JP3169133B2 - Modified water absorbent resin particles for sanitary goods - Google Patents

Modified water absorbent resin particles for sanitary goods

Info

Publication number
JP3169133B2
JP3169133B2 JP52753995A JP52753995A JP3169133B2 JP 3169133 B2 JP3169133 B2 JP 3169133B2 JP 52753995 A JP52753995 A JP 52753995A JP 52753995 A JP52753995 A JP 52753995A JP 3169133 B2 JP3169133 B2 JP 3169133B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
resin particles
particles
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52753995A
Other languages
Japanese (ja)
Inventor
雅志 伊達
正久 藤田
隆 住谷
政法 小池
健治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Application granted granted Critical
Publication of JP3169133B2 publication Critical patent/JP3169133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3287Layers in the form of a liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • B01J2220/445Materials comprising a mixture of organic materials comprising a mixture of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は有機ポリシロキサンにより処理された吸水性
樹脂粒子に関する。更に詳しくは、液状有機ポリシロキ
サンにより処理され改質された衛生用品用吸水性樹脂粒
子であり、吸収速度が改良され、且つ吸湿によるブロッ
キングの問題が少ない衛生用品用吸水性樹脂粒子に関す
る。
Description: TECHNICAL FIELD The present invention relates to water-absorbent resin particles treated with an organopolysiloxane. More specifically, the present invention relates to a water-absorbent resin particle for sanitary goods treated and modified with a liquid organic polysiloxane, which has an improved absorption rate and has little problem of blocking due to moisture absorption.

背景技術 従来から生理用品、紙おむつ等の衛生材料等に吸水性
樹脂が幅広く用いられている。この様な吸水性樹脂の例
としては、ポリアクリル酸塩架橋物、自己架橋型ポリア
クリル酸塩、デンプン−アクリル酸塩グラフト共重合体
架橋物、ビニルアルコール−アクリル酸塩共重合体架橋
物、アクリルアミド共重合体架橋物の加水分解物、架橋
イソブチレン−無水マレイン酸共重合体の中和物、カル
ボキシメチルセルロース塩の架橋物等の実質的に水不溶
性の架橋重合体が知られている。
BACKGROUND ART Conventionally, water-absorbent resins have been widely used for sanitary products, sanitary materials such as disposable diapers, and the like. Examples of such water-absorbent resins include crosslinked polyacrylates, self-crosslinked polyacrylates, crosslinked starch-acrylate graft copolymers, crosslinked vinyl alcohol-acrylate copolymers, A substantially water-insoluble crosslinked polymer such as a hydrolyzate of a crosslinked acrylamide copolymer, a neutralized product of a crosslinked isobutylene-maleic anhydride copolymer, and a crosslinked product of a carboxymethyl cellulose salt is known.

しかし、従来の吸水性樹脂は高い吸収能力を有するも
のの、速い吸収速度を必要とする紙おむつ、生理用品等
の衛生用品の用途に使用するには十分満足すべきもので
はなく、粒子状の吸水性樹脂を、吸収速度の速いパルプ
等の繊維状物と併用して使用されるのが一般的である。
However, although conventional water-absorbent resins have a high absorption capacity, they are not sufficiently satisfactory for use in sanitary products such as disposable diapers and sanitary products that require a high absorption rate. Is generally used in combination with a fibrous material such as pulp having a high absorption rate.

即ち、吸水性樹脂の吸収能力を高めれば高める程、水
との親和力が強くなるため、樹脂粒子が水と接触した時
に、接触部分でゲル化を生じて水の粒子内部への均一な
浸透が妨げられ、その結果吸収速度が遅くなるという問
題があった。
In other words, the higher the absorption capacity of the water-absorbing resin is, the higher the affinity with water becomes, so that when the resin particles come into contact with water, gelation occurs at the contact portion and uniform penetration of water into the inside of the particles is achieved. There was a problem that the absorption speed was reduced as a result.

この欠点を改良するため、従来、吸水性樹脂の粒子を
細かくして表面積を増大させ、水との接触面積をふやす
ことにより吸収速度を速くする試みがなされていた。表
面積が増えることにより幾分吸収速度は速くなる。しか
し、樹脂粒子の表面における水との接触部にままこによ
る皮膜を生じ、さらに粒子どうしが接着しあって均一な
水の浸透が損なわれるため、粒子を細かくするだけでは
本質的な吸収速度の改良にはつながらなかった。
In order to improve this drawback, attempts have been made to increase the absorption rate by increasing the surface area by making the water-absorbent resin particles finer and increasing the contact area with water. The absorption rate is somewhat faster due to the increased surface area. However, since a film is formed on the surface of the resin particles by contact with water at the point of contact with water, and the particles adhere to each other and uniform water penetration is impaired. It did not lead to improvement.

上記問題に加えて、従来の吸水性樹脂粒子は、その高
い吸収性が故に高湿度下で樹脂を貯蔵したり、紙おむつ
などの製造機に供給する課程で、吸湿して樹脂粒子同士
がブロッキングして機械への付着が起こったり、この吸
湿ブロッキングにより、吸水性樹脂のホッパーからの排
出や機械への連続定量供給が不能となったりする等の問
題点があった。
In addition to the above problems, the conventional water-absorbent resin particles absorb the moisture and block the resin particles in the process of storing the resin under high humidity or supplying the resin to a manufacturing machine such as a disposable diaper because of its high absorbency. Therefore, there is a problem that the water-absorbent resin is discharged from the hopper and continuous quantitative supply to the machine is impossible due to the moisture absorption blocking.

この吸湿ブロッキング性を改良する方法として、従来
下記〜に例示するような方法が提案されている。
As a method of improving the moisture absorption blocking property, the following methods have been proposed.

吸水性樹脂粒子に、平均粒子径が0.05μm以下で、比
表面積が、50m2/g以上の微粉末状の疎水性シリカを混合
する方法(特開昭56−133028号公報)。
A method in which finely divided hydrophobic silica having an average particle diameter of 0.05 μm or less and a specific surface area of 50 m 2 / g or more is mixed with the water-absorbent resin particles (JP-A-56-133028).

吸水性樹脂粒子に、含水二酸化ケイ素、含水酸化アル
ミニウム、含水酸化チタン等の無機粉末を添加する方法
(特開昭59−80459号公報)。
A method in which inorganic powders such as hydrous silicon dioxide, hydrous aluminum hydroxide, and hydrous titanium oxide are added to the water-absorbent resin particles (Japanese Patent Laid-Open No. 59-80459).

吸水性樹脂粒子をカチオン性界面活性剤で処理した
後、更に高融点有機化合物の粉末を添加する方法(特開
昭61−69854号公報)。
After treating the water-absorbent resin particles with a cationic surfactant, a powder of a high melting point organic compound is further added (JP-A-61-69854).

吸水性樹脂粒子にステアリン酸と無機粉末を混合し、
樹脂の表面をステアリン酸で被覆する方法(特開昭63−
105064号公報)。
Mix stearic acid and inorganic powder with water-absorbent resin particles,
Method of coating resin surface with stearic acid
No. 105064).

しかしながら、上記の方法では、疎水性シリカの添
加により吸湿ブロッキング性は改良できるものの、疎水
性シリカで樹脂粒子の表面を覆うため、吸収速度、加圧
下の初期吸収量及び吸収倍率が低下したり、微粉状のシ
リカを混合しているため多量の粉塵が発生するなどの問
題点があった。
However, in the above method, although the moisture absorption blocking property can be improved by the addition of the hydrophobic silica, the surface of the resin particles is covered with the hydrophobic silica, so that the absorption rate, the initial absorption amount under pressure and the absorption capacity are reduced, There is a problem that a large amount of dust is generated because fine powdered silica is mixed.

上記の方法では、無機粉末が疎水性でない場合は、
加圧下の初期吸収量及び吸収倍率の低下はあまり起こら
ないものの、吸湿ブロッキング性の改良が不十分であ
り、更に無機粉末が微粉状であるため上記と同様多量
の粉塵が起こるとの問題があった。また、無機粉末が疎
水性の場合は、上記と同様の問題があった。
In the above method, if the inorganic powder is not hydrophobic,
Although the initial absorption amount under pressure and the absorption capacity do not decrease much, the improvement of the moisture absorption blocking property is insufficient, and there is a problem that a large amount of dust is generated as described above because the inorganic powder is in the form of fine powder. Was. In addition, when the inorganic powder is hydrophobic, there is the same problem as described above.

上記やの方法では、疎水性の高融点有機化合物や
ステアリン酸樹脂粒子の表面を覆うため、ある程度吸湿
ブロッキング性の改良は可能であるが十分でなく、且
つ、高融点有機化合物やステアリン酸が吸水性樹脂の吸
収性を阻害するため、加圧下の初期吸収量や吸収倍率を
低下させる問題点があった。
In the above method, since the surface of the hydrophobic high melting point organic compound or the stearic acid resin particles is covered, improvement of the moisture absorption blocking property is possible to some extent, but it is not sufficient, and the high melting point organic compound or the stearic acid absorbs water. There is a problem that the initial absorption amount under pressure and the absorption capacity are reduced because the absorption of the hydrophilic resin is inhibited.

従って、本発明は、吸水性樹脂粒子を改質して、水、
尿、経血などの吸水性樹脂粒子内部への均一な浸透を促
進して速い吸収速度を有する衛生用品用吸水性樹脂粒子
を提供することを第1の目的としている。
Therefore, the present invention is to modify the water absorbent resin particles, water,
It is a first object of the present invention to provide water-absorbent resin particles for sanitary goods having a high absorption rate by promoting uniform penetration of urine, menstrual blood and the like into water-absorbent resin particles.

又、本発明は、吸水性樹脂粒子を改質して、上記〜
などの吸湿ブロッキング性の改良方法における問題点
を解消し、吸湿ブロッキング率及び粉塵度が低く、加圧
下の初期吸収量及び吸収倍率が優れた衛生用品用吸水性
樹脂粒子を提供することを第2の目的としている。
Further, the present invention is to modify the water-absorbent resin particles, the above-mentioned ~
A second object of the present invention is to provide a water-absorbent resin particle for hygiene articles which solves the problems in the method of improving the moisture-absorbing blocking property such as the moisture-absorbing blocking rate and the dustiness, and has an excellent initial absorption amount under pressure and an excellent absorption capacity. The purpose is.

発明の開示 本発明は、アクリル酸および/またはアクリル酸塩を
主構成単位とするエチレン性不飽和単量体の架橋重合体
であり、実質的に水不溶性である吸水性樹脂(A)の粒
子が、常温で液状の有機ポリシロキサン(B)により処
理されてなる改質された衛生用品用吸水性樹脂粒子にお
いて、 (A)と(B)が混合および/または反応した状態で
あり、 (A)の粒子のうち、10〜1,000μmの粒子の含有量
が95重量%以上であり、 重量比(A)/(B)が100/(0.001〜3) である改質された衛生用品用吸水性樹脂粒子を提供する
ものである。
DISCLOSURE OF THE INVENTION The present invention is a crosslinked polymer of an ethylenically unsaturated monomer having acrylic acid and / or an acrylate as a main structural unit, and particles of a water-insoluble resin (A) which is substantially water-insoluble. Is a modified water-absorbent resin particle for sanitary goods treated with an organic polysiloxane (B) which is liquid at normal temperature, wherein (A) and (B) are mixed and / or reacted; ) Wherein the content of particles of 10 to 1,000 μm is 95% by weight or more and the weight ratio (A) / (B) is 100 / (0.001 to 3). It is intended to provide conductive resin particles.

即ち、本発明者の改質された衛生用品用吸水性樹脂粒
子は、該吸水性樹脂(A)を該有機ポリシロキサン
(B)で処理することにより改質したもので、この処理
により、(A)の粒子の表面は、(B)が付着された状
態となるか、又は(A)と(B)が反応して(A)の粒
子の表面に(B)が固着した状態となる。(A)と
(B)の反応性の有無により混合状態か反応状態の何れ
かとなる。
That is, the modified water-absorbent resin particles for sanitary goods of the present inventor is obtained by modifying the water-absorbent resin (A) with the organic polysiloxane (B). The surface of the particles of (A) is in a state where (B) is adhered, or (A) and (B) react and (B) is fixed to the surface of the particles of (A). Depending on the presence or absence of the reactivity between (A) and (B), either a mixed state or a reactive state is achieved.

何れの状態であっても、(A)粒子の表面は、液状の
有機ポリシロキサンである(B)で改質されるため、本
発明の改質された吸水性樹脂粒子は、高湿度下での吸湿
ブロッキング性が改良されると同時に、湿潤性が付与さ
れ、粉塵の発生が防止されたものである。
In any state, since the surface of the particles (A) is modified with the liquid organic polysiloxane (B), the modified water-absorbent resin particles of the present invention can be used under high humidity. At the same time as improving the moisture absorption blocking property, imparting wettability and preventing generation of dust.

又、従来のような、吸水性樹脂の粒子同士が接着しあ
って均一な水の浸透が損なわれるという弊害が、本発明
では(B)による改質効果により改善されるため、吸収
速度が向上したものである。
In addition, in the present invention, the disadvantage that the particles of the water-absorbent resin adhere to each other to impair uniform water penetration is improved by the modification effect of (B) in the present invention, so that the absorption rate is improved. It was done.

更に本発明者の改質された衛生用品用吸水性樹脂粒子
は、加圧下の初期吸収量及び吸収倍率も優れている。
Furthermore, the modified water-absorbent resin particles for hygiene articles of the present inventor are also excellent in the initial absorption amount under pressure and the absorption capacity.

発明を実施するための最良の形態 本発明において、該吸水性樹脂(A)は、水と接触し
たときに多量の水を吸収して膨潤し、含水ゲル状物(ヒ
ドロゲル)を形成する実質的に水不溶性の樹脂である。
又、該吸水性樹脂(A)は、アクリル酸および/または
アクリル酸塩を主構成単位とするエチレン性不飽和単量
体の架橋重合体である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the water-absorbent resin (A) absorbs a large amount of water when contacted with water and swells to form a hydrogel (hydrogel). Is a water-insoluble resin.
The water absorbent resin (A) is a crosslinked polymer of an ethylenically unsaturated monomer having acrylic acid and / or acrylate as a main constituent unit.

このような吸水性樹脂(A)としては、例えば、ポリ
アクリル酸部分中和物の架橋体、自己架橋型ポリアクリ
ル酸部分中和物、デンプン−アクリル酸塩グラフト共重
合体架橋物、デンプン−アクリロニトリルグラフト重合
体架橋物の加水分解物、ビニルアルコール−アクリル酸
塩共重合体架橋物、アクリル酸塩−アクリルアミド共重
合体架橋物の加水分解物、アクリル酸塩−アクリロニト
リル共重合体架橋物の加水分解物、アクリル酸塩と2−
アクリルアミド−2−メチルプロパンスルホン酸塩の共
重合体架橋物、架橋イソブチレン−無水マレイン酸共重
合体の中和物及びこれらの2種以上の併用が挙げられ
る。
Examples of such water-absorbent resin (A) include a crosslinked product of a partially neutralized polyacrylic acid, a partially neutralized self-crosslinked polyacrylic acid, a crosslinked product of a starch-acrylate graft copolymer, and a starch-neutralized product. Hydrolyzate of crosslinked acrylonitrile graft polymer, crosslinked product of vinyl alcohol-acrylate copolymer, hydrolyzate of crosslinked acrylate-acrylamide copolymer, hydrolysis of crosslinked acrylate-acrylonitrile copolymer Degradation products, acrylates and 2-
A crosslinked product of an acrylamide-2-methylpropanesulfonic acid salt, a neutralized product of a crosslinked isobutylene-maleic anhydride copolymer, and a combination of two or more thereof are exemplified.

尚上記に該吸水性樹脂(A)として例示した各架橋重
合体が、アクリル酸塩等のカルボン酸塩を原料とした
り、中和物や部分中和物となって塩を形成したものであ
る場合の塩としては、ナトリウム塩、カリウム塩、アン
モニウム塩、アミン塩等が用いられる。好ましくは、ナ
トリウム塩およびカリウム塩である。
Each of the crosslinked polymers exemplified above as the water-absorbent resin (A) is obtained by using a carboxylate such as an acrylate as a raw material, or forming a salt by being a neutralized product or a partially neutralized product. As the salt in this case, a sodium salt, a potassium salt, an ammonium salt, an amine salt and the like are used. Preferred are sodium and potassium salts.

これら該吸水性樹脂(A)として例示したもののうち
好ましいものは、最終的に吸水性樹脂として使用する際
の吸収特性を考えると、ポリアクリル酸部分中和物の架
橋体、自己架橋型ポリアクリル酸部分中和物、デンプン
−アクリル酸塩グラフト共重合体架橋物及びビニルアル
コール−アクリル酸塩共重合体架橋物である。
Preferred among those exemplified as the water-absorbing resin (A) are the cross-linked polyacrylic acid partially neutralized products and the self-cross-linked polyacryl, considering the absorption characteristics when finally used as a water-absorbing resin. An acid partially neutralized product, a crosslinked product of a starch-acrylate graft copolymer and a crosslinked product of a vinyl alcohol-acrylate copolymer.

該吸水性樹脂(A)は、生理食塩水(0.9%の塩化ナ
トリウム水溶液)に対する常圧下での吸収性能が通常自
重の30倍以上、好ましくは35〜80倍、特に好ましくは40
〜70倍のものを用いることが好ましい。
The water-absorbent resin (A) has an absorption performance at normal pressure of physiological saline (0.9% aqueous sodium chloride solution) at normal pressure of 30 times or more, preferably 35 to 80 times, and more preferably 40 times or more of its own weight.
It is preferable to use the one of up to 70 times.

該吸水性樹脂(A)の粒子の粒度分布については、
(A)の粒子のうち、粒径が10〜1,000μmの粒子の含
有量が95重量%以上の粒度分布を有する吸水性樹脂粒子
を用いることが必要であり、好ましくは、粒径が50〜85
0μmの粒子の含有量が95重量%以上である粒度分布を
有する吸水性樹脂粒子を用いることが望ましい。粒径が
10〜1,000μmの粒子の含有量が95重量%未満の粒度分
布を有する吸水性樹脂粒子で、粒径が小さいものが多く
含まれる粒度分布の吸水性樹脂粒子を用いた場合には、
吸水時にままこになりやすく、吸収速度が低下するので
好ましくない。一方、粒径が大きいものが多く含まれる
粒度分布の吸水性樹脂粒子を用いた場合には、吸水時に
粒子内部まで吸水されるのに時間がかかるため、同様に
吸収速度が低下し、好ましくない。平均粒径は特に限定
はないが、好ましくは200〜600μmである。
Regarding the particle size distribution of the particles of the water absorbent resin (A),
Among the particles of (A), it is necessary to use water-absorbent resin particles having a particle size distribution in which the content of particles having a particle size of 10 to 1,000 μm is 95% by weight or more. 85
It is desirable to use water-absorbing resin particles having a particle size distribution in which the content of 0 μm particles is 95% by weight or more. Particle size
In the case of using water-absorbing resin particles having a particle size distribution in which the content of particles of 10 to 1,000 μm has a particle size distribution of less than 95 wt%,
It is not preferable because it easily becomes a cage when absorbing water, and the absorption speed is reduced. On the other hand, when the water-absorbent resin particles having a particle size distribution containing a large number of particles having a large particle size are used, it takes a long time to absorb water to the inside of the particles when absorbing water. . The average particle size is not particularly limited, but is preferably from 200 to 600 μm.

該吸水性樹脂(A)の粒子の形状は特に限定はなく、
製法の違いにより、逆相懸濁重合で得られるパール状、
ドラム乾燥で得られるリン片状、樹脂塊を粉砕して得ら
れる岩状あるいは無定形状、およびこれら粒子の造粒物
等が挙げられる。
The shape of the particles of the water absorbent resin (A) is not particularly limited,
Depending on the manufacturing method, pearl-like obtained by reversed-phase suspension polymerization,
Examples include flakes obtained by drum drying, rocky or amorphous shapes obtained by pulverizing a resin mass, and granules of these particles.

本発明において該有機ポリシロキサン(B)は、常温
で液状であればよく、該吸水性樹脂(A)と反応性を有
しないものでも有するものでもよい。即ち(B)として
は、該吸水性樹脂(A)中のカルボン酸(塩)基と反応
性を有しないものと反応性を有するものが挙げられる。
(ここで“カルボン酸(塩)基”とは、カルボン酸基お
よび/またはカルボン酸塩基を意味するものであり、以
下も同様である。)。ところで、一般にシランカップリ
ング剤と呼ばれる有機けい素単量体は比較的低分子量の
単量体であり、混合するだけでは目的とする効果が得ら
れないことから、該有機ポリシロキサン(B)としては
適さない。
In the present invention, the organic polysiloxane (B) only needs to be liquid at normal temperature, and may or may not have reactivity with the water absorbent resin (A). That is, (B) includes those having no reactivity with the carboxylic acid (salt) group in the water absorbent resin (A) and those having reactivity with the carboxylic acid (salt) group.
(Here, “carboxylic acid (salt) group” means a carboxylic acid group and / or a carboxylate group, and the same applies to the following). By the way, an organic silicon monomer, which is generally called a silane coupling agent, is a monomer having a relatively low molecular weight, and a desired effect cannot be obtained only by mixing the same. Therefore, as the organic polysiloxane (B), Is not suitable.

(B)のうち、(A)との反応性を有しないものとし
ては、例えばジメチルシリコーンオイル、メチルハイド
ロジェンシリコーンオイル、メチルフェニルシリコーン
オイル、環状ジメチルシリコーンオイル、ポリエーテル
変性シリコーンオイル、カルボキシル変性シリコーンオ
イル、アルキル変性シリコーンオイル、アルコキシ変性
シリコーンオイルなどが挙げられる。これらは二種以上
を併用することができる。またこれらを水中に乳化した
エマルジョン形態のものも本発明に好適に使用すること
ができる。
Among (B), those having no reactivity with (A) include, for example, dimethyl silicone oil, methyl hydrogen silicone oil, methyl phenyl silicone oil, cyclic dimethyl silicone oil, polyether-modified silicone oil, carboxyl-modified silicone Oil, alkyl-modified silicone oil, alkoxy-modified silicone oil, and the like. These can be used in combination of two or more. Emulsions in which these are emulsified in water can also be suitably used in the present invention.

(B)のうち、(A)との反応性を有するものとして
は、(A)が有するカルボン酸(塩)基と反応する官能
基を少なくとも1つ有するシリコーンオイルが挙げら
れ、具体的にはアミノ変性シリコーンオイル、エポキシ
変性シリコーンオイル、カルビノール変性シリコーンオ
イル、フェノール変性シリコーンオイル、メルカプト変
性シリコーンオイルなどを例示することができる。
Among (B), those having reactivity with (A) include silicone oils having at least one functional group that reacts with a carboxylic acid (salt) group contained in (A). Examples include amino-modified silicone oil, epoxy-modified silicone oil, carbinol-modified silicone oil, phenol-modified silicone oil, and mercapto-modified silicone oil.

(A)との反応性を有しないもののうち好ましいもの
は、比較的安価に入手しうるという点で、ジメチルシリ
コーンオイルおよびポリエーテル変性シリコーンオイル
である。
Among those having no reactivity with (A), preferred are dimethyl silicone oil and polyether-modified silicone oil in that they are relatively inexpensive.

(A)との反応性を有するものの中で好ましいもの
は、比較的低温でカルボン酸(塩)基との反応が可能で
あるアミノ変性シリコーンオイル及びエポキシ変性シリ
コーンオイルである。特に好ましいものは、常温でカル
ボン酸(塩)基との反応が可能であるという点でアミノ
変性シリコーンオイルである。
Among those having reactivity with (A), preferred are amino-modified silicone oils and epoxy-modified silicone oils capable of reacting with carboxylic acid (salt) groups at relatively low temperatures. Particularly preferred is an amino-modified silicone oil in that it can react with a carboxylic acid (salt) group at room temperature.

アミノ変性シリコーンオイルとしては、シリコーンポ
リマー分子の末端および/または分子内に−R1NR2R
3(但しR1は炭素数1〜12のアルキレン基;R2、R3はHま
たは炭素数1〜12のアルキル基である。アルキレン基お
よび/またはアルキル基の水素原子の一つ以上がOH基、
COOH基、NH2基などで置換されていてもよく、炭素数が
2以上の場合には炭素−炭素結合の間に酸素原子を含ん
だエーテル結合が含まれていてもよい)で示される基を
有するアミノ変性シリコーンオイルなどが例示される。
The amino-modified silicone oil includes -R 1 NR 2 R at the terminal and / or in the molecule of the silicone polymer molecule.
3 (where R 1 is an alkylene group having 1 to 12 carbon atoms; R 2 and R 3 are H or an alkyl group having 1 to 12 carbon atoms. One or more hydrogen atoms of the alkylene group and / or the alkyl group are OH Group,
May be substituted by a COOH group, an NH 2 group, or the like, and when the number of carbon atoms is 2 or more, an ether bond containing an oxygen atom may be contained between carbon-carbon bonds.) And the like. Amino-modified silicone oil having

エポキシ変性シリコーンオイルとしては、シリコーン
ポリマー分子の末端および/または分子内に−RX(但し
Rは炭素数1〜12のアルキレン基;Xはエポキシ基であ
る。アルキレン基の水素原子の一つ以上がOH基、COOH基
などで置換されていてもよく、アルキレン基の炭素数が
2以上の場合には炭素−炭素結合の間に酸素原子を含ん
だエーテル結合が含まれていてもよい)で示される基を
有するエポキシ変性シリコーンオイルなどが例示され
る。
As the epoxy-modified silicone oil, -RX (where R is an alkylene group having 1 to 12 carbon atoms; X is an epoxy group. One or more hydrogen atoms of the alkylene group is May be substituted with an OH group, a COOH group, or the like, and when the alkylene group has 2 or more carbon atoms, an ether bond containing an oxygen atom may be included between carbon-carbon bonds.) And the like. Epoxy-modified silicone oil having a group represented by

上記(B)のうち、(A)と反応性を有しないものと
反応性を有するもののうちでは、吸湿時の樹脂粒子表面
からの分離の恐れがないこと、(A)との固着性を有す
るものの方が改質効果が大きく使用量が少なくて済むこ
とが期待されることを考慮すると、反応性を有するもの
の方が好ましい。
Among the above (B), among those having no reactivity with (A) and those having reactivity, there is no fear of separation from the resin particle surface at the time of moisture absorption, and it has adhesion to (A). Considering that it is expected that the product has a large reforming effect and requires a small amount of use, a product having reactivity is preferable.

上記(B)のうち、(A)との反応性を有する有機ポ
リシロキサンの反応性官能基の数は、シリコーンオイル
1分子中に通常1つ以上有するもので良い。しかし、こ
の官能基は、樹脂粒子の表面近傍を架橋する目的を兼ね
て、2つ以上あった方が好ましい。更に好ましい反応性
官能基の数は、効率的な架橋を行なうといった観点で2
〜20個である。又、官能基の位置としては、シリコーン
ポリマー分子の末端、側鎖あるいは末端及び側鎖の双方
の何れでも良い。
In the above (B), the number of the reactive functional groups of the organopolysiloxane having the reactivity with the (A) may usually be one or more in one molecule of the silicone oil. However, it is preferable that two or more functional groups are provided for the purpose of crosslinking the vicinity of the surface of the resin particles. A more preferred number of reactive functional groups is 2 from the viewpoint of efficient crosslinking.
~ 20. Further, the position of the functional group may be any of terminal, side chain or both terminal and side chain of the silicone polymer molecule.

該有機ポリシロキサン(B)は常温で液状であればよ
く、その分子量は特に限定するものではないが、好まし
くは1,000以上、より好ましくは3,000以上である。該有
機ポリシロキサン(B)の分子量の上限は特に制限する
ものではないが通常1,000,000程度である。分子量が1,0
00以上の有機ポリシロキサンを用いることにより、吸湿
ブロッキング率や粉塵度が経時的に悪化を起こす恐れが
なく好ましい。
The organic polysiloxane (B) may be liquid at ordinary temperature, and its molecular weight is not particularly limited, but is preferably 1,000 or more, more preferably 3,000 or more. The upper limit of the molecular weight of the organopolysiloxane (B) is not particularly limited, but is usually about 1,000,000. Molecular weight 1,0
The use of an organic polysiloxane of 00 or more is preferable because the moisture absorption blocking rate and the degree of dust do not deteriorate over time.

該有機ポリシロキサン(B)の表面張力は特に限定は
ないが、好ましくは18〜30ダイン/cm、より好ましくは2
0〜26ダイン/cmである。表面張力が上記範囲の有機ポリ
シロキサンを用いると、(B)が吸水性樹脂粒子内部に
浸透しやすくなることを防止でき、従って、目的とする
効果を達成するのに、(B)を多量に使用する必要がな
く経済的であり、さらに撥水作用が強くなり過ぎて吸収
性能が低下する恐れもなく好ましい。また、粉体流動性
の不良、ブロッキングの発生といった問題も生じる恐れ
がなく好ましい。なお、表面張力は25℃で測定した値で
ある。
The surface tension of the organopolysiloxane (B) is not particularly limited, but is preferably 18 to 30 dynes / cm, more preferably 2 to 30 dynes / cm.
0-26 dynes / cm. When an organic polysiloxane having a surface tension in the above range is used, it is possible to prevent (B) from easily penetrating into the water-absorbent resin particles. Therefore, in order to achieve the desired effect, (B) must be added in a large amount. It is economical because it does not need to be used, and the water repellency is not so strong that there is no possibility that the absorption performance is reduced. In addition, there is no possibility that problems such as poor powder fluidity and occurrence of blocking may occur, which is preferable. The surface tension is a value measured at 25 ° C.

(B)の粘度は、常温で液状であれば特に限定はない
が、常温(25℃)で、好ましくは10〜20,000センチスト
ークス(cst)であり、特に好ましくは、溶剤類で希釈
する必要が無く、(A)との混合が容易という点で、30
〜1,000cstである。
The viscosity of (B) is not particularly limited as long as it is liquid at normal temperature, but is preferably 10 to 20,000 centistokes (cst) at normal temperature (25 ° C.), and particularly preferably needs to be diluted with a solvent. And easy to mix with (A)
~ 1,000cst.

上記の粘度の有機ポリシロキサンを用いることによ
り、低粘度の有機ポリシロキサンまたは他の溶剤(例え
ばメチルエチルケトン、セロソルブ類、ラウリルアルコ
ールなど)で希釈して使用したり、(A)との混合処理
後、希釈に用いた溶剤を除去する工程などを付加する必
要がなく経済的であること、粉体流動性が良好に保たれ
ること、(B)が吸水性樹脂粒子の内部に浸透しにくく
なるので、目的とする効果を得るために(B)を多量に
使用する必要がなく、従って(B)が(A)の粒子どう
しのバインダーの働きをして吸収速度を遅くしたり、ブ
ロッキングの発生がないなどの理由で好ましい。なお、
粘度は25℃で測定した値である。
By using an organic polysiloxane having the above viscosity, it can be used after being diluted with a low-viscosity organic polysiloxane or another solvent (eg, methyl ethyl ketone, cellosolves, lauryl alcohol, etc.), or after being mixed with (A), It is economical because there is no need to add a step for removing the solvent used for dilution, the powder fluidity is kept good, and (B) hardly penetrates into the water-absorbent resin particles. It is not necessary to use a large amount of (B) in order to obtain the desired effect. Therefore, (B) acts as a binder between the particles of (A) to slow down the absorption rate or cause blocking. Preferred for reasons such as not. In addition,
The viscosity is a value measured at 25 ° C.

該吸水性樹脂(A)の粒子に対する該有機ポリシロキ
サン(B)の使用量は、種々変化させることができる
が、(A)の粒子:(B)の重量比で、通常100:(0.00
1〜5)、好ましくは100:(0.01〜3)、特に100:(0.0
1〜1)である。
The amount of the organic polysiloxane (B) to be used with respect to the particles of the water-absorbent resin (A) can be varied in various ways, but is usually 100: (0.00) by weight ratio of the particles of (A) :( B).
1-5), preferably 100: (0.01-3), especially 100: (0.0
1-1).

(B)の割合が0.001未満の場合、吸湿ブロッキング
率に与える効果が十分でなく、吸収速度の改良された吸
水性樹脂組成物とは言い難い。
When the proportion of (B) is less than 0.001, the effect on the moisture absorption blocking ratio is not sufficient, and it is difficult to say that the water-absorbent resin composition has an improved absorption rate.

一方5を超えると、吸収速度の改良には有効である
が、吸収性能の低下、粉体流動性の不良、ブロッキング
の発生といった別の問題が生じるため、実用上使用し難
い。
On the other hand, when it exceeds 5, it is effective for improving the absorption rate, but it causes another problem such as a decrease in absorption performance, poor powder flowability, and occurrence of blocking.

また、本発明で用いる該吸水性樹脂(A)の粒子を
(B)により処理して改質するだけでなく、(A)粒子
の表面近傍を、カルボン酸(塩)基と反応しうる官能基
を少なくとも2個有する架橋剤(C)で更に架橋処理し
た改質した構造を有する吸水性樹脂粒子は、吸収速度が
さらに向上し、かつゲル強度も大きくなるので、本発明
に好適に使用することができる。
Further, not only the particles of the water-absorbent resin (A) used in the present invention are treated and modified with (B), but also the surface vicinity of the particles (A) can react with a carboxylic acid (salt) group. Water-absorbent resin particles having a modified structure further cross-linked with a cross-linking agent (C) having at least two groups have a further improved absorption rate and a higher gel strength, and are therefore preferably used in the present invention. be able to.

架橋剤(C)で(A)の粒子を表面架橋させる時期
は、特に制限はなく、(A)の粒子を(B)で処理する
前、(B)による処理と同時、あるいは(B)による処
理の後のいずれでもよい。
There is no particular limitation on the timing of the surface cross-linking of the particles of (A) with the cross-linking agent (C), before the treatment of the particles of (A) with (B), simultaneously with the treatment with (B), or with (B). Any of after the processing may be used.

この架橋剤(C)の種類は、用いる吸水性樹脂(A)
の種類や有機ポリシロキサン(B)の種類などによって
も異なるが、例えば、ポリグリシジルエーテル系化合
物、ポリオール系化合物、ポリアミン化合物、ポリアミ
ン系樹脂、カーボネイト系化合物、ハロエポキシ系化合
物、ポリアルデヒド系化合物などが挙げられる。
The type of the cross-linking agent (C) depends on the water-absorbing resin (A) used.
And the type of the organic polysiloxane (B), for example, polyglycidyl ether compounds, polyol compounds, polyamine compounds, polyamine resins, carbonate compounds, haloepoxy compounds, polyaldehyde compounds, etc. No.

ポリグリシジルエーテル化合物の具体例としては、例
えば、エチレングリコールジグリシジルエーテル、グリ
セリン−1,3−ジグリシジルエーテル、グリセリントリ
グリシジルエーテル、ポリエチレングリコールジグリシ
ジルエーテル、1,6−ヘキサンジオールジグリシジルエ
ーテル、ポリグリセリンポリグリシジルエーテルなどが
挙げられる。
Specific examples of the polyglycidyl ether compound include, for example, ethylene glycol diglycidyl ether, glycerin-1,3-diglycidyl ether, glycerin triglycidyl ether, polyethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, Glycerin polyglycidyl ether and the like can be mentioned.

ポリオール化合物の具体例としては、例えば、グリセ
リン、エチレングリコール、ポリエチレングリコール、
ポリプロピレングリコール、ジエタノールアミンなどが
挙げられる。
Specific examples of the polyol compound include, for example, glycerin, ethylene glycol, polyethylene glycol,
Examples include polypropylene glycol and diethanolamine.

ポリアミン化合物の具体例としては、例えば、エチレ
ンジアミン、ジエチレントリアミン、トリエチレンテト
ラミンなどが挙げられる。
Specific examples of the polyamine compound include, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, and the like.

ポリアミン系樹脂の具体例としては、例えば、ポリア
ミドポリアミンエピクロルヒドリン樹脂、ポリアミンエ
ピクロルヒドリン樹脂などが挙げられる。
Specific examples of the polyamine-based resin include, for example, polyamide polyamine epichlorohydrin resin, polyamine epichlorohydrin resin, and the like.

カーボネイト系化合物の具体例としては、例えば、エ
チレンカーボネイトなどが挙げられる。
Specific examples of the carbonate-based compound include, for example, ethylene carbonate.

ハロエポキシ系化合物の具体例としては、例えば、エ
ピクロルヒドリン、α−メチルエピクロルヒドリンなど
が挙げられる。
Specific examples of the haloepoxy compound include, for example, epichlorohydrin, α-methylepichlorohydrin, and the like.

ポリアルデヒド系化合物の具体例としては、例えば、
グルタールアルデヒド、グリオキザール等が挙げられ
る。
Specific examples of the polyaldehyde compound include, for example,
Glutaraldehyde, glyoxal and the like can be mentioned.

以上、架橋剤(C)として例示したもののうち好まし
いものは、カルボン酸(塩)基と強い共有結合を形成し
て吸収速度とゲル強度の双方に優れた吸水性樹脂粒子が
得られると言う点で、ポリグリシジルエーテル系化合
物、ポリオール系化合物及びポリアミン系樹脂である。
更に好ましいものは、反応温度が低く、エネルギーコス
トの面で経済的であることから、エチレングリコールジ
グリシジルエーテル、プロピレングリコールジグリシジ
ルエーテル、グリセリン−1,3−ジグリシジルエーテ
ル、グリセリントリグリシジルエーテル、ポリアミンエ
ピクロルヒドリン樹脂及びポリアミドポリアミンエピク
ロルヒドリン樹脂である。
As described above, preferred examples of the cross-linking agent (C) are preferable in that a water-absorbent resin particle having excellent absorption rate and gel strength can be obtained by forming a strong covalent bond with a carboxylic acid (salt) group. And a polyglycidyl ether compound, a polyol compound and a polyamine resin.
Even more preferred are ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin-1,3-diglycidyl ether, glycerin triglycidyl ether, and polyamine, which are economical in terms of reaction temperature and energy cost. Epichlorohydrin resin and polyamide polyamine epichlorohydrin resin.

上記架橋剤(C)の使用量は、架橋剤(C)の種類、
吸水性樹脂(A)の種類およびその架橋度、得られる本
発明の改質された吸水性樹脂粒子の性能目標などによっ
ても異なるが、吸水性樹脂(A):架橋剤(C)の重量
比で、通常100:(0.001〜5)、好ましくは100:(0.001
〜3)、特に好ましくは100:(0.01〜2)、最も好まし
くは100:(0.05〜1)である。この架橋剤(C)を上記
の範囲で使用することにより、吸収量の低下もなく、吸
水性樹脂粒子の吸収速度が更に向上し、ゲル強度も大き
くでき好ましい。
The amount of the crosslinking agent (C) used depends on the type of the crosslinking agent (C),
The weight ratio of the water-absorbent resin (A) to the cross-linking agent (C) varies depending on the type of the water-absorbent resin (A) and the degree of crosslinking thereof, the performance target of the resulting modified water-absorbent resin particles of the present invention, and the like. And usually 100: (0.001-5), preferably 100: (0.001
To 3), particularly preferably 100: (0.01 to 2), most preferably 100: (0.05 to 1). By using the crosslinking agent (C) in the above range, the absorption rate of the water-absorbent resin particles can be further improved without lowering the absorption amount, and the gel strength can be increased, which is preferable.

(A)粒子に対する(B)[及び必要により併用する
上記架橋剤(C)]の添加方法は、所定量添加できる方
法であればいずれの方法でも良いが、例えば、 a) 各成分を直接ブレンドする方法、 b) 予め、(B)を高濃度(例えば5〜20重量%濃
度)で(A)に添加・混合してマスターバッチを作成し
ておき、次いで、(B)として所定の添加量となるよう
にマスターバッチを(A)に添加して混合する方法、 c) (B)のエマルジョンを(A)粒子に添加・混合
する方法、 d) 疎水性および/または親水性の有機溶剤に(B)
[及び必要により併用する架橋剤(C)]を分散あるい
は溶解して(A)粒子に添加・混合する方法、 e) アルコールなどの親水性有機溶剤と水との混合溶
剤中に(B)[及び必要により併用する架橋剤(C)]
を溶解あるいは分散させ添加・混合する方法 等を例示することができる。
The method of adding (B) [and the above-mentioned crosslinking agent (C) optionally used] to the particles (A) may be any method as long as a predetermined amount can be added. For example, a) direct blending of each component B) adding and mixing (B) at a high concentration (for example, 5 to 20% by weight) to (A) to prepare a master batch, and then adding (B) a predetermined amount C) a method of adding and mixing the masterbatch to (A) and mixing and mixing the emulsion of (B) with the particles of (A) so as to obtain d) a hydrophobic and / or hydrophilic organic solvent. (B)
A method of dispersing or dissolving [and optionally a cross-linking agent (C)] and adding / mixing to (A) particles, e) (B) [B] in a mixed solvent of a hydrophilic organic solvent such as alcohol and water. And a cross-linking agent (C) used together if necessary]
For example, a method of dissolving or dispersing and adding / mixing.

(A)粒子に対する(B)[及び必要により併用する
架橋剤(C)]の添加処理に使用する装置は、通常の混
合機でよく、例えば、円筒型混合機、スクリュー型混合
機、スクリュー型押出機、タービュライザー、ナウタ型
混合機、V型混合機、リボン型混合機、双腕型ニーダ
ー、流動式混合機、気流型混合機、回転円板型混合機、
コニカルブレンダー、ロールミキサーなどが挙げられ
る。
The apparatus used for adding (B) [and optionally the crosslinking agent (C) used together] to the particles (A) may be an ordinary mixer, for example, a cylindrical mixer, a screw mixer, or a screw mixer. Extruders, turbulizers, Nauta-type mixers, V-type mixers, ribbon-type mixers, double-arm kneaders, flow-type mixers, airflow-type mixers, rotating disk-type mixers,
Examples include a conical blender and a roll mixer.

上記のように処理して得られた混合物は、(B)[及
び必要により併用する架橋剤(C)]の反応性官能機の
有無と反応性にもよっても異なるが、必要があれば反応
を促進する目的で加熱を行なっても良い。また、上記の
混合と加熱を同時に行ってもよい。尚、反応とは“吸水
性樹脂(A)”と、“(B)として(A)と反応性の変
性シリコーンオイルを用いる場合の変性シリコーンオイ
ル及び必要により併用する架橋剤(C)”との架橋反応
である。
The mixture obtained by the treatment described above differs depending on the presence or absence of the reactive functional unit of (B) [and optionally the crosslinking agent (C) used together] and the reactivity. Heating may be performed for the purpose of promoting the heat treatment. Further, the above mixing and heating may be performed simultaneously. The reaction is defined as "a water-absorbent resin (A)" and "(B) a modified silicone oil when a modified silicone oil reactive with (A) is used, and a crosslinking agent (C) optionally used together." It is a crosslinking reaction.

加熱する場合の温度は、通常60〜200℃、好ましくは8
0〜180℃である。この加熱には乾燥機や加熱機、例えば
熱風乾燥機、回転ドラム式乾燥機、パドルドライヤー、
円盤型加熱機、流動層式乾燥機、ベルト式乾燥機、ナウ
タ式加熱機、赤外線加熱機などを使用することができ
る。
The heating temperature is usually 60 to 200 ° C., preferably 8
0-180 ° C. For this heating, a dryer or a heater such as a hot air dryer, a rotary drum dryer, a paddle dryer,
A disk heater, a fluidized bed dryer, a belt dryer, a Nauta heater, an infrared heater, and the like can be used.

本発明の改質された衛生用品用吸水性樹脂粒子には、
この改質の任意の段階で、二酸化ケイ素微粉末(D)を
添加することができる。(D)の添加により、吸収速度
をさらに向上させることができる。また粉体流動性の向
上も期待できる。
The modified water absorbent resin particles for sanitary goods of the present invention include:
At any stage of this modification, finely divided silicon dioxide (D) can be added. By adding (D), the absorption rate can be further improved. Also, improvement in powder fluidity can be expected.

この二酸化ケイ素微粉末(D)の例としては、四塩化
ケイ素を酸素と水素を高温燃焼させた焔中で加水分解さ
せて製造される乾式無機シリカが挙げられ、通常“Fume
d Silica"と呼ばれているものである。また、無機シリ
カの表面のシラノール基をモノメチルトリクロルシラ
ン、ジメチルジクロルシラン、トリメチルクロルシラン
等と更に反応させてアルキル基を導入したシリカも併用
することができる。具体的には、比表面積が50〜500m3/
gで、一次粒子の粒径が5〜50nmの二酸化ケイ素が例示
される。
Examples of the silicon dioxide fine powder (D) include dry inorganic silica produced by hydrolyzing silicon tetrachloride in a flame obtained by burning oxygen and hydrogen at a high temperature.
d Silica ". In addition, silica with an alkyl group introduced by further reacting silanol groups on the surface of inorganic silica with monomethyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, etc. Specifically, the specific surface area is 50 to 500 m 3 /
In g, silicon dioxide having a primary particle size of 5 to 50 nm is exemplified.

好ましい二酸化ケイ素微粉末(D)としては、上記の
比表面積と粒度を有し、親水性度が70%以上の、いわゆ
る親水性二酸化ケイ素である。ここで親水性度とは、水
/メタノール=70/30(重量比)の混合液中にコロイド
状に懸濁する二酸化ケイ素の重量割合である。この値が
小さいほど疎水性が強くなり、一般に疎水性シリカと呼
ばれるものは、親水性度が0%の二酸化ケイ素である。
疎水性が強くなると、(A)に対する(B)の添加量に
もよるが、吸水性樹脂粒子の吸収速度が低下する傾向が
あり、従って親水性度が70%以上の、親水性二酸化ケイ
素を用いることが好ましい。
Preferred silicon dioxide fine powder (D) is a so-called hydrophilic silicon dioxide having the above specific surface area and particle size and having a hydrophilicity of 70% or more. Here, the hydrophilicity is the weight ratio of silicon dioxide suspended colloidally in a mixed solution of water / methanol = 70/30 (weight ratio). As this value is smaller, the hydrophobicity becomes stronger, and what is generally called hydrophobic silica is silicon dioxide having a hydrophilicity of 0%.
When the hydrophobicity increases, the absorption rate of the water-absorbent resin particles tends to decrease depending on the amount of (B) added to (A), and therefore, hydrophilic silicon dioxide having a hydrophilicity of 70% or more is used. Preferably, it is used.

二酸化ケイ素微粉末(D)を使用する場合の量は、
(A)の量に対して、通常0.001〜2重量%、好ましく
は0.01〜1重量部である。さらに好ましくは(A)に対
する(B)の添加量よりも少ない量である。(D)の添
加量を上記の範囲とすることにより、吸収速度を更に向
上させることができ、発塵の問題もなく、粉体流動性の
向上も期待できる。二酸化ケイ素微粉末(D)を添加す
る方法としては、例えば、予め(A)粒子に(D)を添
加・混合しておく方法、(B)に(D)を添加・混合し
ておく方法、(A)粒子と(B)とを混合しながら
(D)を添加する方法、(A)粒子と(B)の混合物に
(D)を添加・混合する方法などが挙げられる。
The amount when the silicon dioxide fine powder (D) is used is
It is usually 0.001 to 2% by weight, preferably 0.01 to 1 part by weight, based on the amount of (A). More preferably, the amount is smaller than the amount of (B) added to (A). By setting the amount of (D) to be in the above range, the absorption rate can be further improved, there is no problem of dust generation, and improvement in powder fluidity can be expected. As a method of adding the silicon dioxide fine powder (D), for example, a method in which (D) is added and mixed in advance to (A) particles, a method in which (D) is added and mixed in (B), (A) A method of adding (D) while mixing particles and (B), a method of adding and mixing (D) to a mixture of (A) particles and (B), and the like.

本発明の改質された衛生用品用吸水性樹脂粒子には、
本発明の効果を損なわない範囲で、増量剤あるいは添加
剤として有機質粉体(例えばパルプ粉末、セルロース誘
導体、天然多糖類など)、無機質粉末(例えばゼオライ
ト、シリカ、アルミナ、ベントナイト、活性炭など)、
酸化防止剤、防腐剤、殺菌剤、界面活性剤、着色剤、香
料、消臭剤などを必要により配合することができ、これ
らの量は改質された吸水性樹脂粒子の重量に対して通常
10重量%以下である。
The modified water absorbent resin particles for sanitary goods of the present invention include:
Organic powders (eg, pulp powder, cellulose derivatives, natural polysaccharides, etc.) and inorganic powders (eg, zeolite, silica, alumina, bentonite, activated carbon, etc.) as extenders or additives within a range not to impair the effects of the present invention.
Antioxidants, preservatives, bactericides, surfactants, coloring agents, fragrances, deodorants, etc. can be added as required, and these amounts are usually based on the weight of the modified water absorbent resin particles.
10% by weight or less.

本発明の改質された衛生用品用吸水性樹脂粒子は、実
質的に水不溶性の樹脂粒子であり、吸湿ブロッキング
率、粉塵度、吸収特性は使用目的によりコントロールす
ることができるが、高湿度下(40℃、80%RH、3時間
後)の吸湿ブロッキング率は通常20%以下、好ましくは
10%以下であり、粉塵度は通常10cpm、以下好ましく
は5cpm以下であり、生理食塩水に対する加圧下の初期
吸収量が20g/g以上、好ましくは25g/g以上である。初期
吸収量の上限は特に制限するものではなく大きければ大
きいほど好ましいが、通常50g/g以下である。
The modified water-absorbent resin particles for sanitary goods of the present invention are substantially water-insoluble resin particles, and the moisture-absorbing blocking rate, the dustiness, and the absorption characteristics can be controlled depending on the purpose of use. (At 40 ° C., 80% RH, after 3 hours) The moisture absorption blocking rate is usually 20% or less, preferably
It is 10% or less, the degree of dust is usually 10 cpm or less, preferably 5 cpm or less, and the initial absorption amount under pressure to physiological saline is 20 g / g or more, preferably 25 g / g or more. The upper limit of the initial absorption amount is not particularly limited, and the larger the larger, the better, but it is usually 50 g / g or less.

なお、生理食塩水とは、塩化ナトリウム水溶液(濃度
0.85〜0.95重量%)である。
In addition, physiological saline is an aqueous solution of sodium chloride (concentration
0.85 to 0.95% by weight).

従って、本発明の改質された衛生用品用吸水性樹脂粒
子は、高湿度下で使用した場合でも吸湿ブロッキングが
ほとんど無く、また紙おむつ作成時などで粉塵がほとん
ど発生せず、且つ加圧下の初期吸収量に優れているた
め、吸水後のゲルのドライ感が良好であり、さらっとし
た感触を示す。従って、例えば、紙おむつ等に使用した
場合に赤ちゃんの体重などの荷重に耐えて多量の尿など
を迅速に吸収し、排尿後の紙おむつ表面のドライ感が良
好となる。
Therefore, the modified water-absorbent resin particles for sanitary goods of the present invention has almost no moisture-absorbing blocking even when used under high humidity, hardly any dust is generated at the time of making a paper diaper, etc. Because of the excellent absorption amount, the gel has a good dry feeling after water absorption and has a dry feel. Therefore, for example, when used in a disposable diaper or the like, a large amount of urine or the like can be quickly absorbed while enduring a load such as the weight of a baby, and the dry feeling on the disposable diaper surface after urination is improved.

以下、実施例および比較例により本発明をさらに説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

<実施例1〜4、比較例1〜7> 実施例1〜4、比較例1〜7における吸湿ブロッキン
グ率、粉塵度、加圧下の初期吸収量及び加圧下の吸収倍
率は下記の方法により測定した。以下特に定めない限
り、%は重量%を示す。
<Examples 1 to 4 and Comparative Examples 1 to 7> In Examples 1 to 4 and Comparative Examples 1 to 7, the moisture absorption blocking ratio, the degree of dust, the initial absorption amount under pressure, and the absorption ratio under pressure were measured by the following methods. did. Hereinafter, unless otherwise specified,% indicates% by weight.

吸湿ブロッキング率: 20メッシュ以下の粒度の吸水性樹脂粒子10gを直径5cm
のアルミ製の皿に均一に入れ、40℃、相対湿度80%の恒
温恒湿槽内で3時間放置する。放置後の吸水性樹脂粒子
を12メッシュの金網で軽く篩い、吸湿によりブロッキン
グして12メッシュ以上となった樹脂の重量を測定し、下
式により吸湿ブロッキング率を求めた。
Moisture absorption blocking rate: 10 g of water-absorbent resin particles having a particle size of 20 mesh or less with a diameter of 5 cm
And placed in a constant temperature / humidity chamber at 40 ° C and a relative humidity of 80% for 3 hours. The water-absorbent resin particles after standing were lightly sieved with a 12-mesh wire net, and the weight of the resin that became 12 mesh or more after being blocked by moisture absorption was measured, and the moisture-absorbing blocking ratio was determined by the following formula.

吸湿ブロッキング率(%) =(12メッシュ以上の樹脂重量/放置後の樹脂粒子総重量)×100 粉塵度: 1リットルの吸引瓶の吸入口とデジタル粉塵計(柴田
科学製)のサンプリング口を内径7mm、長さ10cmのガラ
ス管で接続する。吸引瓶の上部の口から、ロートを用い
て吸水性樹脂粒子20gを吸引瓶に落下させる。落下させ
た吸水性樹脂粒子から1分間に発生した粉塵の個数をデ
ジタル粉塵計を用いて測定し、この値を粉塵度[単位cp
m(count per minute)]とした。
Moisture absorption blocking rate (%) = (weight of resin of 12 mesh or more / total weight of resin particles after standing) x 100 Dust: Inside diameter of suction port of 1 liter suction bottle and sampling port of digital dust meter (manufactured by Shibata Science) Connect with a 7mm, 10cm long glass tube. 20 g of water-absorbent resin particles are dropped into the suction bottle from the upper mouth of the suction bottle using a funnel. The number of dusts generated per minute from the dropped water-absorbent resin particles is measured using a digital dust meter, and this value is referred to as the degree of dust [unit: cp
m (count per minute)].

加圧下の初期吸収量と吸収倍率: 250メッシュのナイロン網を底面に貼った円筒状プラ
スチックチューブ(内径30mm、高さ60mm)内に吸水性樹
脂粒子0.1gを入れて均一に広げ、この樹脂粒子の上に20
g/cm2の荷重となるように外径30mmの分銅を乗せる。
Initial absorption amount and absorption capacity under pressure: 0.1 g of water-absorbent resin particles are placed in a cylindrical plastic tube (inner diameter 30 mm, height 60 mm) with a 250 mesh nylon mesh stuck on the bottom, and spread uniformly. Over 20
A weight having an outer diameter of 30 mm is placed so that the load becomes g / cm 2 .

生理食塩水60mlの入ったシャーレ(直径:12cm)の中
に吸水性樹脂粒子の入ったプラスチックチューブをナイ
ロン網側を下面にして浸し、放置する。吸水性樹脂粒子
が生理食塩水を吸収して増加した重量を10分後および60
分後に測定する。10分後の増加重量の10倍値を生理食塩
水に対する加圧下の初期吸収量、60分後の増加重量の10
倍値を生理食塩水に対する加圧下の吸収倍率とした。
A plastic tube containing water-absorbing resin particles is immersed in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline with the nylon mesh side facing down, and left. After 10 minutes and 60 minutes, the weight of the water-absorbent resin particles
Measure after minutes. The 10-fold value of the weight gained after 10 minutes is the initial absorption under pressure in physiological saline, 10 times the weight gained after 60 minutes.
The double value was defined as the absorption capacity under a physiological saline solution under pressure.

実施例1 市販の粒子状吸水性樹脂“サンウェットIM−5000D"
[架橋ポリアクリル酸の部分ナトリウム中和塩、三洋化
成工業(株)製;粒径10〜1,000μmの粒子の含有量が9
9.9重量以上]100gをビニール袋に入れ、これにアミノ
変性シリコーンオイル[信越化学工業(株)製、“KF−
880"(表面張力21.3ダイン/cm;粘度650cps;平均分子量
約20,000)]0.2gを添加し十分混合して、本発明の改質
された衛生用品用吸水性樹脂粒子(a1)を得た。本品の
性能測定結果を表−1に示す。
Example 1 Commercially available particulate water absorbent resin "Sunwet IM-5000D"
[Partial sodium neutralized salt of cross-linked polyacrylic acid, manufactured by Sanyo Chemical Industries, Ltd .; content of particles having a particle size of 10 to 1,000 μm is 9
9.9 weight or more] into a plastic bag and add amino-modified silicone oil [Shin-Etsu Chemical Co., Ltd. “KF-
880 "(surface tension: 21.3 dynes / cm; viscosity: 650 cps; average molecular weight: about 20,000)] was added and mixed well to obtain the modified water absorbent resin particles (a1) for sanitary goods of the present invention. Table 1 shows the performance measurement results of this product.

実施例2 市販の粒子状吸水性樹脂“サンウェットIM−5800"
[架橋ポリアクリル酸部分ナトリウム中和塩の表面架橋
品、三洋化成工業(株)製;粒径10〜1,000μmの粒子
の含有量が99.9重量以上]100gを容量2,000mlのジュー
サーミキサーに入れて撹拌をつづけながら、エポキシ変
性シリコーンオイル[信越化学工業(株)製、“KF−10
1"(表面張力25.2ダイン/cm;粘度2,000cps;平均分子量
約9,000)]0.5gを添加して十分混合した。得られた混
合物を150℃で約20分間加熱処理して本発明の改質され
た衛生用品用吸水性樹脂粒子(a2)を得た。本品の性能
測定結果を表−1に示す。
Example 2 Commercially available particulate water absorbent resin "Sunwet IM-5800"
[Surface crosslinked product of crosslinked polyacrylic acid partial sodium neutralized salt, manufactured by Sanyo Chemical Industries, Ltd .; content of particles having a particle size of 10 to 1,000 μm is 99.9% by weight or more] 100 g is put into a 2,000 ml juicer mixer. While stirring, epoxy-modified silicone oil [KF-10 manufactured by Shin-Etsu Chemical Co., Ltd.
1 "(surface tension: 25.2 dynes / cm; viscosity: 2,000 cps; average molecular weight: about 9,000)] was added and mixed well. The resulting mixture was heated at 150 ° C. for about 20 minutes to modify the present invention. The obtained water-absorbent resin particles for sanitary goods (a2) are shown in Table 1.

実施例3 市販の粒子状吸水性樹脂“サンウェットIM−1000"
[デンプン/アクリル酸グラフト重合体の部分ナトリウ
ム中和塩、三洋化成工業(株)製;粒径10〜1,000μm
の粒子の含有量が99.9重量以上]100gを容量2,000mlの
ジューサーミキサーに入れて撹拌をつづけならが、メタ
ノールの80重量%水溶液にエポキシ変性シリコーンオイ
ル[信越化学工業(株)製、“KF−101"]6重量%及び
エチレングリコールジグリシジルエーテル[ナガセ化成
工業(株)製、“デナコール EX−810"]2重量%を溶
解したメタノール水溶液5g(吸水性樹脂粒子100部に対
して、“KF−101"は0.3部、“EX−810"は0.1部に各々相
当する)を添加して十分混合した。得られた混合物を15
0℃で約20分間加熱処理して本発明の改質された衛生用
品用吸水性樹脂粒子(a3)を得た。本品の性能測定結果
を表−1に示す。
Example 3 Commercially available particulate water absorbent resin "Sunwet IM-1000"
[Partial sodium neutralized salt of starch / acrylic acid graft polymer, manufactured by Sanyo Chemical Industries, Ltd .; particle size: 10 to 1,000 μm
If the particle content of 99.9% by weight or more is placed in a juicer mixer having a capacity of 2,000 ml and stirring is continued, an epoxy-modified silicone oil [Made by Shin-Etsu Chemical Co., Ltd., "KF- 101 "] and 5 g of an aqueous methanol solution in which 2% by weight of ethylene glycol diglycidyl ether [" Denacol EX-810 ", manufactured by Nagase Kasei Kogyo Co., Ltd.] (-101 "corresponds to 0.3 part, and" EX-810 "corresponds to 0.1 part). 15 of the resulting mixture
Heat treatment was performed at 0 ° C. for about 20 minutes to obtain the modified water-absorbent resin particles (a3) for sanitary goods of the present invention. Table 1 shows the performance measurement results of this product.

実施例4 “サンウェットIM−1000"100gを、容量2,000mlのジュ
ーサーミキサーに入れて撹拌をつづけながら、エポキシ
変性シリコーンオイル[信越化学工業(株)製、“X−
22−163B"(表面張力21.0ダイン/cm;粘度65cps;平均分
子量約3,000)]0.1g、及びメタノールのエチレンオキ
シド3モル付加物の30重量%水溶液にポリアミンエピク
ロルヒドリン樹脂6重量%を溶解した水溶液5g(吸水性
樹脂粒子100部に対して、“X−22−163B"は0.1部、ポ
リアミンエピクロルヒドリン樹脂は0.3部に各々相当す
る)を添加して十分混合した。得られた混合物を150℃
で約20分間加熱処理して本発明の改質された衛生用品用
吸水性樹脂粒子(a4)を得た。本品の性能測定結果を表
−1に示す。
Example 4 An epoxy-modified silicone oil [manufactured by Shin-Etsu Chemical Co., Ltd .;
22-163B "(surface tension: 21.0 dynes / cm; viscosity: 65 cps; average molecular weight: about 3,000)], and 5 g of an aqueous solution obtained by dissolving 6% by weight of a polyamine epichlorohydrin resin in a 30% by weight aqueous solution of a 3 mol adduct of ethylene oxide with methanol ( 0.1 part of "X-22-163B" and 0.3 part of polyamine epichlorohydrin resin were added to 100 parts of the water-absorbent resin particles, respectively, and mixed well.
For about 20 minutes to obtain the modified water absorbent resin particles (a4) for sanitary goods of the present invention. Table 1 shows the performance measurement results of this product.

比較例1 市販の“サンウェットIM−5000D"を比較の吸水性樹脂
粒子(b1)としてそのまま用いた。本品の性能測定結果
を表−1に示す。
Comparative Example 1 Commercially available “Sunwet IM-5000D” was used as it was as a comparative water-absorbent resin particle (b1). Table 1 shows the performance measurement results of this product.

比較例2 市販の“サンウェットIM−5800"を比較の吸水性樹脂
粒子(b2)としてそのまま用いた。本品の性能測定結果
を表−1に示す。
Comparative Example 2 Commercially available "Sunwet IM-5800" was used as it was as a comparative water-absorbing resin particle (b2). Table 1 shows the performance measurement results of this product.

比較例3 市販の“サンウェットIM−1000"を比較の吸水性樹脂
粒子(b3)としてそのまま用いた。本品の性能測定結果
を表−1に示す。
Comparative Example 3 Commercially available “Sunwet IM-1000” was used as it was as a comparative water absorbent resin particle (b3). Table 1 shows the performance measurement results of this product.

比較例4 市販の粒子状吸水性樹脂“サンウェットIM−5000D"10
0gに疎水性シリカ(“アエロジル−972")0.5gを添加
し、比較の吸水性樹脂粒子(b4)を得た。本品の性能測
定結果を表−1に示す。
Comparative Example 4 Commercially available particulate water absorbent resin "Sunwet IM-5000D" 10
0.5 g of hydrophobic silica ("Aerosil-972") was added to 0 g to obtain comparative water-absorbent resin particles (b4). Table 1 shows the performance measurement results of this product.

比較例5 市販の粒子状吸水性樹脂“サンウェットIM−5000D"10
0gに、粒径30μmの酸化チタン1.0gを添加し、比較の吸
水性樹脂粒子(b5)を得た。本品の性能測定結果を表−
1に示す。
Comparative Example 5 Commercially available particulate water absorbent resin "Sunwet IM-5000D" 10
To 0 g, 1.0 g of titanium oxide having a particle size of 30 μm was added to obtain comparative water-absorbent resin particles (b5). Table-Performance measurement results of this product
It is shown in FIG.

比較例6 市販の粒子状吸水性樹脂“サンウェットIM−5800"100
gに、加温して溶解させたジステアリルジメチルアンモ
ニウムクロライド5gを添加して80℃で10分間撹拌した
後、粒径20μmのポリスチレン粉末0.5gを添加し、比較
の吸水性樹脂粒子(b6)を得た。本品の性能測定結果を
表−1に示す。
Comparative Example 6 Commercially available particulate water absorbent resin "Sunwet IM-5800" 100
5 g of distearyldimethylammonium chloride dissolved by heating to g, stirred at 80 ° C. for 10 minutes, and then added 0.5 g of polystyrene powder having a particle size of 20 μm, and then the comparative water-absorbent resin particles (b6) I got Table 1 shows the performance measurement results of this product.

比較例7 市販の粒子状吸水性樹脂“サンウェットIM−5800"100
gに、1gのステアリン酸を加え、80℃に加熱してステア
リン酸を溶融し、この温度で10分間撹拌した。次いで、
この中に酸化ケイ素3gを加えて十分混合した後、室温ま
で冷却して比較の吸水性樹脂粒子(b7)を得た。本品の
性能測定結果を表−1に示す。
Comparative Example 7 Commercially available particulate water absorbent resin "Sunwet IM-5800" 100
To 1 g, 1 g of stearic acid was added, heated to 80 ° C. to melt the stearic acid, and stirred at this temperature for 10 minutes. Then
After 3 g of silicon oxide was added thereto and mixed well, the mixture was cooled to room temperature to obtain comparative water-absorbent resin particles (b7). Table 1 shows the performance measurement results of this product.

表−1から、次のことが明らかである。 From Table 1, the following is clear.

本発明の改質された衛生用品用吸水性樹脂粒子(a1)
〜(a4)は、未処理の吸水性樹脂粒子(b1)〜(b3)に
比較して、吸湿ブロッキング率、粉塵度、加圧下の初期
吸収量及び吸収倍率が飛躍的に改良されている。
The modified water absorbent resin particles for sanitary goods of the present invention (a1)
As for (a4), the moisture absorption blocking ratio, dustiness, initial absorption amount under pressure and absorption capacity are dramatically improved as compared with the untreated water-absorbent resin particles (b1) to (b3).

本発明の改質された吸水性樹脂粒子(a1)〜(a4)
は、比較の吸水性樹脂粒子(b4)〜(b7)と比較して、
吸湿ブロッキング率、粉塵度、加圧下の初期吸収量及び
吸収倍率が優れている。
Modified water absorbent resin particles (a1) to (a4) of the present invention
Is compared with the comparative water absorbent resin particles (b4) to (b7),
Excellent moisture absorption blocking ratio, dustiness, initial absorption under pressure and absorption capacity.

その上、比較例の吸水性樹脂(b4)〜(b6)は、未処
理の吸水性樹脂粒子(b1)〜(b3)に比較して吸湿ブロ
ッキング率は改良されているものの粉塵度についてはむ
しろ悪化している。更に、加圧下の初期吸収量及び吸収
倍率は、比較の吸水性樹脂粒子(b4)〜(b7)のすべて
が未処理の吸水性樹脂(b1)〜(b3)に比べ悪化してい
る。
In addition, the water-absorbent resins (b4) to (b6) of the comparative examples have improved moisture-absorbing blocking rates as compared with the untreated water-absorbent resin particles (b1) to (b3), but the dustiness is rather low. Is getting worse. Furthermore, the initial absorption amount and absorption capacity under pressure are all worse for the comparative water-absorbent resin particles (b4) to (b7) than for the untreated water-absorbent resin (b1) to (b3).

<実施例5〜16、比較例8〜12> 実施例5〜16、比較例8〜12における吸水性樹脂粒子
の常圧吸収量、加圧吸収量、吸収速度、浸透性、ゲル化
時間は下記の方法により測定した。
<Examples 5 to 16, Comparative Examples 8 to 12> In Examples 5 to 16 and Comparative Examples 8 to 12, the normal pressure absorption amount, the pressure absorption amount, the absorption speed, the permeability, and the gelation time of the water-absorbent resin particles are as follows. It was measured by the following method.

常圧吸収量: 250メッシュのナイロン製網で作成したティーバッグ
(縦:20cm、横:10cm)に吸水性樹脂粒子1gを入れ、500m
lの生理食塩水(塩化ナトリウム0.9%水溶液)中に30分
間浸漬した後、引き上げて15分間水切りして増加重量を
測定し、この値を常圧吸収量とした。
Normal pressure absorption: 500 g of water-absorbent resin particles in a tea bag (length: 20 cm, width: 10 cm) made of 250 mesh nylon mesh
After being immersed in 1 liter of physiological saline (a 0.9% aqueous solution of sodium chloride) for 30 minutes, it was pulled up and drained for 15 minutes, and the increased weight was measured.

加圧吸収量: 250メッシュのナイロン網を底面に貼った円筒状プラ
スチックチューブ(内径30mm、高さ60mm)内に吸水性樹
脂粒子0.1gを入れて均一に広げ、この樹脂の上に20g/cm
2の荷重となるように外径30mmの分銅を乗せる。生理食
塩水60mlの入ったシャーレ(直径:12cm)の中に吸水性
樹脂粒子の入ったプラスチックチューブをナイロン網側
を下面にして30分間浸漬する。30分後の増加重量の10倍
値を加圧吸収量とした。
Pressure absorption capacity: 0.1 g of water-absorbent resin particles are placed in a cylindrical plastic tube (inner diameter 30 mm, height 60 mm) with a 250-mesh nylon mesh stuck on the bottom, spread evenly, and 20 g / cm on this resin
A weight with an outer diameter of 30 mm is placed so that the load becomes 2 . A plastic tube containing water-absorbent resin particles is immersed in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline for 30 minutes with the nylon mesh side facing downward. The value of 10 times the weight gained after 30 minutes was defined as the pressure absorption.

吸収速度: 100mlのビーカーに生理食塩水50mlと磁気回転子(ほ
ぼ円柱状で長さ30mm、中央部分の直径が8mm、両端部分
の直径が7mm)を入れ、マグネチックスターラーにて磁
気回転子を600回転/分で回転させながら吸水性樹脂粒
子2.0gを投入し、投入直後から回転子の回転停止までの
時間を測定し、吸収速度とした。
Absorption speed: Put 50ml of physiological saline and magnetic rotor (almost cylindrical, 30mm in length, 8mm in diameter at the center and 7mm in diameter at both ends) into a 100ml beaker, and use a magnetic stirrer to move the magnetic rotor. While rotating at 600 rpm, 2.0 g of the water-absorbing resin particles were charged, and the time from immediately after the charging to the stop of the rotation of the rotor was measured and defined as an absorption rate.

浸透性: 50mlのビーカーに吸水性樹脂粒子2gを入れ、続いて生
理食塩水30mlを吸水性樹脂粒子の拡散が無いように静か
に加えた後、吸水性樹脂粒子の内部への生理食塩水の浸
透状態を目視により判定した。判定基準は次の通りであ
る。
Permeability: 2 g of water-absorbent resin particles are placed in a 50 ml beaker, and then 30 ml of physiological saline is gently added so that the water-absorbent resin particles are not diffused. The permeation state was visually determined. The criteria are as follows.

◎:ママコの生成が無く、浸透性良好 ○:浸透性は良好であるが、若干のママコ生成 △:浸透性がやや劣り、ママコの生成が認められる ×:浸透性悪く、全体にママコ生成 ゲル化時間: 50mlのビーカーに吸水性樹脂粒子2gを入れ、続いて生
理食塩水30mlを吸水性樹脂粒子の拡散が無いように静か
に加えた後、液全体がゲル化して流動性が無くなるまで
の時間を測定し、この値をゲル化時間とした。
:: No formation of mamako, good permeability ○: Good permeability, but slight formation of mamaco △: Slightly poor permeability and generation of mamaco ×: Poor permeability, generation of mamako gel Aging time: Put 2g of water-absorbent resin particles into a 50ml beaker, and then gently add 30ml of physiological saline so as to prevent diffusion of the water-absorbent resin particles. The time was measured, and this value was defined as the gel time.

比較例8 容量1リットルのガラス製反応容器に、アクリル酸ナ
トリウム95g、アクリル酸27g、N,N′−メチレンビスア
クリルアミド0.3gおよび脱イオン水430gを仕込み、撹拌
・混合しながら内容物の温度を5℃に保った。内容物に
窒素を流入して溶存酸素量を1ppm以下とした後、過酸化
水素の1%水溶液1gおよびアスコルビン酸の0.3%水溶
液1gを添加して重合を開始させ、約5時間重合すること
により、含水ゲル状重合体を得た。この含水ゲル状重合
体を、130〜150℃で熱風乾燥し、粒径850μm以下の粒
度に粉砕して吸水性樹脂粒子(b9)を得た。(b8)は粒
径105μm以下の微粒子を7.2%含有しており、また、粒
径45μm以下の微粒子は1.0%であった。この吸水性樹
脂粒子(b8)の性能測定結果を表−2に示す。
Comparative Example 8 In a glass reaction vessel having a capacity of 1 liter, 95 g of sodium acrylate, 27 g of acrylic acid, 0.3 g of N, N'-methylenebisacrylamide and 430 g of deionized water were charged, and the temperature of the content was stirred and mixed. It was kept at 5 ° C. After flowing nitrogen into the contents to reduce the amount of dissolved oxygen to 1 ppm or less, 1 g of a 1% aqueous solution of hydrogen peroxide and 1 g of a 0.3% aqueous solution of ascorbic acid are added to initiate polymerization, and polymerization is performed for about 5 hours. Thus, a hydrogel polymer was obtained. The hydrogel polymer was dried with hot air at 130 to 150 ° C. and pulverized to a particle size of 850 μm or less to obtain water-absorbent resin particles (b9). (B8) contained 7.2% of fine particles having a particle size of 105 μm or less, and 1.0% of fine particles having a particle size of 45 μm or less. Table 2 shows the performance measurement results of the water absorbent resin particles (b8).

比較例9 比較例8で得られた吸水性樹脂粒子(b8)100gを高速
撹拌しながら、エチレングリコールジグリシジルエーテ
ルの10%水溶液1gを(b8)に均一に噴霧し、約140℃で3
0分間加熱処理することにより表面近傍が架橋処理され
た吸水性樹脂粒子(b9)を得た。尚、(b9)の粒度分布
は(b8)とほとんど同じであるが、粒径105μm以下の
微粒子の含有量は6.4%であり、また、粒径45μm以下
の微粒子は0.9%であった。比較用に、この吸水性樹脂
粒子(b9)の性能測定結果を表−2に示す。
Comparative Example 9 While stirring 100 g of the water-absorbent resin particles (b8) obtained in Comparative Example 8 at a high speed, 1 g of a 10% aqueous solution of ethylene glycol diglycidyl ether was sprayed uniformly on (b8).
Heat treatment was performed for 0 minutes to obtain water-absorbent resin particles (b9) whose surface was crosslinked. The particle size distribution of (b9) was almost the same as (b8), but the content of fine particles having a particle size of 105 μm or less was 6.4%, and the content of fine particles having a particle size of 45 μm or less was 0.9%. For comparison, the performance measurement results of the water absorbent resin particles (b9) are shown in Table 2.

比較例10 比較例8で得られた吸水性樹脂粒子(b8)から粒径10
5μm以下の微粒子を除去して吸水性樹脂粒子(b10)を
得た。この吸水性樹脂粒子(b10)の性能測定結果を表
−2に示す。
Comparative Example 10 The water-absorbent resin particles (b8) obtained in Comparative Example 8
Fine particles having a size of 5 μm or less were removed to obtain water-absorbent resin particles (b10). Table 2 shows the performance measurement results of the water absorbent resin particles (b10).

比較例11 容量1リットルのガラス製反応容器にアクリル酸100
g、テトラアリルオキシエタン0.3gおよび脱イオン水350
gを仕込み、撹拌しながら内容物の温度を5℃に保っ
た。内容物に窒素を流入して溶存酸素量を1ppm以下とし
た後、過酸化水素の1%水溶液1gおよびアスコルビン酸
の0.3%水溶液1gを添加して重合を開始させ、約5時間
重合することにより含水ゲル状重合体を得た。
Comparative Example 11 Acrylic acid 100 was placed in a 1-liter glass reaction vessel.
g, 0.3 g of tetraallyloxyethane and 350 of deionized water
g, and the content was kept at 5 ° C. while stirring. After flowing nitrogen into the contents to reduce the amount of dissolved oxygen to 1 ppm or less, 1 g of a 1% aqueous solution of hydrogen peroxide and 1 g of a 0.3% aqueous solution of ascorbic acid are added to initiate polymerization, and polymerization is performed for about 5 hours. A hydrogel polymer was obtained.

この含水ゲル状重合体を目皿付きエクストルーダーで
混練しながら、35%の水酸化ナトリウム水溶液116gを添
加して均一に混練することにより、アクリル酸の約73モ
ル%が中和された含水ゲル状重合体を得た。この含水ゲ
ル状重合体を表面温度が180℃のドラムドライヤーで乾
燥し、粒径850μm以下の粒度に粉砕して吸水性樹脂粒
子(b11)を得た。(b11)は粒径105μm以下の微粒子
を5.2%含有しており、また、粒径45μm以下の微粒子
は0.8%であった。この吸水性樹脂粒子(b11)の性能測
定結果を表−2に示す。
While kneading this hydrogel polymer with an extruder equipped with a perforated plate, 116 g of a 35% aqueous sodium hydroxide solution was added and kneaded uniformly to obtain a hydrogel having about 73 mol% of acrylic acid neutralized. A polymer was obtained. The hydrogel polymer was dried with a drum dryer having a surface temperature of 180 ° C. and pulverized to a particle size of 850 μm or less to obtain water-absorbent resin particles (b11). (B11) contained 5.2% of fine particles having a particle size of 105 μm or less, and 0.8% of fine particles having a particle size of 45 μm or less. Table 2 shows the performance measurement results of the water absorbent resin particles (b11).

比較例12 200mlのフラスコ中で、アクリル酸65.4g、脱イオン水
78.6gを仕込み、20〜30℃に冷却しながら48%水酸化ナ
トリウム水溶液56.0gを撹拌下に徐々に滴下してアクリ
ル酸の74モル%を中和した。この単量体水溶液にN,N′
−メチレンビスアクリルアミド0.2gを溶解し、次に、過
硫酸カリウム0.1gを加えて室温で溶解した後、窒素ガス
を流入することにより溶液中の溶存酸素量を1ppm以下と
した。
Comparative Example 12 In a 200 ml flask, 65.4 g of acrylic acid, deionized water
While charging 78.6 g, while cooling to 20 to 30 ° C., 56.0 g of a 48% aqueous sodium hydroxide solution was gradually dropped with stirring to neutralize 74 mol% of acrylic acid. N, N '
After dissolving 0.2 g of methylenebisacrylamide and then adding 0.1 g of potassium persulfate and dissolving at room temperature, the amount of dissolved oxygen in the solution was reduced to 1 ppm or less by flowing nitrogen gas.

還流冷却器を取り付けた1リットルのフラスコにn−
ヘキサン400gを仕込み、ソルビタンモノステアレート3g
を溶解させた後、窒素ガスを流入することにより溶液中
の溶存酸素量を1ppm以下とした。次いで、温浴により温
度を約60℃に保持し、撹拌しながら、上記の過硫酸カリ
ウムを含有した単量体水溶液を滴下して約3時間重合を
行い、更にリラックス条件下で2時間重合を継続するこ
とにより、パール状含水重合体の分散液を得た。この重
合体の分散液から含水重合体をろ別し、さらに遠心脱水
してパール状含水重合体を得た。この含水重合体を90〜
95℃で減圧乾燥し、粒径850μm以下の粒度のパール状
の吸水性樹脂粒子(b12)を得た。(b12)は粒径105μ
m以下の微粒子を6.4%含有しており、また、粒径45μ
m以下の微粒子は0.9%であった。この吸水性樹脂粒子
(b12)の性能測定結果を表−2に示す。
N-liter in a 1 liter flask equipped with a reflux condenser
Charge 400 g of hexane and 3 g of sorbitan monostearate
After dissolving, the amount of dissolved oxygen in the solution was reduced to 1 ppm or less by flowing nitrogen gas. Then, the temperature is maintained at about 60 ° C. by a warm bath, and while stirring, the above-mentioned aqueous solution of the monomer containing potassium persulfate is added dropwise to carry out the polymerization for about 3 hours, and the polymerization is further continued for 2 hours under the relaxed condition. Thereby, a dispersion liquid of the pearl-like hydropolymer was obtained. The hydrated polymer was separated from this polymer dispersion by filtration and further subjected to centrifugal dehydration to obtain a pearl-shaped hydrated polymer. 90 ~
Drying under reduced pressure at 95 ° C. gave pearl-like water-absorbent resin particles (b12) having a particle size of 850 μm or less. (B12) has a particle size of 105μ
6.4% of fine particles with a particle size of 45 μm or less.
The ratio of fine particles having a particle size of m or less was 0.9%. Table 2 shows the performance measurement results of the water absorbent resin particles (b12).

実施例5 比較例8で得られた吸水性樹脂粒子(b8)100部と、
ジメチルシリコーンオイル“信越シリコーンKF96A−10
0"[信越化学工業(株)製;表面張力20.9ダイン/cm;粘
度100cps;平均分子量約6,000]0.05部をV型混合機に入
れ、20分間混合することにより吸水性樹脂粒子(b8)と
ほぼ同等の粒度分布を有する本発明の改質された衛生用
品用吸水性樹脂粒子(a5)を得た。この吸水性樹脂粒子
(a5)の性能測定結果を表−2に示す。
Example 5 100 parts of the water absorbent resin particles (b8) obtained in Comparative Example 8,
Dimethyl silicone oil “Shin-Etsu Silicone KF96A-10
0 "[manufactured by Shin-Etsu Chemical Co., Ltd .; surface tension: 20.9 dynes / cm; viscosity: 100 cps; average molecular weight: about 6,000] 0.05 part was placed in a V-type mixer, and mixed with the water-absorbent resin particles (b8) for 20 minutes. The modified water absorbent resin particles (a5) for sanitary articles of the present invention having substantially the same particle size distribution were obtained, and the performance measurement results of the water absorbent resin particles (a5) are shown in Table 2.

実施例6、7 実施例5において、吸水性樹脂粒子(b8)に対するジ
メチルシリコーンオイル“信越シリコーンKF96−100"の
添加量を各々0.01%、0.1%に代える以外は実施例5と
同様にして、本発明の改質された衛生用品用吸水性樹脂
粒子(a6)および(a7)を得た。これらの吸水性樹脂粒
子の性能測定結果を表−2に示す。
Examples 6 and 7 In the same manner as in Example 5, except that the addition amount of the dimethyl silicone oil “Shin-Etsu Silicone KF96-100” to the water-absorbent resin particles (b8) was changed to 0.01% and 0.1%, respectively. The modified water absorbent resin particles (a6) and (a7) for sanitary goods of the present invention were obtained. Table 2 shows the performance measurement results of these water absorbent resin particles.

実施例8〜10 実施例5において、“信越シリコーンKF96A−100"に
代え、各々信越化学工業(株)製の、ジメチルシリコー
ンオイル“信越シリコーンKF96−50"[表面張力20.8ダ
イン/cm;粘度50cps;平均分子量約3,500]、ジメチルシ
リコーンオイル“信越シリコーンKF96−350"[表面張力
21.1ダイン/cm;粘度350cps;平均分子量約15,000]、ジ
メチルシリコーンオイル“信越シリコーンオイルKF54"
[表面張力25.2ダイン/cm;粘度400cps;平均分子量約16,
000]を使用する以外は実施例5と同様にして、本発明
の改質された衛生用品用吸水性樹脂粒子(a8)、(a9)
および(a10)を得た。これらの吸水性樹脂粒子の性能
測定結果を表−2に示す。
Examples 8 to 10 In Example 5, instead of "Shin-Etsu Silicone KF96A-100", dimethyl silicone oil "Shin-Etsu Silicone KF96-50" manufactured by Shin-Etsu Chemical Co., Ltd. [surface tension: 20.8 dynes / cm; viscosity: 50 cps Average molecular weight about 3,500], dimethyl silicone oil "Shin-Etsu Silicone KF96-350" [surface tension
21.1 dynes / cm; viscosity 350 cps; average molecular weight about 15,000], dimethyl silicone oil "Shin-Etsu Silicone Oil KF54"
[Surface tension 25.2 dynes / cm; viscosity 400 cps; average molecular weight about 16,
000] in the same manner as in Example 5, except that the modified water-absorbent resin particles (a8) and (a9) for sanitary goods of the present invention were used.
And (a10) were obtained. Table 2 shows the performance measurement results of these water absorbent resin particles.

実施例11、12 実施例5において、“信越シリコーンKF96−100"に代
えて、各々信越化学工業(株)製の、ジメチルシリコー
ンオイル“信越シリコーンKF96−5"(表面張力19.7ダイ
ン/cm;粘度5cps;平均分子量約100)、ジメチルシリコー
ンオイル“信越シリコーンKF96−3000"(表面張力21.3
ダイン/cm;粘度3,000cps;平均分子量約40,000)を使用
する以外は実施例5と同様にして、本発明の改質された
衛生用品用吸水性樹脂粒子(a11)および(a12)を得
た。これらの吸水性樹脂粒子の性能測定結果を表−2に
示す。
Examples 11 and 12 In Example 5, instead of "Shin-Etsu Silicone KF96-100", dimethyl silicone oil "Shin-Etsu Silicone KF96-5" (manufactured by Shin-Etsu Chemical Co., Ltd.) (surface tension: 19.7 dynes / cm; viscosity) 5cps; average molecular weight about 100), dimethyl silicone oil "Shin-Etsu Silicone KF96-3000" (surface tension 21.3
(Dyne / cm; viscosity: 3,000 cps; average molecular weight: about 40,000) in the same manner as in Example 5 to obtain modified water-absorbent resin particles (a11) and (a12) for sanitary goods of the present invention. . Table 2 shows the performance measurement results of these water absorbent resin particles.

実施例13 実施例5で得られた吸水性樹脂粒子(a5)に、親水性
度100%の二酸化ケイ素(“レオロシールQS−102";徳山
曹達(株)製)を0.02%添加し、均一に混合して本発明
の改質された衛生用品用吸水性樹脂粒子(a13)を得
た。この吸水性樹脂粒子(a13)の性能測定結果を表−
2に示す。
Example 13 To the water-absorbent resin particles (a5) obtained in Example 5, 0.02% of silicon dioxide having a hydrophilicity of 100% (“Reloseal QS-102”; manufactured by Tokuyama Soda Co., Ltd.) was added, and the mixture was uniformly mixed. The mixture was mixed to obtain the modified water-absorbent resin particles (a13) for sanitary articles of the present invention. Table 1 shows the performance measurement results of the water-absorbent resin particles (a13).
It is shown in FIG.

実施例14〜16 実施例5において、吸水性樹脂粒子(b8)に代えて、
吸水性樹脂(b9)、(b10)、(b12)を各々使用する以
外は実施例1と同様にして本発明の改質された衛生用品
用吸水性樹脂粒子を(a14)、(a15)及び(a16)を得
た。これらの吸水性樹脂粒子の性能測定結果を表−2に
示す。
Examples 14 to 16 In Example 5, instead of the water absorbent resin particles (b8),
The modified water-absorbent resin particles for sanitary goods of the present invention were prepared in the same manner as in Example 1 except that the water-absorbent resins (b9), (b10) and (b12) were used, respectively (a14), (a15) and (A16) was obtained. Table 2 shows the performance measurement results of these water absorbent resin particles.

表−2から判るように、本発明の改質された衛生用品
用吸水性樹脂粒子及びこの粒子を含有する組成物は、対
応する比較例に比し、常圧吸収量、加圧吸収量という性
能を悪化させることなく、吸収速度が早くなり、浸透性
に優れ、ゲル化時間が飛躍的に改良されている。
As can be seen from Table 2, the modified water-absorbent resin particles for sanitary ware of the present invention and the composition containing these particles are referred to as a normal pressure absorption amount and a pressure absorption amount as compared with the corresponding comparative examples. The absorption rate is increased, the permeability is excellent, and the gel time is dramatically improved without deteriorating the performance.

産業上の利用可能性 本発明の改質された衛生用品用吸水性樹脂粒子は次の
とおり、吸収速度が向上され、吸湿ブロッキング性、発
塵性が改良されたもので、吸水性樹脂が有する吸収性能
も維持又は向上している。
INDUSTRIAL APPLICABILITY The modified water absorbent resin particles for sanitary goods of the present invention have improved absorption speed, moisture absorption blocking properties, and improved dust generation, and have a water absorbent resin. The absorption performance is also maintained or improved.

1)吸収速度の向上 水に限らず、塩溶液、尿、血液などの人体排出液など
に対しても速い吸収速度を示す。有機ポリシロキサンに
よる処理前の吸水性樹脂粒子に比べて、吸収速度は約1/
2〜1/4に改善される。
1) Improvement of absorption rate It shows a high absorption rate not only for water but also for human body effluents such as salt solution, urine, and blood. As compared with the water-absorbing resin particles before the treatment with the organic polysiloxane, the absorption rate is about 1 /
It is improved to 2 to 1/4.

吸水性樹脂粒子の表面に液が均一に濡れた後に、液が
粒子内部へ浸透していくため、速やかに吸水ゲル化す
る。
After the liquid uniformly wets the surface of the water-absorbent resin particles, the liquid penetrates into the inside of the particles, so that the water-absorbent resin particles quickly gel.

吸水性樹脂として粒径の小さい微粒子が多く含有され
ていても速い吸収速度を示す。
Even when many fine particles having a small particle diameter are contained as a water-absorbing resin, a high absorption rate is exhibited.

2)吸湿ブロッキング性、発塵性の改良 発水性を持つ有機ポリシロキサンが効率的に吸水性樹
脂粒子の表面に固着または付着しているため、吸湿ブロ
ッキング率が低い。そのため、高湿度の環境で使用して
も、吸水性樹脂がブロッキングせず作業性に優れてい
る。
2) Improvement of moisture absorption blocking property and dust generation property Since the water-soluble organic polysiloxane is efficiently fixed or adhered to the surface of the water absorbent resin particles, the moisture absorption blocking rate is low. Therefore, even when used in a high-humidity environment, the water-absorbent resin does not block and is excellent in workability.

有機ポリシロキサンが液状であるため、疎水性の微粉
末などを添加する他の方法とは異なり、湿潤性作用によ
り、粉塵度が低減される。したがって、吸水性樹脂粒子
を大量に取り扱っても微粒子の飛散がなく、作業環境が
改善され、作業者に対する粉塵吸入の機械も低減され
る。
Since the organic polysiloxane is in a liquid state, unlike other methods of adding a hydrophobic fine powder or the like, the degree of dust is reduced by a wet action. Therefore, even if the water-absorbent resin particles are handled in large quantities, the fine particles are not scattered, the working environment is improved, and the number of dust suction machines for the workers is reduced.

飛散が少ないことから、紙おむつなどにおける吸水性
樹脂粒子のロス率が低下し、生産性が向上する。
Since the scattering is small, the loss rate of the water-absorbing resin particles in a disposable diaper or the like is reduced, and the productivity is improved.

3)吸収性能の維持又は向上 有機ポリシロキサンによる改質後も、改質前と同等以
上の吸収性能を示す。
3) Maintenance or improvement of absorption performance Even after the modification with the organic polysiloxane, the absorption performance is equal to or higher than that before the modification.

特に、改質前の吸水性樹脂と反応性を有する有機ポリ
シロキサンを用いる場合、吸水性樹脂の表面近傍を架橋
させるため、加圧下の初期吸収量及び吸収倍率が処理前
の吸水性樹脂粒子に比べ向上する。従って、紙おむつ等
に使用した場合、赤ちゃんの体重などの荷重に耐えて多
量の尿などを迅速に吸収することができ、尿などの戻り
量が低く、紙おむつ表面のドライ感が優れて、サラット
した感触を示す。
In particular, when an organic polysiloxane having reactivity with the water-absorbent resin before modification is used, in order to crosslink the vicinity of the surface of the water-absorbent resin, the initial absorption amount under pressure and the absorption capacity are increased for the water-absorbent resin particles before treatment. Improve compared. Therefore, when used as a disposable diaper, it can withstand loads such as the weight of a baby and can quickly absorb a large amount of urine, and the amount of urine returned is low. Shows feel.

上記効果を奏することから、本発明の改質された衛生
用品用吸水性樹脂粒子は、紙おむつ(子供用紙おむつお
よび大人用紙おむつ)、生理用ナプキン、失禁用パッ
ド、母乳パッド、手術用アンダーパッド、ペットシート
などの衛生用品や吸収性当材にとくに好適に使用でき
る。
Due to the above effects, the modified water-absorbent resin particles for sanitary goods of the present invention include disposable diapers (disposable diapers for children and adult disposable diapers), sanitary napkins, incontinence pads, breast milk pads, surgical underpads, It can be used particularly suitably for sanitary articles such as pet sheets and absorbent materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08G 81/02 C08J 3/12 Z C08J 3/12 3/14 3/14 3/16 3/16 C08L 33/02 C08L 33/02 101/14 101/14 (72)発明者 小池 政法 京都府京都市東山区一橋野本町11番地の 1 三洋化成工業株式会社内 (72)発明者 田中 健治 京都府京都市東山区一橋野本町11番地の 1 三洋化成工業株式会社内 (56)参考文献 特開 平6−299144(JP,A) 特開 平5−70625(JP,A) 特開 平7−88171(JP,A) 特開 昭61−264006(JP,A) 特開 昭61−211305(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61F 13/53 A61L 15/00 B01J 20/26 C08L 101/14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI C08G 81/02 C08J 3/12 Z C08J 3/12 3/14 3/14 3/16 3/16 C08L 33/02 C08L 33 / 02 101/14 101/14 (72) Inventor Masanori Koike 11 at Hitotsubashi Nohonmachi, Higashiyama-ku, Kyoto-shi, Kyoto 1 Inside Sanyo Chemical Industries Co., Ltd. 1. Sanyo Kasei Kogyo Co., Ltd. (56) References JP-A-6-299144 (JP, A) JP-A-5-70625 (JP, A) JP-A-7-88171 (JP, A) JP-A-61- 264006 (JP, A) JP-A-61-211305 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61F 13/53 A61L 15/00 B01J 20/26 C08L 101/14

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アクリル酸および/またはアクリル酸塩を
主構成単位とするエチレン性不飽和単量体の架橋重合体
であり、実質的に水不溶性である吸水性樹脂(A)の粒
子が、常温で液状の有機ポリシロキサン(B)により処
理されてなる改質された衛生用品用吸水性樹脂粒子にお
いて、 (A)と(B)が混合および/または反応した状態で
あり、 (A)の粒子のうち、粒径10〜1,000μmの粒子の含
有量が95重量%以上であり、 重量比(A)/(B)が100/(0.001〜5) である改質された衛生用品用吸水性樹脂粒子。
1. A crosslinked polymer of an ethylenically unsaturated monomer having acrylic acid and / or an acrylate as a main structural unit, and particles of the water-absorbent resin (A) which is substantially insoluble in water, The modified water-absorbent resin particles for sanitary goods treated with the liquid organic polysiloxane (B) at room temperature, wherein (A) and (B) are mixed and / or reacted, Among the particles, the content of particles having a particle size of 10 to 1,000 μm is 95% by weight or more, and the weight ratio (A) / (B) is 100 / (0.001 to 5). Resin particles.
【請求項2】(B)の25℃における粘度が10〜20,000cs
tであり、表面張力が18〜30ダイン/cmである請求の範囲
第1項記載の改質された衛生用品用吸水性樹脂粒子。
2. The viscosity of (B) at 25 ° C. is 10 to 20,000 cs.
The modified water-absorbent resin particles for sanitary goods according to claim 1, wherein the particle diameter is t and the surface tension is 18 to 30 dynes / cm.
【請求項3】(B)が、分子内にカルボン酸基および/
またはカルボン酸塩基と反応しうる官能基を少なくとも
1個有する変性シリコーンオイルである請求の範囲第1
項または第2項に記載の改質された衛生用品用吸水性樹
脂粒子。
3. The method according to claim 1, wherein (B) has a carboxylic acid group and / or
Or a modified silicone oil having at least one functional group capable of reacting with a carboxylate group.
Item 3. The modified water absorbent resin particles for sanitary articles according to item 2 or 2.
【請求項4】(B)が、アミノ変性シリコーンオイルま
たはエポキシ変性シリコーンオイルである請求の範囲第
3項に記載の改質された衛生用品用吸水性樹脂粒子。
4. The modified water absorbent resin particles for sanitary goods according to claim 3, wherein (B) is an amino-modified silicone oil or an epoxy-modified silicone oil.
【請求項5】(B)の平均分子量が1,000以上である請
求の範囲第1項または第2項に記載の改質された衛生用
品用吸水性樹脂粒子。
5. The modified water absorbent resin particles for sanitary goods according to claim 1, wherein the average molecular weight of (B) is 1,000 or more.
【請求項6】(A)を(B)で処理する前、(B)で処
理すると同時に、または(B)で処理した後に、分子内
にカルボン酸基および/またはカルボン酸塩基と反応し
得る官能基を少なくとも2個以上有する架橋剤(C)で
(A)の粒子の表面近傍が更に架橋処理されてなる請求
の範囲第1項または第2項に記載の改質された衛生用品
用吸水性樹脂粒子。
6. The compound (A) can react with a carboxylic acid group and / or a carboxylic acid group in the molecule before, simultaneously with, or after the treatment with (B). The modified water absorption for sanitary goods according to claim 1 or 2, wherein the surface of the particles of (A) is further cross-linked with a cross-linking agent (C) having at least two functional groups. Resin particles.
【請求項7】更に二酸化珪素微粉末(D)が(A)に対
し0.001〜2重量%添加されてなる請求の範囲第1項ま
たは第2項に記載の改質された衛生用品用吸水性樹脂粒
子。
7. The modified water absorbent for sanitary goods according to claim 1, wherein 0.001 to 2% by weight of fine powder of silicon dioxide (D) is added to (A). Resin particles.
【請求項8】相対湿度80%(40℃)における吸湿ブロッ
キング率が20%以下、粉塵度が10cpm以下であり、且
つ、生理食塩水に対する加圧下の初期吸収量が20g/g以
上の吸収特性を有する請求の範囲第1項または第2項に
記載の改質された衛生用品用吸水性樹脂粒子。
8. Absorption characteristics in which the moisture absorption blocking ratio at a relative humidity of 80% (40 ° C.) is 20% or less, the dustiness degree is 10 cpm or less, and the initial absorption amount under pressure to physiological saline is 20 g / g or more. The modified water-absorbent resin particles for sanitary goods according to claim 1 or 2, having the following.
JP52753995A 1994-06-06 1995-05-31 Modified water absorbent resin particles for sanitary goods Expired - Fee Related JP3169133B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6-148631 1994-06-06
JP14863194 1994-06-06
JP6-268283 1994-10-05
JP26828394 1994-10-05
PCT/JP1995/001076 WO1995033558A1 (en) 1994-06-06 1995-05-31 Modified water-absorbent resin particles

Publications (1)

Publication Number Publication Date
JP3169133B2 true JP3169133B2 (en) 2001-05-21

Family

ID=26478765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52753995A Expired - Fee Related JP3169133B2 (en) 1994-06-06 1995-05-31 Modified water absorbent resin particles for sanitary goods

Country Status (6)

Country Link
JP (1) JP3169133B2 (en)
KR (1) KR0169576B1 (en)
CN (1) CN1048422C (en)
AU (1) AU682117B2 (en)
TW (1) TW341517B (en)
WO (1) WO1995033558A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525568A (en) * 2003-10-31 2007-09-06 ビーエーエスエフ アクチェンゲゼルシャフト Hydrogels that absorb blood and / or body fluids
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
WO2007116777A1 (en) 2006-03-27 2007-10-18 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent
WO2008108343A1 (en) 2007-03-05 2008-09-12 Nippon Shokubai Co., Ltd. Water absorbent and process for producing the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342963A (en) * 1995-09-01 2000-12-12 Nippon Shokubai Co Ltd Absorbent composition, production thereof and absorptive article containing the same
KR100258017B1 (en) * 1997-12-20 2000-06-01 차동천 Super absorbent resin
EP1072630B1 (en) 1999-07-26 2004-12-01 Nippon Shokubai Co., Ltd. Water-absorbing composition and its use
US7732050B2 (en) 2001-05-16 2010-06-08 Kao Corporation Silicone-modified water-absorbing polymer particles and method for producing the same
JP2003082250A (en) * 2001-06-27 2003-03-19 San-Dia Polymer Ltd Water-absorbing resin composition and method for producing the same
JP2003088551A (en) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd Absorber and absorptive article using it
US6822135B2 (en) * 2002-07-26 2004-11-23 Kimberly-Clark Worldwide, Inc. Fluid storage material including particles secured with a crosslinkable binder composition and method of making same
DE10351267A1 (en) * 2003-10-31 2005-06-02 Basf Ag New floating, absorbent hydrogels, causing thickening of fluids from the surface, useful in hygienic products or for absorbing medical waste, obtained by post-treating hydrogels with hydrophobic compounds
JP2006055833A (en) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water-absorbing resin as main component
EP1768777A4 (en) * 2004-05-12 2008-01-16 Nippon Catalytic Chem Ind Waste solution solidifying agent, process for preparing the same and use of the same
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
TWI383008B (en) * 2005-08-17 2013-01-21 Nippon Catalytic Chem Ind Production method of water-absorbent resin, water-absorbent resin, and usage of water-absorbent resin
TWI394789B (en) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
JP2007039695A (en) * 2006-08-23 2007-02-15 Nippon Shokubai Co Ltd Method for producing water-absorptive agent
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
KR20130009783A (en) * 2010-02-18 2013-01-23 다우 코닝 코포레이션 Siloxane surface-modified hydrogel and hydrogel microparticle compositions
JP5473680B2 (en) * 2010-03-04 2014-04-16 Sdpグローバル株式会社 Absorbent resin particles and method for producing the same
JP5485805B2 (en) * 2010-06-15 2014-05-07 住友精化株式会社 Water absorbent resin
KR20130133887A (en) * 2011-03-24 2013-12-09 산요가세이고교 가부시키가이샤 Aqueous-liquid-absorbable resin, aqueous-liquid-absorbable composition, and absorber material and absorbable object each produced using same
JPWO2012133734A1 (en) * 2011-03-31 2014-07-28 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
JP2013133399A (en) * 2011-12-26 2013-07-08 Kao Corp Water-absorbing polymer particle
JP6013730B2 (en) * 2011-12-27 2016-10-25 株式会社リブドゥコーポレーション Absorbent articles
JP6013729B2 (en) * 2011-12-27 2016-10-25 株式会社リブドゥコーポレーション Water-absorbent resin powder and absorbent body and absorbent article using the same
JP6004729B2 (en) 2012-04-26 2016-10-12 株式会社リブドゥコーポレーション Absorbent articles
JP6412298B2 (en) 2012-07-27 2018-10-24 株式会社リブドゥコーポレーション Absorbent articles
KR102226473B1 (en) 2012-08-27 2021-03-12 가부시키가이샤 닛폰 쇼쿠바이 Particulate water-absorbing agent and process for producing same
JP6068745B2 (en) * 2012-10-03 2017-01-25 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
CN103866606B (en) * 2014-02-25 2015-11-25 苏州恒康新材料有限公司 A kind of high-moisture-retention paper aid and preparation method thereof
CN106132534B (en) 2014-03-31 2020-06-19 株式会社日本触媒 Particulate water-absorbing agent and method for producing same
CN104177840B (en) * 2014-08-27 2020-11-10 东莞市九瀛新材料有限公司 Water-swelling rubber and preparation method thereof
CN104356281A (en) * 2014-11-08 2015-02-18 太原理工大学 Preparation method of salt-tolerant polyacrylic acid super-absorbent resin
CN107955176A (en) * 2017-11-07 2018-04-24 北京城市之光生态环境有限公司 A kind of liquid water-retaining agent and preparation method thereof
KR102291033B1 (en) * 2019-06-28 2021-08-20 주식회사 휴마스터 Moisture absorptive and desorptive material with improved surface cohesiveness, sheet using the same, and manufacturing methods thereof
TWI745755B (en) * 2019-09-27 2021-11-11 臺灣塑膠工業股份有限公司 Superabsorbent polymer composition, superabsorbent polymer, and method for producing the same
CN115279316B (en) * 2020-03-18 2024-03-05 住友精化株式会社 Absorbent sheet and absorbent article
CN116178612B (en) * 2022-12-27 2023-09-19 湖北九联汇博科技有限公司 Water-absorbent resin and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211305A (en) * 1985-03-18 1986-09-19 Mitsubishi Petrochem Co Ltd Production of highly water-absorptive polymer
JPS61264006A (en) * 1985-05-16 1986-11-21 Mitsubishi Petrochem Co Ltd Production of highly water-absorbing polymer
JPH0570625A (en) * 1991-09-12 1993-03-23 Mitsubishi Petrochem Co Ltd Water absorbent resin composition and absorber goods produced therefrom
JPH06299144A (en) * 1993-04-15 1994-10-25 Osaka Organic Chem Ind Ltd Seed for artificial snow and production of artificial snow
JPH0788171A (en) * 1993-06-18 1995-04-04 Sanyo Chem Ind Ltd Absorbent composition for paper diaper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211305A (en) * 1985-03-18 1986-09-19 Mitsubishi Petrochem Co Ltd Production of highly water-absorptive polymer
JPS61264006A (en) * 1985-05-16 1986-11-21 Mitsubishi Petrochem Co Ltd Production of highly water-absorbing polymer
JPH0570625A (en) * 1991-09-12 1993-03-23 Mitsubishi Petrochem Co Ltd Water absorbent resin composition and absorber goods produced therefrom
JPH06299144A (en) * 1993-04-15 1994-10-25 Osaka Organic Chem Ind Ltd Seed for artificial snow and production of artificial snow
JPH0788171A (en) * 1993-06-18 1995-04-04 Sanyo Chem Ind Ltd Absorbent composition for paper diaper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
JP2007525568A (en) * 2003-10-31 2007-09-06 ビーエーエスエフ アクチェンゲゼルシャフト Hydrogels that absorb blood and / or body fluids
WO2007116777A1 (en) 2006-03-27 2007-10-18 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent
EP3932541A1 (en) 2006-03-27 2022-01-05 Nippon Shokubai Co., Ltd. Water absorbing agent, and water absorbent core using the agent
WO2008108343A1 (en) 2007-03-05 2008-09-12 Nippon Shokubai Co., Ltd. Water absorbent and process for producing the same

Also Published As

Publication number Publication date
TW341517B (en) 1998-10-01
CN1048422C (en) 2000-01-19
WO1995033558A1 (en) 1995-12-14
KR960703670A (en) 1996-08-31
KR0169576B1 (en) 1999-01-15
AU2575795A (en) 1996-01-04
CN1129407A (en) 1996-08-21
AU682117B2 (en) 1997-09-18

Similar Documents

Publication Publication Date Title
JP3169133B2 (en) Modified water absorbent resin particles for sanitary goods
EP0705643B1 (en) Improved water-absorbent resin particles and the production thereof
JP2890022B2 (en) Water-absorbing resin particles and method for producing the same
JP3283570B2 (en) Surface crosslinked absorbent resin particles and method for producing the same
JP5022226B2 (en) Surface treatment method for water absorbent resin
US5597873A (en) Superabsorbent polymers and products therefrom
US5385983A (en) Process for preparing a water-absorbent polymer
EP2797566B1 (en) Water-absorbent resin powder and absorber and absorbent article using the same
US5447727A (en) Water-absorbent polymer having improved properties
JPH0788171A (en) Absorbent composition for paper diaper
EP1651285A1 (en) Process for making surface treated absorbent gelling material
JP3177859B2 (en) Powdery absorbent for aqueous liquids based on water-absorbing polymers
WO2019111812A1 (en) Absorbent resin particles, absorber and absorbent article, and method for producing absorbent resin particles
JP2002035580A (en) Absorbent composition and absorbable article
JP2001137704A (en) Method for manufacturing modified highly-water- absorptive resin
JP2011092930A (en) Water absorbent and method for producing the same
JP5079938B2 (en) Water absorbent composition
JP4493429B2 (en) Water-absorbing resin composition and method for producing the same, and absorbent body and absorbent article using the same
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin
JP2000197818A (en) Water absorbent and its preparation
JPH11279288A (en) Production of water-absorption agent
WO2024132959A1 (en) Biologically degradable superabsorber
JP4856823B2 (en) Water-absorbing agent composition and absorbent article
CN101143229A (en) Water-absorbing agent and body liquid absorbing production
TW202432663A (en) Biologically degradable superabsorber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees