であるルーツ式過給機
と、内部圧縮型機械式過給機の一種であるリショルム過
給機とについて示している。この図のように、ターボ過
給機や非内部圧縮型のルーツ式過給機では、圧力比が
1.8に近づくとバックフローの増大により、全断熱効
率が低下するとともに、吐出温度が上昇するため、圧力
比約1.8が過給限界となって、それ以上に過給圧を上
げることは困難である。これと比べ、内部圧縮型機械式
過給機であるリショルム過給機によると、圧力比が1.
8を超えても全断熱効率が低下せず、過給限界が大幅に
高圧力比側となる。
【0030】また、図7は、上記圧力比が比較的高い値
(例えば2.3程度)となるようにする場合の、設計内
部圧力比と吐出温度および駆動ロスとの関係を示す。こ
の図からわかるように、非内部圧縮型の過給機のように
設計内部圧力比が小さいものでは、高圧力比を得ようと
すると過大に吐出温度が上昇するので、設計内部圧力比
を高くする方が吐出温度上昇防止の面で好ましい。ただ
し、非過給領域での設計内部圧力比が高くなるにつれて
駆動ロスが増大する。
【0031】これらの点から、圧力比が1.8を超える
内部圧縮型過給機を用いることにより有効に過給圧力が
高められることがわかる。好ましい一例としては、設計
内部圧力比を1.6程度、圧力比を2.3程度とすれば
よい。
【0032】図8は、吸気弁閉時期をABDC50de
gCAとして、オーバラップ期間とHC排出量との関係
を示す。この図において、線E1 は吸気圧力が大気
力よりも高くなるような過給域での関係を示すものであ
って、例えば全負荷で過給圧が約600mmHg、平均有効
圧力がPe=15〜16の場合、Pe=9程度となる領
域での関係を示しており、また、線E2 は非過給領域
(例えばPe=3)での関係を示している。上記線E1
のように、過給領域ではオーバラップが17degC
Aを超えるとHC排出量が急激に増加する。
【0033】図9は、吸気弁閉時期をABDC50de
gCAとして、オーバラップ期間とWOT時最大トルク
との関係を示し、この図において、線F1 は非圧縮型過
給機を用いた場合のように過給圧力が比較的低い場合の
関係、線F2 は高圧力比の内部圧縮型過給機を用いるこ
とで過給圧力を充分に高くした場合(例えば600mmHg
程度)の関係を示している。これらに示すように、過給
圧力が比較的低いときは、オーバラップ期間が大きくな
るにつれ、かなりの大オーバラップ側まで、徐々に掃気
性能が高められることで出力が次第に高くなるが、過給
圧力を充分に高くした場合は、17degCAよりかな
り小さな0mm基準オーバラップ期間の場合から掃気がほ
ぼ達成されることで出力性能が高められ、17degC
A付近やそれ以上にオーバラップ期間が大きくなって
も、出力はあまり変化しない。
【0034】これら図8,図9のデータから、0mm基準
オーバラップ期間が17degCA以下になることがH
C低減に効果的であり、特に4〜17degCAの範囲
内に設定しておけば、掃気性も満足しつつ、HC排出量
の低減が図られる。
【0035】また、上記図8,図9では、ABDC50
degCAとした場合について示したが、これよりも吸
気遅閉じ量を大きくし、それに見合うように過給性能を
高めると、HC低減のためにオーバラップ期間をより小
さくすることが必要となる。
【0036】このような関係を次の表1に示す。この表
は、図8に示すデータと同様に吸気閉時期をABDC5
0degCA、過給圧力を例えば100mmHg程度(平均
有効圧力Pe=9に対応する過給圧力)とした場合を基
準状態とし、ABDC60degCA、ABDC70d
egCAにおいてそれぞれ上記基準状態と同程度の吸入
空気量となるように過給圧力を調整し、かつ基準状態と
同じオーバラップ期間とした場合のHC排出量の増加
(基準状態の場合を1として示す。)と、基準状態と同
等のHC排出量とするようにオーバラップ期間を調整し
た場合のそのオーバラップ期間とを示している。表中、
吸入空気比とは、吸気遅閉じとしない通常の吸気弁閉時
期による場合の吸入空気に対する比である。
【0037】
【表1】
【0038】この表中の最下欄のオーバラップ期間をプ
ロットしてこれを結ぶと図11のようになり、その特性
を示す線は、バルブリフト1mmを基準とした場合に、 Y=−2.5X−7.5 となる。これから、前記の式(式)が導かれ、この
範囲内とすることによって有効にHC排出量が低減され
ることとなる。
【0039】なお、高負荷時にオーバラップ期間を大き
くするようなものでは、低負荷時に排気の吹き返しが問
題となって、これを避けるには負荷に応じてオーバラッ
プ期間を変更するようにバルブタイミングを可変とする
ことが必要となるが、本発明では、オーバラップ期間が
小さいため、バルブタイミングを固定としておいても、
低負荷時には排気の吹き返しが抑制されて燃焼安定性が
確保される。
【0040】以上のような作用効果を良好に発揮させる
ための実施例上の好ましい仕様の一例を挙げると、エン
ジンの幾何学的圧縮比を10程度、リショルム過給機を
用いて圧力比を2.3程度(設計内部圧力比1.6程
度)、吸気弁閉時期をABDC60degCA程度、0
mm基準オーバラップ期間を7degCA程度とすればよ
い。
【0041】
【発明の効果】請求項1に記載の発明は、エンジンの幾
何学的圧縮比を8.5以上とするとともに、入口と出口
との圧力比が1.8を超える内部圧縮型機械式過給機を
用い、バルブリフト量1mmをもって定義した吸気弁閉時
期を下死点からクランク角で50〜100degの範囲
内とし、バルブリフト量0mmを基準とした場合の開弁オ
ーバラップ期間をクランク角で17deg以下とし、か
つ、バルブリフト量1mmを基準とした場合の吸気弁閉時
期Yと開弁オーバラップ期間Xとの関係を、 Y≦−2.5X−7.5 とするように設定しているため、 上記幾何学的圧縮比が
高いことと吸気遅閉じ量が大きいこととでノッキング防
止および排気温度上昇防止が図られつつ、高過給とされ
ることで出力性能が大幅に高められ、しかも、上記オー
バラップ期間を小さくしたことでHC排出量を低減する
ことができる。また、上記のようにオーバラップ期間を
小さくしても、高い過給圧力が与えられることで掃気性
を満足することも可能である。従って、低速高負荷時お
よび高速高負荷時の出力性能を向上しつつ、エミッショ
ンを改善することができる。
【0042】請求項2に記載のように上記幾何学的圧縮
比を9〜15の範囲内とすれば、排気温度上昇防止等の
効果が良好に得られる。
【0043】
【0044】また請求項に記載のように、吸気弁およ
び排気弁の各開閉時期をエンジンの全運転域にわたって
一定としておけば、オーバラップ期間変更のためのバル
ブタイミング可変機構などを必要とせず構造を簡単に保
つことができ、かつ、オーバラップ期間が小さくされて
いることにより、高過給領域でHC排出量を抑制すると
ともに、低負荷域で排気の吹き返しが増大することを防
止し得るので、このようにバルブタイミングを固定して
も、高負荷域での出力性能向上とともに、低負荷域での
燃焼安定性も保たれる。
【図面の簡単な説明】
【図1】本発明の一実施例による機械式過給機付エンジ
ン全体の概略図である。
【図2】バルブリフト特性の説明図である。
【図3】バルブリフト特性の一部の拡大図である。
【図4】吸気弁閉時期および開弁オーバラップ期間の設
定範囲を示す図である。
【図5】ノッキング限界のトルク、燃費率、過給圧およ
び連爆回転数のそれぞれについて、吸気弁閉時期との関
係を示す図である。
【図6】過給機の圧力比と全断熱効率との関係を示す図
である。
【図7】過給機の設計内部圧力比と吐出温度および駆動
ロスとの関係を示す図である。
【図8】開弁オーバラップ期間とHC排出量との関係を
示す図である。
【図9】開弁オーバラップ期間とWOT時最大トルクと
の関係を示す図である。
【図10】始動限界吸気弁閉時期と幾何学的圧縮比との
関係を示す図である。
【図11】吸気弁閉時期と開弁オーバラップ期間との関
係を示す図である。
【符号の説明】
1 エンジン本体 2 燃焼室 3 吸気通路 5 吸気弁 6 排気弁 10 内部圧縮型機械式過給機 16 インタークーラ
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−138416(JP,A) 特開 昭63−239312(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02B 29/08 F01L 1/34 F02B 33/00

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 機械式過給機と、この機械式過給機の下
    流に配置されたインタクーラとを備え、かつ、エンジン
    の幾何学的圧縮比を8.5以上の高圧縮比に設定した機
    械式過給機付エンジンにおいて、 上記機械式過給機を、その入口圧力と出口圧力との圧力
    比が1.8を超える内部圧縮型機械式過給機とする一
    方、バルブリフト量1mmの位置まで閉じる時点をもって定義
    し下死点からのクランク角で表した吸気弁閉時期Yが5
    0〜100degであるという条件と、バルブリフト量
    0mmを基準とした場合の吸・排気弁の開弁オーバラップ
    期間がクランク角で17deg以下であるという条件
    と、上記吸気弁閉時期Yとバルブリフト量1mmを基準と
    した場合の吸・排気弁の開弁オーバラップ期間Xとの関
    係が、 Y≦−2.5X−7.5 という条件とを満足する範囲の中で、 Y≧−1.75X+10 となる部分を除く範囲内に、吸気弁閉時期及び開弁オー
    バラップ期間を設定した ことを特徴とする機械式過給機
    付エンジン。
  2. 【請求項2】 幾何学的圧縮比を9〜15の範囲内とし
    たことを特徴とする請求項1記載の機械式過給機付エン
    ジン。
  3. 【請求項3】 吸気弁および排気弁の各開閉時期をエン
    ジンの全運転域にわたって一定としたことを特徴とする
    請求項1又は2記載の機械式過給機付エンジン。
JP7805992A 1992-03-31 1992-03-31 機械式過給機付エンジン Expired - Fee Related JP3236654B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7805992A JP3236654B2 (ja) 1992-03-31 1992-03-31 機械式過給機付エンジン
KR1019930004129A KR970007389B1 (ko) 1992-03-31 1993-03-18 기계식과급기부착엔진
DE4309627A DE4309627C2 (de) 1992-03-31 1993-03-24 Ladermotor
US08/225,490 US5429100A (en) 1992-03-31 1994-04-08 Supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7805992A JP3236654B2 (ja) 1992-03-31 1992-03-31 機械式過給機付エンジン

Publications (2)

Publication Number Publication Date
JPH05280354A JPH05280354A (ja) 1993-10-26
JP3236654B2 true JP3236654B2 (ja) 2001-12-10

Family

ID=13651286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7805992A Expired - Fee Related JP3236654B2 (ja) 1992-03-31 1992-03-31 機械式過給機付エンジン

Country Status (4)

Country Link
US (1) US5429100A (ja)
JP (1) JP3236654B2 (ja)
KR (1) KR970007389B1 (ja)
DE (1) DE4309627C2 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125341A (ja) * 1994-10-25 1996-05-17 Hitachi Ltd 電子回路装置
JPH0968045A (ja) * 1995-09-01 1997-03-11 Yamaha Motor Co Ltd 過給式エンジンの吸気装置
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
US6320139B1 (en) 1998-11-12 2001-11-20 Rockwell Automation Technologies, Inc. Reflow selective shorting
US6282898B1 (en) 1999-05-13 2001-09-04 Alberto Solaroli Operation of forced induction internal combustion engines
DE19950677A1 (de) * 1999-10-21 2001-04-26 Volkswagen Ag Verfahren zum Betreiben einer zumindest einen in einem Zylinder geführten Arbeitskolben aufweisenden Brennkraftmaschine
US20050241302A1 (en) * 2002-05-14 2005-11-03 Weber James R Air and fuel supply system for combustion engine with particulate trap
US20060112689A1 (en) * 2004-11-30 2006-06-01 Savage Patrick W Jr Divided housing turbocharger with a variable nozzle area
SE528074C2 (sv) * 2004-12-03 2006-08-29 Koenigsegg Automotive Ab Förbränningslufttillförselanordning
US20080121218A1 (en) * 2004-12-13 2008-05-29 Caterpillar Inc. Electric turbocompound control system
US20070144175A1 (en) * 2005-03-31 2007-06-28 Sopko Thomas M Jr Turbocharger system
US7484498B2 (en) * 2006-03-31 2009-02-03 Mazda Motor Corporation Spark-ignition gasoline engine
JP4277897B2 (ja) 2006-12-21 2009-06-10 トヨタ自動車株式会社 内燃機関の制御装置
DE102007042405A1 (de) * 2007-09-06 2009-03-12 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
JP4862927B2 (ja) * 2009-08-20 2012-01-25 マツダ株式会社 火花点火式内燃機関の制御システム
US8418463B2 (en) 2010-04-15 2013-04-16 Ford Global Technologies, Llc Condensate management for motor-vehicle compressed air storage systems
US8371276B2 (en) 2010-04-15 2013-02-12 Ford Global Technologies, Llc Stored compressed air management and flow control for improved engine performance
US8069665B2 (en) 2010-04-15 2011-12-06 Ford Global Technologies, Llc Stored compressed air management for improved engine performance
JP5464079B2 (ja) * 2010-06-30 2014-04-09 マツダ株式会社 ディーゼルエンジン
US8752475B2 (en) 2010-10-26 2014-06-17 Ford Global Technologies, Llc Method and system for improving vehicle braking
DE112013003454T5 (de) 2012-07-31 2015-04-23 Cummins Inc. System und Verfahren zur Klopfreduzierung
JP6396635B2 (ja) * 2012-11-20 2018-09-26 トヨタ自動車株式会社 内燃機関の制御装置
KR101807030B1 (ko) 2015-12-09 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
KR102394575B1 (ko) 2017-11-20 2022-05-04 현대자동차 주식회사 연속 가변 밸브 듀레이션 장치 및 이를 포함하는 엔진
US10415488B2 (en) 2015-12-09 2019-09-17 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
KR101807034B1 (ko) 2015-12-09 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10393037B2 (en) 2015-12-09 2019-08-27 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
KR101807031B1 (ko) 2015-12-10 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10415485B2 (en) 2015-12-10 2019-09-17 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
US10920679B2 (en) 2015-12-11 2021-02-16 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
US10323585B2 (en) 2015-12-11 2019-06-18 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
KR101776743B1 (ko) 2015-12-11 2017-09-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
KR101807023B1 (ko) 2015-12-11 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10634067B2 (en) 2015-12-11 2020-04-28 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
US10428747B2 (en) 2015-12-11 2019-10-01 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
US10634066B2 (en) 2016-03-16 2020-04-28 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
KR101807037B1 (ko) * 2016-03-16 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002898B1 (ko) * 1986-11-27 1991-05-09 마쯔다 가부시기가이샤 과급기부착엔진
JP2799388B2 (ja) * 1986-11-27 1998-09-17 マツダ株式会社 過給機付エンジン
US4932368A (en) * 1988-01-28 1990-06-12 Mazda Motor Corporation Suction arrangement for internal combustion engine
JP2863927B2 (ja) * 1988-03-15 1999-03-03 マツダ株式会社 エンジンの吸気装置
JPH0791984B2 (ja) * 1989-10-24 1995-10-09 マツダ株式会社 過給機付エンジンの吸気装置

Also Published As

Publication number Publication date
KR970007389B1 (ko) 1997-05-08
KR930019986A (ko) 1993-10-19
DE4309627C2 (de) 1996-09-19
DE4309627A1 (de) 1994-02-03
JPH05280354A (ja) 1993-10-26
US5429100A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
JP3236654B2 (ja) 機械式過給機付エンジン
US4958606A (en) Supercharged engine
JPH0791984B2 (ja) 過給機付エンジンの吸気装置
JP2003083099A (ja) 内燃機関の制御方法
JPH0726994A (ja) 機械式過給機付エンジンの吸気装置
JP3436313B2 (ja) 火花点火式エンジン
JP2799388B2 (ja) 過給機付エンジン
JP2566232B2 (ja) 過給機付エンジンのバルブタイミング制御装置
JP3183560B2 (ja) 過給機付エンジンの制御装置
JP3451669B2 (ja) 過給機付エンジン
JP3377828B2 (ja) 機械式過給機付エンジンの吸気装置
JP3551436B2 (ja) ターボ過給機付エンジン
JP2673427B2 (ja) 過給機付エンジン
JP2568250B2 (ja) エンジンのバルブタイミング制御装置
JPS60119325A (ja) 過給機付内燃機関の吸気装置
JP3165242B2 (ja) 過給機付エンジンの吸気制御装置
JPH08291713A (ja) 機械式過給機付きエンジン
JPH02119620A (ja) 過給機付エンジンの吸気装置
JP2673426B2 (ja) 機械式過給機付エンジン
JP3330189B2 (ja) エンジンの制御装置
JPH0717787Y2 (ja) 過給機付エンジン
JP3280757B2 (ja) 機械式過給機付エンジンの吸気装置
RU2027034C1 (ru) Способ газообмена турбонаддувного двигателя
JPH08284668A (ja) 機械式過給機付きエンジン
JPS60147534A (ja) 内燃機関の吸気装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees