JP2006055833A - Particulate water absorbing agent with water-absorbing resin as main component - Google Patents

Particulate water absorbing agent with water-absorbing resin as main component Download PDF

Info

Publication number
JP2006055833A
JP2006055833A JP2005094194A JP2005094194A JP2006055833A JP 2006055833 A JP2006055833 A JP 2006055833A JP 2005094194 A JP2005094194 A JP 2005094194A JP 2005094194 A JP2005094194 A JP 2005094194A JP 2006055833 A JP2006055833 A JP 2006055833A
Authority
JP
Japan
Prior art keywords
water
mass
absorbing agent
absorbing
particulate water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094194A
Other languages
Japanese (ja)
Inventor
Katsuyuki Wada
克之 和田
Kazuki Kimura
一樹 木村
Hiroko Ueda
裕子 植田
Teruyuki Kanto
照幸 神頭
Hiroyoshi Fujimaru
洋圭 藤丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005094194A priority Critical patent/JP2006055833A/en
Publication of JP2006055833A publication Critical patent/JP2006055833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water absorbing agent which maintains excellent water absorbing properties for a long time even when urine composition of human urine varies depending. <P>SOLUTION: This water absorbing agent comprises a water-absorbing resin obtained by crosslinking polymerization of an unsaturated monomer and exhibits Centrifuge retention capacity in a physiological saline solution of not lower than 32 g/g, mass median particle size (D50) of 200 to 400 μm, ratio of particles with diameter of smaller than 150 μm of 0 to 2 mass%, increased extractables by deterioration of 0 to 15 mass% and extractables in a deterioration test solution for one hour of 0.1 to 30 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸水性樹脂を主成分とする粒子状吸水剤に関する。さらに詳しくは、おむつなど吸収性物品での実使用時、従来になく優れた吸収能を発揮する粒子状吸水剤に関するものである。   The present invention relates to a particulate water-absorbing agent mainly composed of a water-absorbing resin. More specifically, the present invention relates to a particulate water-absorbing agent that exhibits an unprecedented excellent absorbability when actually used in absorbent articles such as diapers.

現在、紙オムツや生理用ナプキン、いわゆる失禁パット等の衛生材料には、その構成材として、体液を吸収させることを目的とした吸水性樹脂およびパルプ等の親水性繊維が幅広く使用されている。上記の吸水性樹脂としては、例えば、ポリアクリル酸部分中和物架橋体、澱粉−アクリル酸グラフト重合体の加水分解物、酢酸ビニル−アクリル酸エステル共重合体ケン化物、アクリロニトリル共重合体若しくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、及びカチオン性モノマーの架橋重合体等が主原料として用いられている。   At present, hydrophilic materials such as water absorbent resin and pulp for absorbing body fluid are widely used as sanitary materials such as paper diapers and sanitary napkins, so-called incontinence pads. Examples of the water-absorbing resin include a crosslinked polyacrylic acid partially neutralized product, a hydrolyzate of starch-acrylic acid graft polymer, a saponified vinyl acetate-acrylic ester copolymer, an acrylonitrile copolymer, or an acrylamide. A hydrolyzate of a copolymer or a cross-linked product thereof, and a cross-linked polymer of a cationic monomer are used as a main raw material.

従来から上記の吸水性樹脂は、体液などの水性液体に接した際に優れた吸液量や吸水速度、ゲル強度、ゲル通液性、水性液体を含んだ基材から水を吸い上げる吸引力などに優れた物性を備えることが要求されている。さらに、近年は、非常に粒度分布が狭い吸水性樹脂粉末や、吸収倍率が高く水可溶分が少ない吸水性樹脂粉末が求められ、加圧下吸収倍率や加圧下通液性などの高いことが必須に求められるようになっている。加えて、体液や尿を吸収し膨潤してゲル化した状態においても、長時間ゲルが劣化せず、吸収性能が低下しない特性も求められるようになってきた。   Conventionally, the above-mentioned water-absorbing resin has excellent liquid absorption amount and water absorption speed, gel strength, gel liquid permeability, suction force for sucking water from a base material containing aqueous liquid, etc. when in contact with aqueous liquid such as body fluid It is required to have excellent physical properties. Furthermore, in recent years, water-absorbing resin powders having a very narrow particle size distribution and water-absorbing resin powders having a high absorption capacity and a low water-soluble content have been demanded, and the absorption capacity under pressure and liquid permeability under pressure are high. It has come to be required. In addition, even in the state where the body fluid and urine are absorbed and swollen to form a gel, the gel has not been deteriorated for a long time, and a characteristic that the absorption performance is not lowered has been demanded.

例えば、これら吸水性樹脂や、吸水性樹脂を主成分とする吸水剤の諸物性を規定した多くのパラメーター特許や測定法も多く出願されている(特許文献1、特許文献2、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15、特許文献16、特許文献17、特許文献18、特許文献19、特許文献20、特許文献21、特許文献22、特許文献23、特許文献24、特許文献25、特許文献26、特許文献27、特許文献28、特許文献29、特許文献30、特許文献31、特許文献32、特許文献33)。   For example, many parameter patents and measurement methods defining various properties of these water-absorbing resins and water-absorbing agents mainly composed of water-absorbing resins have been filed (Patent Document 1, Patent Document 2, Patent Document 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8, Patent Literature 9, Patent Literature 10, Patent Literature 11, Patent Literature 12, Patent Literature 13, Patent Literature 14, Patent Literature 15, Patent Literature 16, Patent Literature 17, Patent Literature 18, Patent Literature 19, Patent Literature 20, Patent Literature 21, Patent Literature 22, Patent Literature 23, Patent Literature 24, Patent Literature 25, Patent Literature 26, Patent Literature 27, (Patent Literature 28, Patent Literature 29, Patent Literature 30, Patent Literature 31, Patent Literature 32, Patent Literature 33).

特許文献1では、ゲル強度,可溶分,吸水倍率に優れた吸水性樹脂が提案されている。特許文献2では無加圧通液性,吸水速度,吸水倍率に優れた吸水性樹脂が提案されている。特定の粒度分布を規定した技術として特許文献3、特許文献4、特許文献5、特許文献6なども提案されている。また、各種荷重での加圧下吸水倍率に優れた吸水性樹脂やその測定法も多く提案され、加圧吸水倍率単独ないし他の物性との組み合わせた吸水性樹脂が特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15、特許文献16などが提案されている。   Patent Document 1 proposes a water absorbent resin excellent in gel strength, soluble content, and water absorption magnification. Patent Document 2 proposes a water absorbent resin excellent in non-pressurized liquid permeability, water absorption speed, and water absorption magnification. Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6 and the like have also been proposed as technologies that define a specific particle size distribution. In addition, many water-absorbing resins excellent in water absorption capacity under pressure under various loads and methods for measuring the same are proposed, and water-absorbing resins in combination with pressure absorption capacity alone or in combination with other physical properties are disclosed in Patent Document 7, Patent Document 8, Patent Literature 9, Patent Literature 10, Patent Literature 11, Patent Literature 12, Patent Literature 13, Patent Literature 14, Patent Literature 15, Patent Literature 16, and the like have been proposed.

また、物性低下の耐衝撃性に優れた吸水性樹脂が特許文献17、特許文献18などに提案されている。粉塵量を規定した吸水性樹脂が特許文献19などに提案され、着色の少ない吸水性樹脂が特許文献20などに提案されている。耐尿性についてL−アスコルビン酸水溶液などへのゲル耐久性や吸水能に優れた吸水性樹脂が特許文献21、特許文献22で提案され、通気性に優れた吸水性樹脂が特許文献23で提案されている。残存モノマーの少ない吸水性樹脂が特許文献24に提案されている。   In addition, Patent Literature 17, Patent Literature 18 and the like have proposed water-absorbing resins excellent in impact resistance with reduced physical properties. A water-absorbing resin that defines the amount of dust is proposed in Patent Document 19 and the like, and a water-absorbing resin with less coloring is proposed in Patent Document 20 and the like. Regarding urinary resistance, water-absorbing resins excellent in gel durability and water-absorbing ability to L-ascorbic acid aqueous solutions are proposed in Patent Document 21 and Patent Document 22, and water-absorbing resins excellent in air permeability are proposed in Patent Document 23. Has been. A water-absorbing resin with little residual monomer is proposed in Patent Document 24.

さらに特定の物性を持った吸水性樹脂が特定物性や構成ないしポリマー濃度のおむつなどの吸水性物品に好適であることが、特許文献25、米国特許26、米国特許27、米国特許28、特許文献29、特許文献30、特許文献31、特許文献32などに提案されている。さらに、表面架橋を行う際に、樹脂粒子の少なくとも一部を粉砕しながら行う方法が、特許文献33などに提案されている。
米国再発行特許Re32649号明細書 英国特許第2267094号B明細書 米国特許第5051259号明細書 米国特許第5419956号明細書 米国特許第6087002号明細書 欧州特許第0629441号明細書 欧州特許第0707603号明細書 欧州特許第0712659号明細書 欧州特許第1029886号明細書 米国特許第5462972号明細書 米国特許第5453323号明細書 米国特許第5797893号明細書 米国特許第6127454号明細書 米国特許第6184433号明細書 米国特許第6297335号明細書 米国再発行特許Re37021号明細書 米国特許第5140076号明細書 米国特許第6414214B1号明細書 米国特許第5994440号明細書 米国特許第6444744号明細書 米国特許第6194531号明細書 欧州特許第0940148号明細書 欧州特許第1153656号明細書 欧州特許第0605215号明細書 米国特許第5147343号明細書 米国特許第5149335号明細書 欧州特許第0532002号明細書 米国特許第5601452号明細書 米国特許第5562646号明細書 米国特許第5669894号明細書 米国特許第6150582号明細書 国際公開第02/053198号パンフレット 欧州特許第0937739号明細書
Furthermore, it is described in Patent Document 25, US Patent 26, US Patent 27, US Patent 28, Patent Document that a water-absorbing resin having specific physical properties is suitable for water-absorbing articles such as diapers having specific physical properties, constitution or polymer concentration. 29, Patent Document 30, Patent Document 31, Patent Document 32, and the like. Further, Patent Document 33 proposes a method in which at least a part of resin particles is pulverized when performing surface crosslinking.
US Reissue Patent Re32649 Specification Specification of British Patent No. 2267094B US Pat. No. 5,051,259 US Pat. No. 5,419,956 US Pat. No. 6,087,002 European Patent No. 0629441 European Patent No. 0707603 EP 0712659 specification European Patent No. 1029886 US Pat. No. 5,462,972 US Pat. No. 5,453,323 US Pat. No. 5,797,893 US Pat. No. 6,127,454 US Pat. No. 6,184,433 US Pat. No. 6,297,335 US Reissue Patent Re37021 Specification US Pat. No. 5140076 Specification US Pat. No. 6,414,214 B1 US Pat. No. 5,994,440 US Pat. No. 6,444,744 US Pat. No. 6,194,531 European Patent No. 0940148 European Patent No. 1153656 European Patent No. 0605215 US Pat. No. 5,147,343 US Pat. No. 5,149,335 European Patent No. 053002 US Pat. No. 5,601,452 US Pat. No. 5,562,646 US Pat. No. 5,669,894 US Pat. No. 6,150,582 International Publication No. 02/053198 Pamphlet European Patent No. 093739

上記のように多くの物性に着目されて開発されてきた吸水性樹脂や吸水剤のうち、これらの物性をターゲットないしスペック化したものも製造され使用されてきてはいるが、これら特定物性をコントロールしても、いまだ紙おむつなどの実使用では十分な性能を発揮しているとは言い難いという問題があった。   Of the water-absorbing resins and water-absorbing agents that have been developed with a focus on many physical properties as described above, those that are targeted or specified for these properties have been manufactured and used, but these specific physical properties are controlled. Even so, there is still a problem that it is difficult to say that the actual use of disposable diapers and the like is sufficient.

そこで、本発明の解決しようとする課題は、従来、数多くの吸水速度、無加圧下吸水倍率、加圧下吸水倍率、ゲル強度、耐久性、可溶分、粒度などの物性に着目した吸水性樹脂や吸水剤が開発され使用されてきたにもかかわらず、これらの物性の制御ないし設計でも実使用で十分な性能を発揮できなかった吸水剤において、実使用にも好適な吸水剤を与えることである。   Therefore, the problems to be solved by the present invention have heretofore been a water-absorbing resin that has focused on physical properties such as a large number of water absorption rates, water absorption capacity without pressure, water absorption capacity under pressure, gel strength, durability, soluble content, and particle size. Despite the development and use of water-absorbing agents, it is possible to provide water-absorbing agents suitable for actual use in water-absorbing agents that have not been able to demonstrate sufficient performance in actual use even with control or design of these physical properties. is there.

上記課題を解決すべく検討した結果、本発明は特定の粒度分布、特定の吸収倍率を有する吸水剤において、尿に含まれる成分が徐々に吸水性樹脂の架橋構造を破壊していくため吸水剤の劣化が生じやすくなること、およびこのような尿劣化によって可溶分が増加し、吸水特性が変化することを見出した。従来から、吸水性樹脂や吸水剤の諸物性は、尿をモデルとした、生理食塩水(0.9質量%塩化ナトリウム水溶液)ないし各種人工尿で測定された物性が提案されているが、人工尿の尿組成は各特許において異なり、かつ、実際の尿の組成も一定ではなく、生活環境、食生活、年齢、季節、さらに同じ人でも時間や体調によって刻々と大きく変化する。従来の吸水性樹脂や吸水剤は、尿モデルとして一定の生理食塩水や人工尿などの特定の吸水液の1種類を使用して吸収特性を評価していたため、尿の組成変化が起こった場合の吸水剤の評価が適性に行なえず、尿の組成変化によって吸水剤の可溶分量が変化すると、従来の吸水剤は実使用で十分な性能を発揮できないことが判明した。   As a result of studying to solve the above problems, the present invention is a water-absorbing agent having a specific particle size distribution and a specific absorption ratio, because components contained in urine gradually destroy the cross-linked structure of the water-absorbing resin. It has been found that the degradation of water tends to occur and that the urine degradation increases the soluble content and changes the water absorption characteristics. Conventionally, various physical properties of a water-absorbing resin and a water-absorbing agent have been proposed by measuring physiological saline (0.9 mass% sodium chloride aqueous solution) or various artificial urine using urine as a model. The urine composition of urine is different in each patent, and the actual urine composition is not constant, and it varies greatly from moment to moment depending on the living environment, diet, age, season, and even time and physical condition of the same person. The conventional water-absorbing resin and water-absorbing agent have been evaluated for absorption characteristics using one kind of specific water-absorbing liquid such as a certain physiological saline or artificial urine as a urine model. It has been found that conventional water-absorbing agents cannot exhibit sufficient performance in actual use when the water-absorbing agent cannot be evaluated properly and the soluble content of the water-absorbing agent changes due to urine composition changes.

そこで本発明では、排出される尿の個人差、同じ人の尿でも、季節、体調によって変化する尿の組成変化によって生じる吸水剤の劣化を「尿劣化」と定義し、このような尿劣化の程度の指標として、「可溶分劣化増加量」および「可溶分劣化増加倍率」を導入した。本発明において、可溶分劣化増加量および可溶分劣化増加倍率は下記式で定義される。ただし、本明細書において、劣化試験液とは、0.05質量%L−アスコルビン酸入り生理食塩水であり、生理食塩水とは0.9質量%塩化ナトリウム水溶液であり、その使用温度は特に指定のない限り室温(25℃±2℃)である。また、測定方法は後記する実施例に示す方法による。   Therefore, in the present invention, the deterioration of the water-absorbing agent caused by the urine composition change that changes depending on the season and physical condition is defined as `` urine deterioration '' even if the urine is discharged, even in the same person's urine. As an index of the degree, “increase in soluble content degradation” and “increase in soluble content degradation” were introduced. In the present invention, the soluble content deterioration increasing amount and the soluble content deterioration increasing magnification are defined by the following equations. However, in this specification, the deterioration test solution is a physiological saline containing 0.05% by mass L-ascorbic acid, and the physiological saline is a 0.9% by mass sodium chloride aqueous solution, and the use temperature is particularly high. Unless otherwise specified, it is room temperature (25 ° C. ± 2 ° C.). Moreover, the measuring method is based on the method shown in the Example mentioned later.

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

劣化試験液で可溶分が劣化前より増加すると、可溶分が吸収体から溶出されやすくなり、血液や尿等の吸収体への液の拡散性を阻害するため、吸水特性が低下する。また、可溶分の著しい増加は、吸水剤の架橋構造が破壊されていることを示し、吸水剤に取り込まれた尿等の体液の保持が困難になり、吸収性能が低下する。このような吸水性能の低下は、吸収体や吸収性物品の戻り量の増加となって現れる。このため、「可溶分劣化増加量」や「可溶分劣化増加倍率」を特定範囲に制限して、戻り量の増加が抑制されることが好ましい。   When the soluble content in the deterioration test solution increases from before the deterioration, the soluble content is likely to be eluted from the absorber, and the diffusibility of the liquid to the absorber such as blood and urine is inhibited, so that the water absorption property is deteriorated. Moreover, the remarkable increase in the soluble content indicates that the cross-linking structure of the water-absorbing agent is broken, and it becomes difficult to hold body fluid such as urine taken into the water-absorbing agent, and the absorption performance is lowered. Such a decrease in water absorption performance appears as an increase in the return amount of the absorbent body or absorbent article. For this reason, it is preferable that the increase in the return amount is suppressed by limiting the “soluble content deterioration increase amount” and the “soluble content deterioration increase rate” to a specific range.

一方、尿劣化を詳細に検討した結果、尿劣化の度合いは吸収剤の表面積に依存する傾向があり、質量平均粒子径が小さい粒度分布、例えば質量平均粒子径D50が400μm以下の吸収剤ほど、尿劣化による可溶分の増加が著しいことも判明した。質量平均粒子径は吸水性樹脂や吸水剤の吸収挙動、およびオムツ等の吸収性物品の仕上がりに影響を与える重要な因子であり、単に質量平均粒子径を大きくして尿劣化を阻害するだけで解決できる問題ではない。   On the other hand, as a result of examining urine deterioration in detail, the degree of urine deterioration tends to depend on the surface area of the absorbent, and the particle size distribution having a smaller mass average particle diameter, for example, an absorbent having a mass average particle diameter D50 of 400 μm or less, It was also found that the increase in soluble content due to urine degradation was significant. The mass average particle size is an important factor that affects the absorption behavior of the water-absorbent resin and water-absorbing agent and the finish of absorbent articles such as diapers. Simply increasing the mass average particle size to inhibit urine degradation It is not a problem that can be solved.

さらに、尿劣化は吸収剤の吸収倍率とも相関があり、吸収倍率が高くなるほど尿劣化による可溶分の増加が著しくなる。従って、オムツ等の吸収性物品の吸収量を向上させるために、単に吸水性樹脂の吸収倍率を高めるためだけでは長時間の実使用に耐えられない。   Furthermore, urine deterioration has a correlation with the absorption capacity of the absorbent, and the higher the absorption capacity, the more the increase in soluble content due to urine deterioration. Therefore, in order to improve the absorption amount of absorbent articles such as diapers, simply increasing the absorption capacity of the water-absorbent resin cannot withstand long-term actual use.

このことは、吸収性物品の薄型化が好まれる今日、質量平均粒子径D50が400μm以下と小さく、吸収倍率が高く、尿の変化によらず一定の範囲の可溶分に制限される吸水剤は、加圧下吸収倍率も高く、従来以上の優れた吸水剤となり得ること示す一方、質量平均粒子径D50が400μm以下と小さく、吸収倍率が高い吸水剤であって、尿劣化による可溶分量が少ないものは実際の調製が困難であることを示し、従前には存在しなかった。   This is because today's thinning of the absorbent article is preferred, the mass average particle diameter D50 is as small as 400 μm or less, the absorption capacity is high, and the water-absorbing agent is limited to a certain range of soluble components regardless of changes in urine Shows a high absorption capacity under pressure, indicating that it can be an excellent water-absorbing agent compared to conventional ones. On the other hand, it is a water-absorbing agent with a small mass average particle diameter D50 of 400 μm or less and a high absorption capacity. The few indicated that actual preparation was difficult and did not exist before.

以上から、本発明では、吸水剤として架橋構造を有し、特定の無加圧下吸収倍率を有すること、特定の粒度分布および平均粒子径を有すること、さらに吸水剤の「可溶分劣化増加量」や「可溶分劣化増加倍率」を特定の範囲にすることで、特定の質量平均粒子径において、さらに尿に対する安定性にも優れる吸水剤によって、上記課題が解決できることに想到した。   From the above, in the present invention, the water-absorbing agent has a cross-linked structure, has a specific absorption capacity under no pressure, has a specific particle size distribution and average particle size, It was conceived that the above-mentioned problems can be solved with a water-absorbing agent having a specific mass-average particle diameter and excellent stability against urine, by setting the “soluble matter deterioration increasing ratio” within a specific range.

本発明の第一の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(d)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(d)上記式で示す可溶分劣化増加量が0〜15質量%で、且つ劣化試験液での1時間可溶分が0.1〜30質量%。
The first particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, and satisfying the following (a) to (d).
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(D) The soluble content deterioration increase amount shown by the said formula is 0-15 mass%, and the 1 hour soluble content in a degradation test liquid is 0.1-30 mass%.

また、本発明の第二の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(e)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(e)上記式で示す可溶分劣化増加倍率が1〜4倍で、且つ劣化試験液での1時間可溶分が0.1〜30質量%。
The second particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent mainly comprising a water-absorbing resin obtained by crosslinking polymerization of an acid group and / or a salt-containing unsaturated monomer, and satisfying the following (a) to (c) and (e) Agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(E) The soluble component deterioration increasing magnification represented by the above formula is 1 to 4 times, and the one hour soluble component in the deterioration test solution is 0.1 to 30% by mass.

また、本発明の第三の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(f)、(g)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(f)生理食塩水中での16時間可溶分が0.1〜10質量%
(g)生理食塩水への4.8kPaでの高加圧下吸収倍率(AAP4.8kPa)が21g/g以上。
The third particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, wherein the following (a) to (c) and (f), (g) Filled particulate water-absorbing agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(F) 0.1 to 10% by mass of 16-hour soluble component in physiological saline
(G) Absorption capacity under high pressure (AAP 4.8 kPa) at 4.8 kPa into physiological saline is 21 g / g or more.

また、本発明の第一の粒子状吸水剤の製造方法は、
未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤および連鎖移動剤の存在下に架橋重合する工程、
重合して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
を含む、ことを特徴とする。
Moreover, the production method of the first particulate water-absorbing agent of the present invention,
A step of crosslinking polymerization of an unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component in the presence of a crosslinking agent and a chain transfer agent;
Step of further surface cross-linking water-absorbent resin particles satisfying the following (a) to (c) obtained by polymerization (a) Absorption capacity under no pressure (CRC) to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
It is characterized by including.

本発明の第二の粒子状吸水剤の製造方法は、
未中和アクリル酸を単量体の主成分とする濃度10〜30質量%の不飽和単量体水溶液を架橋剤の存在下に架橋重合する工程
重合後に中和する工程
中和して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程、
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
を含む、ことを特徴とする。
The method for producing the second particulate water-absorbing agent of the present invention,
Step of cross-linking polymerization of unsaturated monomer aqueous solution having concentration of unneutralized acrylic acid as main component of monomer in the presence of crosslinking agent Step of neutralizing after polymerization A step of further surface cross-linking the water-absorbent resin particles satisfying the following (a) to (c):
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
It is characterized by including.

本発明の第三の粒子状吸水剤の製造方法は、
未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤の存在下に架橋重合する工程、
重合して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%、および
(i)重合時、(ii)重合後の表面架橋前、(iii)表面架橋時、(iv)表面架橋後からなる群から選択される1以上の時期にキレート剤を添加する工程、
を含む、ことを特徴とする。
The method for producing the third particulate water-absorbing agent of the present invention,
A step of crosslinking polymerization of an unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component in the presence of a crosslinking agent;
Step of further surface cross-linking water-absorbent resin particles satisfying the following (a) to (c) obtained by polymerization (a) Absorption capacity under no pressure (CRC) to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm and selected from the group consisting of (i) during polymerization, (ii) before surface crosslinking after polymerization, (iii) during surface crosslinking, (iv) after surface crosslinking Adding a chelating agent at one or more times
It is characterized by including.

本発明の粒子状吸水剤によれば、特定の吸収倍率および特定の粒度分布を有するため、おむつなど吸収性物品として実使用する際に、特に短時間の吸収能において、従来になく優れた性能を発揮する。特に戻り量を少なくでき、おむつ表面のドライ感向上効果が顕著である。   According to the particulate water-absorbing agent of the present invention, since it has a specific absorption ratio and a specific particle size distribution, when actually used as an absorbent article such as a diaper, it has an unprecedented performance especially in a short-time absorption capacity. Demonstrate. In particular, the amount of return can be reduced, and the effect of improving the dryness of the diaper surface is remarkable.

また尿劣化が抑制されるため、ゲル安定性に優れ、吸収性能を長時間に亘り維持することができ、装着している本人の不快感を軽減できる。   Moreover, since urine deterioration is suppressed, it is excellent in gel stability, absorption performance can be maintained over a long time, and the discomfort of the wearer can be reduced.

本発明では、尿劣化を抑制できると同時に、特定の粒度分布を有するために偏折が少なく、粒子状吸水剤の製造時、およびおむつなど吸収性物品製造時の粉体搬送において、ピストンフロー性に優れ、粉体の供給量が周期的に変化する脈動が抑制される。また、おむつなど吸収性物品を製造する際に、本発明の粒子状吸水剤と木材粉砕パルプ等の親水性繊維との混合が容易で、簡便に均一組成とすることができる。   In the present invention, urine deterioration can be suppressed, and at the same time, since it has a specific particle size distribution, there are few deflections, and piston flow properties are produced in the production of particulate water-absorbing agents and in powder conveyance during the production of absorbent articles such as diapers. And the pulsation in which the supply amount of the powder changes periodically is suppressed. Moreover, when manufacturing absorbent articles, such as a diaper, mixing with the particulate water-absorbing agent of this invention and hydrophilic fibers, such as a pulverized wood pulp, is easy, and it can be set as a uniform composition simply.

以下、本発明の吸水性樹脂および吸水剤に使用する原料や反応条件等について説明する。また、本明細書における、(a)生理食塩水への無加圧下吸収倍率(CRC)、(b)質量平均粒子径(D50)、(d)可溶分劣化増加量、(e)可溶分劣化増加倍率、(f)生理食塩水中での16時間可溶分、(g)生理食塩水への4.8kPaでの高加圧下吸収倍率(AAP4.8kPa)、(i)生理食塩水への1.9kPaでの加圧下吸収倍率(AAP1.9kPa)、(j)生理食塩水へのボルテックス吸水速度、(k)吸湿流動性、(l)粒度分布の対数標準偏差、および劣化試験液での1時間可溶分は、後記する実施例に記載する方法によって測定した数値とする。   Hereinafter, raw materials and reaction conditions used for the water-absorbent resin and water-absorbing agent of the present invention will be described. Moreover, in this specification, (a) Absorption capacity under non-pressure to physiological saline (CRC), (b) Mass average particle diameter (D50), (d) Increase in degradation of soluble component, (e) Soluble Minute degradation increase magnification, (f) 16 hours soluble component in physiological saline, (g) Absorption magnification under high pressure at 4.8 kPa into physiological saline (AAP 4.8 kPa), (i) To physiological saline Absorption capacity under pressure at 1.9 kPa (AAP 1.9 kPa), (j) Vortex water absorption rate into physiological saline, (k) Hygroscopic fluidity, (l) Logarithmic standard deviation of particle size distribution, and deterioration test solution The 1-hour soluble component is a numerical value measured by the method described in Examples described later.

(1)吸水性樹脂
本発明の吸水性樹脂とは、ヒドロゲルを形成しうる水膨潤性水不溶性の架橋重合体のことであり、例えば、水膨潤性とはイオン交換水中において必須に自重の5倍以上、好ましくは50倍から1000倍という多量の水を吸収するものを指す。また、水不溶性とは水可溶分、すなわち1時間可溶分が50質量%以下、さらには後述の範囲のものを指す。なお、これらの測定法は実施例で規定する。
(1) Water-absorbing resin The water-absorbing resin of the present invention is a water-swellable water-insoluble cross-linked polymer that can form a hydrogel. For example, water-swelling property is essential weight 5 in ion-exchanged water. It refers to a substance that absorbs a large amount of water, more than 50 times, preferably 50 times to 1000 times. Further, water-insoluble refers to a water-soluble component, that is, one hour soluble component of 50% by mass or less, and further to a range described later. In addition, these measuring methods are prescribed | regulated by an Example.

本発明では吸水性樹脂として、本発明を達成する上で、酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂が必須に用いられ、好ましくは、アクリル酸及び/又はその塩を主成分とする不飽和単量体を重合・架橋することにより得られるポリアクリル酸(部分)中和物重合体が用いられる。なお、架橋重合した構造である吸水性樹脂であれば良く、酸基および/またはその塩含有不飽和単量体を重合した後に、架橋剤により架橋反応して得られる吸水性樹脂でも良い。   In the present invention, as the water-absorbing resin, a water-absorbing resin obtained by crosslinking polymerization of an acid group and / or a salt-containing unsaturated monomer thereof is essential for achieving the present invention, preferably acrylic acid and / or A polyacrylic acid (partial) neutralized polymer obtained by polymerizing / crosslinking an unsaturated monomer containing the salt as a main component is used. A water-absorbing resin having a cross-linked structure may be used, and a water-absorbing resin obtained by polymerizing an acid group and / or a salt-containing unsaturated monomer thereof and then cross-linking with a cross-linking agent may be used.

(2)吸水剤およびその製造方法
本発明で吸水剤とは吸水性樹脂を主成分とする、水性液体を吸収するための固化剤である。水性液体としては、水に限らず、尿、血液、糞、廃液、湿気や蒸気、氷、水と有機溶媒ないし無機溶媒の混合物、雨水、地下水など、水を含むものを特に制限なく吸水することができるが、好ましくは、尿、特に人尿である。本発明では、吸水性樹脂をそのまま吸水剤として使用することもでき、また、必要により添加剤や水などを含有していてもよい。吸水剤における吸水性樹脂の含有量は、吸水剤の70〜100質量%、好ましくは80〜100質量%、さらに好ましくは90〜100質量%である。その他の含有成分としては通常は水が主成分ないし必須とされ、さらには後述の添加剤が使用される。
(2) Water-absorbing agent and method for producing the same In the present invention, the water-absorbing agent is a solidifying agent for absorbing an aqueous liquid, the main component of which is a water-absorbing resin. Aqueous liquids are not limited to water but should absorb water containing water, such as urine, blood, feces, waste liquid, moisture and steam, ice, water and organic and inorganic solvents, rainwater, groundwater, etc. Preferably, it is urine, especially human urine. In the present invention, the water-absorbing resin can be used as it is as a water-absorbing agent, and may contain additives, water and the like as necessary. The content of the water-absorbing resin in the water-absorbing agent is 70 to 100% by mass, preferably 80 to 100% by mass, and more preferably 90 to 100% by mass, based on the water-absorbing agent. As other components, water is usually the main component or essential, and the additives described below are used.

本発明の吸水剤は、上記特性を満たすものが製造できれば特に製法を問わないが、例えば、下記の製法1〜3で得ることができる。   The water-absorbing agent of the present invention is not particularly limited as long as the water-absorbing agent satisfying the above characteristics can be produced. For example, the water-absorbing agent can be obtained by the following production methods 1 to 3.

製法1: 未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤および連鎖移動剤の存在下に架橋重合したのち、特定の粒度分布に調整し、得られた特定吸収倍率の吸水性樹脂粒子をさらに表面架橋する方法。   Production method 1: An unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or its salt as a main component of the monomer is subjected to crosslinking polymerization in the presence of a crosslinking agent and a chain transfer agent, and then adjusted to a specific particle size distribution. And surface cross-linking the resulting water-absorbent resin particles having a specific absorption capacity.

製法2: 未中和アクリル酸を主成分とする特定濃度の不飽和単量体水溶液を架橋剤の存在下に架橋重合したのち、さらに中和し、特定の粒度分布に調整し、得られた特定吸収倍率の吸水性樹脂粒子をさらに表面架橋する方法。   Production method 2: obtained by subjecting an unsaturated monomer aqueous solution having a specific concentration of unneutralized acrylic acid as a main component to cross-linking polymerization in the presence of a cross-linking agent, further neutralizing, and adjusting to a specific particle size distribution A method of further surface cross-linking the water-absorbent resin particles having a specific absorption rate.

製法3: 未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤の存在下に架橋重合したのち、特定の粒度分布に調整し、得られた特定吸収倍率の吸水性樹脂粒子をさらに表面架橋し、および(i)重合時、(ii)重合後の表面架橋前、(iii)表面架橋時、(iv)表面架橋後からなる群から選択される1以上の時期にキレート剤を添加する方法。   Production method 3: An unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component of the monomer is subjected to crosslinking polymerization in the presence of a crosslinking agent, and then adjusted to a specific particle size distribution. Further, the water-absorbent resin particles having a specific absorption capacity are further surface-crosslinked, and selected from the group consisting of (i) during polymerization, (ii) before surface crosslinking after polymerization, (iii) during surface crosslinking, and (iv) after surface crosslinking. A method of adding a chelating agent at one or more times.

以下、本発明の吸水剤の製造方法、さらには本発明の吸水剤について順次説明する。   Hereinafter, the production method of the water-absorbing agent of the present invention and further the water-absorbing agent of the present invention will be described in order.

(3)不飽和単量体
吸水性樹脂を構成する不飽和単量体(以下単に単量体と略す)としては、アクリル酸および/またはその塩を主成分として使用するが、その他の単量体を併用してもよく、その他の単量体だけから吸水性樹脂を得てもよい。このような他の単量体としては、メタクリル酸、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、ビニルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸およびそのアルカリ金属塩、アンモニウム塩、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、イソブチレン、ラウリル(メタ)アクリレート等の水溶性または疎水性不飽和単量体がある。これらは1種を単独で使用しても2種以上を併用してもよい。
(3) Unsaturated monomer As the unsaturated monomer constituting the water-absorbent resin (hereinafter simply abbreviated as a monomer), acrylic acid and / or a salt thereof is used as a main component. The body may be used in combination, or the water-absorbing resin may be obtained only from other monomers. Examples of such other monomers include methacrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, vinyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) Acryloxyalkanesulfonic acid and its alkali metal salt, ammonium salt, N-vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, There are water-soluble or hydrophobic unsaturated monomers such as 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, isobutylene, and lauryl (meth) acrylate. These may be used alone or in combination of two or more.

本発明でアクリル酸(塩)以外の単量体を併用する場合、本発明を達成するため、該アクリル酸(塩)以外の単量体の使用割合は、アクリル酸及びその塩との合計量に対して、好ましくは0〜30モル%、より好ましくは0〜10モル%、最も好ましくは0〜5モル%の割合である。   In the present invention, when a monomer other than acrylic acid (salt) is used in combination, the proportion of the monomer other than acrylic acid (salt) used is the total amount of acrylic acid and its salt in order to achieve the present invention. The ratio is preferably 0 to 30 mol%, more preferably 0 to 10 mol%, and most preferably 0 to 5 mol%.

なお、単量体に酸基含有の不飽和単量体を使用する場合、その塩としてアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が挙げられるが、得られる吸水性樹脂の性能、工業的入手の容易さ、安全性等の面からナトリウム塩、カリウム塩が好ましい。アクリル酸などの酸基含有不飽和単量体は、物性面およびpH面から酸基が中和されることが好ましく、酸基の中和率は、通常20〜100モル%、さらには好ましくは30〜95モル%、より好ましく40〜80モル%である。なお、酸基の中和は単量体を含む水溶液で行ってもよいし、製法2で示すように重合体を得てから行ってもよいし、それらを併用しても良い。   In addition, when using an acid group-containing unsaturated monomer as the monomer, examples of the salt include alkali metal salts, alkaline earth metal salts, and ammonium salts. Sodium salts and potassium salts are preferred from the standpoints of availability and safety. The acid group-containing unsaturated monomer such as acrylic acid is preferably neutralized in terms of physical properties and pH, and the neutralization rate of the acid group is usually 20 to 100 mol%, more preferably 30 to 95 mol%, more preferably 40 to 80 mol%. The neutralization of the acid group may be performed with an aqueous solution containing a monomer, may be performed after obtaining a polymer as shown in Production Method 2, or may be used in combination.

(4)内部架橋剤
本発明で使用する吸水性樹脂は架橋重合体であるが、架橋構造の形成は、架橋性単量体を使用しない自己架橋型であってもよく、いわゆる架橋性単量体などの内部架橋剤を使用してもよい。物性面からは、一分子中に2個以上の重合性不飽和基や2個以上の反応性基を有する内部架橋剤を共重合又は反応させることが好ましい。なお、架橋重合体であるため水不溶性となる。
(4) Internal cross-linking agent The water-absorbing resin used in the present invention is a cross-linked polymer, but the cross-linked structure may be formed by a self-cross-linking type that does not use a cross-linkable monomer. An internal cross-linking agent such as a body may be used. From the viewpoint of physical properties, it is preferable to copolymerize or react an internal crosslinking agent having two or more polymerizable unsaturated groups or two or more reactive groups in one molecule. In addition, since it is a crosslinked polymer, it becomes water-insoluble.

これら内部架橋剤の具体例としては、例えば、N,N´−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる。   Specific examples of these internal crosslinking agents include, for example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, tri Allylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene Glycol, propylene glycol, glycerol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethylenimine, and glycidyl (meth) acrylate.

これら内部架橋剤は、単独で用いてもよく、適宜2種類以上を混合して用いてもよい。また、これら内部架橋剤は、反応系に一括添加してもよく、分割添加してもよい。少なくとも1種または2種類以上の内部架橋剤を使用する場合には、最終的に得られる吸水性樹脂や吸水剤の吸収特性等を考慮して、2個以上の重合性不飽和基を有する化合物を重合時に必須に用いることが好ましい。   These internal cross-linking agents may be used alone or in combination of two or more. These internal cross-linking agents may be added to the reaction system all at once or in divided portions. In the case of using at least one kind or two or more kinds of internal cross-linking agents, a compound having two or more polymerizable unsaturated groups in consideration of the absorption characteristics of the finally obtained water-absorbing resin or water-absorbing agent Is preferably used during the polymerization.

これら内部架橋剤の使用量は、前記不飽和単量体(内部架橋剤を除く)に対して、好ましくは0.001〜2モル%、より好ましくは0.005〜0.5モル%、さらに好ましくは0.01〜0.2モル%、特に好ましくは0.03〜0.15モル%の範囲内とされる。上記内部架橋剤の使用量が0.001モル%よりも少ない場合、並びに、2モル%よりも多い場合には、充分な吸収特性が得られないおそれがある。内部架橋剤の使用量が上記範囲より少ないと、架橋構造が十分に形成されず、後述する生理食塩水中での可溶分や劣化試験液での可溶分が増加し、可溶分劣化増加量、可溶分劣化増加倍率、16時間可溶分が増大するため好ましくない。また、内部架橋剤の使用量が上記範囲より多いと、上記可溶分などは低減されるが、吸水性樹脂や吸水剤の吸収倍率の低下を引き起こし、オムツ等の吸収性物品の吸収量を低下させるため好ましくない。   The amount of these internal cross-linking agents used is preferably 0.001 to 2 mol%, more preferably 0.005 to 0.5 mol%, more preferably, relative to the unsaturated monomer (excluding the internal cross-linking agent). Preferably it is 0.01-0.2 mol%, Especially preferably, you may be in the range of 0.03-0.15 mol%. When the amount of the internal cross-linking agent used is less than 0.001 mol% and more than 2 mol%, sufficient absorption characteristics may not be obtained. If the amount of the internal cross-linking agent used is less than the above range, the cross-linked structure is not sufficiently formed, so that the soluble content in physiological saline and the degradation test solution described later increase, and the soluble content increases. This is not preferable because the amount of soluble matter deterioration increase ratio and the soluble matter for 16 hours increase. In addition, if the amount of the internal cross-linking agent used is more than the above range, the above-mentioned soluble content is reduced, but the absorption capacity of the absorbent article such as diapers is reduced due to a decrease in the absorption capacity of the water-absorbing resin or water-absorbing agent. Since it lowers, it is not preferable.

上記内部架橋剤を用いて架橋構造を重合体内部に導入する場合には、上記内部架橋剤を、上記単量体の重合前あるいは重合途中、あるいは重合後、または中和後に反応系に添加するようにすればよい。   When a crosslinked structure is introduced into the polymer using the internal cross-linking agent, the internal cross-linking agent is added to the reaction system before, during or after the polymerization of the monomer, or after the polymerization or neutralization. What should I do?

(5)重合開始剤
本発明に用いられる吸水性樹脂を得るために上述の単量体を重合するに際して使用される開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酢酸カリウム、過酢酸ナトリウム、過炭酸カリウム、過炭酸ナトリウム、t−ブチルハイドロパーオキサイド、過酸化水素、2,2′−アゾビス(2−アミジノプロパン)二塩酸塩等のラジカル重合開始剤や、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン等の光重合開始剤を用いることができる。これら重合開始剤の使用量は物性面から0.001〜2モル%、好ましくは0.01〜0.1モル%(対全単量体)である。これらの重合開始剤が0.001モル%未満の場合には未反応の残存単量体が多くなり、一方、重合開始剤が2モル%を超える場合には重合の制御が困難となるので好ましくない。
(5) Polymerization initiator As an initiator used when polymerizing the above-mentioned monomers to obtain the water-absorbent resin used in the present invention, potassium persulfate, ammonium persulfate, sodium persulfate, potassium peracetate, Radical polymerization initiators such as sodium peracetate, potassium percarbonate, sodium percarbonate, t-butyl hydroperoxide, hydrogen peroxide, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2-hydroxy- Photopolymerization initiators such as 2-methyl-1-phenyl-propan-1-one can be used. The amount of these polymerization initiators used is 0.001 to 2 mol%, preferably 0.01 to 0.1 mol% (based on the total monomers) in view of physical properties. When these polymerization initiators are less than 0.001 mol%, the amount of unreacted residual monomers increases. On the other hand, when the polymerization initiator exceeds 2 mol%, it is difficult to control the polymerization. Absent.

(6)重合方法
本発明ではバルク重合や沈殿重合を行うことが可能であるが、物性面から上記単量体を水溶液とすることによる、水溶液重合や逆相懸濁重合を行うことが好ましい。単量体を水溶液とする場合の該水溶液(以下、単量体水溶液と称する)中の単量体の濃度は、水溶液の温度や単量体によって決まり、特に限定されるものではないが、好ましくは10〜70質量%、さらに好ましくは20〜60質量%である。また、上記水溶液重合を行う際には、水以外の溶媒を必要に応じて併用してもよく、併用して用いられる溶媒の種類は、特に限定されるものではない。重合後は必要により粉砕すればよい。
(6) Polymerization method In the present invention, bulk polymerization or precipitation polymerization can be performed, but it is preferable to perform aqueous solution polymerization or reverse phase suspension polymerization by using the monomer as an aqueous solution from the viewpoint of physical properties. When the monomer is an aqueous solution, the concentration of the monomer in the aqueous solution (hereinafter referred to as the monomer aqueous solution) is determined by the temperature of the aqueous solution and the monomer, and is not particularly limited. Is 10-70 mass%, More preferably, it is 20-60 mass%. Moreover, when performing the said aqueous solution polymerization, you may use together solvents other than water as needed, and the kind of solvent used together is not specifically limited. What is necessary is just to grind | pulverize after superposition | polymerization as needed.

上記の重合を開始させる際には、前述の重合開始剤を使用して開始させる。また、前述重合開始剤の他にも紫外線や電子線、γ線などの活性エネルギー線を単独あるいは重合開始剤と併用しても良い。重合開始時の温度は、使用する重合開始剤の種類にもよるが、15〜130℃の範囲が好ましく、20〜120℃の範囲が好ましい。   When starting the above polymerization, the above polymerization initiator is used. In addition to the aforementioned polymerization initiator, active energy rays such as ultraviolet rays, electron beams, and γ rays may be used alone or in combination with the polymerization initiator. The temperature at the start of polymerization depends on the type of polymerization initiator used, but is preferably in the range of 15 to 130 ° C, and more preferably in the range of 20 to 120 ° C.

なお、逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に懸濁させる重合法であり、例えば、米国特許4093776号、同4367323号、同4446261号、同4683274号、同5244735号などの米国特許に記載されている。水溶液重合は分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、米国特許4625001号、同4873299号、同4286082号、同4973632号、同4985518号、同5124416号、同5250640号、同5264495号、同5145906号、同5380808号などの米国特許や、欧州特許0811636号、同0955086号,同0922717号などの欧州特許に記載されている。これら重合法に例示の単量体や開始剤なども本発明では適用できる。   The reverse phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent. For example, U.S. Pat. Nos. 4,093,764, 4,367,323, 4,446,261, 4,683,274, and 5,244,735. Are described in US patents. Aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent. For example, US Pat. Nos. 4,462,001, 4,873,299, 4,286,082, 4,973,632, 4,985,518, 5,124,416, 5,250,640 are used. No. 5,264,495, US Pat. No. 5,145,906 and US Pat. No. 5,380,808, and European patents such as European Patents 081636, 09555086, and 0922717. Monomers and initiators exemplified in these polymerization methods can also be applied in the present invention.

本発明の吸水剤は、前記したように酸基の中和率は、通常20〜100モル%であるが、不飽和単量体の重合工程においては、不飽和単量体を未中和のまま重合し、重合後に中和してもよく、予め中和した不飽和単量体を使用して重合してもよい。従って、単量体水溶液の不飽和単量体の中和率は、0〜100モル%のいずれの範囲でも行なうことができる。この中で、前記した製法1や製法3では中和重合であってもよく、中和率20〜100モル%、さらには好ましくは30〜95モル%、より好ましく40〜80モル%の中和率の単量体水溶液を用いて重合することができる。なお、中和は、未中和の不飽和単量体を使用して重合を開始し、重合途中で中和を行なう態様や、予め上記範囲に中和された不飽和単量体を使用する態様、さらに重合途中にさらに中和を行なう態様など、中和した不飽和単量体が重合されるいずれの態様も含み、上記中和率は、重合開始時の中和率を意味する。   In the water-absorbing agent of the present invention, as described above, the neutralization rate of the acid group is usually 20 to 100 mol%, but in the polymerization step of the unsaturated monomer, the unsaturated monomer is not neutralized. It superposes | polymerizes as it is and may neutralize after superposition | polymerization and may superpose | polymerize using the unsaturated monomer neutralized previously. Therefore, the neutralization rate of the unsaturated monomer in the monomer aqueous solution can be performed in any range of 0 to 100 mol%. Among these, neutralization polymerization may be used in the above-described production method 1 and production method 3, and the neutralization rate is 20 to 100 mol%, more preferably 30 to 95 mol%, more preferably 40 to 80 mol%. Can be polymerized using an aqueous monomer solution. In addition, neutralization uses an unneutralized unsaturated monomer to initiate polymerization, and uses neutralization in the middle of polymerization, or an unsaturated monomer that has been previously neutralized to the above range. Including any aspect in which the neutralized unsaturated monomer is polymerized, such as an aspect and an aspect in which neutralization is further performed during the polymerization, the neutralization rate means a neutralization rate at the start of polymerization.

一方、未中和の酸基含有不飽和単量体、特に未中和アクリル酸を主成分として重合し、重合後に酸基を中和する、いわゆる酸重合&後中和法であってもよい。これが前記した製法2である。すなわち、本発明の製法2は、未中和アクリル酸を主成分とする特定濃度の不飽和単量体水溶液を架橋剤の存在下に架橋重合したのち、さらに中和し、特定の粒度に調整し、得られた特定吸収水倍率の吸水性樹脂粒子をさらに表面架橋する方法である。製法2では、未中和アクリル酸が主成分であり、好ましくは30〜100モル%、さらには90〜100モル%、特に100モル%が未中和アクリル酸の単量体を使用して架橋重合体を得た後に、アルカリ金属塩を添加・後中和して部分的にアルカリ金属塩基とすることで本発明の吸水性樹脂として用いることが出来る。該重合方法により得られた吸水性樹脂を本発明の吸水剤として用いた場合、吸収能が高く、尿に対する安定性に優れた吸収体を得ることが可能になる。未中和の不飽和単量体を重合する場合には、詳細は不明であるが、内部架橋剤の使用量を多くできる傾向にあり、架橋密度の増加によって耐尿劣化性を向上させることができる。   On the other hand, a so-called acid polymerization & post-neutralization method may be used in which an unneutralized acid group-containing unsaturated monomer, in particular, unneutralized acrylic acid is polymerized as a main component, and acid groups are neutralized after polymerization. . This is manufacturing method 2 described above. That is, in the production method 2 of the present invention, an unsaturated monomer aqueous solution having a specific concentration mainly composed of unneutralized acrylic acid is subjected to cross-linking polymerization in the presence of a cross-linking agent, and then neutralized to adjust to a specific particle size. Then, the obtained water-absorbing resin particles having a specific water absorption ratio are further subjected to surface crosslinking. In production method 2, unneutralized acrylic acid is the main component, preferably 30 to 100 mol%, more preferably 90 to 100 mol%, and particularly 100 mol% is crosslinked using a monomer of unneutralized acrylic acid. After obtaining the polymer, it can be used as the water-absorbent resin of the present invention by partially adding an alkali metal salt and then neutralizing it to make an alkali metal base partially. When the water-absorbent resin obtained by the polymerization method is used as the water-absorbing agent of the present invention, it is possible to obtain an absorbent body having high absorbability and excellent stability to urine. When polymerizing unneutralized unsaturated monomers, the details are unclear, but there is a tendency to increase the amount of internal cross-linking agent used, and urine resistance can be improved by increasing the cross-linking density. it can.

本発明では、アクリル酸とともに必要により他の重合性単量体も使用することが出来る。具体的な他の重合性単量体、内部架橋剤、重合開始剤の種類、添加量等は、前記(3)(4)(5)記載の内容と同様である。なお、製法2では、溶媒を使用した場合の重合性単量体の濃度は特に限定は無いが、通常5〜30%質量%、好ましくは10〜30質量%の低濃度で、重合開始温度が低温10〜25℃の水溶液を使用することが好ましい。   In the present invention, if necessary, other polymerizable monomers can be used together with acrylic acid. Specific types of other polymerizable monomer, internal cross-linking agent, polymerization initiator, addition amount, and the like are the same as those described in the above (3), (4), and (5). In Production Method 2, the concentration of the polymerizable monomer when a solvent is used is not particularly limited, but it is usually 5 to 30% by mass, preferably 10 to 30% by mass, and the polymerization initiation temperature is low. It is preferable to use an aqueous solution having a low temperature of 10 to 25 ° C.

酸基含有の不飽和単量体や得られた重合体中の酸基を中和して部分的にアルカリ金属塩基とするために使用されるアルカリ金属化合物としてはアルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウムなど)、アルカリ金属炭酸塩(炭酸ナトリウム、重炭酸ナトリウムなど)などが挙げられる。得られる吸水性樹脂の性能、工業的入手の容易さ、安全性等の面からナトリウム塩、カリウム塩が好ましい。本発明においては、重合体中の酸基の50〜90モル%、好ましくは60〜80モル%がアルカリ金属化合物との中和反応によりアルカリ金属塩に変換される。   Alkali metal hydroxides (hydroxylated) are used as the alkali metal compounds used to neutralize the acid groups in the polymer obtained and neutralize the acid groups in the resulting polymer to partially form an alkali metal base. Sodium, potassium hydroxide, lithium hydroxide, etc.), alkali metal carbonates (sodium carbonate, sodium bicarbonate, etc.) and the like. Sodium salt and potassium salt are preferable from the viewpoint of the performance of the water-absorbing resin to be obtained, industrial availability, safety and the like. In the present invention, 50 to 90 mol%, preferably 60 to 80 mol% of the acid groups in the polymer are converted to an alkali metal salt by a neutralization reaction with an alkali metal compound.

なお、製法2において、重合後の重合体は必須に中和される。重合体をアルカリ金属化合物で中和する方法としては、溶媒を使用して重合した場合、得られたゲル状重合体を約1cm以下の小片に裁断しながらアルカリ金属化合物の水溶液を添加し、ゲルをさらにニーダーやミートチョパーで混練する方法がある。また、本発明の吸水剤を得る上で、中和温度は50〜100℃、さらには60〜90℃であり、中和は米国特許6187872号の請求項1に記載の第一中和指数(粒子200個の中和度合いで規定)が10以下の均一さを示すことが好ましい。 In production method 2, the polymer after polymerization is essentially neutralized. The polymer as a method of neutralization with an alkali metal compound, adding an aqueous solution of an alkali metal compound when polymerized using a solvent, while cutting the obtained gel-like polymer to about 1 cm 3 or less pieces, There is a method of further kneading the gel with a kneader or meat chopper. Further, in obtaining the water-absorbing agent of the present invention, the neutralization temperature is 50 to 100 ° C., further 60 to 90 ° C., and the neutralization is carried out according to the first neutralization index (1) according to claim 1 of US Pat. It is preferable that the uniformity defined by the degree of neutralization of 200 particles is 10 or less.

(7)連鎖移動剤
本発明では、重合時に必須に連鎖移動剤を使用してもよい。前述の前記不飽和単量体、内部架橋剤、重合開始剤に加えて水溶性連鎖移動剤を存在させて重合することで、得られる吸水性樹脂を本発明の吸水剤として用いた場合、吸収能が高く、尿に対する安定性に優れる吸収体を得ることが可能になる。連鎖移動剤を併用する場合は、内部架橋剤の配合量を多くでき、架橋密度の増加によって耐尿劣化を向上させることができる。
(7) Chain transfer agent In this invention, you may use a chain transfer agent essential at the time of superposition | polymerization. When the water-absorbing resin obtained by polymerizing in the presence of a water-soluble chain transfer agent in addition to the aforementioned unsaturated monomer, internal cross-linking agent, and polymerization initiator is used as the water-absorbing agent of the present invention, absorption It is possible to obtain an absorber having high performance and excellent urine stability. When a chain transfer agent is used in combination, the amount of the internal crosslinking agent can be increased, and urine resistance degradation can be improved by increasing the crosslinking density.

本発明で重合に使用する水溶性連鎖移動剤としては、水または水溶性エチレン性不飽和単量体に溶解するものであれば特に限定されず、チオール類、チオール酸類、2級アルコール類、アミン類、亜燐酸塩類、次亜燐酸塩類などを挙げることが出来る。具体的には、メルカプトエタノール、メルカプトプロパノール、ドデシルメルカプタン、チオグリコール類、チオリンゴ酸、3−メルカプトプロピオン酸、イソプロパノール、亜燐酸ナトリウム、亜燐酸カリウム、次亜燐酸ナトリウム、蟻酸、およびそれらの塩類が使用され、これらの群から選ばれる1種または2種以上が用いられるが、その効果から燐系化合物、特に次亜燐酸ナトリウムなどの次亜燐酸塩を用いることが好ましい。   The water-soluble chain transfer agent used for polymerization in the present invention is not particularly limited as long as it is soluble in water or a water-soluble ethylenically unsaturated monomer, and thiols, thiolic acids, secondary alcohols, amines , Phosphites, hypophosphites and the like. Specifically, mercaptoethanol, mercaptopropanol, dodecyl mercaptan, thioglycols, thiomalic acid, 3-mercaptopropionic acid, isopropanol, sodium phosphite, potassium phosphite, sodium hypophosphite, formic acid, and salts thereof are used. One or two or more selected from these groups are used, and it is preferable to use a phosphorus compound, particularly a hypophosphite such as sodium hypophosphite because of its effect.

水溶性連鎖移動剤の使用量は水溶性連鎖移動剤の種類や使用量、単量体水溶液の濃度にもよるが、全単量体に対して0.001〜1モル%であり、好ましくは0.005〜0.3モル%である。使用量が0.001モル%未満では、本発明に用いる内部架橋剤量では架橋密度が高く吸収倍率が低くなりすぎて好ましくない。また1モル%を超えて使用すると水可溶成分量が増加し、かえって安定性が低下するので好ましくない。連鎖移動剤は、単量体水溶液に溶解してから重合を行なってもよく、重合途中に逐次添加してもよい。なお、水溶性連鎖移動剤は、製法1の場合には必須であるが、製法2、製法3で使用してもよい。   The amount of water-soluble chain transfer agent used is 0.001 to 1 mol% with respect to the total monomer, although it depends on the type and amount of water-soluble chain transfer agent and the concentration of the monomer aqueous solution, preferably 0.005 to 0.3 mol%. If the amount used is less than 0.001 mol%, the amount of the internal crosslinking agent used in the present invention is not preferable because the crosslinking density is high and the absorption capacity is too low. On the other hand, if the amount exceeds 1 mol%, the amount of water-soluble components increases and the stability is lowered, which is not preferable. The chain transfer agent may be polymerized after being dissolved in the monomer aqueous solution, or may be sequentially added during the polymerization. The water-soluble chain transfer agent is essential in the case of production method 1, but may be used in production method 2 and production method 3.

(8)乾燥
上記重合方法で得られた架橋重合体は、含水ゲル状架橋重合体であり、必要に応じてゲルを粉砕し、さらに乾燥される。乾燥は通常熱媒温度60℃〜250℃、好ましくは100℃〜220℃、より好ましくは120℃〜200℃の温度範囲で行われる。乾燥時間は重合体の表面積、含水率、および乾燥機の種類に依存し、目的とする含水率になるよう選択される。なお、本発明では、乾燥後の架橋重合体を吸水性樹脂と称する。
(8) Drying The cross-linked polymer obtained by the above polymerization method is a hydrogel cross-linked polymer, and the gel is pulverized and dried as necessary. Drying is usually performed in a temperature range of a heating medium temperature of 60 ° C to 250 ° C, preferably 100 ° C to 220 ° C, more preferably 120 ° C to 200 ° C. The drying time depends on the surface area of the polymer, the moisture content, and the type of dryer, and is selected to achieve the desired moisture content. In the present invention, the crosslinked polymer after drying is referred to as a water absorbent resin.

本発明に用いることのできる吸水性樹脂の含水率は特に限定されないが、室温でも流動性を示す粒子であり、より好ましくは含水率が0.2〜30質量%、さらに好ましくは0.3〜15質量%、特に好ましくは0.5〜10質量%の粉末状態である。含水率が高くなってしまうと、流動性が悪くなり製造に支障をきたすばかりか、吸水性樹脂が粉砕できなくなったり、特定の粒度分布に制御できなくなってしまう恐れがある。なお、吸水性樹脂の含水率は、吸水性樹脂に含まれる水分量で規定され、180℃で3時間の乾燥減量で測定したものである。   The water content of the water-absorbent resin that can be used in the present invention is not particularly limited, but is a particle that exhibits fluidity even at room temperature, more preferably a water content of 0.2 to 30% by mass, and still more preferably 0.3 to The powder state is 15% by mass, particularly preferably 0.5 to 10% by mass. If the water content becomes high, not only does the fluidity deteriorate and the production is hindered, but the water-absorbent resin may not be pulverized or controlled to a specific particle size distribution. The water content of the water-absorbent resin is defined by the amount of water contained in the water-absorbent resin, and is measured by loss on drying at 180 ° C. for 3 hours.

用いられる乾燥方法としては、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、疎水性有機溶媒との共沸による脱水、高温の水蒸気を用いた高湿乾燥等目的の含水率となるように種々の方法を採用することができ、特に限定されるものではない。   The drying method used includes heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, dehydration by azeotropy with a hydrophobic organic solvent, and high moisture content using high-temperature steam. As described above, various methods can be employed, and the method is not particularly limited.

前記の製法で得られた、本発明の吸水性樹脂は粉末として取り扱えるのであれば、球状、繊維状、棒状、略球状、偏平状、不定形状、造粒粒子状、多孔質構造を有する粒子等特に限定されるものではないが、粉砕工程を経て得られた不定形破砕状のものが好ましく使用できる。   If the water-absorbent resin of the present invention obtained by the above-mentioned production method can be handled as a powder, it is spherical, fibrous, rod-like, substantially spherical, flat, indeterminate, granulated particles, particles having a porous structure, etc. Although not particularly limited, an irregularly pulverized product obtained through a pulverization step can be preferably used.

(9)粉砕・分級および粒度制御、ならびに吸収倍率
本発明で使用する吸水性樹脂は、本発明の粒子状吸水剤を得るために、好ましくは特定の粒度に調整される。
(9) Grinding / classification, particle size control, and absorption ratio The water-absorbent resin used in the present invention is preferably adjusted to a specific particle size in order to obtain the particulate water-absorbing agent of the present invention.

本発明で使用する吸水性樹脂の粒径としては、本発明の吸水剤を得るために、質量平均粒子径が通常180〜420μm、好ましくは200〜400μm、より好ましくは225〜380μm、特に好ましくは250〜350μmに狭く制御され、かつ、150μm未満の粒子の割合が、0〜3質量%、好ましくは0〜2質量%、より好ましくは0〜1質量%に制御される。   As the particle diameter of the water-absorbent resin used in the present invention, in order to obtain the water-absorbing agent of the present invention, the mass average particle diameter is usually 180 to 420 μm, preferably 200 to 400 μm, more preferably 225 to 380 μm, particularly preferably. The proportion of particles that are controlled narrowly to 250 to 350 μm and less than 150 μm is controlled to 0 to 3% by mass, preferably 0 to 2% by mass, and more preferably 0 to 1% by mass.

また、本発明の吸水性樹脂は本発明の吸水剤を得るために、その嵩比重(JIS K−3362−1998年度で規定)は、好ましくは0.40〜0.90g/ml、より好ましくは0.50〜0.80g/mlの範囲に調整される。また600〜150μmの間の粒子が全体の好ましくは90〜100質量%、より好ましくは95〜100質量%、さらに好ましくは98〜100質量%とされる。粒度分布の対数標準偏差(σζ)は好ましくは0.20〜0.50、より好ましくは0.20〜0.45、特に好ましくは0.20〜0.40とされる。   Moreover, in order to obtain the water-absorbing agent of the present invention, the water-absorbent resin of the present invention has a bulk specific gravity (specified in JIS K-3362-1998) of preferably 0.40 to 0.90 g / ml, more preferably It is adjusted in the range of 0.50 to 0.80 g / ml. Moreover, the particle | grains between 600-150 micrometers are preferably 90-100 mass% of the whole, More preferably, it is 95-100 mass%, More preferably, it is set as 98-100 mass%. The logarithmic standard deviation (σζ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.20 to 0.45, and particularly preferably 0.20 to 0.40.

粒度調整は、架橋重合体を逆相縣濁重合で製造した場合には、粒子状で分散重合および分散乾燥させることで調整してもよいが、通常、特に水溶液重合の場合、乾燥後に粉砕および分級されて、相反する質量平均粒子径D50と粒子径150μm未満の粒子の割合を制御しながら、特定粒度に調整される。例えば、質量平均粒子径D50を400μm以下と小さくしながら150μm未満の微粒子量を少なくするという特定粒度への調整では、必要により上記粉砕後に粗粒子と微粒子とを篩等の一般的な分級装置で除去してもよい。その際に除去される粗粒子としては、好ましくは5000μm〜400μmの粒子径を有する粒子、より好ましくは2000μm〜400μmの粒子径を有する粒子、さらに好ましくは1000μm〜400μmの粒子径を有する粒子である。また、粒度調製により除去される微粒子としては、好ましくは200μm未満の粒子径を有する粒子、より好ましくは150μm未満の粒子径を有する粒子である。尚、除去された粗粒子はそのまま廃棄しても良いが、一般的には、再度、上記の粉砕工程で粉砕する。また、除去された微粒子は、次項(10)の微粒子の大粒径化工程を行なえば、ロスを低減することができる。   The particle size adjustment may be adjusted by dispersion polymerization and dispersion drying in the form of particles when the crosslinked polymer is produced by reverse phase suspension polymerization, but usually in the case of aqueous solution polymerization, While being classified, the mass average particle diameter D50 and the ratio of particles having a particle diameter of less than 150 μm are controlled to be adjusted to a specific particle size. For example, in the adjustment to a specific particle size in which the amount of fine particles of less than 150 μm is reduced while the mass average particle diameter D50 is reduced to 400 μm or less, if necessary, coarse particles and fine particles can be separated by a general classifier such as a sieve after the above-mentioned pulverization. It may be removed. The coarse particles removed at this time are preferably particles having a particle size of 5000 μm to 400 μm, more preferably particles having a particle size of 2000 μm to 400 μm, and still more preferably particles having a particle size of 1000 μm to 400 μm. . The fine particles removed by the particle size adjustment are preferably particles having a particle size of less than 200 μm, more preferably particles having a particle size of less than 150 μm. Although the removed coarse particles may be discarded as they are, they are generally pulverized again in the above pulverization step. Further, the removed fine particles can be reduced in loss by performing the step of enlarging the fine particles in the next item (10).

なお、本発明で上記して得られた吸水性樹脂は上記粒度に調整されるが、好ましくは、表面架橋前の生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上、より好ましくは35〜70g/g、さらに好ましくは40〜65g/g、特に好ましくは45〜60g/gとされる。吸収倍率の制御は、不飽和単量体水溶液に所定量の内部架橋剤を配合したり、前述の重合条件や乾燥条件を制御して行うことができる。尚、吸水性樹脂は、そのまま吸水剤として使用することができ、本発明の吸水剤の無加圧吸収倍率が32g/g以上であるためには、吸水性樹脂の無加圧下吸収倍率も、32g/g以上であることが必要である。   In addition, although the water-absorbent resin obtained as described above in the present invention is adjusted to the above particle size, preferably, the absorption capacity under non-pressure (CRC) to physiological saline before surface crosslinking is 32 g / g or more. Preferably it is 35-70 g / g, More preferably, it is 40-65 g / g, Most preferably, it is 45-60 g / g. The absorption ratio can be controlled by adding a predetermined amount of an internal crosslinking agent to the unsaturated monomer aqueous solution, or by controlling the above-described polymerization conditions and drying conditions. The water-absorbing resin can be used as a water-absorbing agent as it is, and since the water-absorbing agent of the present invention has a non-pressure absorption capacity of 32 g / g or more, the water-absorbing resin has an absorption capacity under no pressure. It is necessary to be 32 g / g or more.

(10)微粒子の大粒径化
上記(9)の粉砕・分級および粒度制御によって、除去された微粒子は、より大きな粒子または粒子状凝集物に再生し、本発明の吸水性樹脂として用いることができる。米国特許6228930号、同5264495号、同4950692号、同5478879号および欧州特許844270号などに記載の方法を用いることが可能であるが、このように再生された吸水性樹脂は実質的に多孔質構造を有する。
(10) Increasing the particle size of fine particles The fine particles removed by pulverization / classification and particle size control in (9) above can be regenerated into larger particles or particulate aggregates and used as the water absorbent resin of the present invention. it can. Although the methods described in US Pat. Nos. 6,228,930, 5,264,495, 4,950,692, 5,478,879 and European Patent 844270 can be used, the water absorbent resin thus regenerated is substantially porous. It has a structure.

本発明の吸水性樹脂に含まれる、本工程によって再生された吸水性樹脂の割合は、好ましくは0〜50質量%、より好ましくは5〜40質量%、最も好ましくは10〜30質量%である。本工程によって再生された吸水性樹脂は、本発明の吸水性樹脂粒子として用いた場合、再生されていないものと比べて表面積が大きいため、より速い吸収速度が得られ、性能的に有利である。このように大粒径化された吸水性樹脂は、一般には、上記(8)乾燥工程で得た吸水性樹脂と混合された後に、粉砕・分級および粒度制御が行なわれる。   The ratio of the water absorbent resin regenerated by this step contained in the water absorbent resin of the present invention is preferably 0 to 50% by mass, more preferably 5 to 40% by mass, and most preferably 10 to 30% by mass. . When the water absorbent resin regenerated by this step is used as the water absorbent resin particles of the present invention, the surface area is larger than that of the non-regenerated one, so that a faster absorption rate is obtained, which is advantageous in terms of performance. . In general, the water-absorbent resin having a large particle diameter is mixed with the water-absorbent resin obtained in the above (8) drying step, and then pulverization / classification and particle size control are performed.

(11)表面架橋処理
本発明で用いられる吸水性樹脂は、好ましくは、前記製法1〜3に代表されるように、特定の粒度分布に調整し、得られた特定吸収倍率の吸水性樹脂をさらに表面架橋したものでもよい。本発明で使用する吸水性樹脂は、例えば、かかる表面架橋によってその吸収倍率(CRC)が低下し、通常、表面架橋前の吸収倍率(CRC)の95〜50%、さらには90〜60%にまで低下する。なお、吸収倍率(CRC)の低下は、架橋剤の種類や量、反応温度や時間などで適宜調整することができる。
(11) Surface cross-linking treatment The water-absorbent resin used in the present invention is preferably adjusted to a specific particle size distribution as represented by the above-mentioned production methods 1 to 3, and the obtained water-absorbent resin having a specific absorption capacity is used. Further, it may be surface-crosslinked. The water absorption resin used in the present invention has its absorption capacity (CRC) lowered by, for example, such surface crosslinking, and is usually 95 to 50%, further 90 to 60% of the absorption capacity (CRC) before surface crosslinking. To fall. In addition, the reduction | decrease in absorptivity (CRC) can be suitably adjusted with the kind and quantity of a crosslinking agent, reaction temperature, time, etc.

本発明で用いることができる表面架橋剤としては、特に限定されないが、例えば、米国特許6228930号、同6071976号、同6254990号などに例示されている表面架橋剤を用いることができる。例えば、モノ,ジ,トリ,テトラまたはポリエチレングリコール、モノプロピレングリコール、1,3−プロパンジオール、ジプロピレングリコール、2,3,4−トリメチル−1,3−ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2−ブテン−1,4−ジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノールなどの多価アルコール化合物;エチレングリコールジグリシジルエーテルやグリシドールなどのエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン、ポリアミドポリアミン等の多価アミン化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;上記多価アミン化合物と上記ハロエポキシ化合物との縮合物;2−オキサゾリジノンなどのオキサゾリジノン化合物;環状尿素;エチレンカボネートなどのアルキレンカーボネート化合物等が挙げられ、これらの1種のみ用いてもよいし、2種以上を併用してもよい。本発明の効果を十分に発揮するためには、これらの表面架橋剤の中で多価アルコールを必須に用いることが好ましい。多価アルコールとしては、炭素数2〜10のものが好ましく、炭素数3〜8のものがより好ましい。   Although it does not specifically limit as a surface crosslinking agent which can be used by this invention, For example, the surface crosslinking agent illustrated by US Patent 6228930, 6071976, 6254990 etc. can be used. For example, mono, di, tri, tetra or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3-pentanediol, polypropylene glycol, glycerin, polyglycerin , 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, etc. Alcohol compounds; epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, polyamide polyamine, etc. Haloepoxy compounds such as epichlorohydrin, epibromohydrin, α-methylepichlorohydrin; condensates of the above polyvalent amine compounds and the above haloepoxy compounds; oxazolidinone compounds such as 2-oxazolidinone; cyclic urea An alkylene carbonate compound such as ethylene carbonate may be used, and only one of these may be used, or two or more may be used in combination. In order to sufficiently exhibit the effects of the present invention, it is preferable to use a polyhydric alcohol as an essential component among these surface crosslinking agents. As a polyhydric alcohol, a C2-C10 thing is preferable and a C3-C8 thing is more preferable.

表面架橋剤の使用量は、用いる化合物やそれらの組み合わせ等にもよるが、吸水性樹脂に対して、0.001〜10質量%の範囲内が好ましく、0.01〜5質量%の範囲内がより好ましい。   The amount of the surface cross-linking agent used depends on the compounds to be used and combinations thereof, but is preferably in the range of 0.001 to 10% by mass, and in the range of 0.01 to 5% by mass with respect to the water absorbent resin. Is more preferable.

本発明で表面架橋を行う場合には、溶媒として水を用いることが好ましい。この際、使用される水の量は、使用する吸水性樹脂の含水率にもよるが、吸水性樹脂に対して0.5〜20質量%の範囲内が好ましく、より好ましくは0.5〜10質量%の範囲内である。また、水以外に親水性有機溶媒を用いてもよい。親水性有機溶媒を用いる場合、その使用量は、吸水性樹脂に対して0〜10質量%の範囲内が好ましく、より好ましくは0〜5質量%の範囲内、さらに好ましくは0〜3質量%の範囲内である。   When performing surface crosslinking in the present invention, it is preferable to use water as a solvent. At this time, although the amount of water used depends on the water content of the water-absorbing resin to be used, it is preferably in the range of 0.5 to 20% by mass, more preferably 0.5 to It is in the range of 10% by mass. In addition to water, a hydrophilic organic solvent may be used. When a hydrophilic organic solvent is used, the amount used is preferably in the range of 0 to 10% by mass, more preferably in the range of 0 to 5% by mass, and still more preferably 0 to 3% by mass with respect to the water absorbent resin. Is within the range.

本発明において表面架橋を行う場合には、水および/または親水性有機溶媒と表面架橋剤とを予め混合した後、次いで、その水溶液を吸水性樹脂に噴霧あるいは滴下混合する方法が好ましく、噴霧する方法がより好ましい。噴霧される液滴の大きさは、平均粒子径で0.1〜300μmの範囲内が好ましく、0.1〜200μmの範囲がより好ましい。   In the case of carrying out surface crosslinking in the present invention, it is preferable to preliminarily mix water and / or a hydrophilic organic solvent and a surface crosslinking agent and then spray or drop-mix the aqueous solution onto the water absorbent resin. The method is more preferred. The size of the droplets to be sprayed is preferably in the range of 0.1 to 300 μm, more preferably in the range of 0.1 to 200 μm, in terms of average particle diameter.

吸水性樹脂と該表面架橋剤、水や親水性有機溶媒を混合する際に用いられる混合装置としては両者を均一にかつ確実に混合するために、大きな混合力を備えていることが好ましい。上記の混合装置としては例えば、円筒型混合機、二重壁円錐混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、粉砕型ニーダー、回転式混合機、気流型混合機、タービュライザー、バッチ式レディゲミキサー、連続式レディゲミキサー等が好適である。   As a mixing device used when mixing the water-absorbent resin, the surface cross-linking agent, water, and a hydrophilic organic solvent, it is preferable to have a large mixing force in order to uniformly and reliably mix the two. Examples of the mixing apparatus include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizing kneader. Rotating mixers, airflow mixers, turbulators, batch-type Redige mixers, continuous-type Redige mixers, and the like are suitable.

表面架橋剤を混合後の吸水性樹脂は加熱処理されることが好ましい。加熱温度(熱媒温度または材料温度)は、好ましくは100〜250℃の範囲内、より好ましくは150〜250℃の範囲内であり、加熱時間は、1分〜2時間の範囲内が好ましい。加熱温度と加熱時間の組み合わせの好適例としては、180℃で0.1〜1.5時間、200℃で0.1〜1時間である。これらの工程によって、粒子状吸水性樹脂が得られる。   It is preferable that the water-absorbent resin after mixing the surface cross-linking agent is heat-treated. The heating temperature (heating medium temperature or material temperature) is preferably in the range of 100 to 250 ° C, more preferably in the range of 150 to 250 ° C, and the heating time is preferably in the range of 1 minute to 2 hours. Preferable examples of the combination of the heating temperature and the heating time are 0.1 to 1.5 hours at 180 ° C. and 0.1 to 1 hour at 200 ° C. A particulate water-absorbing resin is obtained by these steps.

(12)造粒
本発明で使用する吸水性樹脂は、上記工程に加えてさらに造粒してもよい。このような造粒工程としては、表面架橋処理した吸水性樹脂に、水を加えて含水率1〜10質量%を保ったまま加熱し、必要により前記方法で粉砕する方法が好適である。このような造粒を行なって、吸水性樹脂を特定の粒度に調整することもできる。
(12) Granulation The water absorbent resin used in the present invention may be further granulated in addition to the above steps. As such a granulating step, a method of adding water to a surface-crosslinked water-absorbing resin and heating the water-absorbing resin while maintaining a water content of 1 to 10% by mass and, if necessary, pulverizing by the above method is suitable. Such granulation can be performed to adjust the water absorbent resin to a specific particle size.

本発明において、造粒は、水や、他の添加成分を溶解した水溶液を吸水性樹脂に噴霧あるいは滴下混合する方法が好ましく、特に噴霧する方法が好ましい。噴霧される液滴の大きさは、平均粒子径で0.1〜300μmの範囲内が好ましく、0.1〜200μmの範囲がより好ましい。加熱処理は、造粒率や造粒強度から、吸水性樹脂の含水率(180℃で3時間の乾燥減量で規定)を1〜10質量%、より好ましくは2〜8質量%、さらには2.5〜6質量%に保ったまま行なう。加熱には熱風などの熱媒を使用することができ、加熱温度(熱媒温度または材料温度)は、好ましくは、40〜120℃の範囲内、より好ましくは50〜100℃の範囲内であり、加熱時間は、1分〜2時間の範囲内が好ましい。なお、加熱温度とは、熱媒温度で示されることが多い。加熱温度と加熱時間の組み合わせの好適例としては、60℃で0.1〜1.5時間、100℃で0.1〜1時間である。加熱と水添加は同一の装置で行なってもよく、別の装置で行なってもよい。また、加熱は温度や含水率が制御できるのなら、攪拌してもよく無攪拌でもよいが、好ましくは無攪拌で行なう。より好ましくは、水などを添加した吸水性樹脂を、1〜100cm、さらには5〜80cm、特に10〜70cm程度に積層し、加熱する方法である。加熱により硬化した吸水性樹脂が得られ、次いで粉砕、好ましくはさらに分級することで、粒子状吸水性樹脂を得ることができる。   In the present invention, the granulation is preferably performed by spraying or dropping and mixing water or an aqueous solution in which other additive components are dissolved into the water-absorbent resin, and particularly preferably a spraying method. The size of the droplets to be sprayed is preferably in the range of 0.1 to 300 μm, more preferably in the range of 0.1 to 200 μm, in terms of average particle diameter. In the heat treatment, the water content of the water-absorbent resin (specified by loss on drying at 180 ° C. for 3 hours) is 1 to 10% by mass, more preferably 2 to 8% by mass, further 2 .5 to 6% by mass. A heating medium such as hot air can be used for heating, and the heating temperature (heating medium temperature or material temperature) is preferably within the range of 40 to 120 ° C, more preferably within the range of 50 to 100 ° C. The heating time is preferably in the range of 1 minute to 2 hours. The heating temperature is often indicated by the heat medium temperature. Preferable examples of the combination of heating temperature and heating time are 0.1 to 1.5 hours at 60 ° C. and 0.1 to 1 hour at 100 ° C. Heating and water addition may be performed in the same apparatus or in different apparatuses. The heating may be stirred or unstirred as long as the temperature and moisture content can be controlled, but it is preferably performed without stirring. More preferably, the water-absorbing resin to which water or the like is added is laminated to 1 to 100 cm, further 5 to 80 cm, particularly 10 to 70 cm, and heated. A water-absorbent resin cured by heating is obtained, and then pulverized, preferably further classified, to obtain a particulate water-absorbent resin.

使用できる造粒装置としては、大きな混合力を備えていることが好ましく、例えば、円筒型混合機、二重壁円錐混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、粉砕型ニーダー、回転式混合機、気流型混合機、タービュライザー、バッチ式レディゲミキサー、連続式レディゲミキサー等が好適である。   As a granulating apparatus that can be used, it is preferable to have a large mixing force, for example, a cylindrical mixer, a double-walled cone mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, A screw type mixer, a double arm type kneader, a pulverizing type kneader, a rotary type mixer, an airflow type mixer, a turbulizer, a batch type readyge mixer, a continuous type readyge mixer, and the like are suitable.

なお、吸水性樹脂に添加する水には、後述するキレート剤、植物成分、抗菌剤、水溶性高分子、無機塩などの他の添加剤を含んでもよい。その場合の添加剤の含有量は、水溶液の、0.001〜50質量%の範囲である。   The water added to the water absorbent resin may contain other additives such as a chelating agent, a plant component, an antibacterial agent, a water-soluble polymer, and an inorganic salt, which will be described later. In that case, the content of the additive is in the range of 0.001 to 50% by mass of the aqueous solution.

(13)キレート剤の添加
本発明の粒子状吸水剤には、キレート剤、特に多価カルボン酸およびその塩を配合することが出来る。
(13) Addition of chelating agent The particulate water-absorbing agent of the present invention can contain a chelating agent, particularly a polyvalent carboxylic acid and a salt thereof.

特に、本発明の製法3は、未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤の存在下に架橋重合したのち、特定の粒度分布に調整し、得られた特定吸収倍率の吸水性樹脂粒子をさらに表面架橋し、その重合時、または表面架橋の前後ないし同時に、キレート剤を添加する方法であり、キレート剤の添加によって、キレート効果により架橋構造を劣化させたり破壊する成分の働きを抑制でき、耐尿劣化に優れる吸水剤を製造することができる。   In particular, the production method 3 of the present invention comprises a specific particle size distribution after crosslinking an unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component in the presence of a crosslinking agent. The resulting water-absorbent resin particles having a specific absorption capacity are further surface-crosslinked, and a chelating agent is added at the time of polymerization, before or after or simultaneously with the surface crosslinking. Thus, the action of a component that degrades or destroys the crosslinked structure can be suppressed, and a water-absorbing agent excellent in urine resistance degradation can be produced.

本発明の吸水剤に用いることが出来るキレート剤としては、好ましくは、FeやCuに対するイオン封鎖能やキレート能が高いレート剤、具体的にはFeイオンに対する安定度定数が10以上、好ましくは20以上のキレート剤が好ましく、さらに好ましくは、アミノ多価カルボン酸およびその塩、特に好ましくは、カルボキシル基を3個以上有するアミノカルボン酸およびその塩である。なお、上記のうち、アミノカルボン酸塩とは、含有している酸基のうち一部が中和されていても、すべての酸基が中和されていてもよい。これら多価カルボン酸は具体的には、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサン−1,2−ジアミンテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸、エチレングリコールジエチルエーテルジアミンテトラ酢酸、エチレンジアミンテトラプロピオン酢酸、N−アルキル−N’−カルボキシメチルアスパラギン酸、N−アルケニル−N’−カルボキシメチルアスパラギン酸、およびこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩もしくはアミン塩が挙げられる。これらの群から選ばれる1種または2種以上が用いられる。中でも、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸およびその塩が最も好ましい。   The chelating agent that can be used in the water-absorbing agent of the present invention is preferably a rate agent having a high ion sequestering ability and chelating ability for Fe and Cu, specifically a stability constant for Fe ions of 10 or more, preferably 20 The above chelating agents are preferred, aminopolycarboxylic acids and salts thereof are more preferred, and aminocarboxylic acids and salts thereof having 3 or more carboxyl groups are particularly preferred. In addition, among the above, the aminocarboxylate may be partially neutralized or all of the acid groups contained therein. Specific examples of these polycarboxylic acids include diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, cyclohexane-1,2-diaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, ethylene glycol diethyl etherdiaminetetraacetic acid, ethylenediaminetetraacetic acid. Examples include propionacetic acid, N-alkyl-N′-carboxymethylaspartic acid, N-alkenyl-N′-carboxymethylaspartic acid, and alkali metal salts, alkaline earth metal salts, ammonium salts, or amine salts thereof. One type or two or more types selected from these groups are used. Of these, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, N-hydroxyethylethylenediaminetriacetic acid and salts thereof are most preferable.

本発明においてキレート剤、特にアミノ多価カルボン酸の使用量は、主成分である吸水性樹脂100質量部に対して微量成分、通常0.00001〜10質量部、好ましくは0.0001〜1質量部である。使用量が10質量部を超えると、使用に見合う効果が得られず不経済になるばかりか、吸収量の低下するなどの問題が生じる。また、0.00001質量部よりも少ないと十分な添加効果が得られない。   In the present invention, the amount of the chelating agent, particularly amino polyvalent carboxylic acid, is a minor component, usually 0.00001 to 10 parts by weight, preferably 0.0001 to 1 part by weight, based on 100 parts by weight of the water-absorbent resin as the main component. Part. When the amount used exceeds 10 parts by mass, not only an effect commensurate with the use cannot be obtained, but it becomes uneconomical, and problems such as a decrease in the amount of absorption occur. On the other hand, when the amount is less than 0.00001 part by mass, a sufficient addition effect cannot be obtained.

重合中にキレート剤を添加する場合は、不飽和単量体水溶液にキレート剤を配合してから重合したり、重合途中にキレート剤を添加すればよい。また、得られたゲル状架橋重合体や吸水性樹脂にキレート剤を添加してもよい。表面架橋の際にキレート剤を添加するには、キレート剤を添加した表面架橋剤含有溶液を用いて表面架橋したり、さらに、表面架橋後にキレート剤を添加する場合には、架橋後の吸水性樹脂にキレート剤を添加すればよい。さらに上記(12)の造粒工程を行なう場合には、前記したように、キレート剤を溶解した水を噴霧し、含水率1〜10質量%を保ったまま加熱してもよい。添加後に必要により乾燥する場合には、その温度はキレート剤の効果をそこなわない範囲であれば良く、通常(12)造粒工程記載の範囲である。なお、キレート剤は、製法3の場合には必須であるが、製法1、製法2で得られた吸水性樹脂に使用してもよい。   In the case of adding a chelating agent during the polymerization, the chelating agent may be added to the unsaturated monomer aqueous solution for polymerization, or the chelating agent may be added during the polymerization. Moreover, you may add a chelating agent to the obtained gel-like crosslinked polymer and water absorbing resin. In order to add a chelating agent at the time of surface cross-linking, surface cross-linking is performed using a solution containing a surface cross-linking agent to which a chelating agent is added. A chelating agent may be added to the resin. Furthermore, when performing the granulation process of said (12), as above-mentioned, you may spray the water which melt | dissolved the chelating agent, and it heats, keeping a moisture content 1-10 mass%. In the case of drying if necessary after the addition, the temperature may be in a range that does not detract from the effect of the chelating agent, and is usually in the range described in (12) granulation step. The chelating agent is indispensable in the case of production method 3, but may be used for the water-absorbent resin obtained in production method 1 and production method 2.

(14)その他添加剤
本発明ではさらに、上記したキレート剤以外にも、下記の(A)植物成分、(B)有機酸の多価金属塩、(C)無機微粒子((D)複合含水酸化物を含む)等を微量成分として添加し、これにより本発明の吸水剤に種々の機能を付与させることも出来る。添加方法は、添加剤が溶液の場合には、水溶液で添加する態様、水分散液で添加する態様、そのまま添加する態様、添加剤が粉体の場合には、それが水不溶性場合には、水分散液で添加する態様、そのまま添加する態様があり、粉体が水溶性の場合には、上記溶液の場合と同様の方法で添加することができる。
(14) Other additives In the present invention, in addition to the chelating agent described above, the following (A) plant component, (B) polyvalent metal salt of organic acid, (C) inorganic fine particles ((D) complex hydrous oxide) Etc.) can be added as a trace component, thereby imparting various functions to the water-absorbing agent of the present invention. When the additive is a solution, the addition method is an embodiment in which the additive is added as an aqueous solution, an embodiment in which the additive is added in an aqueous dispersion, an embodiment in which the additive is added as it is, and when the additive is a powder, when it is insoluble in water, There are a mode of adding in an aqueous dispersion and a mode of adding as it is. When the powder is water-soluble, it can be added by the same method as in the case of the above solution.

これら(A)〜(D)および(E)その他の添加剤の使用量は、目的や付加機能によっても異なるが、通常、その1種類の添加量として、吸水性樹脂100質量部に対して0〜10質量部、好ましくは0.001〜5質量部、さらに好ましくは0.002〜3質量部の範囲である。通常、0.001質量部より少ないと十分な効果や付加機能が得られず、10質量部以上の場合は添加量に見合った効果が得られないか、吸収性能の低下を招くことがある。   The amount of these other additives (A) to (D) and (E) used varies depending on the purpose and additional function, but is usually 0 as one type of additive with respect to 100 parts by mass of the water absorbent resin. -10 parts by mass, preferably 0.001-5 parts by mass, more preferably 0.002-3 parts by mass. Usually, when the amount is less than 0.001 part by mass, sufficient effects and additional functions cannot be obtained, and when the amount is 10 parts by mass or more, an effect commensurate with the addition amount may not be obtained or the absorption performance may be lowered.

(A)植物成分
本発明にかかる吸水剤は、消臭性を発揮させるために、上記量で植物成分を配合することが出来る。本発明において用いることが出来る植物成分は、好ましくは、ポリフェノール、フラボンおよびその類、カフェインから選ばれる少なくとも1種の化合物であることが好ましく、タンニン、タンニン酸、五倍子、没食子および没食子酸から選ばれるすくなくとも一種であることがさらに好ましい。
(A) Plant component The water absorbing agent concerning this invention can mix | blend a plant component with the said quantity in order to exhibit deodorant property. The plant component that can be used in the present invention is preferably at least one compound selected from polyphenols, flavones and the like, and caffeine, and selected from tannin, tannic acid, pentaploid, gallic acid and gallic acid. More preferably, it is at least one kind.

本発明において用いることのできる植物成分を含んだ植物としては、例えば、ツバキ科の植物ではツバキ、ヒカサキ、モッコクなどが挙げられ、イネ科の植物ではイネ、ササ、竹、トウモロコシ、麦などが挙げられ、アカネ科の植物ではコーヒーなどが挙げられる。   Examples of plants containing plant components that can be used in the present invention include camellia, cypress, mokoku and the like for camellia plants, and rice, sasa, bamboo, corn, wheat and the like for grasses. For example, in the plant of Rubiaceae, there are coffee.

本発明において用いることの出来る植物成分の形態としては植物から抽出したエキス(精油)、植物自体(植物粉末)、植物加工業や食物加工業における製造工程で副生する植物滓および抽出滓などが挙げられるが、特に限定されない。   Examples of plant components that can be used in the present invention include extracts extracted from plants (essential oils), plants themselves (plant powders), plant meals and extracted meals that are by-produced in the manufacturing process in the plant processing industry and food processing industry. Although it is mentioned, it is not specifically limited.

(B)多価金属塩
本発明にかかる吸水剤は、粉体流動性の向上、吸湿後の流動性維持のために上記量で多価金属塩、特に有機酸の多価金属塩を配合することが出来る。
(B) Multivalent metal salt The water-absorbing agent according to the present invention contains a polyvalent metal salt, particularly a polyvalent metal salt of an organic acid, in the above amount in order to improve powder fluidity and maintain fluidity after moisture absorption. I can do it.

用いられる有機酸の多価金属塩や混合方法は、例えば、国際出願番号PCT/2004/JP1355に例示されており、本発明に用いることのできる炭素数が分子内に7個以上の有機酸多価金属塩とは、脂肪酸、石油酸、高分子酸等の多価金属塩、すなわちカルシウム、アルミニウム、マグネシウム、亜鉛などの多価金属塩からなる。これらの群から選ばれる1種または2種以上が用いられる。   The polyvalent metal salt of organic acid used and the mixing method are exemplified in, for example, International Application No. PCT / 2004 / JP1355, and the organic acid polyvalent having 7 or more carbon atoms in the molecule can be used in the present invention. The valent metal salt is composed of a polyvalent metal salt such as fatty acid, petroleum acid, or polymer acid, that is, a polyvalent metal salt such as calcium, aluminum, magnesium, or zinc. One type or two or more types selected from these groups are used.

該有機酸多価金属塩を構成する有機酸としては、カプロン酸、オクチル酸、オクチン酸、デカン酸、ラウリル酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の長鎖または分枝の脂肪酸、安息香酸、ミリスチシン酸、ナフテン酸、ナフトエ酸、ナフトキシ酢酸等の石油酸、ポリ(メタ)アクリル酸やポリスルホン酸等の高分子酸が例示できるが、分子内にカルボキシル基を有する有機酸であることが好ましく、より好ましくはカプロン酸、オクチル酸、オクチン酸、デカン酸、ラウリル酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸、牛脂肪酸やヒマシ硬化脂肪酸等の脂肪酸である。さらに好ましくは分子内に不飽和結合を有しない脂肪酸で、例えばカプロン酸、オクチル酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸である。最も好ましくは、炭素数が分子内に12個以上の分子内に不飽和結合を有しない長鎖脂肪酸で例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸である。   Examples of the organic acid constituting the organic acid polyvalent metal salt include caproic acid, octylic acid, octic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, and other long-chain or branched fatty acids. Examples thereof include petroleum acids such as benzoic acid, myristic acid, naphthenic acid, naphthoic acid, and naphthoxyacetic acid, and polymer acids such as poly (meth) acrylic acid and polysulfonic acid, and are organic acids having a carboxyl group in the molecule. More preferred are caproic acid, octylic acid, octynic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, fatty acids such as bovine fatty acid and castor hardened fatty acid. More preferred are fatty acids having no unsaturated bond in the molecule, such as caproic acid, octylic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, and stearic acid. Most preferably, it is a long chain fatty acid having 12 or more carbon atoms in the molecule and having no unsaturated bond in the molecule, such as lauric acid, myristic acid, palmitic acid, and stearic acid.

(C)無機微粒子
本発明にかかる吸水剤は、吸湿後の流動性維持のために無機微粒子、特に水不溶性無機微粒子を配合することが出来る。本発明に使用される無機粉末としては、具体的には例えば、二酸化珪素や酸化チタン等の金属酸化物、天然ゼオライトや合成ゼオライト等の珪酸(塩)、カオリン、タルク、クレー、ベントナイト等が挙げられる。これらの群から選ばれる1種または2種以上が用いられる。このうち二酸化珪素および珪酸(塩)がより好ましく、コールターカウンター法により測定された平均粒子径が0.001〜200μmの二酸化珪素および珪酸(塩)がさらに好ましい。
(C) Inorganic fine particles The water-absorbing agent according to the present invention can contain inorganic fine particles, particularly water-insoluble inorganic fine particles, in order to maintain fluidity after moisture absorption. Specific examples of the inorganic powder used in the present invention include metal oxides such as silicon dioxide and titanium oxide, silicic acid (salts) such as natural zeolite and synthetic zeolite, kaolin, talc, clay, bentonite and the like. It is done. One type or two or more types selected from these groups are used. Among these, silicon dioxide and silicic acid (salt) are more preferable, and silicon dioxide and silicic acid (salt) having an average particle diameter measured by the Coulter counter method of 0.001 to 200 μm are more preferable.

(D)複合含水酸化物
本発明にかかる吸水剤は、優れた吸湿流動性(吸水性樹脂または吸水剤が吸湿した後の粉体の流動性)を示し、さらに、優れた消臭性能を発揮させるために亜鉛と珪素、または、亜鉛とアルミニウムを含む複合含水酸化物を配合することが出来る。
(D) Composite Hydrous Oxide The water-absorbing agent according to the present invention exhibits excellent moisture-absorbing fluidity (powder fluidity after water-absorbing resin or water-absorbing agent absorbs moisture) and further exhibits excellent deodorizing performance. Therefore, a composite hydrous oxide containing zinc and silicon or zinc and aluminum can be blended.

(E)その他
抗菌剤、水溶性高分子、水不溶性高分子、水、有機微粒子など、その他添加剤は特に本発明の吸水剤が得られる限り、その添加は任意である。
(E) Others Other additives such as antibacterial agents, water-soluble polymers, water-insoluble polymers, water, and organic fine particles can be added as long as the water-absorbing agent of the present invention is obtained.

(15)本発明の粒子状吸水剤
上記製法1〜3などを製法の一例とする本発明の粒子状吸水剤は、従来にない新規な性能を示す新規な吸水剤である。
(15) Particulate water-absorbing agent of the present invention The particulate water-absorbing agent of the present invention using the above-mentioned production methods 1 to 3 as an example of the production method is a novel water-absorbing agent that exhibits a novel performance that has not existed before.

すなわち、本発明の第一の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(d)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(d)上記式で示す可溶分劣化増加量が0〜15質量%で、且つ劣化試験液での1時間可溶分が0.1〜30質量%。
That is, the first particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, and satisfying the following (a) to (d).
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(D) The soluble content deterioration increase amount shown by the said formula is 0-15 mass%, and the 1 hour soluble content in a degradation test liquid is 0.1-30 mass%.

また、本発明の第二の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(e)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(e)上記式で示す可溶分劣化増加倍率が1〜4倍で、且つ劣化試験液での1時間可溶分が0.1〜30質量%。
The second particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent mainly comprising a water-absorbing resin obtained by crosslinking polymerization of an acid group and / or a salt-containing unsaturated monomer, and satisfying the following (a) to (c) and (e) Agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(E) The soluble component deterioration increasing magnification represented by the above formula is 1 to 4 times, and the one hour soluble component in the deterioration test solution is 0.1 to 30% by mass.

本発明の第三の粒子状吸水剤は、
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(f)、(g)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(f)生理食塩水中での16時間可溶分が0.1〜10質量%
(g)生理食塩水への4.8kPaでの高加圧下吸収倍率(AAP4.8kPa)が21g/g以上。
The third particulate water-absorbing agent of the present invention is
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, wherein the following (a) to (c) and (f), (g) Filled particulate water-absorbing agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(F) 0.1 to 10% by mass of 16-hour soluble component in physiological saline
(G) Absorption capacity under high pressure (AAP 4.8 kPa) at 4.8 kPa into physiological saline is 21 g / g or more.

本発明の吸水剤は(b)質量平均粒子径(D50)が通常180〜400μm、好ましくは200〜400μm、より好ましくは225〜380μm、特に好ましくは250〜350μmに狭く制御され、かつ、(c)150μm未満の粒子の割合が、0〜3質量%、好ましくは0〜2質量%、より好ましくは0〜1質量%に制御される。粒度調整は、好ましくは表面架橋前に粒度が制御されるが、表面架橋後に粉砕および分級、造粒されて特定粒度に調整してもよい。粒度分布がこれらから外れると、おむつに使用した場合、好適な吸収特性を示さず、高物性を示さない。特に(b)は吸水剤のおむつ等の吸収性物品での吸収特性に影響を及ぼし、質量平均粒子径が400μmを越えると、単位質量あたりの表面積が減少するため吸水剤と尿等との接触面積が減少し、水性液の吸収に長時間が必要となる。一方、180μm未満であると、単位質量当たりの表面積が大きいため吸収時間は短くなるが、同時に尿劣化成分が粒子内部まで浸透する速度も速くなり、尿劣化のスピードが速くなってしまう場合がある。また、微粒子の増加によって再生が必要となり、コスト面でも好ましくない。さらに、連続生産においては150μm未満の粒子の分級装置の処理能力を超えた微粒子が発生する惧れがあり、(c)150μm未満の粒子の割合の制御が困難になる可能性もある。   In the water-absorbing agent of the present invention, (b) the mass average particle diameter (D50) is usually controlled narrowly to 180 to 400 μm, preferably 200 to 400 μm, more preferably 225 to 380 μm, particularly preferably 250 to 350 μm, and (c ) The proportion of particles less than 150 μm is controlled to 0 to 3% by mass, preferably 0 to 2% by mass, more preferably 0 to 1% by mass. The particle size adjustment is preferably controlled before surface cross-linking, but may be pulverized, classified and granulated after surface cross-linking to adjust to a specific particle size. If the particle size distribution deviates from these, when used for diapers, it does not show suitable absorption characteristics and does not show high physical properties. In particular, (b) affects the absorption characteristics of absorbent articles such as diapers of water-absorbing agents. When the mass average particle diameter exceeds 400 μm, the surface area per unit mass decreases, so contact between the water-absorbing agent and urine, etc. The area is reduced and a long time is required to absorb the aqueous liquid. On the other hand, if it is less than 180 μm, the absorption time is shortened because the surface area per unit mass is large, but at the same time, the rate of penetration of the urine degradation component into the interior of the particle also increases, and the speed of urine degradation may increase. . Further, regeneration is required due to the increase in fine particles, which is not preferable in terms of cost. Furthermore, in continuous production, there is a possibility that fine particles exceeding the processing capacity of the particle classification device of less than 150 μm may be generated, and (c) it may be difficult to control the proportion of particles of less than 150 μm.

また、(c)150μm未満の粒子量が3質量%を越える場合、吸収性物品中でゲルブロッキングによって吸収性能を低下させたり、膨潤前の微粒子粉末が吸収性物品の中から表面のトップシートに抜けてしまい、実使用時に体液を吸収した膨潤ゲルが装着者の皮膚に直接接触(ゲル・オン・スキン)する場合がある。加えて、吸収性物品の生産時の飛散等によるロス、あるいは、作業環境への悪影響なども懸念されるため、この観点からも好ましくない。   Further, (c) when the amount of particles less than 150 μm exceeds 3% by mass, the absorption performance is reduced by gel blocking in the absorbent article, or the fine particle powder before swelling is transferred from the absorbent article to the surface topsheet. In some cases, the swollen gel that has absorbed body fluid during actual use may come into direct contact with the wearer's skin (gel-on-skin). In addition, there is a concern about loss due to scattering or the like during production of absorbent articles, or adverse effects on the work environment, which is not preferable from this viewpoint.

本発明の吸水剤は、上記粒度分布を有し、かつ(a)生理食塩水の無加圧下吸収倍率(CRC)が32g/g以上、好ましくは33〜75g/g、より好ましくは35〜70g/g、さらに好ましくは40〜65g/g、特に好ましくは45〜60g/gである。無加圧下吸収倍率は無加圧下吸収倍率が32g/g未満であると、所望の吸収容量を確保するために多量の吸水剤が必要となるため、実用上好ましくない。   The water-absorbing agent of the present invention has the above particle size distribution, and (a) the absorption capacity (CRC) of physiological saline under no pressure is 32 g / g or more, preferably 33 to 75 g / g, more preferably 35 to 70 g. / G, more preferably 40 to 65 g / g, particularly preferably 45 to 60 g / g. When the absorption capacity under no pressure is less than 32 g / g, a large amount of water-absorbing agent is required to secure a desired absorption capacity, which is not preferable in practice.

本発明の吸水剤は、上記特性を満たし、かつ(d)可溶分劣化増加量が、通常0〜15質量%、より好ましくは0〜12、さらに好ましくは0〜10質量%、特に好ましくは0〜8質量%、最も好ましくは0〜5質量%である。「可溶分劣化増加量」の測定において、劣化試験液として、0.05質量%L−アスコルビン酸入り生理食塩水を使用したのは、尿による吸水剤の劣化は尿に含まれるL−アスコルビン酸によること、および浸透圧を体液にあわせるためである。可溶分劣化増加量は、式が示すように、尿劣化により増加した可溶分の絶対量を比較するものであるから、該数値が少ないほうが劣化が少ない。本発明では、可溶分劣化増加量が0〜15質量%であれば、尿等の体液に対して吸水剤が安定であることを示すものであり、該数値範囲に特徴がある。可溶分劣化増加量が15質量%を超えると、尿等の体液に対する吸水剤の安定性が不足し、実使用において長時間吸収体を使用した場合に十分な吸収能力を発揮できない。   The water-absorbing agent of the present invention satisfies the above characteristics, and (d) the amount of increase in degradation of soluble component is usually 0 to 15% by mass, more preferably 0 to 12, more preferably 0 to 10% by mass, particularly preferably. It is 0-8 mass%, Most preferably, it is 0-5 mass%. In the measurement of the “deterioration amount of soluble component degradation”, 0.05 mass% L-ascorbic acid-containing physiological saline was used as the degradation test solution because the deterioration of the water-absorbing agent due to urine was caused by L-ascorbine contained in urine. This is due to the acid and to adjust the osmotic pressure to the body fluid. As shown by the formula, the increase in soluble content deterioration is for comparing the absolute amount of soluble content increased due to urine deterioration, and the smaller the numerical value, the less the deterioration. In the present invention, if the amount of increase in soluble content deterioration is from 0 to 15% by mass, it indicates that the water-absorbing agent is stable against body fluids such as urine, and this numerical range is characteristic. When the amount of increase in soluble content deterioration exceeds 15% by mass, the stability of the water-absorbing agent to body fluids such as urine is insufficient, and sufficient absorption capacity cannot be exhibited when the absorbent is used for a long time in actual use.

同様に、本発明の(e)可溶分劣化増加倍率は、通常1〜4倍、好ましくは1〜3倍、より好ましくは1〜2倍、さらに好ましくは1〜1.5倍、特に好ましくは1〜1.3倍である。可溶分劣化増加倍率は、劣化による可溶分の生成倍率を示し、該数値が小さいほうが尿劣化が少ない。可溶分劣化増加倍率が1〜4倍であれば、尿等の体液に対して吸水剤が安定であることを示すものである。劣化量が4倍を超えると、尿等の体液に対する吸水剤の安定性が不足し、実使用において長時間吸収体を使用した場合に十分な吸収能力を発揮できない。   Similarly, (e) soluble component deterioration increasing ratio of the present invention is usually 1 to 4 times, preferably 1 to 3 times, more preferably 1 to 2 times, still more preferably 1 to 1.5 times, and particularly preferably. Is 1 to 1.3 times. The soluble component deterioration increasing rate indicates the soluble component generation rate due to deterioration, and the smaller the numerical value, the less the urine deterioration. If the soluble component deterioration increasing ratio is 1 to 4 times, this indicates that the water-absorbing agent is stable against body fluids such as urine. If the deterioration amount exceeds 4 times, the stability of the water-absorbing agent with respect to body fluids such as urine is insufficient, and sufficient absorption capacity cannot be exhibited when the absorber is used for a long time in actual use.

また、劣化試験液での1時間可溶分は、好ましくは0.1〜30質量%、より好ましくは0.2〜25質量%、さらに好ましくは0.3〜22質量%、特に好ましくは0.4〜20質量%、最も好ましくは0.5〜18質量%である。劣化試験液での1時間可溶分量が上記上限範囲を超えると、長時間使用時に膨潤したゲルが経時的に劣化し、可溶分量が増加する。この可溶分は吸収体から溶出し、血液や尿等の吸収体への液の拡散性を阻害する場合がある。また、上記下限未満の達成を制限するものではないが、コスト等生産条件を勘案して設定される。   The 1-hour soluble content in the deterioration test solution is preferably 0.1 to 30% by mass, more preferably 0.2 to 25% by mass, still more preferably 0.3 to 22% by mass, and particularly preferably 0. 4 to 20% by mass, most preferably 0.5 to 18% by mass. If the 1-hour soluble amount in the deterioration test solution exceeds the above upper limit range, the gel swollen during long-time use deteriorates with time, and the soluble amount increases. This soluble component is eluted from the absorber and may inhibit the diffusibility of the liquid to the absorber such as blood and urine. Moreover, although it does not restrict | limit achievement less than the said minimum, it sets in consideration of production conditions, such as cost.

また、上記(d)可溶分劣化増加量および/または(e)可溶分劣化増加倍率が上記上限範囲を超える場合は、吸水剤の架橋構造破壊が著しいため、膨潤ゲルに取り込んだ尿等の体液を保持することが困難になり、オムツなどに使用される場合には戻り量増加の原因となる。また、架橋構造が破壊された膨潤ゲルは水溶性ポリマーに変質し、流動化したポリマーがおむつ等吸収性物品の表面に染み出す場合もある。このため、吸収性物品の装着者の不快感を増大させてしまう原因となり、好ましくない。   In addition, when the above (d) increase in degradation of soluble content and / or (e) increase in degradation of soluble content exceeds the above upper limit range, the crosslinked structure of the water-absorbing agent is remarkably broken, so that urine taken into the swollen gel, etc. It becomes difficult to retain the body fluid, and when used for a diaper or the like, it causes an increase in the amount of return. In addition, the swollen gel in which the cross-linked structure is broken is transformed into a water-soluble polymer, and the fluidized polymer may ooze out on the surface of an absorbent article such as a diaper. For this reason, it becomes a cause which increases the discomfort of the wearer of an absorbent article, and is not preferable.

前記したように、粒度分布は、可溶分劣化増加量、および可溶分劣化増加倍率と相関があるため、(b)質量平均粒子径D50が400μm以下と比較的小さいものの調整しながら、さらに(d)可溶分劣化増加量、および(e)可溶分劣化増加倍率が抑制された吸水剤は従来存在しない。しかしながら、本発明では、(d)可溶分劣化増加量、および(e)可溶分劣化増加倍率を導入し、かつこれらがそれぞれ0〜15質量%、1〜4倍に制御することで、使用感に優れ、かつ長期に亘り吸水特性に優れる吸水剤となる。このような吸水剤は、例えば前述の方法で製造することができるが、実施例に示すように、上記した方法以外でも製造することができる。   As described above, since the particle size distribution is correlated with the soluble content deterioration increase amount and the soluble content deterioration increase ratio, (b) while adjusting the mass average particle diameter D50 of 400 μm or less, Conventionally, there is no water-absorbing agent in which (d) an increase in soluble content deterioration and (e) an increase in soluble content deterioration are suppressed. However, in the present invention, (d) the amount of increase in soluble content deterioration and (e) the increase in soluble content deterioration is introduced, and these are controlled to 0 to 15% by mass and 1 to 4 times, respectively. It becomes a water-absorbing agent that has excellent usability and excellent water-absorbing characteristics over a long period of time. Such a water-absorbing agent can be produced, for example, by the above-described method, but can also be produced by methods other than those described above, as shown in the examples.

また、上記(d)可溶分劣化増加量、および(e)可溶分劣化増加倍率は、どちらか一方を満たせば良いが、同時に満たすことがさらに好ましい。なお、後記する実施例に測定方法を示すが、25mlの劣化試験液に吸水剤1gを添加して得た膨潤ゲルを用いているが、25倍はおむつでの膨潤を想定したものであり、上記可溶分劣化増加量や可溶分劣化増加倍率が、おむつの実使用に相関することを見出し、さらに、特定粒度分布、特定吸収倍率で、かつ(d)可溶分劣化増加量や(e)可溶分劣化増加倍率を満たす吸水剤が、実使用でも尿の組成や使用時間の変化によらず、高物性なおむつを与えることを見出した。なお、特開平8−337726号などに記載された、吸水性樹脂を室温で大過剰の生理食塩水に分散させた可溶分の評価や物性は、実使用と相関せずなんら意味をなさない。   Moreover, although the above-mentioned (d) soluble matter deterioration increase amount and (e) soluble content deterioration increase magnification should just satisfy | fill either one, it is more preferable to satisfy | fill simultaneously. In addition, although a measuring method is shown in the Example described later, a swollen gel obtained by adding 1 g of a water absorbing agent to a 25 ml deterioration test solution is used, but 25 times is assumed to swell in a diaper, It has been found that the above-mentioned increase in soluble content deterioration and the increase in soluble content deterioration correlate with the actual use of diapers. Furthermore, it has a specific particle size distribution, specific absorption capacity, and (d) an increase in soluble content deterioration and ( e) It has been found that a water-absorbing agent satisfying the increase in soluble matter deterioration gives a diaper with high physical properties regardless of changes in urine composition and use time even in actual use. Note that the evaluation and physical properties of soluble components described in JP-A-8-337726 and the like in which a water-absorbent resin is dispersed in a large excess of physiological saline at room temperature do not correlate with actual use and have no meaning. .

なお、本発明の吸水剤の生理食塩水での1時間可溶量は、必須に50質量%以下、好ましくは0.1〜30質量%、より好ましくは0.2〜25質量%、さらに好ましくは0.3〜20質量%、さらにより好ましくは0.4〜15質量%、特に好ましくは0.5〜10質量%、好ましくは0.5〜8質量%である。1時間可溶分量が上記上限範囲を超える場合、吸水時に可溶分が吸収体に溶出され、血液や尿等の吸収体への液の拡散性が阻害する場合があるので好ましくない。なお、0.1質量%未満の達成は一般に困難でコストに見合わない。   The 1 hour soluble amount of the water-absorbing agent of the present invention in physiological saline is essentially 50% by mass or less, preferably 0.1 to 30% by mass, more preferably 0.2 to 25% by mass, and still more preferably. Is 0.3 to 20% by mass, still more preferably 0.4 to 15% by mass, particularly preferably 0.5 to 10% by mass, and preferably 0.5 to 8% by mass. When the 1-hour soluble amount exceeds the above upper limit range, the soluble component is eluted into the absorber at the time of water absorption, and the diffusibility of the liquid to the absorber such as blood or urine may be inhibited, which is not preferable. In general, it is difficult to achieve less than 0.1% by mass and it is not worth the cost.

また、粒子状吸水剤で、(d)可溶分劣化増加量や(e)可溶分劣化増加倍率を任意とする場合、すなわち、上記の第三の粒子状吸水剤の場合、(f)生理食塩水中での16時間可溶分は0.1〜10質量%、さらには0.6〜8質量%、特に0.7〜5質量%である。10質量%を超えると、吸水時に可溶分が吸収体から溶出され、血液や尿などの吸収体への液の拡散性を阻害する場合がある。また、尿劣化が進行した場合、架橋構造が維持できなくなる程に劣化が進行する場合があり、不利である。さらに(g)生理食塩水への4.8kPa(約50g/cm、約0.7psi)での高加圧下吸収倍率(AAP4.8kPa)が、好ましくは21g/g以上、より好ましくは22g/g以上、さらに好ましくは23g/g以上、特に好ましくは24g/g以上、最も好ましくは25g/g以上である。21g/gを下回ると、実使用での加圧によって吸水剤に含まれた液体が吸水剤から漏れ出す場合がある。吸水特性を詳細に検討したところ、たとえ(d)可溶分劣化増加量や(e)可溶分劣化増加倍率を満たさない場合であっても、上記(a)、(b)、(c)の要件を満たし、かつ前記(f)16時間可溶分および(g)高加圧下吸収倍率(AAP4.8kPa)を同時に満たす場合には、実使用において尿を長時間吸収した状態でも吸収体の性能を低下させないことが判明した。その理由は、尿の劣化によって、少々架橋構造が破壊されても、破壊される前の吸水剤の16時間可溶分を低くさせておけば、実使用において、吸収体の性能は維持されるのである。 In addition, in the case of the particulate water-absorbing agent, if (d) the soluble content deterioration increasing amount and (e) the soluble content deterioration increasing ratio are arbitrary, that is, in the case of the third particulate water absorbing agent, (f) The soluble matter in physiological saline for 16 hours is 0.1 to 10% by mass, further 0.6 to 8% by mass, particularly 0.7 to 5% by mass. If it exceeds 10% by mass, soluble components are eluted from the absorber during water absorption, and the diffusibility of the liquid into the absorber such as blood or urine may be inhibited. Moreover, when urine deterioration progresses, deterioration may advance to the extent that a crosslinked structure cannot be maintained, which is disadvantageous. Furthermore, (g) Absorption capacity under high pressure (AAP 4.8 kPa) at 4.8 kPa (about 50 g / cm 2 , about 0.7 psi) into physiological saline is preferably 21 g / g or more, more preferably 22 g / g. g or more, more preferably 23 g / g or more, particularly preferably 24 g / g or more, and most preferably 25 g / g or more. If it is less than 21 g / g, the liquid contained in the water-absorbing agent may leak from the water-absorbing agent due to pressurization in actual use. When water absorption characteristics were examined in detail, even if (d) soluble matter deterioration increase amount and (e) soluble matter deterioration increase magnification were not satisfied, the above (a), (b), (c) When the above requirements (f) soluble for 16 hours and (g) absorption capacity under high pressure (AAP 4.8 kPa) are satisfied at the same time, even if the urine is absorbed for a long time in actual use, It was found that the performance was not degraded. The reason is that even if the crosslinked structure is slightly destroyed due to deterioration of urine, the performance of the absorbent body is maintained in actual use if the water-absorbing agent before destruction is kept low for 16 hours. It is.

また、高加圧下吸収倍率(AAP4.8kPa)は、同じ吸収倍率であれば、内部架橋剤が多い方が高くなる傾向にあることがわかっている。詳細は明らかではないが、内部架橋剤量を増やすと、尿劣化の程度は小さくなることと、考え合わせると、高加圧下吸収倍率(AAP4.8kPa)は間接的に関係があるようである。つまり、尿劣化を予測し、吸収体内で尿劣化後の吸収剤が所望の性能を発揮する為に、劣化前の吸水剤の性能は上記の範囲内に設定する必要があるのである。なお、(g)の上限は特に問わないが、製造の困難によるコストアップから40g/g程度で十分な場合もある。   Further, it is known that the absorption ratio under high pressure (AAP 4.8 kPa) tends to be higher when the internal absorption agent is larger if the absorption ratio is the same. Although the details are not clear, it seems that the absorption capacity under high pressure (AAP 4.8 kPa) is indirectly related when the amount of internal cross-linking agent is increased and the degree of urine deterioration decreases. That is, it is necessary to set the performance of the water-absorbing agent before degradation within the above range in order to predict urine degradation and to exhibit the desired performance of the absorbent after degradation in the absorbent body. The upper limit of (g) is not particularly limited, but about 40 g / g may be sufficient due to cost increase due to difficulty in production.

なお、第三の粒子状吸水剤でも、(d)可溶分劣化増加量や(e)可溶分劣化増加倍率をさらに満たすことがより好ましい。   In addition, it is more preferable that the third particulate water-absorbing agent further satisfies (d) the increase in soluble component deterioration and (e) the increase in soluble component deterioration.

(16)本発明の粒子状吸水剤のその他の特性
(i)生理食塩水への1.9kPaでの加圧下吸収倍率(AAP1.9kPa)
本発明の吸水剤は、生理食塩水に対する荷重が1.9kPaの圧力下(荷重下)での加圧下吸収倍率が好ましくは20g/g以上、より好ましくは25g/g以上、さらに好ましくは30g/g以上、特に好ましくは35g/g以上である。加圧下吸収倍率が20g/gよりも小さいと、本発明の効果が発揮できない恐れがある。なお、上限は特に問わないが、製造の困難によるコストアップから60g/g程度で十分である場合もある。
(16) Other characteristics of the particulate water-absorbing agent of the present invention (i) Absorption capacity under pressure at 1.9 kPa into physiological saline (AAP 1.9 kPa)
In the water-absorbing agent of the present invention, the absorption capacity under pressure under a pressure (under load) of 1.9 kPa is preferably 20 g / g or more, more preferably 25 g / g or more, and even more preferably 30 g / g. g or more, particularly preferably 35 g / g or more. If the absorption capacity under pressure is less than 20 g / g, the effect of the present invention may not be exhibited. The upper limit is not particularly limited, but about 60 g / g may be sufficient due to cost increase due to difficulty in production.

(h)600〜150μmの粒子、(l)対数標準偏差
本発明の吸水剤は嵩比重(JIS K−3362で規定)は好ましくは0.40〜0.90g/ml、より好ましくは0.50〜0.80g/mlの範囲に調整される。また(h)600〜150μmの間の粒子が全体の好ましくは90〜100質量%、より好ましくは95〜100質量%、さらに好ましくは98〜100質量%とされる。粒度分布の(l)対数標準偏差(σζ)は好ましくは0.20〜0.40、より好ましくは0.20〜0.38、特に好ましくは0.20〜0.36とされる。この範囲で、おむつに使用した場合に高物性が得られる。
(H) Particles of 600 to 150 μm, (l) Logarithmic standard deviation The water-absorbing agent of the present invention preferably has a bulk specific gravity (defined by JIS K-3362) of preferably 0.40 to 0.90 g / ml, more preferably 0.50. It is adjusted to a range of ˜0.80 g / ml. Moreover, (h) The particle | grains between 600-150 micrometers are preferably 90-100 mass% of the whole, More preferably, it is 95-100 mass%, More preferably, it is set as 98-100 mass%. The (l) logarithmic standard deviation (σζ) of the particle size distribution is preferably 0.20 to 0.40, more preferably 0.20 to 0.38, and particularly preferably 0.20 to 0.36. Within this range, high physical properties can be obtained when used for diapers.

(k)吸湿流動性
本発明の吸水剤は、後述の実施例に記載する吸湿流動性が低いため、粉体取り扱い性に優れたものである。吸湿流動性は、好ましくは0〜30質量%以下、より好ましくは0〜20質量%、さらに好ましくは0〜10質量%、特に好ましくは0〜5質量%である。吸湿流動性が30質量%より大きい場合は、例えばオムツなどを製造する場合、粉体の流動性が悪くなるためオムツの製造が困難になるなどの弊害がある。これら吸湿流動性は前記の添加剤の使用で達成される。
(K) Hygroscopic fluidity The water-absorbing agent of the present invention has excellent powder handling properties because of its low hygroscopic fluidity described in the examples described later. The hygroscopic fluidity is preferably 0 to 30% by mass or less, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass. When the hygroscopic fluidity is larger than 30% by mass, for example, when producing a diaper or the like, there is an adverse effect such as difficulty in producing a diaper because the fluidity of the powder is deteriorated. These hygroscopic fluidity is achieved by the use of the aforementioned additives.

(j)ボルテックス吸収速度
本発明の吸水剤の吸収速度は60秒以下、好ましくは1〜55秒、より好ましくは2〜50秒である。吸収速度が60秒を超える場合、オムツ等の吸収体に吸水性樹脂を使用した場合に十分な吸収能力を発揮しない場合もある。
(J) Vortex absorption rate The absorption rate of the water-absorbing agent of the present invention is 60 seconds or less, preferably 1 to 55 seconds, more preferably 2 to 50 seconds. When the absorption rate exceeds 60 seconds, sufficient absorption capacity may not be exhibited when a water-absorbent resin is used for an absorbent body such as a diaper.

(17)吸収性物品
本発明の粒子状吸水剤の用途は特定に限定されないが、好ましくは、吸収体および吸収性物品に使用される。
(17) Absorbent article The application of the particulate water-absorbing agent of the present invention is not particularly limited, but is preferably used for an absorbent body and an absorbent article.

本発明の吸収体は、上記の粒子状吸水剤を用いて得られる。なお、本発明で吸収体とは、粒子状吸水剤と親水性繊維とを主成分として成型された吸収材のことである。本発明の吸収体は、吸水剤と親水性繊維との合計質量に対する吸水剤の含有量(コア濃度)は好ましくは20〜100%質量%、さらには好ましくは30〜100質量%、特に好ましくは40〜100質量%である。   The absorber of the present invention is obtained using the particulate water-absorbing agent. In the present invention, the absorbent body is an absorbent material molded mainly with a particulate water-absorbing agent and hydrophilic fibers. In the absorbent body of the present invention, the content (core concentration) of the water absorbing agent with respect to the total mass of the water absorbing agent and the hydrophilic fiber is preferably 20 to 100% by mass, more preferably 30 to 100% by mass, and particularly preferably. It is 40-100 mass%.

更に本発明の吸収性物品は、上記した本発明の吸収体、液透過性を有する表面シート、及び液不透過性を有する背面シートを備える吸収性物品である。   Furthermore, the absorbent article of the present invention is an absorbent article comprising the above-described absorbent body of the present invention, a top sheet having liquid permeability, and a back sheet having liquid impermeability.

本発明の吸収性物品の製造方法は、例えば繊維基材と本発明の吸水剤とをブレンドないしサンドイッチすることで吸収体(吸収コア)を作成し、吸収コアを液透過性を有する基材(表面シート)と液不透過性を有する基材(背面シート)でサンドイッチして、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することで、吸収性物品、特に子供用オムツ、大人用紙オムツや生理用ナプキンとすればよい。かかる吸収コアは密度0.06〜0.50g/cc、坪量0.01〜0.20g/cmの範囲に圧縮成形される。なお、用いられる繊維基材としては、親水性繊維、例えば、粉砕された木材パルプ、その他、コットンリンターや架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等を例示できる。好ましくはそれらをエアレイドしたものである。 The manufacturing method of the absorbent article of the present invention is, for example, that an absorbent body (absorbing core) is prepared by blending or sandwiching a fiber base material and the water-absorbing agent of the present invention, and the absorbent core is a liquid-permeable base material ( Sandwiched with a surface sheet) and a liquid-impermeable substrate (back sheet), and if necessary, equipped with an elastic member, a diffusion layer, an adhesive tape, etc., absorbent articles, especially children's diapers, Adult diapers and sanitary napkins can be used. Such an absorbent core is compression molded to a density of 0.06 to 0.50 g / cc and a basis weight of 0.01 to 0.20 g / cm 2 . Examples of the fiber base used include hydrophilic fibers such as pulverized wood pulp, cotton linters and cross-linked cellulose fibers, rayon, cotton, wool, acetate, and vinylon. Preferably, they are airlaid.

本発明の吸水剤は優れた吸収特性を示すものである。これを用いた吸収性物品としては、具体的には、近年成長の著しい大人用紙オムツをはじめ、子供用オムツや生理用ナプキン、いわゆる失禁パッド等の衛生材料等が挙げられ、それらに特に限定されるものではない。共通していることは吸収性物品の中に存在する本発明の吸水剤が戻り量も少なく、ドライ感が著しい吸収性物品に改良されることにより、装着している本人、介護の人々の負担を大きく低減することができる。   The water-absorbing agent of the present invention exhibits excellent absorption characteristics. Specific examples of absorbent articles using this include adult paper diapers, which have been growing rapidly in recent years, and sanitary materials such as diapers for children, sanitary napkins, so-called incontinence pads, and the like. It is not something. What is common is that the water-absorbing agent of the present invention present in the absorbent article has a low return amount and is improved to an absorbent article with a remarkable dry feeling, which is a burden on the wearer and the caregiver. Can be greatly reduced.

以下に本発明の実施例と比較例を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Examples and comparative examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

吸水剤の諸性能は以下の方法で測定した。また、吸水剤に代えて吸水性樹脂を使用してこれらの特性を評価した。実施例において使用される電気機器はすべて100V、60Hzの条件で使用した。さらに、吸水性樹脂、吸水剤、吸収性物品は、特に指定がない限り、25℃±2℃、相対湿度50%RHの条件下で使用した。また、生理食塩水として0.90質量%塩化ナトリウム水溶液を用いた。   Various performances of the water absorbing agent were measured by the following methods. Further, these characteristics were evaluated using a water-absorbing resin instead of the water-absorbing agent. All electric devices used in the examples were used under conditions of 100 V and 60 Hz. Furthermore, unless otherwise specified, the water-absorbing resin, water-absorbing agent, and absorbent article were used under the conditions of 25 ° C. ± 2 ° C. and relative humidity of 50% RH. Moreover, 0.90 mass% sodium chloride aqueous solution was used as physiological saline.

また、比較として市販品の吸水性樹脂やおむつ、おむつから取り出した吸水性樹脂で比較試験する際、流通過程で吸湿している場合、適宜、減圧乾燥(例、60〜80℃で16時間程度)して吸水性樹脂の含水率を平衡(5質量%前後、2〜8質量%)にまで乾燥したののちに比較すればよい。   In addition, as a comparison, when a comparative test is performed with a commercially available water-absorbent resin, a diaper, or a water-absorbent resin taken out from the diaper, if moisture is absorbed in the distribution process, it is appropriately dried under reduced pressure (eg, 60 to 80 ° C. for about 16 hours). ) And the moisture content of the water-absorbent resin is dried to equilibrium (around 5% by mass, 2 to 8% by mass) and then compared.

(a)生理食塩水に対する無加圧下吸収倍率(CRC/Cenrifuge Retension Capacity)
吸水剤0.20gを不織布製の袋(60mm×85mm)に均一に入れ、25±2℃に調温した生理食塩水中に浸漬した。30分後に袋を引き上げ、遠心分離機(株式会社コクサン製、型式H−122小型遠心分離機)を用いて250G(250×9.81m/s)で3分間水切りを行った後、袋の質量W2(g)を測定した。また、吸水剤を用いないで同様の操作を行い、そのときの質量W1(g)を測定した。そして、これら質量W1、W2から、次式に従って、吸収倍率(g/g)を算出した。
(A) Absorption capacity under no pressure with respect to physiological saline (CRC / Cenrifuge Retention Capacity)
0.20 g of the water-absorbing agent was evenly placed in a non-woven bag (60 mm × 85 mm) and immersed in physiological saline adjusted to 25 ± 2 ° C. After 30 minutes, the bag was pulled up, drained at 250 G (250 × 9.81 m / s 2 ) for 3 minutes using a centrifuge (manufactured by Kokusan Co., Ltd., model H-122 small centrifuge), Mass W2 (g) was measured. Moreover, the same operation was performed without using a water absorbing agent, and the mass W1 (g) at that time was measured. And from these masses W1 and W2, the absorption capacity (g / g) was calculated according to the following formula.

Figure 2006055833
Figure 2006055833

(b)生理食塩水への4.8kPaでの高加圧下吸収倍率(Absorbency Against Pressure at 4.8kPa;AAP4.8kPa)
400メッシュのステンレス製金網(目の大きさ38μm)を円筒断面の一辺(底)に溶着させた内径60mmのプラスチック製支持円筒の底の金網上に、吸水剤0.900gを均一に散布し、その上に外径が60mmよりわずかに小さく支持円筒との壁面に隙間が生じずかつ上下の動きは妨げられないピストン(cover plate)を載置し、支持円筒と吸水剤とピストンの質量W3(g)を測定した。このピストン上に、吸水剤に対して、ピストンを含め4.8kPa(約50g/cm、約0.7psi)の荷重を均一に加えることができるように調整された荷重を載置し、測定装置一式を完成させた。直径150mmのペトリ皿の内側に直径90mm、厚さ5mmのガラスフィルターを置き、25±2℃に調温した生理食塩水をガラスフィルターの上部面と同レベルになるように加えた。その上に直径9cmの濾紙(トーヨー濾紙(株)製、No.2)を1枚載せて表面が全て濡れるようにし、かつ過剰の液を除いた。
(B) Absorption capacity at a high pressure of 4.8 kPa in saline (Absorbency Against Pressure at 4.8 kPa; AAP 4.8 kPa)
0.900 g of a water-absorbing agent is uniformly sprayed on a metal mesh at the bottom of a plastic support cylinder having an inner diameter of 60 mm in which a 400-mesh stainless steel mesh (mesh size 38 μm) is welded to one side (bottom) of a cylindrical cross section, A piston (cover plate) whose outer diameter is slightly smaller than 60 mm and no gap is formed on the wall surface with the support cylinder and the vertical movement is not hindered is placed thereon, and the support cylinder, water-absorbing agent, and piston mass W3 ( g) was measured. On this piston, a load adjusted so that a load of 4.8 kPa (about 50 g / cm 2 , about 0.7 psi) including the piston can be uniformly applied to the water-absorbing agent is measured. Completed the device. A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a petri dish having a diameter of 150 mm, and physiological saline adjusted to 25 ± 2 ° C. was added so as to be at the same level as the upper surface of the glass filter. On top of that, a sheet of 9 cm diameter filter paper (Toyo Filter Paper Co., Ltd., No. 2) was placed so that the entire surface was wetted, and excess liquid was removed.

上記測定装置一式を上記湿った濾紙上にのせ、液を荷重下で吸収させた。液面がガラスフィルターの上部から低下したら液を追加し、液面レベルを一定に保った。1時間後に測定装置一式を持ち上げ、荷重を取り除いた質量W4(g)(支持円筒と膨潤した吸水剤とピストンの質量)を再測定した。そして、これら質量W3、W4から、次式に従って高加圧下吸収倍率(AAP4.8kPa)(g/g)を算出した。   The set of measuring devices was placed on the wet filter paper, and the liquid was absorbed under load. When the liquid level dropped from the top of the glass filter, the liquid was added to keep the liquid level constant. After 1 hour, the set of measuring devices was lifted, and the mass W4 (g) (the mass of the supporting cylinder, the swollen water absorbing agent and the piston) after removing the load was measured again. And from these masses W3 and W4, the absorption capacity under high pressure (AAP 4.8 kPa) (g / g) was calculated according to the following formula.

Figure 2006055833
Figure 2006055833

(c)生理食塩水への1.9kPaでの加圧下吸収倍率(Absorbency Against Pressure at 1.9kPa:AAP1.9kPa)
上記(b)において、吸水剤に対してピストンを含めて均一に加える荷重を、1.9kPa(約20g/cm、約0.3psi)に変更する以外は、同じ操作を行い、同じ計算を用いることで、加圧下吸収倍率(AAP1.9kPa)を算出した。
(C) Absorption capacity under pressure at 1.9 kPa in physiological saline (Absorbency Against Pressure at 1.9 kPa: AAP 1.9 kPa)
In the above (b), the same operation is performed except that the load uniformly applied to the water absorbing agent including the piston is changed to 1.9 kPa (about 20 g / cm 2 , about 0.3 psi). By using, the absorption capacity under pressure (AAP 1.9 kPa) was calculated.

(d)質量(重量)平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率
吸水剤を、850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、45μmのJIS標準ふるいで分級篩い分けし、粒子径150μm未満の質量百分率を実測するとともに、各粒度の残留百分率Rを対数確率紙にプロットした。これにより、R=50質量%に相当する粒径を質量平均粒子径(D50)として読み取った。また、対数標準偏差(σζ)は下記の式で表され、σζの値が小さいほど粒度分布が狭いことを意味する。
(D) Mass (weight) average particle diameter (D50), logarithmic standard deviation (σζ) and mass percentage of particle diameter less than 150 μm Water absorbing agent is 850 μm, 710 μm, 600 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, Classification was performed using a 45 μm JIS standard sieve, and the mass percentage with a particle size of less than 150 μm was measured. The residual percentage R of each particle size was plotted on a logarithmic probability paper. Thereby, the particle size corresponding to R = 50% by mass was read as the mass average particle size (D50). In addition, the logarithmic standard deviation (σζ) is expressed by the following equation, and the smaller the value of σζ, the narrower the particle size distribution.

Figure 2006055833
Figure 2006055833

なお、分級篩い分けは、吸水剤10.00gを上記目開きのJIS標準ふるい(The IIDA TESTING SIEVE:内径80mm)に仕込み、ロータップ型ふるい振盪機((株)飯田製作所製、ES−65型ふるい振盪機)により5分間分級した。   In addition, the classification sieve is prepared by charging 10.00 g of the water-absorbing agent into the above-mentioned JIS standard sieve (The IIDA TESTING SIEVE: inner diameter 80 mm) and using a low-tap type sieve shaker (manufactured by Iida Seisakusho, ES-65 type sieve). Classification for 5 minutes using a shaker.

なお、質量平均粒子径(D50)とは、米国特許5051259号公報などにあるように一定目開きの標準ふるいで粒子全体の50質量%に対応する標準ふるいの粒子径のことである。   The mass average particle diameter (D50) is a particle diameter of a standard sieve corresponding to 50% by mass of the whole particle with a standard sieve having a constant mesh as described in US Pat. No. 5,051,259.

(e)可溶分(生理食塩水中での1時間および16時間可溶分)
まず、生理食塩水中での1時間および16時間の可溶分(以下、それぞれ1時間可溶分、16時間可溶分と称す。)の測定前の準備を記す。pH4.0、pH7.0、pH10.0の緩衝液で、pH電極を校正する。次に、ブランクとして予め調整された生理食塩水50mlを100mlのガラスビーカーに計り取り、長さ30mmのスターラーチップで攪拌しながら、pH10になるまで0.1mol/Lの水酸化ナトリウム水溶液を滴下してブランクの水酸化ナトリウム水溶液滴下量Vab(ml)を求めた。引き続き攪拌しながら、pH2.7になるまで0.1mol/Lの塩酸水溶液を滴下して、ブランクの塩酸滴下量Vbb(ml)を求めた。
(E) Soluble component (soluble component in physiological saline for 1 hour and 16 hours)
First, preparations before measurement of 1-hour and 16-hour soluble components in physiological saline (hereinafter referred to as 1-hour soluble components and 16-hour soluble components, respectively) will be described. Calibrate the pH electrode with a pH 4.0, pH 7.0, pH 10.0 buffer. Next, 50 ml of a physiological saline solution prepared in advance as a blank was weighed into a 100 ml glass beaker, and 0.1 mol / L sodium hydroxide aqueous solution was dropped until pH 10 while stirring with a 30 mm long stirrer chip. The blank sodium hydroxide aqueous solution dropping amount V ab (ml) was determined. While stirring continuously, 0.1 mol / L hydrochloric acid aqueous solution was dropped until pH 2.7 was obtained, and a blank hydrochloric acid dropping amount V bb (ml) was determined.

予め調整された生理食塩水200mlを蓋付きの250mlのポリプロピレンカップに加え、そこに後述する実施例または比較例で得られた吸水剤1.0g(=m(g))を添加した。そして、長さ30mmで太さ8mmの攪拌子を用いて500±50rpmで1時間または16時間攪拌して可溶分を抽出した。1時間または16時間の攪拌後、濾紙(トーヨー濾紙(株)製、No.2、JIS P 3801で規定された保留粒子径5μm)を用いて濾過し、濾液を得た。   200 ml of physiological saline prepared in advance was added to a 250 ml polypropylene cup with a lid, and 1.0 g (= m (g)) of the water-absorbing agent obtained in Examples or Comparative Examples described later was added thereto. Then, a soluble matter was extracted by stirring at 500 ± 50 rpm for 1 hour or 16 hours using a stirring bar having a length of 30 mm and a thickness of 8 mm. After stirring for 1 hour or 16 hours, the mixture was filtered using filter paper (manufactured by Toyo Filter Paper Co., Ltd., No. 2, retention particle diameter defined by JIS P 3801) to obtain a filtrate.

得られた濾液20ml(=F(ml)として記録)を100mlのガラスビーカーに計り取り、生理食塩水で50mlにメスアップして滴定用濾液とした。なお、濾液があまり多く得られず20ml未満であった場合は、その全量をF(ml)と記録した上で、0.90質量%塩化ナトリウム水溶液で50mlにメスアップして滴定用濾液とした。   20 ml of the obtained filtrate (recorded as F (ml)) was weighed into a 100 ml glass beaker and made up to 50 ml with physiological saline to obtain a titration filtrate. In addition, when not much filtrate was obtained and less than 20 ml, after recording the whole amount as F (ml), it was made up to 50 ml with 0.90 mass% sodium chloride aqueous solution to obtain a filtrate for titration. .

その後、測定用濾液を長さ30mmで太さ8mmの円筒型攪拌子で攪拌しながら、pH10になるまで0.1mol/Lの水酸化ナトリウム水溶液を滴下して水酸化ナトリウム水溶液滴下量V(ml)を求めた。引き続き攪拌しながら、pH2.7になるまで0.1mol/Lの塩化酸水溶液を滴下して、塩酸水溶液滴下量V(ml)を求めた。また、可溶分(%)を求める計算式は以下のとおりのである。 Then, while stirring the measurement filtrate with a cylindrical stirrer having a length of 30 mm and a thickness of 8 mm, a 0.1 mol / L sodium hydroxide aqueous solution was dropped until pH 10 was reached, and a sodium hydroxide aqueous solution dropping amount V a ( ml). While continuing stirring, a 0.1 mol / L aqueous hydrochloric acid solution was added dropwise until the pH reached 2.7, and a hydrochloric acid aqueous solution dropping amount V b (ml) was determined. Moreover, the calculation formula which calculates | requires soluble content (%) is as follows.

Figure 2006055833
Figure 2006055833

ここで、W(g)は吸水剤の可溶分のうち酸基を有するユニットの相対質量であり、Wは吸水剤に含まれている可溶分のうちアルカリ金属によって中和されたカルボキレート基を有するユニットの相対質量であって、それぞれ以下の計算式で求められる。 Here, W a (g) is the relative mass of the unit having an acid group among the soluble components of the water-absorbing agent, and W b is neutralized by an alkali metal among the soluble components contained in the water-absorbing agent. It is the relative mass of the unit having a carbochelate group, and can be determined by the following calculation formulas.

Figure 2006055833
Figure 2006055833

ここで、72はアクリル酸ポリマーの繰り返しユニット1モルあたりの質量であり、アクリル酸以外の酸基を有するモノマーを共重合させる場合には、該モノマーを含めた繰り返しユニットの平均質量の値に変えられる。また、94はアクリル酸ナトリウムポリマーの繰り返しユニット1モルあたりの質量であり、アクリル酸以外の酸基を有するモノマーを共重合させる場合、また、アルカリ金属塩としてナトリウム以外にカリウム、リチウム等を用いた場合には、適宜、変更される。   Here, 72 is the mass per mole of the repeating unit of the acrylic acid polymer, and when the monomer having an acid group other than acrylic acid is copolymerized, the average mass of the repeating unit including the monomer is changed. It is done. Moreover, 94 is the mass per 1 mol of repeating units of the sodium acrylate polymer. When a monomer having an acid group other than acrylic acid is copolymerized, potassium, lithium or the like is used as the alkali metal salt in addition to sodium. In the case, it is changed appropriately.

(mol)は濾液中に含まれる可溶分のうち酸基のモル数であり、N(mol)は濾液中に含まれる可溶分のうちアルカリ金属によって中和されたカルボキレート基のモル数であって、次の式で求められる。 N a (mol) is the number of moles of an acid group in the soluble component contained in the filtrate, and N b (mol) is a carbochelate group neutralized by an alkali metal in the soluble component contained in the filtrate. The number of moles is determined by the following formula.

Figure 2006055833
Figure 2006055833

ここでN(mol)は測定用濾液中に含まれる可溶分のモル総数であり、以下の計算式で求められる。 Here, N 1 (mol) is the total number of moles of soluble components contained in the measurement filtrate, and is determined by the following calculation formula.

Figure 2006055833
Figure 2006055833

以上の式によって求められた可溶分量は、生理食塩水中で1時間の攪拌によって得られた濾液を用いた場合は1時間可溶分(%)、生理食塩水中で16時間の攪拌によって得られた濾液を用いた場合は16時間可溶分(%)として区別した。   The amount of soluble content determined by the above formula is obtained by stirring for 1 hour in physiological saline and stirring for 16 hours in physiological saline when using a filtrate obtained by stirring for 1 hour in physiological saline. When the filtrate was used, it was distinguished as soluble content (%) for 16 hours.

(f)耐尿性評価(劣化試験液での1時間可溶分、可溶分劣化増加量、可溶分劣化増加倍率)
予め調製した生理食塩水に、0.05質量%となるようにL−アスコルビン酸を添加し、劣化試験液を作成した。具体的には、999.5gの生理食塩水に0.50gのL−アスコルビン酸を溶解して、劣化試験液を調製した。
(F) Evaluation of urine resistance (1 hour soluble content in degradation test solution, soluble content degradation increase amount, soluble content degradation increase ratio)
L-ascorbic acid was added to physiological saline prepared in advance so as to be 0.05% by mass to prepare a deterioration test solution. Specifically, a degradation test solution was prepared by dissolving 0.50 g of L-ascorbic acid in 999.5 g of physiological saline.

劣化試験液25mlを蓋付きの250mlのポリプロピレンカップに加え、そこに吸水剤1.0gを添加することにより膨潤ゲルを形成させた。この容器に蓋をして密閉し、膨潤ゲルを37℃の雰囲気下に16時間静置した。   25 ml of the deterioration test solution was added to a 250 ml polypropylene cup with a lid, and 1.0 g of a water absorbing agent was added thereto to form a swollen gel. The container was covered and sealed, and the swollen gel was allowed to stand in an atmosphere of 37 ° C. for 16 hours.

16時間後、175mlの生理食塩水と長さ30mmで太さ8mmの円筒型攪拌子を投入し、劣化させた後の可溶分を(d)と同様に1時間攪拌して含水ゲルから抽出した。   After 16 hours, 175 ml of physiological saline and a cylindrical stirrer having a length of 30 mm and a thickness of 8 mm were added, and the soluble matter after deterioration was extracted from the hydrogel by stirring for 1 hour as in (d). did.

1時間の攪拌で抽出後、前項(d)可溶分の測定法と同じ方法で濾過し、pH滴定を行い、同じ計算式で劣化試験液での1時間可溶分(%)を求めた。なお、耐尿性を評価する上で劣化して増加した可溶分の絶対量を比較する場合には、以下の計算式を用いて可溶分劣化増加量(質量%)を算出した。   After extraction with stirring for 1 hour, filtration was performed by the same method as in the previous method (d) measurement of soluble content, pH titration was performed, and 1 hour soluble content (%) in the deterioration test solution was obtained by the same calculation formula. . In addition, when comparing the absolute amount of the soluble component which deteriorated and increased in evaluating urinary resistance, the soluble component degradation increase amount (% by mass) was calculated using the following formula.

Figure 2006055833
Figure 2006055833

また、耐尿性を評価する上で劣化していない状態に比べて、劣化後の可溶分が生成してどれだけの可溶分になったかを比較する場合には、以下の計算式を用いて可溶分劣化増加倍率(倍)を算出した。   In addition, when comparing the amount of soluble content after degradation and the amount of soluble content after degradation compared to the undegraded state in evaluating urine resistance, the following formula is used. It was used to calculate the soluble component deterioration increase ratio (times).

Figure 2006055833
Figure 2006055833

(g)吸収速度評価(Vortex法)
予め調整された0.90質量%塩化ナトリウム水溶液(生理食塩水)の1000質量部に食品添加物である食用青色1号0.02質量部を添加し、液温30℃に調整した。その生理食塩水50mlを100mlビーカーに計り取り、長さ40mmで太さ8mmの円筒型攪拌子で600rpmで攪拌する中に、吸水剤2.0gを投入し、吸収速度(秒)を測定した。終点は、JIS K 7224−1996年度「高吸水性樹脂の吸水速度試験方法 解説」に記載されている基準に準じ、吸水剤が生理食塩水を吸液してスターラーチップを試験液で覆うまでの時間を吸収速度(秒)として測定した。
(G) Absorption rate evaluation (Vortex method)
To 1000 parts by mass of a 0.90% by mass aqueous sodium chloride solution (saline) prepared in advance, 0.02 part by mass of food blue No. 1 as a food additive was added, and the liquid temperature was adjusted to 30 ° C. 50 ml of the physiological saline was weighed into a 100 ml beaker, and while stirring at 600 rpm with a cylindrical stirrer having a length of 40 mm and a thickness of 8 mm, 2.0 g of a water-absorbing agent was added, and the absorption rate (seconds) was measured. In accordance with the standard described in JIS K 7224-1996 “Explanation of water absorption rate test method for highly water-absorbent resin”, the end point is from when the water-absorbing agent absorbs physiological saline and covers the stirrer chip with the test solution. Time was measured as absorption rate (seconds).

(h)吸湿流動性(質量%)
吸水剤2gを底面の直径52mm、高さ22mmのアルミニウムカップの底に均一に散布し、あらかじめ25℃、相対湿度90%に調整した恒温恒湿器(タバイエスペック製PLATIOOUS LUCIFER PL−2G)にすばやく入れ、60分間放置した。その後、吸湿した吸水剤を直径7.5cm、目開き2000μmのJIS標準ふるいに移す。この時、吸湿した吸水剤がアルミカップに強固に付着し、ふるいに移せない場合は、吸湿しブロッキングを起こした状態の吸水剤を、できるだけ崩さないように注意しながら剥がし取ってふるいに移す。これをすぐに、振動分級器(IIDA SIEVE SHAKER、TYPE:ES−65型、SER.No.0501)により8秒間ふるい、ふるい上に残存した吸水剤の質量W5(g)およびふるいを通過した吸水剤の質量W6(g)を測定した。下記式により、吸湿流動性(質量%)を算出した。吸湿流動性が低いほど、吸湿した場合の流動性に優れており、粉体の取り扱い性等が向上する。
(H) Hygroscopic fluidity (% by mass)
2g of water absorbing agent is evenly sprayed on the bottom of an aluminum cup with a bottom diameter of 52mm and a height of 22mm, and is quickly applied to a constant temperature and humidity chamber (PLATIOUS LUCIFER PL-2G manufactured by Tabayie Spec) adjusted to 25 ° C and 90% relative humidity in advance. And left for 60 minutes. Thereafter, the water-absorbing water-absorbing agent is transferred to a JIS standard sieve having a diameter of 7.5 cm and an opening of 2000 μm. At this time, if the water-absorbing water-absorbing agent adheres firmly to the aluminum cup and cannot be transferred to the sieve, the moisture-absorbing and blocked water-absorbing agent is peeled off with care so as not to collapse as much as possible and transferred to the sieve. Immediately, this was sieved for 8 seconds with a vibration classifier (IIDA SIEVE SHAKER, TYPE: ES-65 type, SER. No. 0501), the mass W5 (g) of the water-absorbing agent remaining on the sieve and the water absorption that passed through the sieve. The mass W6 (g) of the agent was measured. The hygroscopic fluidity (mass%) was calculated by the following formula. The lower the moisture-absorbing fluidity, the better the fluidity when absorbing moisture, and the handleability of the powder is improved.

Figure 2006055833
Figure 2006055833

(i)消臭テスト(吸水剤の評価)
成人20人より集めた人尿50mlを蓋付きの120mlのポリプロピレンカップに加え、そこに吸水剤2.0gを添加することにより膨潤ゲルを形成させた。人尿は排泄後2時間以内のものを用いた。この容器に蓋をし、膨潤ゲルを37℃に保った。液吸収から6時間後に蓋を開け、カップの上部から約3cmの位置から成人20名のパネラーが臭いをかぐことにより、消臭効果を判定した。判定は、下記の判定基準を用いて各人6段階で得点を記載し平均値を求めた。なお吸水剤を添加せず人尿だけで、同様の操作を行ったものを標準品とし、その臭いを5として消臭効果を評価した。
(I) Deodorization test (evaluation of water-absorbing agent)
50 ml of human urine collected from 20 adults was added to a 120 ml polypropylene cup with a lid, and 2.0 g of a water absorbing agent was added thereto to form a swollen gel. Human urine was used within 2 hours after excretion. The container was capped and the swollen gel was kept at 37 ° C. The lid was opened 6 hours after liquid absorption, and the deodorizing effect was determined by 20 adult panelists smelling from about 3 cm from the top of the cup. For the determination, the score was described in 6 stages for each person using the following criteria, and the average value was obtained. In addition, the deodorizing effect was evaluated with a standard product obtained by performing the same operation using only human urine without adding a water-absorbing agent and setting the odor to 5.

0:無臭
1:やっと感知できるにおい
2:感知できるが許容できる臭い
3:楽に感知できる臭い
4:強い臭い
5:強烈な臭い
(j)吸収体性能評価(10分戻り量と劣化戻り量)
吸水剤を、吸収体として性能評価するために評価用吸収体を作成し戻り量評価を行った。
0: Odorless 1: Smell that can be finally detected 2: Smell that can be detected but acceptable 3: Smell that can be easily detected 4: Strong odor 5: Intense odor (j) Absorber performance evaluation (10-minute return and deterioration return)
In order to evaluate the performance of the water-absorbing agent as an absorber, an absorber for evaluation was prepared and the return amount was evaluated.

まず、評価用の吸収体の作成方法を以下に示した。   First, a method for producing an absorber for evaluation was shown below.

後述する吸水剤1質量部と、木材粉砕パルプ2質量部とを、ミキサーを用いて乾式混合した。次いで、得られた混合物を、400メッシュ(目の大きさ38μm)に形成されたワイヤースクリーン上に広げ、直径90mmφの大きさのウェブに成形した。さらに、このウェブを圧力196.14kPa(2kgf/cm)で1分間プレスすることにより、坪量が約0.05g/cmの評価用吸収体を得た。 1 part by mass of a water absorbing agent to be described later and 2 parts by mass of pulverized wood pulp were dry-mixed using a mixer. Next, the obtained mixture was spread on a wire screen formed to 400 mesh (mesh size: 38 μm) and formed into a web having a diameter of 90 mmφ. Further, this web was pressed at a pressure of 196.14 kPa (2 kgf / cm 2 ) for 1 minute to obtain an absorbent for evaluation having a basis weight of about 0.05 g / cm 2 .

続いて、10分戻り量評価の方法を以下に示す。   Subsequently, a method for evaluating the return amount for 10 minutes is shown below.

内径90mmφのSUS製シャーレの底に上記評価用吸収体、その上に直径90mmφの不織布を敷いた。続いて上記の(f)耐尿性評価で使用した、劣化試験液30mlを該不織布の上から注ぎ、無荷重の状態で10分間吸液させた。その後、予め総質量(W7(g))を測定した外径90mmφの濾紙(トーヨー濾紙(株)製、No.2)30枚を不織布の上に置いた。ついで、上記吸収体、不織布および濾紙に均一に荷重がかかるように、外径90mmφのピストンとおもり(ピストンとおもりの総和が20kg)を濾紙上に置いた。5分間荷重をかけて上記濾紙に液の戻り分を吸液させた。その後、30枚の濾紙の質量(W8(g))測定し、以下の計算式から10分戻り量を測定した。   The absorber for evaluation was laid on the bottom of a SUS petri dish having an inner diameter of 90 mmφ, and the nonwoven fabric having a diameter of 90 mmφ was laid thereon. Subsequently, 30 ml of the deterioration test solution used in the above (f) urine resistance evaluation was poured from above the nonwoven fabric and allowed to absorb liquid for 10 minutes under no load. Thereafter, 30 sheets of filter paper (No. 2 manufactured by Toyo Filter Paper Co., Ltd.) having an outer diameter of 90 mmφ, whose total mass (W7 (g)) was measured in advance, were placed on the nonwoven fabric. Subsequently, a piston and a weight having an outer diameter of 90 mmφ (a total sum of the piston and the weight was 20 kg) were placed on the filter paper so that the load was uniformly applied to the absorbent body, the nonwoven fabric, and the filter paper. A load was applied for 5 minutes, and the returned liquid was absorbed into the filter paper. Then, the mass (W8 (g)) of 30 filter papers was measured, and the return amount for 10 minutes was measured from the following calculation formula.

Figure 2006055833
Figure 2006055833

また、劣化戻り量評価の方法を以下に示した。   In addition, the method for evaluating the degradation return amount is shown below.

上記と同様に作成された評価用吸収体を、上記と同じように操作して予め調製された劣化試験液30mlを該不織布の上から注ぎ、無荷重の状態で吸液させて16時間37℃の雰囲気下に静置した。なお、静置中は出来るだけ水分が蒸発しないように、該シャーレを140mm×200mmの大きさのポリエチレン袋に入れて密封した。   The evaluation absorbent prepared in the same manner as described above was operated in the same manner as described above, and 30 ml of a deterioration test solution prepared in advance was poured from above the non-woven fabric to absorb liquid under no load for 16 hours at 37 ° C. Was left in the atmosphere. In addition, the petri dish was sealed in a polyethylene bag having a size of 140 mm × 200 mm so that moisture would not evaporate as much as possible during standing.

所定時間経過後、予め総質量(W9(g))を測定した外径90mmφの濾紙(トーヨー濾紙(株)製、No.2)30枚を不織布の上に置いた。ついで、上記吸収体、不織布および濾紙に均一に荷重がかかるように、外径90mmφのピストンとおもり(ピストンとおもりの総和が20kg)を濾紙上に置いた。5分間荷重をかけて上記濾紙に液の戻り分を吸液させた。その後、30枚の濾紙の質量(W10(g))測定し、以下の計算式から劣化戻り量を測定した。   After a predetermined time, 30 sheets of filter paper (No. 2 manufactured by Toyo Filter Paper Co., Ltd.) having an outer diameter of 90 mmφ whose total mass (W9 (g)) was measured in advance were placed on the nonwoven fabric. Subsequently, a piston and a weight having an outer diameter of 90 mmφ (a total sum of the piston and the weight was 20 kg) were placed on the filter paper so that the load was uniformly applied to the absorbent body, the nonwoven fabric, and the filter paper. A load was applied for 5 minutes, and the returned liquid was absorbed into the filter paper. Then, the mass (W10 (g)) of 30 filter papers was measured, and the degradation return amount was measured from the following calculation formula.

Figure 2006055833
Figure 2006055833

[参考例1]
75モル%の中和率を有するアクリル酸ナトリウムの水溶液1500g(単量体濃度24質量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数9)4.3gを溶解し反応液とした。得られた反応液を長さ320mm×横幅220mm×高さ50mmのサイズのステンレス製バットに注入した。このとき反応液の厚みは17mmであった。該ステンレス製バットを、窒素導入口、排気口、および重合開始剤投入口を設けたポリエチレンフィルムで上部をシールした後、30℃のウォーターバスに浸け、反応液の温度を30℃に調整しながら、該反応液に窒素ガスを導入して液中の溶存酸素を除いた。その後は、窒素ガスを反応容器の上部空間に導入し、反対側から排気しつづけた。重合開始剤として、2,2’−アゾビス(2−アミジノプロパン)ジハイドロクロライドの10質量%水溶液を5.1g、過硫酸ナトリウムの10質量%水溶液を2.5g、L−アスコルビン酸の1質量%水溶液を0.4g、および過酸化水素の0.35質量%水溶液を2.2g注入して、マグネティックスターラーで十分混合した。重合開始剤投入後1分で重合が開始したので、ステンレス製バットを液温12℃のウォーターバスにバットの底から10mmの高さまで浸ける操作を断続的に繰り返して重合温度をコントロールした。重合開始後55分で重合ピーク80℃を示したので、ゲルを熟成するため液温70℃のウォーターバスにバットの底から10mmの高さまで浸け60分間保持した。得られた含水ゲル状重合体を9.5mmの口径を有するダイスを付けたミートチョッパー(株式会社平賀製作所No.32型ミートチョッパー)で粉砕し、50メッシュ(目の大きさ300μm)の金網上に広げ、160℃で60分間熱風乾燥した。次いで乾燥物をロールミルで粉砕し、目開き710μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(a)を得た。得られた吸水性樹脂(a)の無加圧下吸収倍率(CRC)、質量平均粒子径(D50)、150μm未満の粒子の割合(%)を表1に示す。なお、以下の参考例で得られた吸水性樹脂(b)〜(l)についても同様に評価を行い、表1に示す。
[Reference Example 1]
In 1500 g of an aqueous solution of sodium acrylate having a neutralization rate of 75 mol% (monomer concentration: 24% by mass), 4.3 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 9) was dissolved to obtain a reaction solution. The obtained reaction solution was poured into a stainless bat having a size of 320 mm long × 220 mm wide × 50 mm high. At this time, the thickness of the reaction solution was 17 mm. The stainless steel bat was sealed with a polyethylene film provided with a nitrogen inlet, an exhaust port, and a polymerization initiator inlet, and then immersed in a 30 ° C. water bath, while adjusting the temperature of the reaction solution to 30 ° C. Then, nitrogen gas was introduced into the reaction solution to remove dissolved oxygen in the solution. Thereafter, nitrogen gas was introduced into the upper space of the reaction vessel and continued to be exhausted from the opposite side. As a polymerization initiator, 5.1 g of a 10 mass% aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride, 2.5 g of a 10 mass% aqueous solution of sodium persulfate, and 1 mass of L-ascorbic acid 0.4 g of a 0.1% aqueous solution and 2.2 g of a 0.35 mass% aqueous solution of hydrogen peroxide were injected and mixed well with a magnetic stirrer. Since the polymerization started 1 minute after the polymerization initiator was charged, the operation of immersing the stainless steel vat in a water bath having a liquid temperature of 12 ° C. to a height of 10 mm from the bottom of the vat was repeated repeatedly to control the polymerization temperature. Since a polymerization peak of 80 ° C. was exhibited 55 minutes after the start of the polymerization, it was immersed in a water bath at a liquid temperature of 70 ° C. to a height of 10 mm from the bottom of the vat and held for 60 minutes in order to age the gel. The obtained hydrogel polymer was pulverized with a meat chopper (No. 32 type meat chopper, Hiraga Manufacturing Co., Ltd.) with a die having a diameter of 9.5 mm, on a wire mesh of 50 mesh (mesh size 300 μm). And dried with hot air at 160 ° C. for 60 minutes. Next, the dried product was pulverized with a roll mill, classified and prepared with a wire mesh having openings of 710 μm and 150 μm to obtain an irregularly crushed water-absorbent resin powder (a). Table 1 shows the absorption capacity without load (CRC), the mass average particle diameter (D50), and the ratio (%) of particles less than 150 μm of the obtained water-absorbent resin (a). In addition, it evaluated similarly about the water absorbing resin (b)-(l) obtained by the following reference examples, and it shows in Table 1.

得られた吸水性樹脂粉末(a)100質量部に、プロピレングリコール0.55質量部と、1,4−ブタンジオール0.35質量部と、水3質量部とからなる表面架橋剤3.9質量部を混合した。上記の混合物を熱媒温度210℃で40分間加熱処理することにより吸水性樹脂(1)を得た。   A surface cross-linking agent 3.9 consisting of 0.55 parts by mass of propylene glycol, 0.35 parts by mass of 1,4-butanediol, and 3 parts by mass of water is added to 100 parts by mass of the obtained water absorbent resin powder (a). Mass parts were mixed. The mixture was heat-treated at a heat medium temperature of 210 ° C. for 40 minutes to obtain a water absorbent resin (1).

[参考例2]
75モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度40質量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数9)4.0gを溶解し反応液とした。次いで、シグマ型羽根を2本有する内容積10Lのジャケット付きステンレス製双腕型ニーダーに蓋を付けて形成した反応器に、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸ナトリウムの10質量%水溶液29.8g及びL−アスコルビン酸の1質量%水溶液1.5gを添加したところ、1分後に重合が開始した。重合開始後15分で重合ピーク温度93℃を示し、重合を開始して60分後に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体は1〜4mmの粒子に細分化されていた。この細分化された含水ゲル状重合体を50メッシュ(目の大きさ300μm)の金網上に広げ、160℃で60分間熱風乾燥した。次いで、乾燥物をロールミルを用いて粉砕し、さらに目開き710μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(b)を得た。
[Reference Example 2]
4.0 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 9) was dissolved in 5500 g of an aqueous solution of sodium acrylate having a neutralization rate of 75 mol% (monomer concentration 40% by mass) to prepare a reaction solution. Next, the reaction solution was supplied to a reactor formed by attaching a lid to a stainless steel double-armed kneader with an internal volume of 10 L having two sigma-shaped blades, and the system was nitrogenated while maintaining the reaction solution at 30 ° C. The gas was replaced. Subsequently, 29.8 g of a 10% by weight aqueous solution of sodium persulfate and 1.5 g of a 1% by weight aqueous solution of L-ascorbic acid were added while stirring the reaction solution, and polymerization started 1 minute later. A polymerization peak temperature of 93 ° C. was exhibited 15 minutes after the start of polymerization, and a hydrogel polymer was taken out 60 minutes after the start of polymerization. The obtained hydrogel polymer was subdivided into particles of 1 to 4 mm. This finely divided hydrogel polymer was spread on a 50 mesh (mesh size 300 μm) wire net and dried with hot air at 160 ° C. for 60 minutes. Subsequently, the dried product was pulverized using a roll mill, and further classified and prepared with a wire mesh having openings of 710 μm and 150 μm to obtain an amorphous crushed water-absorbent resin powder (b).

得られた吸水性樹脂粉末(b)100質量部に、プロピレングリコール0.5質量部と、エチレングリコールジグリシジルエーテル0.03質量部と、1,4−ブタンジオール0.3質量部と、水2.7質量部とからなる表面架橋剤3.53質量部を混合した。上記の混合物を熱媒温度210℃で45分間加熱処理することにより吸水性樹脂(2)を得た。   To 100 parts by mass of the obtained water absorbent resin powder (b), 0.5 part by mass of propylene glycol, 0.03 part by mass of ethylene glycol diglycidyl ether, 0.3 part by mass of 1,4-butanediol, and water 3.53 parts by mass of a surface cross-linking agent consisting of 2.7 parts by mass was mixed. The mixture was heat-treated at a heat medium temperature of 210 ° C. for 45 minutes to obtain a water absorbent resin (2).

[参考例3]
75モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度38質量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数9)2.5gを溶解し反応液とした。次に、この反応液を参考例2と同様に脱気したのち、参考例2の反応器に、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸ナトリウムの10質量%水溶液29.8g及びL−アスコルビン酸の1質量%水溶液1.5gを添加したところ、およそ1分後に重合が開始した。重合開始後17分で重合ピーク温度86℃を示し、重合を開始して60分後に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体は約1〜4mmの粒子に細分化されていた。この含水ゲル状重合体を参考例2と同様に乾燥・粉砕し、さらに目開き710μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(c)を得た。
[Reference Example 3]
2.5 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 9) was dissolved in 5500 g of an aqueous solution of sodium acrylate having a neutralization rate of 75 mol% (monomer concentration 38 mass%) to prepare a reaction solution. Next, after degassing this reaction solution in the same manner as in Reference Example 2, the above reaction solution was supplied to the reactor of Reference Example 2, and the system was purged with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 29.8 g of a 10% by weight aqueous solution of sodium persulfate and 1.5 g of a 1% by weight aqueous solution of L-ascorbic acid were added, and polymerization started about 1 minute later. A polymerization peak temperature of 86 ° C. was exhibited 17 minutes after the start of the polymerization, and a hydrogel polymer was taken out 60 minutes after the start of the polymerization. The obtained hydrogel polymer was fragmented into particles of about 1 to 4 mm. This hydrogel polymer was dried and pulverized in the same manner as in Reference Example 2, and further classified and prepared with a wire mesh having openings of 710 μm and 150 μm to obtain amorphous crushed water absorbent resin powder (c).

次いで、得られた吸水性樹脂粉末(c)100質量部に、参考例2と同じ組成の表面架橋剤3.53質量部を混合した。上記の混合物を熱媒温度195℃で40分間加熱処理することにより吸水性樹脂(3)を得た。   Next, 3.53 parts by mass of a surface cross-linking agent having the same composition as in Reference Example 2 was mixed with 100 parts by mass of the obtained water absorbent resin powder (c). The mixture was heat treated at a heat medium temperature of 195 ° C. for 40 minutes to obtain a water absorbent resin (3).

[参考例4]
75モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度33質量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数9)19.6g、亜リン酸二ナトリウム・5水和物36.3gを溶解し反応液とした。次に、この反応液を参考例2と同様に脱気したのち、参考例2の反応器に、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸ナトリウムの10質量%水溶液20.5g及びL−アスコルビン酸の1質量%水溶液1.0gを添加したところ、およそ1分後に重合が開始した。重合開始後17分で重合ピーク温度85℃を示し、重合を開始して60分後に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体は約1〜4mmの粒子に細分化されていた。この含水ゲル状重合体を参考例2と同様に乾燥・粉砕し、さらに目開き600μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(d)を得た。
[Reference Example 4]
To 5500 g of an aqueous solution of sodium acrylate having a neutralization rate of 75 mol% (monomer concentration 33% by mass), 19.6 g of polyethylene glycol diacrylate (average number of moles of added ethylene oxide 9), disodium phosphite · 5 36.3 g of hydrate was dissolved to prepare a reaction solution. Next, after degassing this reaction solution in the same manner as in Reference Example 2, the above reaction solution was supplied to the reactor of Reference Example 2, and the system was purged with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 20.5 g of a 10% by weight aqueous solution of sodium persulfate and 1.0 g of a 1% by weight aqueous solution of L-ascorbic acid were added, and polymerization started about 1 minute later. A polymerization peak temperature of 85 ° C. was exhibited 17 minutes after the start of polymerization, and a hydrogel polymer was taken out 60 minutes after the start of polymerization. The obtained hydrogel polymer was fragmented into particles of about 1 to 4 mm. This hydrogel polymer was dried and pulverized in the same manner as in Reference Example 2, and further classified and prepared with a wire mesh having openings of 600 μm and 150 μm to obtain an irregularly crushed water absorbent resin powder (d).

次いで、得られた吸水性樹脂粉末(d)100質量部に、参考例2と同じ組成の表面架橋剤3.53質量部を混合した。上記の混合物を熱媒温度210℃で35分間加熱処理することにより吸水性樹脂(4)を得た。   Next, 3.53 parts by mass of a surface cross-linking agent having the same composition as in Reference Example 2 was mixed with 100 parts by mass of the obtained water absorbent resin powder (d). The above mixture was heat-treated at a heat medium temperature of 210 ° C. for 35 minutes to obtain a water absorbent resin (4).

[参考例5]
70モル%の中和率を有するアクリル酸ナトリウムの水溶液5500g(単量体濃度30質量%)に、ポリエチレングリコールジアクリレート(エチレンオキシドの平均付加モル数9)20.0g、フォスフィン酸ナトリウム3.3gを溶解し反応液とした。次に、この反応液を参考例2と同様に脱気したのち、参考例2の反応器に、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸ナトリウムの10質量%水溶液22.6g及びL−アスコルビン酸の1質量%水溶液1.1gを添加したところ、およそ1分後に重合が開始した。重合開始後18分で重合ピーク温度82℃を示し、重合を開始して40分後に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体は約1〜4mmの粒子に細分化されていた。この含水ゲル状重合体を参考例2と同様に乾燥・粉砕し、さらに目開き600μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(e)を得た。
[Reference Example 5]
To 5500 g of an aqueous solution of sodium acrylate having a neutralization rate of 70 mol% (monomer concentration of 30% by mass), 20.0 g of polyethylene glycol diacrylate (average added mole number of ethylene oxide 9) and 3.3 g of sodium phosphinate were added. Dissolved to give a reaction solution. Next, after degassing this reaction solution in the same manner as in Reference Example 2, the above reaction solution was supplied to the reactor of Reference Example 2, and the system was purged with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 22.6 g of a 10% by weight aqueous solution of sodium persulfate and 1.1 g of a 1% by weight aqueous solution of L-ascorbic acid were added, and polymerization started about 1 minute later. A polymerization peak temperature of 82 ° C. was exhibited 18 minutes after the start of the polymerization, and a hydrogel polymer was taken out 40 minutes after the start of the polymerization. The obtained hydrogel polymer was fragmented into particles of about 1 to 4 mm. This hydrogel polymer was dried and pulverized in the same manner as in Reference Example 2, and further classified and prepared with a wire mesh having openings of 600 μm and 150 μm to obtain amorphous crushed water-absorbent resin powder (e).

次いで、得られた吸水性樹脂粉末(e)100質量部に、プロピレングリコール0.5質量部と、1,3−プロパンジオール0.3質量部と、水3質量部とからなる表面架橋剤3.8質量部を混合した。上記の混合物を熱媒温度195℃で40分間加熱処理することにより吸水性樹脂(5)を得た。   Next, the surface cross-linking agent 3 comprising 100 parts by mass of the obtained water-absorbent resin powder (e), 0.5 parts by mass of propylene glycol, 0.3 parts by mass of 1,3-propanediol, and 3 parts by mass of water. 8 parts by weight were mixed. The mixture was heat treated at a heat medium temperature of 195 ° C. for 40 minutes to obtain a water absorbent resin (5).

[参考例6]
アクリル酸水溶液1500g(単量体濃度20質量%)に、テトラアリルオキシエタン1.9gを溶解し反応液とし、得られた反応液を参考例1のステンレス製バットに注入した。このとき反応液の厚みは17mmであった。該ステンレス製バットを、参考例1と同様にシールした後、20℃のウォーターバスに浸け、反応液の温度を20℃に調整しながら、該反応液に窒素ガスを導入して液中の溶存酸素を除いた。その後は、窒素ガスを反応容器の上部空間に導入し、反対側から排気しつづけた。続いて、反応液をマグネティックスターラーで撹拌しながら、重合開始剤として2,2’−アゾビス(2−アミジノプロパン)ジハイドロクロライドの10質量%水溶液を8.3g、L−アスコルビン酸の5質量%水溶液を0.6g、および過酸化水素の3.5質量%水溶液を2.1g添加したところ、およそ1分後に重合が開始した。重合反応中はバットの下面から冷却・加熱を繰り返したところ重合開始後35分でピーク温度75℃を示し、重合開始後90分に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体を約5cm角にはさみでカットした後、得られた約5cm角の含水ゲル状重合体を参考例1と同じミートチョッパーに一定速度で供給しながら22質量%の炭酸ナトリウム水溶液702gを一定速度で供給し、ゲル粉砕しながら同時に後中和を行った。該ミートチョッパーから排出された粉砕ゲルは、フェノールフタレイン液をゲルにかけても赤色を呈色しない状態まで約70℃の雰囲気で保持された後、参考例1と同様に乾燥・粉砕され、さらに目開き600μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(f)を得た。
[Reference Example 6]
In 1500 g of acrylic acid aqueous solution (monomer concentration 20% by mass), 1.9 g of tetraallyloxyethane was dissolved as a reaction solution, and the obtained reaction solution was poured into the stainless steel bat of Reference Example 1. At this time, the thickness of the reaction solution was 17 mm. The stainless steel bat was sealed in the same manner as in Reference Example 1, and then immersed in a 20 ° C. water bath, while adjusting the temperature of the reaction solution to 20 ° C., nitrogen gas was introduced into the reaction solution and dissolved in the solution. Oxygen was removed. Thereafter, nitrogen gas was introduced into the upper space of the reaction vessel and continued to be exhausted from the opposite side. Subsequently, while stirring the reaction solution with a magnetic stirrer, 8.3 g of a 10% by mass aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride as a polymerization initiator and 5% by mass of L-ascorbic acid were used. When 0.6 g of an aqueous solution and 2.1 g of a 3.5% by mass aqueous solution of hydrogen peroxide were added, polymerization started about 1 minute later. During the polymerization reaction, cooling and heating were repeated from the lower surface of the bat, and a peak temperature of 75 ° C. was exhibited 35 minutes after the start of polymerization. After the obtained hydrogel polymer was cut with scissors about 5 cm square, the obtained hydrogel polymer of about 5 cm square was supplied to the same meat chopper as in Reference Example 1 at a constant rate while being 22% by mass. 702 g of aqueous sodium carbonate solution was supplied at a constant rate, and at the same time, post-neutralization was performed while pulverizing the gel. The crushed gel discharged from the meat chopper was kept in an atmosphere at about 70 ° C. until it did not turn red even when the phenolphthalein solution was applied to the gel, and then dried and crushed in the same manner as in Reference Example 1, By classifying and blending with an opening 600 μm and 150 μm wire mesh, an irregularly crushed water-absorbent resin powder (f) was obtained.

次いで、得られた吸水性樹脂粉末(f)100質量部に、プロピレングリコール0.5質量部と、エチレングリコールジグリシジルエーテル0.03質量部と、1,3−プロパンジオール0.3質量部と、水3質量部とからなる表面架橋剤3.83質量部を混合した。上記の混合物を熱媒温度195℃で40分間加熱処理することにより吸水性樹脂(6)を得た。   Next, 100 parts by mass of the obtained water absorbent resin powder (f), 0.5 parts by mass of propylene glycol, 0.03 parts by mass of ethylene glycol diglycidyl ether, 0.3 parts by mass of 1,3-propanediol, Then, 3.83 parts by mass of a surface cross-linking agent consisting of 3 parts by mass of water was mixed. The mixture was heat-treated at a heat medium temperature of 195 ° C. for 40 minutes to obtain a water absorbent resin (6).

[参考例7]
参考例2で得られた含水ゲル状重合体の乾燥物を、参考例2と同様のロールミルを用いて参考例2より細かくなる粉砕条件に設定して粉砕し、さらに目開き425μmと150μmの金網で分級・調合することで不定形破砕状の吸水性樹脂粉末(g)を得た。
[Reference Example 7]
The dried hydrogel polymer obtained in Reference Example 2 was pulverized using the same roll mill as in Reference Example 2 under the pulverization conditions that were finer than those in Reference Example 2, and further a wire mesh with openings of 425 μm and 150 μm. By classifying and blending, an irregularly shaped water-absorbent resin powder (g) was obtained.

次いで、得られた吸水性樹脂粉末(g)100質量部に、プロピレングリコール1質量部と、エチレングリコールジグリシジルエーテル0.03質量部と、水3質量部と、メタノール0.9質量部とからなる表面架橋剤4.93質量部を混合した。上記の混合物を、熱媒温度210℃で45分間加熱処理することにより吸水性樹脂(7)を得た。   Subsequently, from 100 parts by mass of the obtained water absorbent resin powder (g), from 1 part by mass of propylene glycol, 0.03 part by mass of ethylene glycol diglycidyl ether, 3 parts by mass of water, and 0.9 part by mass of methanol 4.93 parts by mass of the resulting surface cross-linking agent was mixed. The mixture was heat-treated at a heat medium temperature of 210 ° C. for 45 minutes to obtain a water absorbent resin (7).

[参考例8]
参考例3で得られた含水ゲル状重合体の乾燥物を、参考例3と同様のロールミルを用いて参考例3より細かくなる粉砕条件に設定して粉砕し、さらに目開き500μmと150μmの金網で分級・調合することで不定形破砕状の吸水性樹脂粉末(h)を得た。
[Reference Example 8]
The dried product of the hydrogel polymer obtained in Reference Example 3 was pulverized using the same roll mill as in Reference Example 3 under the pulverization conditions that were finer than those in Reference Example 3, and further a wire mesh having openings of 500 μm and 150 μm. By classifying and blending, an irregularly shaped water-absorbent resin powder (h) was obtained.

次いで、得られた吸水性樹脂粉末(h)100質量部に、参考例3と同じ組成の表面架橋剤3.53質量部を混合した。上記の混合物を、熱媒温度210℃で45分間加熱処理することにより吸水性樹脂(8)を得た。   Next, 3.53 parts by mass of a surface cross-linking agent having the same composition as in Reference Example 3 was mixed with 100 parts by mass of the obtained water absorbent resin powder (h). The mixture was heat-treated at a heat medium temperature of 210 ° C. for 45 minutes to obtain a water absorbent resin (8).

[参考例9]
参考例2で得られた含水ゲル状重合体の乾燥物を、参考例2と同様のロールミルを用いて参考例2より粗くなる粉砕条件に設定して粉砕し、さらに目開き850μmと106μmの金網で分級・調合することで不定形破砕状の吸水性樹脂粉末(i)を得た。
[Reference Example 9]
The dried product of the hydrogel polymer obtained in Reference Example 2 was pulverized using the same roll mill as in Reference Example 2 under the pulverization conditions that were coarser than those in Reference Example 2, and further a wire mesh with openings of 850 μm and 106 μm. By classifying and blending, an irregularly crushed water-absorbent resin powder (i) was obtained.

次いで、得られた吸水性樹脂粉末(i)100質量部に、参考例2と同様の表面架橋剤3.53質量部を混合した。上記の混合物を、熱媒温度210℃で55分間加熱処理することにより吸水性樹脂(9)を得た。   Next, 3.53 parts by mass of the same surface crosslinking agent as in Reference Example 2 was mixed with 100 parts by mass of the obtained water absorbent resin powder (i). The mixture was heat-treated at a heat medium temperature of 210 ° C. for 55 minutes to obtain a water absorbent resin (9).

[参考例10]
参考例3で得られた含水ゲル状重合体の乾燥物を、参考例9と同様のロールミルを用いて参考例9よりさらに粗くなる粉砕条件に設定して粉砕し、さらに目開き850μmと150μmの金網で分級・調合することで不定形破砕状の吸水性樹脂粉末(j)を得た。
[Reference Example 10]
The dried hydrogel polymer obtained in Reference Example 3 was pulverized by using the same roll mill as in Reference Example 9 under the pulverization conditions that were more coarse than those in Reference Example 9, and further having openings of 850 μm and 150 μm. By classifying and blending with a wire mesh, an irregularly crushed water-absorbent resin powder (j) was obtained.

次いで、得られた吸水性樹脂粉末(j)100質量部に、参考例2と同様の表面架橋剤3.53質量部を混合した。上記の混合物を、熱媒温度195℃で45分間加熱処理することにより吸水性樹脂(10)を得た。   Next, 3.53 parts by mass of the same surface cross-linking agent as in Reference Example 2 was mixed with 100 parts by mass of the obtained water absorbent resin powder (j). The mixture was heat treated at a heat medium temperature of 195 ° C. for 45 minutes to obtain a water absorbent resin (10).

[参考例11]
参考例4において、亜リン酸二ナトリウム・5水和物を添加しなかった以外は参考例4と同様の操作を行い、吸水性樹脂(11)を得た。
[Reference Example 11]
In Reference Example 4, a water-absorbent resin (11) was obtained in the same manner as in Reference Example 4 except that disodium phosphite pentahydrate was not added.

[実施例1]
参考例1で得られた吸水性樹脂(1)をそのまま吸水剤(1)として用いた。吸水剤(1)の無加圧下吸収倍率、4.8kPaでの高加圧下吸収倍率、生理食塩水中での16時間可溶分、1.9kPaでの加圧下吸収倍率、耐尿性評価結果、吸収速度評価、粒度分布を表2〜4に示した。
[Example 1]
The water absorbent resin (1) obtained in Reference Example 1 was used as it is as the water absorbent (1). Absorption capacity under no pressure of water-absorbing agent (1), absorption capacity under high pressure at 4.8 kPa, soluble for 16 hours in physiological saline, absorption capacity under pressure at 1.9 kPa, urine resistance evaluation results, The absorption rate evaluation and the particle size distribution are shown in Tables 2 to 4.

[実施例2]
参考例2で得られた吸水性樹脂(2)100質量部に、ジエチレントリアミン5酢酸水溶液を2質量部、ジエチレントリアミン5酢酸ナトリウムが吸水性樹脂(2)に対して50ppmとなるように噴霧混合した。得られた混合物を60℃で1時間硬化し、吸水剤(2)を得た。吸水剤(2)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水性液の噴霧混合および硬化工程を経たことによって、得られた吸水剤(2)は造粒されていた。
[Example 2]
To 100 parts by mass of the water-absorbent resin (2) obtained in Reference Example 2, 2 parts by mass of diethylenetriaminepentaacetic acid aqueous solution was spray-mixed so that diethylenetriaminepentaacetic acid sodium salt was 50 ppm with respect to the water-absorbent resin (2). The obtained mixture was cured at 60 ° C. for 1 hour to obtain a water absorbing agent (2). The water absorbing agent (2) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the water-absorbing agent (2) obtained was granulated through the spray mixing of the aqueous liquid and the curing step.

[実施例3]
参考例3で得られた吸水性樹脂(3)100質量部に、ジエチレントリアミン5酢酸水溶液を2質量部、ジエチレントリアミン5酢酸ナトリウムが吸水性樹脂(3)に対して100ppmとなるように噴霧混合した。得られた混合物を60℃で1時間硬化し、吸水剤(3)を得た。吸水剤(3)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水性液の噴霧混合および硬化工程を経たことによって、得られた吸水剤(3)は造粒されていた。
[Example 3]
To 100 parts by mass of the water-absorbent resin (3) obtained in Reference Example 3, 2 parts by mass of diethylenetriaminepentaacetic acid aqueous solution was spray-mixed so that diethylenetriaminepentaacetic acid sodium salt was 100 ppm with respect to the water-absorbent resin (3). The obtained mixture was cured at 60 ° C. for 1 hour to obtain a water absorbing agent (3). The water absorbing agent (3) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the water-absorbing agent (3) obtained was granulated through the spray mixing and curing process of the aqueous liquid.

[実施例4]
参考例4で得られた吸水性樹脂(4)100質量部に、水2質量部を噴霧混合した。得られた混合物を60℃で1時間硬化し、吸水剤(4)を得た。吸水剤(4)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた吸水剤(4)は造粒されていた。
[Example 4]
2 parts by mass of water was spray mixed with 100 parts by mass of the water absorbent resin (4) obtained in Reference Example 4. The obtained mixture was cured at 60 ° C. for 1 hour to obtain a water absorbing agent (4). The water absorbing agent (4) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the obtained water absorbing agent (4) was granulated by passing through the water spray mixing and hardening process.

[実施例5]
実施例4において、参考例4で得られた吸水性樹脂(4)を参考例5で得られた吸水性樹脂(5)に変えた以外は同様の操作を行い、吸水剤(5)を得た。吸水剤(5)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた吸水剤(5)は造粒されていた。
[Example 5]
In Example 4, the same operation was carried out except that the water absorbent resin (4) obtained in Reference Example 4 was changed to the water absorbent resin (5) obtained in Reference Example 5 to obtain a water absorbent (5). It was. The water absorbing agent (5) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the water-absorbing agent (5) obtained was granulated through the water spray mixing and curing step.

[実施例6]
実施例4において、参考例4で得られた吸水性樹脂(4)を参考例6で得られた吸水性樹脂(6)に変えた以外は同様の操作を行い、吸水剤(6)を得た。吸水剤(6)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた吸水剤(6)は造粒されていた。
[Example 6]
In Example 4, the same operation was carried out except that the water absorbent resin (4) obtained in Reference Example 4 was changed to the water absorbent resin (6) obtained in Reference Example 6 to obtain a water absorbent (6). It was. The water absorbing agent (6) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the water-absorbing agent (6) obtained was granulated through the water spray mixing and curing steps.

[実施例7]
実施例2において、参考例2で得られた吸水性樹脂(2)を参考例7で得られた吸水性樹脂(7)に変えた以外は同様の操作を行い、吸水剤(7)を得た。吸水剤(7)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた吸水剤(7)は造粒されていた。
[Example 7]
In Example 2, the same operation was performed except that the water absorbent resin (2) obtained in Reference Example 2 was changed to the water absorbent resin (7) obtained in Reference Example 7, to obtain a water absorbent (7). It was. The water absorbing agent (7) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the obtained water-absorbing agent (7) was granulated by passing through the water spray mixing and hardening process.

[実施例8]
実施例3において、参考例3で得られた吸水性樹脂(3)を参考例8で得られた吸水性樹脂(8)に変えた以外は同様の操作を行い、吸水剤(8)を得た。吸水剤(8)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた吸水剤(8)は造粒されていた。
[Example 8]
In Example 3, the same operation was carried out except that the water absorbent resin (3) obtained in Reference Example 3 was replaced with the water absorbent resin (8) obtained in Reference Example 8, to obtain a water absorbent (8). It was. The water absorbing agent (8) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. In addition, the water-absorbing agent (8) obtained was granulated through the spray mixing and curing process of water.

[比較例1]
実施例2において、参考例2で得られた吸水性樹脂(2)を参考例9で得られた吸水性樹脂(9)に変えた以外は同様の操作を行い、比較用吸水剤(1)を得た。比較用吸水剤(1)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた比較用吸水剤(1)は造粒されていた。
[Comparative Example 1]
In Example 2, the same operation was performed except that the water absorbent resin (2) obtained in Reference Example 2 was changed to the water absorbent resin (9) obtained in Reference Example 9, and a comparative water absorbent (1) Got. The comparative water-absorbing agent (1) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. The comparative water-absorbing agent (1) thus obtained was granulated by passing through the water spray mixing and curing steps.

[比較例2]
実施例3において、参考例3で得られた吸水性樹脂(3)を参考例10で得られた吸水性樹脂(10)に変えた以外は同様の操作を行い、比較用吸水剤(2)を得た。比較用吸水剤(2)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた比較用吸水剤(2)は造粒されていた。
[Comparative Example 2]
In Example 3, the same operation was performed except that the water absorbent resin (3) obtained in Reference Example 3 was replaced with the water absorbent resin (10) obtained in Reference Example 10, and a comparative water absorbent (2) Got. The comparative water-absorbing agent (2) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2-4. In addition, the comparative water-absorbing agent (2) obtained was granulated by passing through the water spray mixing and curing step.

[比較例3]
実施例2において、ジエチレントリアミン5酢酸ナトリウム水溶液を水に変えた以外は同様の操作を行い、比較用吸水剤(3)を得た。比較用吸水剤(3)を実施例1と同様に評価し結果を表2〜4に示し、さらに吸湿流動性を評価し、結果を表5に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた比較用吸水剤(3)は造粒されていた。
[Comparative Example 3]
In Example 2, the same operation was carried out except that the aqueous diethylenetriaminepentaacetate solution was changed to water to obtain a comparative water-absorbing agent (3). The comparative water-absorbing agent (3) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. Further, the hygroscopic fluidity was evaluated, and the results are shown in Table 5. In addition, the comparative water-absorbing agent (3) obtained was granulated through the spray mixing and curing process of water.

[比較例4]
実施例3において、ジエチレントリアミン5酢酸ナトリウム水溶液を水に変えた以外は同様の操作を行い、比較用吸水剤(4)を得た。比較用吸水剤(4)を実施例1と同様に評価し結果を表2〜4に示し、さらに吸湿流動性を評価し、結果を表5に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた比較用吸水剤(4)は造粒されていた。
[Comparative Example 4]
In Example 3, the same operation was carried out except that the aqueous diethylenetriaminepentaacetate solution was changed to water to obtain a comparative water-absorbing agent (4). The comparative water-absorbing agent (4) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. Further, the hygroscopic fluidity was evaluated, and the results are shown in Table 5. In addition, the comparative water-absorbing agent (4) obtained was granulated by passing through the water spray mixing and curing step.

[比較例5]
実施例4において、参考例4で得られた吸水性樹脂(4)を参考例11で得られた吸水性樹脂(11)に変えた以外は同様の操作を行い、比較用吸水剤(5)を得た。比較用吸水剤(5)を実施例1と同様に評価し、結果を表2〜4に示した。なお、水の噴霧混合および硬化工程を経たことによって、得られた比較用吸水剤(5)は造粒されていた。
[Comparative Example 5]
In Example 4, the same operation was performed except that the water absorbent resin (4) obtained in Reference Example 4 was changed to the water absorbent resin (11) obtained in Reference Example 11, and a comparative water absorbent (5) Got. The comparative water-absorbing agent (5) was evaluated in the same manner as in Example 1, and the results are shown in Tables 2 to 4. Note that the comparative water-absorbing agent (5) obtained was granulated through the water spray mixing and curing step.

[実施例9]
実施例1で得られた吸水剤(1)100質量部に微粒子状のステアリン酸アルミニウム(関東化学株式会社製)0.3質量部を添加・混合(ドライブレンド)して、吸水剤(9)を得た。得られた吸水剤(9)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(1)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(1)と同じ値を示した。吸水剤(9)の無加圧下吸収倍率、1.9kPaでの加圧下吸収倍率、生理食塩水中での16時間可溶分、耐尿性評価、吸収速度評価、4.8kPaでの高加圧下吸収倍率、吸湿流動性を測定し、表5に示した。
[Example 9]
To 100 parts by mass of the water-absorbing agent (1) obtained in Example 1, 0.3 parts by mass of particulate aluminum stearate (manufactured by Kanto Chemical Co., Ltd.) was added and mixed (dry blended) to obtain the water-absorbing agent (9). Got. When the particle size distribution of the obtained water-absorbing agent (9) was measured, there was almost no change. The mass-average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (1) was shown. Further, the urine resistance evaluation and the 16-hour soluble component in physiological saline showed the same value as the water-absorbing agent (1) before mixing. Absorption capacity under no pressure of water-absorbing agent (9), absorption capacity under pressure at 1.9 kPa, soluble content for 16 hours in physiological saline, urine resistance evaluation, absorption rate evaluation, under high pressure at 4.8 kPa Absorption capacity and moisture absorption fluidity were measured and are shown in Table 5.

[実施例10]
実施例2で得られた吸水剤(2)100質量部に微粒子状の二酸化ケイ素(商品名・アエロジル200(1次粒子の平均粒子径12nm);日本アエロジル株式会社製)0.3質量部を添加・混合(ドライブレンド)して、吸水剤(10)を得た。得られた吸水剤(10)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(2)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(2)と同じ値を示した。吸水剤(10)を実施例9と同様に評価し、結果を表5に示した。
[Example 10]
To 100 parts by mass of the water-absorbing agent (2) obtained in Example 2, 0.3 parts by mass of particulate silicon dioxide (trade name: Aerosil 200 (average particle diameter of primary particles: 12 nm); manufactured by Nippon Aerosil Co., Ltd.) Addition and mixing (dry blending) gave the water-absorbing agent (10). When the particle size distribution of the obtained water-absorbing agent (10) was measured, there was almost no change, and the mass average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (2) was shown. The urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same value as the water-absorbing agent (2) before mixing. The water absorbing agent (10) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例11]
実施例10において、微粒子状の二酸化ケイ素を微粒子状のステアリン酸アルミニウムに変更した以外は同様の操作を行い、吸水剤(11)を得た。得られた吸水剤(11)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(2)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(2)と同じ値を示した。吸水剤(11)を実施例9と同様に評価し、結果を表5に示した。
[Example 11]
A water absorbing agent (11) was obtained in the same manner as in Example 10 except that the particulate silicon dioxide was changed to the particulate aluminum stearate. When the particle size distribution of the obtained water-absorbing agent (11) was measured, there was almost no change, and the mass average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (2) was shown. The urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same value as the water-absorbing agent (2) before mixing. The water absorbing agent (11) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例12]
実施例10において、実施例2で得られた吸水剤(2)を実施例3で得られた吸水剤(3)に変更した以外は同様の操作を行い、吸水剤(12)を得た。得られた吸水剤(12)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(3)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(3)と同じ値を示した。吸水剤(12)を実施例9と同様に評価し、結果を表5に示した。
[Example 12]
The same operation as in Example 10 was carried out except that the water absorbing agent (2) obtained in Example 2 was changed to the water absorbing agent (3) obtained in Example 3, to obtain a water absorbing agent (12). When the particle size distribution of the obtained water-absorbing agent (12) was measured, there was almost no change, and the mass-average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (3) was shown. The urine resistance evaluation and the 16-hour soluble content in physiological saline also showed the same value as the water-absorbing agent (3) before mixing. The water absorbing agent (12) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例13]
実施例10において、実施例2で得られた吸水剤(2)を実施例3で得られた吸水剤(3)に、微粒子状の二酸化ケイ素を微粒子状のステアリン酸アルミニウムに変更した以外は同様の操作を行い、吸水剤(13)を得た。得られた吸水剤(13)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(3)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(3)と同じ値を示した。吸水剤(13)を実施例9と同様に評価し、結果を表5に示した。
[Example 13]
In Example 10, the water absorbing agent (2) obtained in Example 2 was changed to the water absorbing agent (3) obtained in Example 3, except that the particulate silicon dioxide was changed to particulate aluminum stearate. The water absorbing agent (13) was obtained. When the particle size distribution of the obtained water-absorbing agent (13) was measured, there was almost no change. The mass-average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (3) was shown. The urine resistance evaluation and the 16-hour soluble content in physiological saline also showed the same value as the water-absorbing agent (3) before mixing. The water absorbing agent (13) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例14]
実施例4で得られた吸水剤(4)100質量部に微粒子状の二酸化ケイ素(商品名・アエロジル200)0.3質量部を添加・混合(ドライブレンド)して、吸水剤(14)を得た。得られた吸水剤(14)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(4)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(4)と同じ値を示した。吸水剤(14)を実施例9と同様に評価し、結果を表5に示した。
[Example 14]
To 100 parts by mass of the water-absorbing agent (4) obtained in Example 4, 0.3 parts by mass of fine particle silicon dioxide (trade name / Aerosil 200) was added and mixed (dry blended) to obtain the water-absorbing agent (14). Obtained. When the particle size distribution of the obtained water-absorbing agent (14) was measured, there was almost no change, and the mass-average particle size (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (4) was shown. The urine resistance evaluation and the 16-hour soluble content in physiological saline also showed the same value as the water-absorbing agent (4) before mixing. The water absorbing agent (14) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例15]
実施例5で得られた吸水剤(5)100質量部に微粒子状のステアリン酸マグネシウム(関東化学株式会社製)0.3質量部を添加・混合(ドライブレンド)して、吸水剤(15)を得た。得られた吸水剤(15)の粒度分布を測定したところほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(5)と同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(5)と同じ値を示した。吸水剤(15)を実施例9と同様に評価し、結果を表5に示した。
[Example 15]
To 100 parts by mass of the water-absorbing agent (5) obtained in Example 5, 0.3 parts by mass of particulate magnesium stearate (manufactured by Kanto Chemical Co., Ltd.) was added and mixed (dry blended) to obtain the water-absorbing agent (15). Got. When the particle size distribution of the obtained water-absorbing agent (15) was measured, there was almost no change, and the mass-average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water-absorbing agent before mixing. The same value as (5) was shown. The urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same value as the water-absorbing agent (5) before mixing. The water absorbing agent (15) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例16〜18]
実施例10において、実施例2で得られた吸水剤(2)を実施例6〜8で得られた吸水剤(6)〜(8)に変更することにより、吸水剤(16)〜(18)をそれぞれ得た。得られた吸水剤(16)〜(18)の粒度分布を測定したところ、どれもほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(6)〜(8)とそれぞれ同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の吸水剤(6)〜(8)と同じ値を示した。吸水剤(16)〜(18)を実施例9と同様に評価し、結果を表5に示した。
[Examples 16 to 18]
In Example 10, the water-absorbing agents (16) to (18) were obtained by changing the water-absorbing agents (2) obtained in Example 2 to the water-absorbing agents (6) to (8) obtained in Examples 6 to 8. ) Respectively. When the particle size distribution of the obtained water-absorbing agents (16) to (18) was measured, none of them changed, and the mass average particle diameter (D50), logarithmic standard deviation (σζ), and mass percentage with a particle diameter of less than 150 μm. Showed the same values as the water-absorbing agents (6) to (8) before mixing. Moreover, the urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same values as the water-absorbing agents (6) to (8) before mixing. The water absorbing agents (16) to (18) were evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[比較例6〜7]
実施例10において、実施例2で得られた吸水剤(2)を比較例1、2で得られた比較用吸水剤(1)、(2)に変更することにより、比較用吸水剤(6)、(7)をそれぞれ得た。得られた比較用吸水剤(6)、(7)の粒度分布を測定したところ、どちらもほとんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の比較用吸水剤(1)、(2)とそれぞれ同じ値を示した。また、耐尿性評価および生理食塩水中での16時間可溶分も混合前の比較用吸水剤(1)、(2)と同じ値を示した。比較用吸水剤(6)、(7)を実施例9と同様に評価し、結果を表5に示した。
[Comparative Examples 6-7]
In Example 10, the water-absorbing agent (2) obtained in Example 2 was changed to the water-absorbing agent for comparison (1) and (2) obtained in Comparative Examples 1 and 2, so that the water-absorbing agent for comparison (6 ) And (7) were obtained. When the particle size distributions of the comparative water-absorbing agents (6) and (7) obtained were measured, neither of them was changed, and the mass average particle diameter (D50), logarithmic standard deviation (σζ), and particle diameter of less than 150 μm. The mass percentage showed the same value as the comparative water-absorbing agent (1) and (2) before mixing. Further, the urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same values as the comparative water-absorbing agents (1) and (2) before mixing. The comparative water-absorbing agents (6) and (7) were evaluated in the same manner as in Example 9, and the results are shown in Table 5.

また、あわせて比較用吸水剤(3)、(4)の吸湿流動性も評価し、結果を表5に示した。   In addition, the hygroscopic fluidity of the comparative water-absorbing agents (3) and (4) was also evaluated, and the results are shown in Table 5.

[実施例19]
参考例2で得られた吸水性樹脂(2)100質量部に、ジエチレントリアミン5酢酸ナトリウム水溶液とツバキ科植物の葉抽出物の15質量%水溶液(製品名:FS−80MO、販売者:白井松新薬株式会社(所在地:滋賀県甲賀郡水口町宇川37−1))からなる水溶液2質量部(ジエチレントリアミン5酢酸ナトリウムが吸水性樹脂(2)に対して50ppm、ツバキ科植物の葉抽出物の15質量%水溶液が吸水性樹脂(2)に対して0.1%となるように調整)を噴霧混合した。得られた混合物を60℃で1時間硬化し、吸水剤(19)を得た。得られた吸水剤(19)の粒度分布は、ツバキ科植物の葉抽出物の15質量%水溶液を添加していない実施例10と同じであった。また、吸水剤(19)の無加圧下吸収倍率、1.9kPaでの加圧下吸収倍率、消臭テスト、生理食塩水中での16時間可溶分、耐尿性評価、4.8kPaでの高加圧下吸収倍率を測定し、表6に示した。
[Example 19]
To 100 parts by mass of the water-absorbent resin (2) obtained in Reference Example 2, 15% by mass aqueous solution of diethylenetriaminepentaacetic acid sodium acetate solution and leaf extract of camellia plant (product name: FS-80MO, seller: Shiraimatsu Shinyaku) 2 parts by weight of aqueous solution (diethylenetriaminepentaacetic acid sodium salt is 50 ppm with respect to the water-absorbent resin (2), 15 parts by weight of the camellia plant leaf extract) % Aqueous solution was adjusted to 0.1% with respect to the water absorbent resin (2)). The obtained mixture was cured at 60 ° C. for 1 hour to obtain a water absorbing agent (19). The particle size distribution of the water-absorbing agent (19) obtained was the same as that in Example 10 in which the 15% by mass aqueous solution of the leaf extract of camelliaceae was not added. Further, the absorption capacity of the water-absorbing agent (19) under no pressure, the absorption capacity under pressure at 1.9 kPa, the deodorization test, the soluble matter for 16 hours in physiological saline, the urine resistance evaluation, and the high at 4.8 kPa. The absorption capacity under pressure was measured and shown in Table 6.

[実施例20]
実施例10において、微粒子状の二酸化ケイ素を亜鉛と珪素の複合含水酸化物(商品名:CERATIOX SZ−100、チタン工業株式会社製、亜鉛と珪素の含有質量比:82/18、平均粒子径:0.36μm)に変更した以外は同様の操作を行い、吸水剤(20)を得た。得られた吸水剤(20)の粒度分布は吸水剤(10)と同じであった。また、吸水剤(20)を吸水剤(19)と同様に評価し、結果を表6に示した。
[Example 20]
In Example 10, a particulate silicon dioxide was mixed with a composite hydrous oxide of zinc and silicon (trade name: CERATIOX SZ-100, manufactured by Titanium Industry Co., Ltd., mass ratio of zinc and silicon: 82/18, average particle diameter: A water absorbing agent (20) was obtained by performing the same operation except that the thickness was changed to 0.36 μm. The particle size distribution of the water-absorbing agent (20) obtained was the same as that of the water-absorbing agent (10). Further, the water absorbing agent (20) was evaluated in the same manner as the water absorbing agent (19), and the results are shown in Table 6.

[実施例21]
実施例19において、参考例2で得られた吸水性樹脂(2)を、参考例3で得られた吸水性樹脂(3)に変更した以外は同様の操作を行い、吸水剤(21)を得た。得られた吸水剤(21)の粒度分布は吸水剤(12)と同じであった。また、吸水剤(21)を吸水剤(19)と同様に評価し、結果を表6に示した。
[Example 21]
In Example 19, the same operation was performed except that the water absorbent resin (2) obtained in Reference Example 2 was changed to the water absorbent resin (3) obtained in Reference Example 3, and the water absorbent (21) was obtained. Obtained. The particle size distribution of the water-absorbing agent (21) obtained was the same as that of the water-absorbing agent (12). The water absorbing agent (21) was evaluated in the same manner as the water absorbing agent (19), and the results are shown in Table 6.

[実施例22]
実施例12において、微粒子状の二酸化ケイ素を亜鉛と珪素の複合含水酸化物(商品名:CERATIOX SZ−100、チタン工業株式会社製、亜鉛と珪素の含有質量比:82/18、平均粒子径:0.36μm)に変更した以外は同様の操作を行い、吸水剤(22)を得た。得られた吸水剤(22)の粒度分布は吸水剤(12)と同じであった。また、吸水剤(22)を吸水剤(19)と同様に評価し、結果を表6に示した。
[Example 22]
In Example 12, a particulate silicon dioxide was mixed with a composite hydrous oxide of zinc and silicon (trade name: CERATIOX SZ-100, manufactured by Titanium Industry Co., Ltd., mass ratio of zinc and silicon: 82/18, average particle size: A water absorbing agent (22) was obtained by performing the same operation except that the thickness was changed to 0.36 μm. The particle size distribution of the water-absorbing agent (22) obtained was the same as that of the water-absorbing agent (12). The water absorbing agent (22) was evaluated in the same manner as the water absorbing agent (19), and the results are shown in Table 6.

また、あわせて比較用吸水剤(3)、(4)の消臭テストを行った結果も表6に示した。   In addition, Table 6 also shows the results of deodorizing tests of the comparative water-absorbing agents (3) and (4).

[実施例23]
実施例2で得られた吸水剤(2)を吸収体として性能評価するために上記(j)吸収体性能評価の方法に従って評価用吸収体(1)を作成し、10分戻り量および劣化戻り量を測定した。結果を表7に示した。
[Example 23]
In order to evaluate the performance of the water-absorbing agent (2) obtained in Example 2 as an absorber, the absorber for evaluation (1) was prepared according to the method for evaluating the performance of the absorber (j) above, and the return amount and deterioration return for 10 minutes. The amount was measured. The results are shown in Table 7.

[実施例24〜27]
実施例23で用いた吸水剤(2)を、実施例13、16〜18で得られた吸水剤(13)、(16)〜(18)に変更することにより、評価用吸収体(2)〜(5)をそれぞれ得た。
[Examples 24-27]
By changing the water-absorbing agent (2) used in Example 23 to the water-absorbing agents (13) and (16) to (18) obtained in Examples 13 and 16 to 18, the absorber for evaluation (2) To (5) were obtained.

得られた吸収性物品(2)〜(5)の戻り量評価結果を表7に示した。   Table 7 shows the return amount evaluation results of the obtained absorbent articles (2) to (5).

[比較例8〜12]
実施例23で用いた吸水剤(2)を、比較例3〜7で得られた比較用吸水剤(3)〜(7)に変更することにより、比較評価用吸収体(1)〜(5)を得た。
[Comparative Examples 8-12]
By changing the water-absorbing agent (2) used in Example 23 to the comparative water-absorbing agents (3) to (7) obtained in Comparative Examples 3 to 7, the comparative evaluation absorbers (1) to (5) )

得られた比較評価用吸収体(1)〜(5)の戻り量評価結果を表7に示した。   Table 7 shows the evaluation results of the return amounts of the obtained comparative evaluation absorbent bodies (1) to (5).

[実施例28]
アクリル酸水溶液1500g(単量体濃度20%)に、N,N’−メチレンビスアクリルアミド3.1gを溶解し反応液とし、得られた反応液を参考例1のステンレス製バットに注入した。このとき反応液の厚みは17mmであった。該ステンレス製バットを、参考例1と同様にシールした後、20℃のウォーターバスに漬け、反応液の温度を20℃に調整しながら、該反応液に窒素ガスを導入して液中の溶存酸素を除去した。その後は、窒素ガスを反応容器の上部空間に導入し、反対側から排気しつづけた。続いて、反応液をマグネティックスターラーで攪拌しながら、重合開始剤として2,2’−アゾビス(2−アミジノプロパン)ジハイドロクロライドの10質量%水溶液を20.0g、L−アスコルビン酸の1質量%水溶液を18.0g、および過酸化水素の3.5質量%水溶液を20.0g添加したところ、およそ1分後に重合が開始した。重合反応中はバットの下面から冷却・加熱を繰り返したところ重合開始後12分でピーク温度60℃を示し、重合開始後100分に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体を約5cm角にはさみでカットした後、得られた約5cm角の含水ゲル状重合体を参考例1と同じミートチョッパーに一定速度で供給しながら40質量%の水酸化ナトリウム水溶液749gを一定速度で供給し、ゲル粉砕しながら同時に後中和を行った。該ミートチョッパーから排出された粉砕ゲルは、フェノールフタレイン液をゲルにかけても赤色を呈色しない状態まで約70℃の雰囲気で保持された後、参考例1と同様に乾燥・粉砕され、さらに目開き710μmと150μmの金網で分級、調合することにより、不定形破砕状の吸水性樹脂粉末(l)を得た。得られた吸水性樹脂(l)の無加圧下吸収倍率(CRC)、質量平均粒子径(D50)、150μm未満の粒子の割合(%)を表1に示す。
[Example 28]
In 1500 g of acrylic acid aqueous solution (monomer concentration 20%), 3.1 g of N, N′-methylenebisacrylamide was dissolved as a reaction solution, and the obtained reaction solution was poured into the stainless steel vat of Reference Example 1. At this time, the thickness of the reaction solution was 17 mm. The stainless steel vat is sealed in the same manner as in Reference Example 1, and then immersed in a 20 ° C. water bath, while adjusting the temperature of the reaction solution to 20 ° C., nitrogen gas is introduced into the reaction solution and dissolved in the solution. Oxygen was removed. Thereafter, nitrogen gas was introduced into the upper space of the reaction vessel and continued to be exhausted from the opposite side. Subsequently, while stirring the reaction solution with a magnetic stirrer, 20.0 g of a 10% by mass aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride as a polymerization initiator and 1% by mass of L-ascorbic acid. When 18.0 g of an aqueous solution and 20.0 g of a 3.5% by mass aqueous solution of hydrogen peroxide were added, polymerization started about 1 minute later. During the polymerization reaction, cooling and heating were repeated from the lower surface of the bat, and a peak temperature of 60 ° C. was exhibited 12 minutes after the start of polymerization. A hydrogel polymer was taken out 100 minutes after the start of polymerization. The obtained hydrogel polymer was cut with about 5 cm square scissors, and then the obtained hydrogel polymer of about 5 cm square was fed to the same meat chopper as in Reference Example 1 at a constant rate while being 40% by mass. 749 g of an aqueous sodium hydroxide solution was supplied at a constant rate, and at the same time, post-neutralization was performed while gel pulverization. The crushed gel discharged from the meat chopper was kept in an atmosphere at about 70 ° C. until it did not turn red even when the phenolphthalein solution was applied to the gel, and then dried and crushed in the same manner as in Reference Example 1, By classifying and blending with an opening 710 μm and a 150 μm wire mesh, an irregularly crushed water-absorbent resin powder (l) was obtained. Table 1 shows the absorption capacity without load (CRC), mass-average particle diameter (D50), and ratio (%) of particles less than 150 μm of the obtained water-absorbent resin (l).

次いで、得られた吸水性樹脂粉末(l)100質量部に、プロピレングリコール0.5質量部と、エチレングリコールジグリシジルエーテル0.03質量部と、1,4−ブタンジオール0.3質量部と、水2.7質量部とからなる表面架橋剤3.53質量部を混合した。上記の混合物を熱媒温度195℃で60分間加熱処理することにより吸水性樹脂(12)を得た。   Next, 100 parts by mass of the obtained water absorbent resin powder (l), 0.5 parts by mass of propylene glycol, 0.03 parts by mass of ethylene glycol diglycidyl ether, and 0.3 parts by mass of 1,4-butanediol, Then, 3.53 parts by mass of a surface cross-linking agent consisting of 2.7 parts by mass of water was mixed. The mixture was heat treated at a heat medium temperature of 195 ° C. for 60 minutes to obtain a water absorbent resin (12).

得られた吸水性樹脂(12)をそのまま吸水剤(23)とし、実施例1と同様に評価して結果を表2〜4に示した。   The obtained water-absorbing resin (12) was used as it was as the water-absorbing agent (23), and was evaluated in the same manner as in Example 1. The results are shown in Tables 2 to 4.

[実施例29]
実施例28で得られた吸水剤(23)100質量部に微粒子状のステアリン酸カルシウム(日本油脂株式会社)0.1質量部を添加・混合(ドライブレンド)して、吸水剤(24)を得た。得られた吸水剤(24)の粒度分布を測定したところほどんど変わっておらず、質量平均粒子径(D50)、対数標準偏差(σζ)および粒子径150μm未満の質量百分率は、混合前の吸水剤(23)と同じ値を示した。さらに耐尿性評価および生理食塩水中での16時間可溶分も、混合前の吸水剤(23)と同じ値を示した。吸水剤(24)を実施例9と同様に評価し、結果を表5に示した。
[Example 29]
To 100 parts by mass of the water-absorbing agent (23) obtained in Example 28, 0.1 part by mass of particulate calcium stearate (Nippon Yushi Co., Ltd.) was added and mixed (dry blended) to obtain the water-absorbing agent (24). It was. When the particle size distribution of the water-absorbing agent (24) obtained was measured, the particle size distribution did not change much, and the mass average particle size (D50), logarithmic standard deviation (σζ), and mass percentage less than 150 μm were the water absorption before mixing. The value was the same as that of the agent (23). Furthermore, the urine resistance evaluation and the 16-hour soluble component in physiological saline also showed the same value as the water-absorbing agent (23) before mixing. The water absorbing agent (24) was evaluated in the same manner as in Example 9, and the results are shown in Table 5.

[実施例30]
実施例28で得られた吸水剤(23)を吸収体として性能評価するために上記(j)吸収体性能評価の方法に従って評価用吸収体(6)を作成し、10分戻り量および劣化戻り量を測定した。結果を表7に示した。
[Example 30]
In order to evaluate the performance of the water-absorbing agent (23) obtained in Example 28 as an absorber, the absorber for evaluation (6) was prepared according to the method for evaluating the performance of the absorber (j) above, and the return amount and deterioration return for 10 minutes. The amount was measured. The results are shown in Table 7.

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

Figure 2006055833
Figure 2006055833

本発明の粒子状吸水剤は、表2〜4にあるように、粒度も制御され、吸収倍率も高く、粒度も制御され、かつ、生理食塩水およびL−アスコルビン酸入り生理食塩水での可溶分の差が非常に少なく、よって、尿成分の変化(個人差、季節差など)や使用時間によらず安定した高性能を示す。   As shown in Tables 2 to 4, the particulate water-absorbing agent of the present invention has a controlled particle size, a high absorption capacity, a controlled particle size, and can be used in physiological saline and physiological saline containing L-ascorbic acid. The difference in solute content is very small. Therefore, stable performance is exhibited regardless of changes in urine components (individual differences, seasonal differences, etc.) and usage time.

かかる本発明の粒子状吸水剤は、表5に示すように、吸収速度、吸湿流動性にも優れ、必要により消臭剤を添加することで、別途、表6に示すように、高い消臭性能をも示す。   As shown in Table 5, the particulate water-absorbing agent of the present invention is also excellent in absorption rate and moisture absorption fluidity. If necessary, a deodorizing agent can be added as shown in Table 6 by adding a deodorant. Also shows performance.

本発明の粒子状吸水剤は、表7に示されたように、いかなる液に対しても戻り量の少ない吸収性物品(表7では吸収体)を与え、さらに、比較例11のような吸収体からのゲル微粒子のはみ出しもないため、よって、尿成分の変化(個人差、季節差など)や使用時間によらず安定した高性能の吸収性物品(おむつ)を与える。   As shown in Table 7, the particulate water-absorbing agent of the present invention gives an absorbent article (absorber in Table 7) with a small return amount to any liquid, and further absorbs as in Comparative Example 11. Since the gel fine particles do not protrude from the body, a stable high-performance absorbent article (diaper) is provided regardless of changes in urine components (individual differences, seasonal differences, etc.) and usage time.

本発明により得られた吸水性樹脂は、特定の粒度分布に制御されて、かつ尿に対する安定性も優れており、オムツなどの吸収体に使用した場合、従来の吸収体に比べ、非常に優れた吸収性能をもった吸収体を提供することが出来るという効果を奏する。   The water-absorbent resin obtained by the present invention is controlled to a specific particle size distribution and has excellent stability against urine. When used in an absorbent body such as a diaper, it is very superior to conventional absorbent bodies. There exists an effect that the absorber with the outstanding absorption performance can be provided.

Claims (19)

酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(d)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(d)下記式で示す可溶分劣化増加量が0〜15質量%で、且つ劣化試験液での1時間可溶分が0.1〜30質量%、ただし、劣化試験液とは、0.05質量%L−アスコルビン酸入り生理食塩水である。
Figure 2006055833
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, and satisfying the following (a) to (d).
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(D) The soluble matter deterioration increase amount shown by the following formula is 0 to 15% by mass, and the one-hour soluble component in the deterioration test solution is 0.1 to 30% by mass, provided that the deterioration test solution is 0 0.05% by mass L-ascorbic acid-containing physiological saline.
Figure 2006055833
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(e)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(e)下記式で示す可溶分劣化増加倍率が1〜4倍で、且つ劣化試験液での1時間可溶分が0.1〜30質量%、ただし、劣化試験液とは、0.05質量%L−アスコルビン酸入り生理食塩水である。
Figure 2006055833
A particulate water-absorbing agent mainly comprising a water-absorbing resin obtained by crosslinking polymerization of an acid group and / or a salt-containing unsaturated monomer, and satisfying the following (a) to (c) and (e) Agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(E) The soluble component deterioration increasing ratio represented by the following formula is 1 to 4 times, and the one hour soluble component in the deterioration test solution is 0.1 to 30% by mass. It is a physiological saline containing 05 mass% L-ascorbic acid.
Figure 2006055833
酸基および/またはその塩含有不飽和単量体を架橋重合した吸水性樹脂を主成分とする粒子状吸水剤であって、下記(a)〜(c)および(f)、(g)を満たす粒子状吸水剤。
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
(f)生理食塩水中での16時間可溶分が0.1〜10質量%
(g)生理食塩水への4.8kPaでの高加圧下吸収倍率(AAP4.8kPa)が21g/g以上。
A particulate water-absorbing agent comprising as a main component a water-absorbing resin obtained by crosslinking and polymerizing an acid group and / or a salt-containing unsaturated monomer thereof, wherein the following (a) to (c) and (f), (g) Filled particulate water-absorbing agent.
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
(F) 0.1 to 10% by mass of 16-hour soluble component in physiological saline
(G) Absorption capacity under high pressure (AAP 4.8 kPa) at 4.8 kPa into physiological saline is 21 g / g or more.
吸水性樹脂はさらに表面架橋されてなる、請求項1〜3の何れかに記載の粒子状吸水剤。   The particulate water-absorbing agent according to any one of claims 1 to 3, wherein the water-absorbent resin is further surface-crosslinked. さらに(h)粒子状吸水剤の90〜100質量%が600〜150μm範囲にある、請求項1〜4の何れかに記載の粒子状吸水剤。   Furthermore, (h) 90-100 mass% of a particulate water-absorbing agent exists in the range of 600-150 micrometers, The particulate water-absorbing agent in any one of Claims 1-4. さらに(i)生理食塩水への1.9kPaでの加圧下吸収倍率(AAP1.9kPa)が20g/g以上である、請求項1〜5の何れかに記載の粒子状吸水剤。   Furthermore, the particulate water absorbing agent in any one of Claims 1-5 whose (i) absorption capacity | capacitance (AAP1.9 kPa) under pressure in 1.9 kPa to a physiological saline is 20 g / g or more. さらに(j)生理食塩水へのボルテックス吸水速度が60秒以下である、請求項1〜6の何れかに記載の粒子状吸水剤。   Furthermore, the particulate water absorbing agent in any one of Claims 1-6 whose (j) vortex water absorption speed | rate to physiological saline is 60 second or less. さらに(k)吸湿ブッロキング率が0〜20質量%である、請求項1〜7のいずれかに記載の粒子状吸水剤。   Furthermore, the particulate water-absorbing agent according to any one of claims 1 to 7, wherein (k) the moisture absorption blocking rate is 0 to 20% by mass. さらに(l)粒度分布の対数標準偏差が0.20〜0.40である、請求項1〜8のいずれかに記載の粒子状吸水剤。   The particulate water-absorbing agent according to any one of claims 1 to 8, wherein (l) logarithmic standard deviation of the particle size distribution is 0.20 to 0.40. 主成分の吸水性樹脂以外に、キレート剤、消臭剤、多価金属塩、無機微粒子から選ばれる1以上の微量成分をさらに含む請求項1〜9の何れかに記載の粒子状吸水剤。   The particulate water-absorbing agent according to any one of claims 1 to 9, further comprising one or more trace components selected from a chelating agent, a deodorant, a polyvalent metal salt, and inorganic fine particles in addition to the water-absorbing resin as a main component. 前記キレート剤が、アミノカルボン酸およびその塩から選ばれる請求項10記載の粒子状吸水剤。   The particulate water-absorbing agent according to claim 10, wherein the chelating agent is selected from aminocarboxylic acids and salts thereof. 前記消臭剤が植物成分である請求項10に記載の粒子状吸水剤。   The particulate water-absorbing agent according to claim 10, wherein the deodorant is a plant component. 前記多価金属塩が有機酸の多価金属塩である請求項10に記載の粒子状吸水剤。   The particulate water-absorbing agent according to claim 10, wherein the polyvalent metal salt is a polyvalent metal salt of an organic acid. 前記無機微粒子が複合含水酸化物である請求項10に記載の粒子状吸水剤。   The particulate water-absorbing agent according to claim 10, wherein the inorganic fine particles are a composite hydrous oxide. 吸水性樹脂の粒子形状が不定形破砕状である請求項1〜14の何れかに記載の粒子状吸水剤。   The particulate water-absorbing agent according to any one of claims 1 to 14, wherein the particle shape of the water-absorbent resin is irregularly crushed. 糞、尿または血液の吸収性物品であって、請求項1〜18の何れかに記載の粒子状吸水剤および親水性繊維を含んで成形された吸収性物品。   An absorptive article of feces, urine or blood, wherein the absorptive article is formed by including the particulate water-absorbing agent according to any one of claims 1 to 18 and hydrophilic fibers. 請求項1〜15の何れかに記載の粒子状吸水剤の製造方法であって、
未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤および連鎖移動剤の存在下に架橋重合する工程、
重合して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
を含む、粒状吸水剤の製造方法。
A method for producing the particulate water-absorbing agent according to any one of claims 1 to 15,
A step of crosslinking polymerization of an unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component in the presence of a crosslinking agent and a chain transfer agent;
Step of further surface cross-linking water-absorbent resin particles satisfying the following (a) to (c) obtained by polymerization (a) Absorption capacity under no pressure (CRC) to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
A method for producing a granular water-absorbing agent.
請求項1〜15の何れかに記載の粒子状吸水剤の製造方法であって、
未中和アクリル酸を単量体の主成分とする濃度10〜30質量%の不飽和単量体水溶液を架橋剤の存在下に架橋重合する工程、
重合後に中和する工程、
中和して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程、
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%
を含む、粒子状吸水剤の製造方法。
A method for producing the particulate water-absorbing agent according to any one of claims 1 to 15,
A step of crosslinking and polymerizing an unsaturated monomer aqueous solution having a concentration of 10 to 30% by weight of unneutralized acrylic acid as a main component in the presence of a crosslinking agent;
A step of neutralizing after polymerization,
A step of further surface-crosslinking the water-absorbent resin particles satisfying the following (a) to (c) obtained by neutralization,
(A) Absorption capacity (CRC) under no pressure to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm
A method for producing a particulate water-absorbing agent.
請求項1〜15の何れかに記載の粒子状吸水剤の製造方法であって、
未中和アクリル酸および/またはその塩を単量体の主成分とする不飽和単量体水溶液を架橋剤の存在下に架橋重合する工程、
重合して得られた下記(a)〜(c)を満たす吸水性樹脂粒子をさらに表面架橋する工程
(a)生理食塩水への無加圧下吸収倍率(CRC)が32g/g以上
(b)質量平均粒子径(D50)が200〜400μm
(c)150μm未満の粒子が0〜2質量%および
(i)重合時、(ii)重合後の表面架橋前、(iii)表面架橋時、(iv)表面架橋後からなる群から選択される1以上の時期にキレート剤を添加する工程、
を含む、粒子状吸水剤の製造方法。
A method for producing the particulate water-absorbing agent according to any one of claims 1 to 15,
A step of crosslinking polymerization of an unsaturated monomer aqueous solution containing unneutralized acrylic acid and / or a salt thereof as a main component in the presence of a crosslinking agent;
Step of further surface cross-linking water-absorbent resin particles satisfying the following (a) to (c) obtained by polymerization (a) Absorption capacity under no pressure (CRC) to physiological saline is 32 g / g or more (b) Mass average particle diameter (D50) is 200 to 400 μm
(C) 0-2% by mass of particles less than 150 μm and selected from the group consisting of (i) during polymerization, (ii) before surface crosslinking after polymerization, (iii) during surface crosslinking, (iv) after surface crosslinking Adding a chelating agent at one or more times;
A method for producing a particulate water-absorbing agent.
JP2005094194A 2004-03-29 2005-03-29 Particulate water absorbing agent with water-absorbing resin as main component Pending JP2006055833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094194A JP2006055833A (en) 2004-03-29 2005-03-29 Particulate water absorbing agent with water-absorbing resin as main component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004096083 2004-03-29
JP2004211856 2004-07-20
JP2005094194A JP2006055833A (en) 2004-03-29 2005-03-29 Particulate water absorbing agent with water-absorbing resin as main component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012021152A Division JP5706351B2 (en) 2004-03-29 2012-02-02 Particulate water-absorbing agent mainly composed of water-absorbing resin

Publications (1)

Publication Number Publication Date
JP2006055833A true JP2006055833A (en) 2006-03-02

Family

ID=36103754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094194A Pending JP2006055833A (en) 2004-03-29 2005-03-29 Particulate water absorbing agent with water-absorbing resin as main component

Country Status (1)

Country Link
JP (1) JP2006055833A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096713A1 (en) * 2007-02-05 2008-08-14 Nippon Shokubai Co., Ltd. Granular water absorber and method of producing the same
WO2009005114A1 (en) * 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
JP2010540685A (en) * 2007-09-24 2010-12-24 エフォニック ストックハウゼン ゲーエムベーハー Superabsorbent composition containing tannin for odor control
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
JP2012213516A (en) * 2011-03-31 2012-11-08 Unicharm Corp Water-absorbent article
WO2013002387A1 (en) 2011-06-29 2013-01-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
WO2013073614A1 (en) * 2011-11-15 2013-05-23 株式会社日本触媒 Water absorbent composition and method for producing same, as well as storage and stocking method for same
JP2014000530A (en) * 2012-06-19 2014-01-09 Daiki:Kk Water absorbing material
JP2015016450A (en) * 2013-07-12 2015-01-29 株式会社日本触媒 Water absorbent, and production method thereof
US9486778B2 (en) 2013-09-30 2016-11-08 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
JPWO2015129917A1 (en) * 2014-02-28 2017-03-30 株式会社日本触媒 Poly (meth) acrylic acid (salt) -based particulate water-absorbing agent and production method
WO2017170604A1 (en) 2016-03-28 2017-10-05 株式会社日本触媒 Method for manufacturing water absorbing agent
JP2017222875A (en) * 2012-04-25 2017-12-21 エルジー・ケム・リミテッド Super absorbent polymer and preparation method thereof
JP2017538008A (en) * 2014-12-04 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles by suspension polymerization
JPWO2017170501A1 (en) * 2016-03-28 2019-03-07 株式会社日本触媒 Water absorbent, method for producing the same, and absorbent article using the water absorbent
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
JP2019118593A (en) * 2017-12-29 2019-07-22 花王株式会社 Absorbent article
WO2020032282A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Water absorbent sheet and water absorbent article comprising same
WO2020032280A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Water absorbent sheet and water absorbent article comprising same
WO2020032281A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Absorbent sheet and absorbent article containing same
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
JPWO2020137241A1 (en) * 2018-12-26 2021-11-04 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
WO2023188633A1 (en) * 2022-03-30 2023-10-05 Sdpグローバル株式会社 Water-absorbable resin composition, absorber and absorbent article each using same, and method for producing water-absorbable resin composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196802A (en) * 1988-07-04 1990-08-03 Nippon Shokubai Kagaku Kogyo Co Ltd Water absorptive resin and production thereof
JPH0699022A (en) * 1992-09-24 1994-04-12 Fuji Kagaku Kogyo Kk Deodorant sheet
WO1995033558A1 (en) * 1994-06-06 1995-12-14 Sanyo Chemical Industries, Ltd. Modified water-absorbent resin particles
JPH08337726A (en) * 1995-06-14 1996-12-24 Kao Corp Highly water absorbing resin and absorbent article
JPH09124710A (en) * 1995-11-02 1997-05-13 Nippon Shokubai Co Ltd Water-absorbing resin and production thereof
JP2000000463A (en) * 1998-04-15 2000-01-07 Nippon Shokubai Co Ltd Water absorbent, absorber, absorptive article and method for determing their absorption characteristic
JP2000093792A (en) * 1998-09-22 2000-04-04 Nippon Shokubai Co Ltd Water absorbent
JP2001234087A (en) * 1999-12-15 2001-08-28 Nippon Shokubai Co Ltd Water absorbent resin composition
JP2002113800A (en) * 2000-10-11 2002-04-16 Nippon Kyushutai Gijutsu Kenkyusho:Kk Multifunctional multilayered absorber and manufacturing method therefor
JP2002194239A (en) * 2000-10-20 2002-07-10 Nippon Shokubai Co Ltd Water-absorbing agent, and manufacturing method of water-absorbing agent
JP2003105092A (en) * 2001-06-08 2003-04-09 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and hygienic material
JP2003225565A (en) * 2001-11-20 2003-08-12 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor, and absorbing material and absorptive article using the water absorbent
JP2003246810A (en) * 2001-12-19 2003-09-05 Nippon Shokubai Co Ltd Acrylic acid composition, method of manufacturing the same, method of manufacturing water-absorbing resin using the same and water-soluble resin
JP2003313446A (en) * 2002-04-18 2003-11-06 Nippon Shokubai Co Ltd Water absorbent having main component of highly water absorptive resin with crosslinking structure, method for manufacturing it, and medical supply using this

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196802A (en) * 1988-07-04 1990-08-03 Nippon Shokubai Kagaku Kogyo Co Ltd Water absorptive resin and production thereof
JPH0699022A (en) * 1992-09-24 1994-04-12 Fuji Kagaku Kogyo Kk Deodorant sheet
WO1995033558A1 (en) * 1994-06-06 1995-12-14 Sanyo Chemical Industries, Ltd. Modified water-absorbent resin particles
JPH08337726A (en) * 1995-06-14 1996-12-24 Kao Corp Highly water absorbing resin and absorbent article
JPH09124710A (en) * 1995-11-02 1997-05-13 Nippon Shokubai Co Ltd Water-absorbing resin and production thereof
JP2000000463A (en) * 1998-04-15 2000-01-07 Nippon Shokubai Co Ltd Water absorbent, absorber, absorptive article and method for determing their absorption characteristic
JP2000093792A (en) * 1998-09-22 2000-04-04 Nippon Shokubai Co Ltd Water absorbent
JP2001234087A (en) * 1999-12-15 2001-08-28 Nippon Shokubai Co Ltd Water absorbent resin composition
JP2002113800A (en) * 2000-10-11 2002-04-16 Nippon Kyushutai Gijutsu Kenkyusho:Kk Multifunctional multilayered absorber and manufacturing method therefor
JP2002194239A (en) * 2000-10-20 2002-07-10 Nippon Shokubai Co Ltd Water-absorbing agent, and manufacturing method of water-absorbing agent
JP2003105092A (en) * 2001-06-08 2003-04-09 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and hygienic material
JP2003225565A (en) * 2001-11-20 2003-08-12 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor, and absorbing material and absorptive article using the water absorbent
JP2003246810A (en) * 2001-12-19 2003-09-05 Nippon Shokubai Co Ltd Acrylic acid composition, method of manufacturing the same, method of manufacturing water-absorbing resin using the same and water-soluble resin
JP2003313446A (en) * 2002-04-18 2003-11-06 Nippon Shokubai Co Ltd Water absorbent having main component of highly water absorptive resin with crosslinking structure, method for manufacturing it, and medical supply using this

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008096713A1 (en) * 2007-02-05 2010-05-20 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
JP5669354B2 (en) * 2007-02-05 2015-02-12 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
WO2008096713A1 (en) * 2007-02-05 2008-08-14 Nippon Shokubai Co., Ltd. Granular water absorber and method of producing the same
JP5558818B2 (en) * 2007-07-04 2014-07-23 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
WO2009005114A1 (en) * 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and method for producing the same
JPWO2009005114A1 (en) * 2007-07-04 2010-08-26 株式会社日本触媒 Particulate water-absorbing agent and method for producing the same
JP2010540685A (en) * 2007-09-24 2010-12-24 エフォニック ストックハウゼン ゲーエムベーハー Superabsorbent composition containing tannin for odor control
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
US8653210B2 (en) 2008-10-08 2014-02-18 Evonik Degussa Gmbh Continuous process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US9085648B2 (en) 2008-10-08 2015-07-21 Evonik Degussa Gmbh Superabsorbent polymer process
JP2012213516A (en) * 2011-03-31 2012-11-08 Unicharm Corp Water-absorbent article
WO2013002387A1 (en) 2011-06-29 2013-01-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same
WO2013073614A1 (en) * 2011-11-15 2013-05-23 株式会社日本触媒 Water absorbent composition and method for producing same, as well as storage and stocking method for same
US10363339B2 (en) 2011-11-15 2019-07-30 Nippon Shokubai Co., Ltd. Water absorbent agent composition and method for producing same, as well as storage and stocking method for same
CN103930201A (en) * 2011-11-15 2014-07-16 株式会社日本触媒 Water absorbent composition and method for producing same, as well as storage and stocking method for same
JP2018047467A (en) * 2011-11-15 2018-03-29 株式会社日本触媒 Absorbent composition and method for producing the same, and storage of the same and stock method
JPWO2013073614A1 (en) * 2011-11-15 2015-04-02 株式会社日本触媒 Water-absorbing agent composition, production method thereof, and storage and inventory method thereof
CN103930201B (en) * 2011-11-15 2016-04-27 株式会社日本触媒 Water-absorbent agent composition and manufacture method thereof and its keeping and stock's method
US10086361B2 (en) 2012-04-25 2018-10-02 Lg Chem, Ltd. Super absorbent polymer and a preparation method thereof
JP2017222875A (en) * 2012-04-25 2017-12-21 エルジー・ケム・リミテッド Super absorbent polymer and preparation method thereof
JP2014000530A (en) * 2012-06-19 2014-01-09 Daiki:Kk Water absorbing material
JP2015016450A (en) * 2013-07-12 2015-01-29 株式会社日本触媒 Water absorbent, and production method thereof
US9808787B2 (en) 2013-09-30 2017-11-07 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
US9486778B2 (en) 2013-09-30 2016-11-08 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
JPWO2015129917A1 (en) * 2014-02-28 2017-03-30 株式会社日本触媒 Poly (meth) acrylic acid (salt) -based particulate water-absorbing agent and production method
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
JP2017538008A (en) * 2014-12-04 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles by suspension polymerization
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
US11286321B2 (en) 2015-01-16 2022-03-29 Lg Chem, Ltd. Super absorbent polymer
JPWO2017170501A1 (en) * 2016-03-28 2019-03-07 株式会社日本触媒 Water absorbent, method for producing the same, and absorbent article using the water absorbent
WO2017170604A1 (en) 2016-03-28 2017-10-05 株式会社日本触媒 Method for manufacturing water absorbing agent
US11602577B2 (en) 2016-03-28 2023-03-14 Nippon Shokubai Co., Ltd. Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2019118593A (en) * 2017-12-29 2019-07-22 花王株式会社 Absorbent article
JP7157530B2 (en) 2017-12-29 2022-10-20 花王株式会社 absorbent article
WO2020032284A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Absorbent sheet and absorbent article containing same
JP7174760B2 (en) 2018-08-09 2022-11-17 株式会社日本触媒 Absorbent sheet and absorbent article containing the same
JPWO2020032284A1 (en) * 2018-08-09 2021-08-10 株式会社日本触媒 Water-absorbent sheet and absorbent articles containing it
JPWO2020032280A1 (en) * 2018-08-09 2021-08-10 株式会社日本触媒 Water-absorbent sheet and absorbent articles containing it
JPWO2020032281A1 (en) * 2018-08-09 2021-08-10 株式会社日本触媒 Water-absorbent sheet and absorbent articles containing it
JPWO2020032283A1 (en) * 2018-08-09 2021-08-10 株式会社日本触媒 Water-absorbent sheet and absorbent articles containing it
JPWO2020032282A1 (en) * 2018-08-09 2021-08-12 株式会社日本触媒 Water-absorbent sheet and absorbent articles containing it
JP7244523B2 (en) 2018-08-09 2023-03-22 株式会社日本触媒 Absorbent sheet and absorbent article containing the same
WO2020032283A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Absorbent sheet and absorbent article containing same
WO2020032280A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Water absorbent sheet and water absorbent article comprising same
WO2020032281A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Absorbent sheet and absorbent article containing same
JP7174759B2 (en) 2018-08-09 2022-11-17 株式会社日本触媒 Absorbent sheet and absorbent article containing the same
JP7174761B2 (en) 2018-08-09 2022-11-17 株式会社日本触媒 Absorbent sheet and absorbent article containing the same
WO2020032282A1 (en) * 2018-08-09 2020-02-13 株式会社日本触媒 Water absorbent sheet and water absorbent article comprising same
JPWO2020137241A1 (en) * 2018-12-26 2021-11-04 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
WO2023188633A1 (en) * 2022-03-30 2023-10-05 Sdpグローバル株式会社 Water-absorbable resin composition, absorber and absorbent article each using same, and method for producing water-absorbable resin composition

Similar Documents

Publication Publication Date Title
JP5706351B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
JP2006055833A (en) Particulate water absorbing agent with water-absorbing resin as main component
JP5922623B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin, method for producing the same and absorbent article
JP4758669B2 (en) Amorphous crushed particulate water-absorbing agent
JP4683405B2 (en) Water-absorbing resin composition and method for producing the same
JP5250204B2 (en) Particulate water-absorbing agent, absorber and absorbent article
RU2368625C2 (en) Powdered water-absorbing agent, containing water-absorbing resin as basic component
US7638570B2 (en) Water-absorbing agent
JP5558096B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
KR102269376B1 (en) Particulate water-absorbing agent and method for manufacturing same
JP5367364B2 (en) Water-absorbing agent containing water-absorbing resin as main component and method for producing the same
JP2012161789A (en) Method of producing water absorbent
KR20160102217A (en) Polyacrylic acid (salt) water absorbent, and method for producing same
MXPA06006467A (en) WATER ABSORPTION AGENT, MANUFACTURING METHOD OF THE SAME AND MATERIAL AND ABSORBENT ARTICLE ELABORATED
JP4199679B2 (en) Water-absorbing resin composition and method for producing the same, and absorbent body and absorbent article using the same
JP4447019B2 (en) Water absorbent
JPH07310021A (en) Water absorbing agent composition, its production, water absorbing structure and water absorbing article respectively containing the same
JP4500134B2 (en) Particulate water-absorbing resin composition
JP2004285202A (en) Water-absorbing resin composition
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics
JP2005060677A (en) Water-absorbing resin composition, method for producing the same, absorber given by using the same, and absorbent article
JP4799855B2 (en) Water-absorbing agent and method for producing the same, and absorbent body and absorbent article using the same
MXPA06001014A (en) Water-absorbent resin composition and method for producing thereof, and absorbent material and absorbent product using thereof
MXPA06006097A (en) Particulate water absorbing agent with irregularly pulverized shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202