JP3071764B2 - Film with metal foil and method of manufacturing wiring board using the same - Google Patents

Film with metal foil and method of manufacturing wiring board using the same

Info

Publication number
JP3071764B2
JP3071764B2 JP10244250A JP24425098A JP3071764B2 JP 3071764 B2 JP3071764 B2 JP 3071764B2 JP 10244250 A JP10244250 A JP 10244250A JP 24425098 A JP24425098 A JP 24425098A JP 3071764 B2 JP3071764 B2 JP 3071764B2
Authority
JP
Japan
Prior art keywords
metal foil
film
thickness
adhesive layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10244250A
Other languages
Japanese (ja)
Other versions
JP2000071387A (en
Inventor
昭彦 西本
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10244250A priority Critical patent/JP3071764B2/en
Publication of JP2000071387A publication Critical patent/JP2000071387A/en
Application granted granted Critical
Publication of JP3071764B2 publication Critical patent/JP3071764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素子
収納パッケージなどに用いられる配線基板における配線
回路層を形成するのに好適に用いられる金属箔付きフィ
ルム及びそれを用いた配線基板の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film with a metal foil suitably used for forming a wiring circuit layer in a wiring board used for, for example, a semiconductor device storage package, and a method of manufacturing a wiring board using the same. Things.

【0002】[0002]

【従来技術】従来から、配線基板、例えば、半導体素子
を収納するパッケージに使用される配線基板として、比
較的高密度の配線が可能な多層セラミック配線基板が多
く用いられてきた。この多層セラミック配線基板は、ア
ルミナなどの絶縁体と、その表面に形成されたWやMo
等の高融点金属からなる配線導体とから構成されるもの
で、この絶縁体の一部に凹部が形成され、この凹部内に
半導体素子が収納され、蓋体によって凹部を気密に封止
されるものである。
2. Description of the Related Art Conventionally, a multilayer ceramic wiring board capable of relatively high-density wiring has been widely used as a wiring board, for example, a wiring board used for a package for housing a semiconductor element. This multilayer ceramic wiring board is composed of an insulator such as alumina and W or Mo formed on the surface thereof.
And a wiring conductor made of a metal having a high melting point, such as a high-melting-point metal. A recess is formed in a part of the insulator, the semiconductor element is accommodated in the recess, and the recess is hermetically sealed by a lid. Things.

【0003】ところで、多層配線基板や半導体素子収納
用パッケージなどに使用される配線基板は、各種電子機
器の高性能化に伴って、今後益々高密度化が進み、配線
幅や配線ピッチを50μm以下にすることが要求されて
おり、バイアホールもインタースティシャルバイアホー
ル(IVH)にする必要やICチップの実装方法もワイ
ヤーボンディングからフリップチップと代わるため、基
板自体の平坦度を小さくする必要も生じている。しかし
ながら、多層セラミック配線基板では、焼結前のグリー
ンシートにメタライズインクを印刷して、印刷後のシー
トを積層して焼結させて製造するのであるが、その製造
工程において高温での焼成時に焼成収縮が生じるため
に、得られた基板に反り等の変形や寸法のばらつき等が
発生しやすく、そのため回路基板の超高密度化やフリッ
プチップ等のような基板の平坦度に関する厳しい要求に
対して、十分に対応できないなという問題があった。
Meanwhile, wiring boards used for multi-layer wiring boards and packages for housing semiconductor elements, etc., have become more and more dense in the future as the performance of various electronic devices has been improved, and the wiring width and wiring pitch have been reduced to 50 μm or less. It is required that the via hole be an interstitial via hole (IVH), and the mounting method of the IC chip also changes from the wire bonding to the flip chip, so that the flatness of the substrate itself needs to be reduced. ing. However, a multilayer ceramic wiring board is manufactured by printing metallized ink on a green sheet before sintering, laminating and sintering the printed sheets, and firing in a high-temperature firing process in the manufacturing process. Due to the shrinkage, the resulting substrate is liable to be deformed such as warpage or dimensional variation, etc., and therefore, in response to strict requirements regarding ultra-high density of circuit boards and flatness of substrates such as flip chips etc. However, there was a problem that it could not cope sufficiently.

【0004】また、多層セラミック配線基板の別の問題
としては、セラミックスが硬くて脆いという性質を有す
ることから、製造工程または搬送工程において、セラミ
ックスの欠けや割れ等が発生しやすく、その結果、半導
体素子の気密封止性が損なわれることがあるため歩留り
が低い等の問題があった。
Another problem of the multilayer ceramic wiring board is that ceramics are hard and brittle, so that chipping or cracking of the ceramics is likely to occur in a manufacturing process or a transporting process. Since the hermetic sealing of the device may be impaired, there are problems such as low yield.

【0005】これに対してセラミック配線基板以外の配
線基板として、有機樹脂を含む絶縁性基板の表面に銅等
の金属層から成る表面配線回路層を形成した樹脂製配線
基板が用いられている。このような樹脂製配線基板は、
セラミック配線基板のような欠けや割れ等の欠点がな
く、また多層化に際しても、焼成のような高温での熱処
理を必要としないという利点を有している。
On the other hand, as a wiring board other than a ceramic wiring board, a resin wiring board in which a surface wiring circuit layer made of a metal layer such as copper is formed on the surface of an insulating substrate containing an organic resin is used. Such a resin wiring board,
There is an advantage that there is no defect such as chipping or cracking as in the case of a ceramic wiring board, and that a multilayer heat treatment does not require heat treatment at a high temperature such as firing.

【0006】樹脂製配線基板は、一般に、銅箔等の金属
箔を絶縁基板上に貼り付け、次いで金属箔の不要な部分
をエッチング法やメッキ法により除去して回路パターン
を形成する手段により配線回路層を形成するものである
が、以下の種々の問題があった。
In general, a resin wiring board is formed by attaching a metal foil such as a copper foil on an insulating substrate and then removing unnecessary portions of the metal foil by etching or plating to form a circuit pattern. Forming a circuit layer involves the following various problems.

【0007】例えば、回路パターン形成時に、エッチン
グ等の薬液により、絶縁基板が劣化したり、金属箔を用
いて形成した表面配線回路層は絶縁基板表面に載置され
ているのみであるため、この表面配線回路層の絶縁基板
への密着不良が生じ両者の界面に空隙が生じ易く、ひい
ては配線不良に至り使用不能となるなどの問題があっ
た。
For example, when a circuit pattern is formed, the insulating substrate is deteriorated by a chemical such as etching, or the surface wiring circuit layer formed using a metal foil is merely placed on the surface of the insulating substrate. Poor adhesion of the surface wiring circuit layer to the insulating substrate is liable to occur, and a gap is likely to be formed at the interface between the two.

【0008】また多層化にあたっては、IVHを形成す
るのに逐次積層によらねばならず、一括積層を行うこと
ができない等の問題がある。さらに、表面配線回路層の
形成により絶縁基板上に凸部が形成されるために平坦度
も低く、フリップチップ実装に要求される平坦度を満足
するに至っていない。
In addition, in forming a multilayer, there is a problem that the sequential lamination must be performed to form the IVH, and a batch lamination cannot be performed. Furthermore, since the convex portions are formed on the insulating substrate by forming the surface wiring circuit layer, the flatness is low, and the flatness required for flip-chip mounting has not been satisfied.

【0009】そこで、最近では、有機樹脂からなる絶縁
基板の表面に銅箔を接着した後、エッチング法、メッキ
法により配線回路層を形成し、しかるのちにこの基板を
積層して多層化することが提案されている。
Therefore, recently, a copper circuit is adhered to a surface of an insulating substrate made of an organic resin, and then a wiring circuit layer is formed by an etching method and a plating method. Has been proposed.

【0010】また、樹脂フィルムに金属箔を接着し、そ
れをエッチング法、メッキ法で回路パターンを形成し、
その後絶縁基板に転写する方法も特開平10−5110
8号などにより知られている。
In addition, a metal foil is adhered to a resin film, and a circuit pattern is formed by an etching method and a plating method,
After that, the method of transferring to an insulating substrate is also disclosed in JP-A-10-5110.
No. 8 and the like.

【0011】[0011]

【発明が解決しようとする課題】上記方法のうち、樹脂
フィルムに金属箔を接着させ、これにエッチング等によ
って回路パターンを形成した後、これを絶縁基板に転写
する方法は、絶縁基板が各種回路パターン形成用の薬品
と接触することがなく、絶縁基板の特性に影響を及ぼす
ことがない点で優れている。
Among the above-mentioned methods, a method of adhering a metal foil to a resin film, forming a circuit pattern on the resin film by etching or the like, and transferring the circuit pattern to an insulating substrate is described in the following. It is excellent in that it does not come into contact with the chemicals for pattern formation and does not affect the properties of the insulating substrate.

【0012】しかしながら、多層配線基板を作製する場
合の内部配線層として、線幅が0.5mm以上の幅広い
配線部を有する回路パターンや、グランド層やノイズ対
策用のシールド層などの比較的面積の広い回路パターン
が形成された場合、この金属箔を絶縁層によって挟持し
た積層構造間で密着不良による積層不良が発生するとい
う問題があった。
However, as an internal wiring layer for manufacturing a multilayer wiring board, a circuit pattern having a wide wiring portion having a line width of 0.5 mm or more, a relatively large area such as a ground layer or a shield layer for noise suppression is used. When a wide circuit pattern is formed, there is a problem in that a lamination failure due to poor adhesion occurs between lamination structures in which this metal foil is sandwiched between insulating layers.

【0013】このような積層不良を防止するためには、
絶縁基板表面に形成された配線回路層の表面を積層前に
エッチングして粗面化することが一般に行われている。
しかしながら、金属箔からなる配線回路層を絶縁基板に
転写した後、回路表面をエッチング等によって粗面化す
ると、絶縁基板内に形成されたバイアホール導体中に粗
化処理液が侵入し、処理液の染み出し、リフロー時の基
板割れなどの問題が発生じていた。
In order to prevent such a lamination defect,
Generally, the surface of a wiring circuit layer formed on the surface of an insulating substrate is etched and roughened before lamination.
However, if the wiring circuit layer made of metal foil is transferred to an insulating substrate and then the circuit surface is roughened by etching or the like, the roughening processing solution penetrates into via-hole conductors formed in the insulating substrate, and the processing solution is roughened. Problems such as bleeding and cracking of the substrate during reflow.

【0014】また、微細な配線回路層を加熱転写させる
場合、樹脂フィルムの熱的変化によって転写後の配線回
路層に寸法誤差が発生し、これによりバイアホールとの
接続不良が発生する等の問題があった。
Further, when a fine wiring circuit layer is transferred by heating, there is a problem that a dimensional error occurs in the transferred wiring circuit layer due to a thermal change of the resin film, thereby causing a poor connection with a via hole. was there.

【0015】[0015]

【課題を解決するための手段】本発明者等は、前記のよ
うな課題について鋭意検討した結果、金属箔付きフィル
ムにおいて、用いる樹脂フィルムとして高温における寸
法変化が小さい所定厚みの樹脂フィルムを用いること、
樹脂フィルムに接着層を介して金属箔を接着させる場
合、樹脂フィルムの厚み、接着層の厚み、金属箔の厚
み、金属箔の表面粗さ、および金属箔の粘着力を適正な
範囲に制御することによって、幅広いあるいは大面積の
配線回路層を多層配線基板の内層に形成する場合におい
ても積層不良がなく、しかも転写後の寸法精度に優れた
配線回路層を形成できることを見出し、本発明に至っ
た。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors have found that a resin film having a predetermined thickness with a small dimensional change at high temperature is used as a resin film in a film with a metal foil. ,
When bonding a metal foil to a resin film via an adhesive layer, control the thickness of the resin film, the thickness of the adhesive layer, the thickness of the metal foil, the surface roughness of the metal foil, and the adhesive strength of the metal foil to appropriate ranges. As a result, it has been found that even when a wide or large area wiring circuit layer is formed in the inner layer of the multilayer wiring board, a wiring circuit layer having no lamination failure and excellent in dimensional accuracy after transfer can be formed, and the present invention has been achieved. Was.

【0016】即ち、本発明の金属箔付きフィルムは、1
00℃で1時間保持した後の寸法変化率が0.1%以内
の樹脂フィルムの表面に接着層を介して金属箔が形成さ
れてなり、前記樹脂フィルムの厚みが10〜100μ
m、前記接着層の厚みが3μm以上、前記金属箔の厚み
が1〜35μm、前記金属箔の少なくとも前記接着層と
接する側の十点平均粗さ(Rz)が1〜6μmであり、
且つ前記金属箔の粘着力が50〜500g/25mmで
あることを特徴とするものである。
That is, the film with a metal foil of the present invention comprises:
A metal foil is formed on the surface of the resin film having a dimensional change of 0.1% or less after holding at 00 ° C. for 1 hour via an adhesive layer, and the thickness of the resin film is 10 to 100 μm.
m, the thickness of the adhesive layer is 3 μm or more, the thickness of the metal foil is 1 to 35 μm, and the ten-point average roughness (Rz) of at least the side of the metal foil in contact with the adhesive layer is 1 to 6 μm;
In addition, the metal foil has an adhesive strength of 50 to 500 g / 25 mm.

【0017】また、配線基板の製造方法としては、10
0℃で1時間保持した後の寸法変化率が0.1%以内の
樹脂フィルムの表面に接着層を介して金属箔が形成され
てなり、前記樹脂フィルムの厚みが10〜100μm、
前記接着層の厚みが3μm以上、前記金属箔の厚みが1
〜35μm、前記金属箔の少なくとも前記接着層と接す
る側の十点平均粗さ(Rz)が1〜6μmであり、且つ
前記金属箔の粘着力が50〜500g/25mmの金属
箔付きフィルムに対して、該フィルム表面の前記金属箔
を配線回路パターン状に加工した後、配線回路層が形成
された前記金属箔付きフィルムと熱硬化性樹脂を含有す
る半硬化の絶縁基板とを積層し、前記樹脂フィルムおよ
び前記接着層を剥離して前記配線回路層を前記絶縁基板
に転写させる工程と、前記配線回路層が転写された前記
単層の配線基板を複数層積層圧着する工程と、前記絶縁
基板中の熱硬化性樹脂が完全に硬化するに十分な温度で
加熱し一括して完全硬化する工程とを具備することを特
徴とするものである。
Further, as a method of manufacturing a wiring board, there are 10 methods.
A metal foil is formed via an adhesive layer on the surface of a resin film having a dimensional change rate of 0.1% or less after holding at 0 ° C. for 1 hour, and the resin film has a thickness of 10 to 100 μm.
The thickness of the adhesive layer is 3 μm or more, and the thickness of the metal foil is 1
To a film with a metal foil having a ten-point average roughness (Rz) of 1 to 6 μm on at least a side of the metal foil which is in contact with the adhesive layer, and having an adhesive force of 50 to 500 g / 25 mm. After processing the metal foil on the film surface into a wiring circuit pattern, laminating the film with a metal foil on which a wiring circuit layer is formed and a semi-cured insulating substrate containing a thermosetting resin, Peeling the resin film and the adhesive layer to transfer the wiring circuit layer to the insulating substrate; laminating a plurality of layers of the single-layer wiring substrate to which the wiring circuit layer has been transferred; A step of heating at a temperature sufficient to completely cure the thermosetting resin therein, and completely curing the whole at once.

【0018】[0018]

【発明の実施の形態】本発明の金属箔付きフィルムは、
樹脂フィルムと金属箔を具備し、金属箔は接着層を介し
て樹脂フィルム上に形成されている。樹脂フィルムは、
ポリエチレンテレフタレート、ポリエチレンナフタレー
ト、ポリイミド、ポリフェニレンサルファイド、塩化ビ
ニル、ポリプロピレン等公知のものが使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The film with metal foil of the present invention
A resin film and a metal foil are provided, and the metal foil is formed on the resin film via an adhesive layer. The resin film is
Known materials such as polyethylene terephthalate, polyethylene naphthalate, polyimide, polyphenylene sulfide, vinyl chloride, and polypropylene can be used.

【0019】樹脂フィルムの厚みは10〜100μmが
適当であり、望ましくは20〜500μmが良い。これ
は、樹脂フィルムの厚みが10μmより小さいとフィル
ムの変形や折れ曲がりにより形成した配線回路が断線を
引き起こし易くなり、厚みが100μmより大きいとフ
ィルムの柔軟性がなくなるためシートの剥離が難しくな
るためである。
The thickness of the resin film is suitably from 10 to 100 μm, preferably from 20 to 500 μm. This is because when the thickness of the resin film is smaller than 10 μm, the wiring circuit formed by deformation or bending of the film is liable to cause disconnection, and when the thickness is larger than 100 μm, the flexibility of the film is lost and it becomes difficult to peel off the sheet. is there.

【0020】本発明によれば、用いる樹脂フィルムの寸
法変化が小さいことが重要であり、具体的には、100
℃で1時間保持した時の寸法変化率が0.1%以下、特
に±0.05%以下であることが望ましい。この寸法変
化率は、樹脂フィルム上に形成された配線回路層として
の金属箔を絶縁基板に転写するにあたり、微細配線の配
線ピッチ間のバラツキを低減し、高い寸法精度で転写を
可能とするために重要な要因であって、上記の寸法変化
率が0.1%よりも大きいと、寸法精度の高い配線層の
転写ができなくなる。
According to the present invention, it is important that the dimensional change of the resin film used is small.
It is desirable that the dimensional change when held at 1 ° C. for 1 hour is 0.1% or less, particularly ± 0.05% or less. This dimensional change rate is used to reduce the variation between the wiring pitches of fine wiring and transfer with high dimensional accuracy when transferring a metal foil as a wiring circuit layer formed on a resin film to an insulating substrate. When the above dimensional change rate is larger than 0.1%, it becomes impossible to transfer a wiring layer with high dimensional accuracy.

【0021】このような収縮の小さい樹脂フィルムは、
所定の熱処理を施すことによって作製することができ
る。具体的には、熱処理の温度はフィルムの材質にもよ
るが、70〜170℃の範囲が良く、望ましくは100
〜170℃が良い。処理温度が70℃より低いと樹脂フ
ィルムの工程中での寸法変化率が大きく、配線ピッチ間
のバラツキが大きくなりやすく、また、処理温度が17
0℃より大きくなると樹脂フィルムの変形が発生し、配
線ピッチ間のバラツキが大きくなる。また、金属箔と樹
脂フイルムとの貼り合わせ張力を低くすることによって
も樹脂フィルムの寸法変化率を小さくすることができ
る。
Such a resin film having a small shrinkage is
It can be manufactured by performing a predetermined heat treatment. Specifically, the temperature of the heat treatment depends on the material of the film, but is preferably in the range of 70 to 170 ° C., preferably 100 ° C.
~ 170 ° C is good. If the processing temperature is lower than 70 ° C., the dimensional change rate during the process of the resin film is large, the variation between wiring pitches tends to be large, and the processing temperature is 17 ° C.
If the temperature is higher than 0 ° C., deformation of the resin film occurs, and variation between wiring pitches increases. Also, the dimensional change rate of the resin film can be reduced by lowering the bonding tension between the metal foil and the resin film.

【0022】この樹脂フィルムの接着層としては、アク
リル系、ゴム系、シリコン系、エポキシ系等公知の接着
剤が使用できる。また、接着層の厚みは3μm以上、望
ましくは5μm以上が良い。接着層の厚みが3μmより
薄いと、金属箔の表面に追従できず、パターンの変色、
パターンの剥れが発生する。
As the adhesive layer of the resin film, known adhesives such as acrylic, rubber, silicon, and epoxy can be used. The thickness of the adhesive layer is 3 μm or more, preferably 5 μm or more. If the thickness of the adhesive layer is thinner than 3 μm, it cannot follow the surface of the metal foil, discoloration of the pattern,
Peeling of the pattern occurs.

【0023】また、金属箔としては、配線基板として配
線回路層を形成するに好適な金属より形成され、例え
ば、金、銀、銅、アルミニウムの少なくとも1種を含む
低抵抗金属、特に銅の金属箔が好適に使用される。前記
金属箔の厚みは1〜35μmが良く、望ましくは5〜1
8μmが良い。金属箔の厚みが1μmより小さいと回路
の抵抗率が高くなり、また、35μmより大きいと、積
層時に絶縁基板の変形が大きくなったり、絶縁基板への
金属の埋め込み量が多くなり、絶縁基板の歪みが大きく
なり樹脂硬化後に基板が変形を起こしやすいなどの問題
がある。また、金属箔自体をエッチングしにくくなるた
め精度の良い微細な回路が得られないという問題もあ
る。
The metal foil is formed of a metal suitable for forming a wiring circuit layer as a wiring board. For example, a low-resistance metal containing at least one of gold, silver, copper and aluminum, particularly a copper metal Foil is preferably used. The thickness of the metal foil is preferably 1 to 35 μm, preferably 5 to 1 μm.
8 μm is good. If the thickness of the metal foil is smaller than 1 μm, the resistivity of the circuit increases, and if the thickness is larger than 35 μm, the deformation of the insulating substrate during lamination increases, or the amount of metal embedded in the insulating substrate increases. There is a problem that the distortion is increased and the substrate is easily deformed after the resin is cured. There is also a problem that it is difficult to etch the metal foil itself, so that a fine circuit with high accuracy cannot be obtained.

【0024】上記樹脂フィルムの表面に接着層を介して
接着された金属箔の粘着力は、50〜500g/25m
mが良く、望ましくは70〜350g/25mmが良
い。上記粘着力が50g/25mmより弱いと、回路形
成するためのエッチング処理の際、金属箔が樹脂フィル
ムより剥離し回路の断線を引き起こす。また、500g
/25mmより大きいと、回路形成後、絶縁基板に転写
し、樹脂フィルムを剥離する際、絶縁基板の変形、回路
の断線を引き起こすためである。
The adhesive strength of the metal foil adhered to the surface of the resin film via an adhesive layer is 50 to 500 g / 25 m
m is good, and desirably 70 to 350 g / 25 mm. If the adhesive strength is less than 50 g / 25 mm, the metal foil is peeled off from the resin film during the etching treatment for forming the circuit, causing a break in the circuit. Also, 500g
If it is larger than / 25 mm, after the circuit is formed, it is transferred to the insulating substrate, and when the resin film is peeled off, deformation of the insulating substrate and disconnection of the circuit are caused.

【0025】なお、上記粘着力は、図2に示すように、
接着層7を介して金属箔8が接着された樹脂フィルム9
から樹脂フィルム9を金属箔8から180°の方向に引
き剥がす時の応力を表したものである。
The above-mentioned adhesive strength is, as shown in FIG.
Resin film 9 to which metal foil 8 is adhered via adhesive layer 7
Represents the stress when the resin film 9 is peeled off from the metal foil 8 in the direction of 180 °.

【0026】また、上記金属箔の少なくとも接着層と接
する側の十点平均粗さ(Rz)が1〜6μm、特に2〜
5μmであることが重要である。これは、上記少なくと
も接着層と接する側は、絶縁基板への転写後、配線回路
層の露出面側を形成する面であり、多層化の際にこの配
線回路層の上に積層される絶縁基板との密着性を決定す
るものであり、この十点平均粗さが1μmよりも小さい
と多層配線基板の内層に線幅が0.5mm以上、特に1
mm以上の幅を有する回路パターンや、グランド層、シ
ールド層などの大面積のパターンを形成した場合に、積
層不良が発生し、6μmよりも大きいと、配線回路層の
絶縁基板への転写の際、樹脂フィルムを剥離する時に、
接着層が配線回路層の表面に残存したり転写不良を生じ
やすくなるためである。
The ten-point average roughness (Rz) of at least the side of the metal foil in contact with the adhesive layer is 1 to 6 μm, particularly 2 to 6 μm.
It is important that it is 5 μm. This means that at least the side in contact with the adhesive layer is a surface that forms the exposed surface side of the wiring circuit layer after transfer to the insulating substrate, and the insulating substrate laminated on this wiring circuit layer during multilayering. When the ten-point average roughness is smaller than 1 μm, the line width in the inner layer of the multilayer wiring board is 0.5 mm or more, particularly 1 mm.
When a circuit pattern having a width of at least mm or a large-area pattern such as a ground layer and a shield layer is formed, lamination failure occurs. If the pattern is larger than 6 μm, the wiring circuit layer may be transferred to an insulating substrate. When peeling the resin film,
This is because the adhesive layer is likely to remain on the surface of the wiring circuit layer or to cause poor transfer.

【0027】次に、本発明の配線基板の製造方法につい
て図1をもとに説明する。図1は、本発明の多層配線基
板の製造方法の工程を説明するための図である。まず、
厚みが10〜100μm、100℃で1時間保持した後
の寸法変化率が0.1%以内の樹脂フィルム1に厚さ3
μm以上の接着層2を塗工する。接着層2の塗工は、コ
ンマコータ法、ドクターブレード法、カレンダー法など
の方法によって行うことができる。
Next, a method of manufacturing a wiring board according to the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining steps of a method for manufacturing a multilayer wiring board according to the present invention. First,
Resin film 1 having a thickness of 10 to 100 μm and a dimensional change rate of 0.1% or less after holding at 100 ° C. for 1 hour has a thickness of 3
The adhesive layer 2 having a thickness of not less than μm is applied. The application of the adhesive layer 2 can be performed by a method such as a comma coater method, a doctor blade method, or a calendar method.

【0028】次に、上記樹脂フィルム1の接着層2の表
面に、接着層2と接する側の十点平均粗さ(Rz)がエ
ッチング等により1〜6μm、特に2〜5μmに予め表
面粗化された厚さ1〜35μmの金属箔3を接着する。
この時の金属箔3の樹脂フィルムへの粘着力は、前述し
た理由から50〜500g/25mmとなるように接着
層2の材質や厚さなどを調整する。
Next, the surface of the adhesive layer 2 of the resin film 1 is previously roughened to a 10-point average roughness (Rz) of 1 to 6 μm, particularly 2 to 5 μm, by etching or the like on the side in contact with the adhesive layer 2. The metal foil 3 having a thickness of 1 to 35 μm is bonded.
At this time, the material and thickness of the adhesive layer 2 are adjusted so that the adhesive strength of the metal foil 3 to the resin film is 50 to 500 g / 25 mm for the above-described reason.

【0029】次に、図1(c)に示すように、樹脂フィ
ルム1に接着された金属箔3をエッチング法により不要
部分を除去して配線回路層4を形成する。例えば、図1
(b)の金属箔3上にフォトレジスト、スクリーン印刷
等の方法で配線回路パターン状にレジストを形成した
後、不要な部分をエッチング除去することで所望のパタ
ーンの配線回路層4を得ることができる。
Next, as shown in FIG. 1C, an unnecessary portion of the metal foil 3 bonded to the resin film 1 is removed by an etching method to form a wiring circuit layer 4. For example, FIG.
After a resist is formed in a wiring circuit pattern on the metal foil 3 of (b) by a method such as photoresist or screen printing, an unnecessary portion is removed by etching to obtain a wiring circuit layer 4 having a desired pattern. it can.

【0030】この時、上記レジストは、一般には、金属
箔の不要部分をエッチング除去した後に水酸化ナトリウ
ム等のレジスト剥離液により取り除き、洗浄する工程が
必要であるが、上記レジストを後述する絶縁層を同一材
料で、有機樹脂を含む、例えば有機樹脂と無機フィラー
からなる絶縁性材料から構成すれば、レジスト除去等を
行う必要がないため、工程の簡略化を図ることができる
上で有利であり、また、配線回路と絶縁基板との接着力
も高めることができる。
At this time, the resist generally requires a step of removing unnecessary portions of the metal foil by etching, removing the resist with a resist stripping solution such as sodium hydroxide, and washing the resist. The same material, including an organic resin, for example, an insulating material composed of an organic resin and an inorganic filler, it is not necessary to remove the resist or the like, which is advantageous in that the process can be simplified. Also, the adhesive strength between the wiring circuit and the insulating substrate can be increased.

【0031】なお、上記の配線回路層4の接着層2とは
反対側の表面も、十点平均粗さ(Rz)が1μm以上、
特に2μm以上に粗化処理されていることが望ましい。
特にこの表面は、転写時に絶縁基板に対して直接接触さ
れる面であり、その粗さは大きいほど絶縁基板への密着
性を高めることができ、しかも転写性も良好となること
から前記配線回路層4の接着層2と接する側よりも大き
いことが望ましい。
The surface of the wiring circuit layer 4 on the side opposite to the adhesive layer 2 also has a ten-point average roughness (Rz) of 1 μm or more.
In particular, it is desirable that the surface is roughened to 2 μm or more.
In particular, this surface is a surface that is in direct contact with the insulating substrate at the time of transfer. The larger the roughness, the higher the adhesion to the insulating substrate and the better the transferability. It is desirable that the layer 4 be larger than the side in contact with the adhesive layer 2.

【0032】このような上記配線回路層4の接着層2と
は反対側の表面の粗化処理は、前記配線回路パターン形
成前、あるいはパターン形成後に所定のエッチング処理
を施すことにより容易に形成することができる。
The roughening of the surface of the wiring circuit layer 4 on the side opposite to the adhesive layer 2 can be easily performed by performing a predetermined etching process before or after the formation of the wiring circuit pattern. be able to.

【0033】粗化処理は、蟻酸、NaClO2 、NaO
H、Na2 PO4 、あるいはこれらの混合液等の酸性溶
液で行うのが良く、特に蟻酸で行うのが表面粗さを細か
く制御できる点で望ましい。
The roughening treatment includes formic acid, NaClO 2 , NaO
It is preferable to use an acidic solution such as H, Na 2 PO 4 , or a mixture thereof, and it is particularly preferable to use formic acid in that the surface roughness can be finely controlled.

【0034】次に、樹脂フィルム1表面に形成された配
線回路層4が形成されてなる金属箔付きフィルムから配
線回路層4を絶縁基板5に転写させる。転写させる方法
としては、図1(d)に示されるように、金属箔付きフ
ィルムと絶縁基板5とを積層して圧力10〜500kg
/cm2 程度の圧力を印加する。そして、図1(e)に
示すように、樹脂フィルム1を接着層2とともに剥がし
て絶縁基板5に配線回路層4を転写させることにより配
線回路層4を絶縁基板5の表面に転写させることができ
る。
Next, the wiring circuit layer 4 is transferred to the insulating substrate 5 from a film with a metal foil formed with the wiring circuit layer 4 formed on the surface of the resin film 1. As a method of transferring, as shown in FIG. 1D, a film with a metal foil and an insulating substrate 5 are laminated and a pressure of 10 to 500 kg is applied.
/ Cm 2 is applied. Then, as shown in FIG. 1E, the wiring circuit layer 4 is transferred to the surface of the insulating substrate 5 by peeling the resin film 1 together with the adhesive layer 2 and transferring the wiring circuit layer 4 to the insulating substrate 5. it can.

【0035】なお、この時、絶縁基板5として、半硬化
状のシートを用いると、図1(d)に示すように機械的
圧力によって配線回路層4を絶縁基板5内に埋め込むこ
とができるために配線回路層4による凸部のない平坦性
を付与することができる。
At this time, if a semi-cured sheet is used as the insulating substrate 5, the wiring circuit layer 4 can be embedded in the insulating substrate 5 by mechanical pressure as shown in FIG. Can be provided with flatness without convex portions due to the wiring circuit layer 4.

【0036】この後、上記配線回路層4が転写された絶
縁基板5を、絶縁基板中の有機樹脂が完全に硬化するに
十分な温度で加熱することにより、図1(f)の単層の
配線基板を作製することができる。
Thereafter, the insulating substrate 5 to which the wiring circuit layer 4 has been transferred is heated at a temperature sufficient to completely cure the organic resin in the insulating substrate, thereby obtaining the single-layer structure shown in FIG. A wiring substrate can be manufactured.

【0037】なお、多層配線基板を作製する場合には、
上記配線回路層4が転写された未硬化の単層の配線基板
を複数層積層圧着した後、絶縁基板中の有機樹脂が完全
に硬化するに十分な温度で加熱し一括して完全硬化する
ことにより、多層配線基板を作製することができる。
When manufacturing a multilayer wiring board,
After a plurality of layers of the uncured single-layer wiring board to which the wiring circuit layer 4 has been transferred are laminated and pressure-bonded, heating is performed at a temperature sufficient to completely cure the organic resin in the insulating substrate, and the entire board is completely cured. Thereby, a multilayer wiring board can be manufactured.

【0038】上記の製造方法において、絶縁基板5は、
少なくとも有機樹脂を含有するものであり、望ましくは
有機樹脂とともに無機フィラー、無機繊維、有機繊維か
ら選ばれる少なくと1種類以上含む複合材料等からな
る。なお、無機フィラー、無機繊維、有機繊維は、有機
樹脂中に合計20〜80体積%の割合で均一に分散され
たものを用いると良い。
In the above manufacturing method, the insulating substrate 5
It contains at least an organic resin, and desirably comprises a composite material containing at least one selected from inorganic fillers, inorganic fibers, and organic fibers together with the organic resin. The inorganic filler, the inorganic fiber, and the organic fiber are preferably used as those uniformly dispersed in the organic resin at a ratio of 20 to 80% by volume in total.

【0039】このような複合材料を構成する有機樹脂と
しては、熱硬化型PPE(ポリフェニレンエーテル樹
脂)、BTレジン(ビスマレイドトリアジン)、エポキ
シ樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹
脂、ポリアミノビスマレイミド等の樹脂からなり、とり
わけ原料として室温で液体の熱硬化性樹脂であることが
望ましい。
The organic resin constituting such a composite material includes thermosetting PPE (polyphenylene ether resin), BT resin (bismaleide triazine), epoxy resin, polyimide resin, fluororesin, phenol resin, polyaminobismaleimide and the like. It is preferable that the raw material is a thermosetting resin which is liquid at room temperature.

【0040】他方、前記無機フィラーとしては、SiO
2 、Al2 3 、ZrO2 、TiO2 、AlN、Si
C、BaTiO3 、SrTiO3 、MgTiO3 、ゼオ
ライト、CaTiO3 、ほう酸アルミニウム等の公知の
材料が使用できる。また、その形状としては球状、針状
など任意のものとすることができる。
On the other hand, as the inorganic filler, SiO 2
2 , Al 2 O 3 , ZrO 2 , TiO 2 , AlN, Si
Known materials such as C, BaTiO 3 , SrTiO 3 , MgTiO 3 , zeolite, CaTiO 3 , and aluminum borate can be used. In addition, the shape can be any shape such as a spherical shape and a needle shape.

【0041】さらに、無機又は有機の繊維としては、ガ
ラス繊維、アラミド繊維、セルロース繊維等があり、織
布、不織布など任意の性状のものを用いれば良い。いず
れにしても、多層配線基板の強度を高めて高信頼性の基
板とするためには、繊維を含む絶縁基板5を少なくとも
1層以上含むことが望ましい。
Further, examples of the inorganic or organic fiber include glass fiber, aramid fiber, cellulose fiber and the like, and any property such as woven fabric and non-woven fabric may be used. In any case, in order to increase the strength of the multilayer wiring board and obtain a highly reliable substrate, it is desirable to include at least one or more layers of the insulating substrate 5 containing fibers.

【0042】まず、絶縁基板5を作製するには、例え
ば、無機質フィラーに液状の有機樹脂加えた絶縁性組成
物を混練機(ニーダ)や3本ロール等の手段によって十
分に混合して絶縁性スラリーを調製し、このスラリーを
圧延法、押し出し法、射出法、ドクターブレード法によ
ってシート状に成形した後、有機樹脂を半硬化させる。
半硬化には、有機樹脂は熱可塑性樹脂の場合には、加熱
下で混合したものを冷却し、熱硬化性樹脂の場合には、
完全固化するに十分な温度よりもやや低い温度に加熱す
る。
First, in order to fabricate the insulating substrate 5, for example, an insulating composition obtained by adding a liquid organic resin to an inorganic filler is sufficiently mixed by means of a kneader (kneader) or a three-roll mill. A slurry is prepared, and after the slurry is formed into a sheet by a rolling method, an extrusion method, an injection method, or a doctor blade method, the organic resin is semi-cured.
For semi-curing, if the organic resin is a thermoplastic resin, cool the mixture under heating, and in the case of a thermosetting resin,
Heat to a temperature slightly below that sufficient to fully solidify.

【0043】上記絶縁性スラリーは、好適には、絶縁体
を構成する前述したような有機樹脂と無機フィラーの複
合材料に、トルエン、酢酸ブチル、メチルエチルケト
ン、メタノール、メチルセロソルブアセテート、イソプ
ロピルアルコール、メチルイソブチルケトン、ジメチル
ホルムアミド等の溶媒を添加して所定の粘度を有する流
動体からなる。スラリーの粘度は、シート形成方法にも
よるが100〜3000ポイズが適当である。
The above-mentioned insulating slurry is preferably prepared by adding toluene, butyl acetate, methyl ethyl ketone, methanol, methyl cellosolve acetate, isopropyl alcohol, methyl isobutyl to a composite material of the above-mentioned organic resin and inorganic filler constituting the insulator. It is composed of a fluid having a predetermined viscosity by adding a solvent such as ketone and dimethylformamide. The viscosity of the slurry is suitably 100 to 3000 poise, although it depends on the sheet forming method.

【0044】また、織布、不織布を用いる場合には、織
布、不織布等の繊維にワニス状の樹脂を含浸、乾燥させ
半硬化のプリプレグの絶縁基板を作製する。
When a woven or nonwoven fabric is used, a varnish resin is impregnated into a woven or nonwoven fabric and dried to produce a semi-cured prepreg insulating substrate.

【0045】次に、上記のようにして作製した半硬化状
態の絶縁基板5に対して適宜、打ち抜き法やレーザー加
工により所望のバイアホールを形成して導体ペーストを
充填する。導体ペースト中に配合される金属粉末として
は、銅、アルミニウム、銀、金のうち少なくとも1種の
低抵抗金属からなることが望ましく、有機溶剤とバイン
ダーを添加しペーストを得ることができる。
Next, a desired via hole is formed in the semi-cured insulating substrate 5 produced as described above by a punching method or a laser processing, and filled with a conductive paste. The metal powder to be blended in the conductor paste is desirably made of at least one low-resistance metal among copper, aluminum, silver, and gold, and a paste can be obtained by adding an organic solvent and a binder.

【0046】[0046]

【実施例】実施例1(樹脂フィルム厚み) (金属箔付きフィルムの作製)120℃で熱処理して1
00℃で1時間保持した後の寸法変化率が−0.01%
で、厚みが5〜200μmの種々のポリエチレンテレフ
タレートフィルムに対して、厚み5μmのアクリル系樹
脂からなる接着層を形成した後、厚み12μm、接着層
側の十点平均粗さが3.2μm、接着層側と反対表面の
十点平均粗さが0.5μm(鏡面)の銅箔を100g/
25mmの接着力で形成した、配線回路層形成用の金属
箔付きフィルムを作製した。
EXAMPLES Example 1 (Resin Film Thickness) (Preparation of Film with Metal Foil)
The dimensional change after holding at 00 ° C for 1 hour is -0.01%
After forming an adhesive layer made of an acrylic resin having a thickness of 5 μm on various polyethylene terephthalate films having a thickness of 5 to 200 μm, the thickness was 12 μm, the ten-point average roughness of the adhesive layer side was 3.2 μm, and the adhesive was formed. A copper foil having a ten-point average roughness of 0.5 μm (mirror surface) on the surface opposite to the layer side is 100 g /
A film with a metal foil for forming a wiring circuit layer was formed with an adhesive force of 25 mm.

【0047】(回路パターンの形成)そして、上記金属
箔付きフィルムの銅箔の表面に感光性のレジストを塗布
し、ガラスマスクを通して回路パターンを露光した後、
これを塩化第二鉄溶液中に浸漬して非パターン部をエッ
チング除去し、レジスト剥離して銅箔の回路パターンを
形成した。なお、作製した金属箔による配線は、最大線
幅が2mm、最小線幅が50μm、配線ピッチが50μ
mのパターンと、絶縁基板の面積の60%相当の面積を
有するグランド電極パターンとを形成した。
(Formation of Circuit Pattern) Then, a photosensitive resist is applied to the surface of the copper foil of the film with a metal foil, and the circuit pattern is exposed through a glass mask.
This was immersed in a ferric chloride solution to remove the non-pattern portion by etching, and the resist was peeled off to form a copper foil circuit pattern. In addition, the wiring using the produced metal foil has a maximum line width of 2 mm, a minimum line width of 50 μm, and a wiring pitch of 50 μm.
m and a ground electrode pattern having an area equivalent to 60% of the area of the insulating substrate were formed.

【0048】その後、この銅箔の回路パターンを10%
の蟻酸で処理して、銅箔のフリー面(接着層側と反対表
面)の十点平均粗さ3.5μmに粗化処理を施した。
Thereafter, the circuit pattern of this copper foil was
The copper foil was roughened to a 10-point average roughness of 3.5 μm on the free surface (surface opposite to the adhesive layer side) of the copper foil.

【0049】(配線基板の作製)熱硬化性ポリフェニレ
ンエーテル樹脂に平均粒径が5μmの球状溶融SiO2
を50体積%加え、これに溶媒として酢酸ブチル、トル
エンおよびメチルエチルケトンを加え、さらに有機樹脂
の硬化を促進させるための触媒を添加し、1時間混合し
て絶縁性スラリーを調製した。そして、この絶縁性スラ
リーをドクターブレード法により厚さ200μmの絶縁
基板シートに成形した。
(Preparation of Wiring Board) Spherical molten SiO 2 having an average particle size of 5 μm was added to a thermosetting polyphenylene ether resin.
Was added as a solvent, butyl acetate, toluene and methyl ethyl ketone were added as solvents, a catalyst for accelerating the curing of the organic resin was further added, and the mixture was mixed for 1 hour to prepare an insulating slurry. Then, this insulating slurry was formed into an insulating substrate sheet having a thickness of 200 μm by a doctor blade method.

【0050】この絶縁基板用シートを150mm□にカ
ットし、CO2 レーザーにより直径100μmのバイア
ホールを形成し、このバイアホールに銅−銀合金粉末を
主成分とする銅ペーストをスクリーン印刷により埋め込
んだ。
The sheet for insulating substrate was cut into 150 mm square, and a via hole having a diameter of 100 μm was formed by a CO 2 laser. A copper paste containing copper-silver alloy powder as a main component was embedded in the via hole by screen printing. .

【0051】そして、形成した配線回路層が形成された
金属箔付きフィルムとバイアホール導体が形成された絶
縁基板用シートを位置合わせして真空積層機により30
kg/cm2 の圧力で30秒加圧した後、樹脂フィルム
と接着層のみを剥離して配線回路層を転写させて、配線
回路層を絶縁基板シート表面に埋設した。最後に、この
配線回路層が形成された絶縁基板シートを6枚重ね合わ
せ、30kg/cm2の圧力下で200℃で5時間加熱
処理して完全硬化させて多層配線基板を得た。なお、絶
縁基板の全体面積の60%の面積を有するグランド層を
内部配線回路層として1層形成した。
Then, the film with a metal foil on which the formed wiring circuit layer is formed and the insulating substrate sheet on which the via-hole conductor is formed are aligned with each other, and the film is formed by a vacuum laminator.
After applying a pressure of 30 kg / cm 2 for 30 seconds, only the resin film and the adhesive layer were peeled off to transfer the wiring circuit layer, and the wiring circuit layer was embedded in the surface of the insulating substrate sheet. Finally, six insulating substrate sheets on which the wiring circuit layers were formed were superposed, and were heated at 200 ° C. for 5 hours under a pressure of 30 kg / cm 2 and completely cured to obtain a multilayer wiring substrate. Note that one ground layer having an area of 60% of the entire area of the insulating substrate was formed as an internal wiring circuit layer.

【0052】(特性評価)得られた多層配線基板に対し
て、回路の断線発生率、配線ピッチのばらつき、配線基
板の平坦度を測定するとともに、配線基板を切断して、
特に線幅2mmの配線層付近およびグランド層形成箇所
を観察して積層不良の発生率を求めた。結果は、表1に
示す。
(Characteristics Evaluation) With respect to the obtained multilayer wiring board, the disconnection rate of the circuit, the variation of the wiring pitch, and the flatness of the wiring board were measured, and the wiring board was cut.
In particular, the vicinity of the wiring layer having a line width of 2 mm and the place where the ground layer was formed were observed to determine the incidence rate of lamination failure. The results are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】表1の結果から明らかなように、金属箔付
きフィルムにおける樹脂フィルムの厚みが10μmより
も薄い試料No.1−1では、フィルムの折れ曲がりが発
生し回路の断線が多数発生した。また、厚みが100μ
mよりも厚い試料No.1−7においてもフィルムの柔軟
性がなく、フィルムの剥離に伴い回路の断線が多数発生
した。樹脂フィルム厚みが10〜100μmの本発明で
は、回路断線の発生率が2/40以下であり、特に厚み
25〜50μmの場合には、回路の断線の発生は皆無で
あった。
As is clear from the results shown in Table 1, in Sample No. 1-1 where the thickness of the resin film in the film with a metal foil was thinner than 10 μm, the film was bent and a large number of circuit breaks occurred. The thickness is 100μ
Sample No. 1-7, which is thicker than m, did not have flexibility of the film, and a large number of circuit breaks occurred with the peeling of the film. In the present invention having a resin film thickness of 10 to 100 μm, the occurrence rate of circuit disconnection was 2/40 or less, and in particular, when the thickness was 25 to 50 μm, there was no occurrence of circuit disconnection.

【0055】実施例2(樹脂フィルム寸法変化率) 厚みが38μmで、熱処理温度を50〜200℃の範囲
で変え寸法変化率が0.01〜0.20%の種々のポリ
エチレンテレフタレートフィルムに対して、厚み5μm
のアクリル系樹脂からなる接着層を形成した後、厚み1
2μm、接着層側の十点平均粗さが3.2μm、接着層
側と反対表面の十点平均粗さが0.5μmの銅箔を10
0g/25mmの接着力で形成した、配線回路層形成用
の金属箔付きフィルムを作製した。
Example 2 (Dimensional change rate of resin film) For various polyethylene terephthalate films having a thickness of 38 μm, a heat treatment temperature in the range of 50 to 200 ° C., and a dimensional change rate of 0.01 to 0.20%. , Thickness 5μm
After forming an adhesive layer made of an acrylic resin,
A copper foil having a 10-point average roughness of 2 μm, a ten-point average roughness of 3.2 μm on the adhesive layer side, and a
A film with a metal foil for forming a wiring circuit layer was formed with an adhesive force of 0 g / 25 mm.

【0056】その後、実施例1と全く同様にして、各金
属箔付きフィルムを用いて配線基板を作製し、実施例1
と同様な評価を行い結果を表2に示した。
Thereafter, in the same manner as in Example 1, a wiring board was prepared using each film with a metal foil.
Evaluation was performed in the same manner as described above, and the results are shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

【0058】表2の結果から明らかなように、金属箔付
きフィルムにおける樹脂フィルムの寸法変化率が0.1
%よりも大きい試料No.2−1、2−2ではいずれも配
線ピッチのバラツキが10μm以上となったのに対し
て、寸法変化率が0.1%以内の本発明では、配線ピッ
チ間のバラツキを7μm以下、特に寸法変化率が0.0
4%以内の場合には、5μm以下に抑制することができ
た。
As is clear from the results in Table 2, the dimensional change of the resin film in the film with metal foil was 0.1%.
2-1 and 2-2, the variation in the wiring pitch was 10 μm or more, whereas in the present invention in which the dimensional change rate was within 0.1%, Variation of 7 μm or less, especially dimensional change rate of 0.0
When it was within 4%, it could be suppressed to 5 μm or less.

【0059】実施例3(接着力) 厚みが38μmで、120℃で熱処理して100℃で1
時間保持した後の寸法変化率が−0.01%のポリエチ
レンテレフタレートフィルムに対して、厚み5μmの接
着力の異なる種々のアクリル系樹脂からなる接着層を形
成した後、接着層側の十点平均粗さが3.2μm、接着
層側と反対表面の十点平均粗さが0.5μmの厚みが1
2μmの銅箔を10〜700g/25mmの種々の接着
力で形成した、種々の配線回路層形成用の金属箔付きフ
ィルムを作製した。
Example 3 (Adhesive Strength) A heat treatment at 120 ° C. and a thickness of 38 μm
After forming a 5-μm-thick adhesive layer made of various acrylic resins having different adhesive strengths on a polyethylene terephthalate film having a dimensional change rate of −0.01% after holding for 10 hours, a ten-point average on the adhesive layer side is formed. A thickness of 3.2 μm and a thickness of 10 μm on the surface opposite to the adhesive layer side of 0.5 μm is 1
Films with metal foils for forming various wiring circuit layers, in which 2 μm copper foils were formed with various adhesive strengths of 10 to 700 g / 25 mm, were produced.

【0060】その後、実施例1と全く同様にして、各金
属箔付きフィルムを用いて配線基板を作製し、実施例1
と同様な評価を行い結果を表3に示した。
Thereafter, a wiring board was prepared using each film with a metal foil in exactly the same manner as in Example 1.
The same evaluation was performed, and the results are shown in Table 3.

【0061】[0061]

【表3】 [Table 3]

【0062】表3の結果から明らかなように、金属箔付
きフィルムにおける接着力が50g/25mmよりも小
さい試料No.3−1、3−2では、エッチング時にフィ
ルムからパターンが剥がれ基板が作製できず、接着力が
500g/25mmよりも大きい試料No.3−7では、
回路の断線が多数生じたのに対して、接着力が50〜5
00g/25mmの本発明品では、回路の断線の発生は
1/40以下に抑制され、特に50〜300g/25m
mでは回路の断線発生は皆無であった。
As is evident from the results in Table 3, in the samples No. 3-1 and No. 3-2 in which the adhesive force of the film with the metal foil was smaller than 50 g / 25 mm, the pattern was peeled off from the film at the time of etching, and a substrate could be produced. In the sample No. 3-7 having an adhesive force larger than 500 g / 25 mm,
Although a large number of circuit breaks occurred, the adhesive strength was 50 to 5
In the product of the present invention of 00 g / 25 mm, the occurrence of disconnection of the circuit is suppressed to 1/40 or less, and particularly, 50 to 300 g / 25 m
In the case of m, no disconnection occurred in the circuit.

【0063】実施例4(接着層厚み) 厚みが38μmで、120℃で熱処理して100℃で1
時間保持した後の寸法変化率が−0.01%のポリエチ
レンテレフタレートフィルムに対して、アクリル系樹脂
からなる厚み1〜30μmの種々の接着層を形成した
後、接着層側の十点平均粗さが3.2μm、接着層側と
反対表面の十点平均粗さが0.5μmの厚み12μmの
銅箔を100g/25mmの接着力で形成した、種々の
配線回路層形成用の金属箔付きフィルムを作製した。
Example 4 (Adhesive Layer Thickness) The thickness was 38 μm.
After forming various adhesive layers made of an acrylic resin and having a thickness of 1 to 30 μm on a polyethylene terephthalate film having a dimensional change rate of −0.01% after holding for 10 hours, the ten-point average roughness on the adhesive layer side Is a film with a metal foil for forming various wiring circuit layers, wherein a copper foil having a thickness of 3.2 μm and a ten-point average roughness of the surface opposite to the adhesive layer side of 0.5 μm and a thickness of 12 μm is formed with an adhesive force of 100 g / 25 mm. Was prepared.

【0064】その後、実施例1と全く同様にして、各金
属箔付きフィルムを用いて配線基板を作製し、実施例1
と同様な評価を行い結果を表4に示した。
Thereafter, in the same manner as in Example 1, a wiring board was produced using each film with a metal foil.
Evaluation was performed in the same manner as described above and the results are shown in Table 4.

【0065】[0065]

【表4】 [Table 4]

【0066】表4の結果から明らかなように、接着層の
厚みが3μmよりも小さい試料No.4−1では、回路の
断線が多数発生したのに対して、接着層厚みが3μm以
上の本発明品では、回路の断線の発生は1/40以下に
抑制され、7μm以上では皆無となった。
As is evident from the results in Table 4, in Sample No. 4-1 where the thickness of the adhesive layer was smaller than 3 μm, a large number of circuit breaks occurred. In the invention product, the occurrence of disconnection in the circuit was suppressed to 1/40 or less, and was not found at 7 μm or more.

【0067】実施例5(金属箔厚み) 厚みが38μmで、120℃で熱処理して100℃で1
時間保持した後の寸法変化率が−0.01%のポリエチ
レンテレフタレートフィルムに対して、アクリル系樹脂
からなる厚み5μmの接着層を形成した後、接着層側の
十点平均粗さが3.2μm、接着層側と反対表面の十点
平均粗さが0.5μmであり、厚みが0.5〜75μm
の種々の厚みの銅箔を100g/25mmの接着力で形
成した、種々の配線回路層形成用の金属箔付きフィルム
を作製した。
Example 5 (Metal foil thickness) Thickness was 38 μm, heat treated at 120 ° C.
After a 5-μm-thick adhesive layer made of an acrylic resin is formed on a polyethylene terephthalate film having a dimensional change rate of −0.01% after holding for a time, the ten-point average roughness of the adhesive layer side is 3.2 μm. The ten-point average roughness of the surface opposite to the adhesive layer side is 0.5 μm, and the thickness is 0.5 to 75 μm.
Various types of films with metal foils for forming wiring circuit layers were prepared by forming copper foils of various thicknesses with an adhesive force of 100 g / 25 mm.

【0068】その後、実施例1と全く同様にして、各金
属箔付きフィルムを用いて配線基板を作製し、実施例1
と同様な評価を行い結果を表5に示した。
Thereafter, in the same manner as in Example 1, a wiring board was produced using each film with a metal foil.
The same evaluation was performed, and the results are shown in Table 5.

【0069】[0069]

【表5】 [Table 5]

【0070】表5の結果から明らかなように、金属箔の
厚みが35μmよりも厚い試料No.5−7、5−8で
は、絶縁基板表面に金属箔からなる配線回路層が凸状化
し基板の平坦度が低下した。また金属箔の厚みが1μm
よりも薄い試料No.5−1では、転写時に金属箔が断線
が発生したり、配線の抵抗率が大きくなったのに対し
て、金属箔の厚みが1〜35μmの本発明では、基板の
平坦度が7μm以下のフリップチップ実装にも適した基
板であった。
As is clear from the results shown in Table 5, in the samples Nos. 5-7 and 5-8 in which the thickness of the metal foil is larger than 35 μm, the wiring circuit layer made of the metal foil becomes convex on the surface of the insulating substrate. Decreased in flatness. The thickness of the metal foil is 1 μm
In the sample No. 5-1 which is thinner, the metal foil was disconnected at the time of transfer or the resistivity of the wiring was increased. On the other hand, in the present invention in which the thickness of the metal foil was 1 to 35 μm, The substrate was suitable for flip-chip mounting with a flatness of 7 μm or less.

【0071】実施例6(金属箔の接着層側の表面粗さ) 厚みが38μmで、120℃で熱処理して100℃で1
時間保持した後の寸法変化率が−0.01%のポリエチ
レンテレフタレートフィルムに対して、アクリル系樹脂
からなる厚み5μmの接着層を形成した後、接着層側の
十点平均粗さが0.5〜7.0μm、接着層側と反対表
面の十点平均粗さが0.5μmであり、厚みが12μm
の厚みの銅箔を100g/25mmの接着力で形成し
た、種々の配線回路層形成用の金属箔付きフィルムを作
製した。
Example 6 (Surface Roughness on Adhesive Layer Side of Metal Foil) Thickness was 38 μm, heat treated at 120 ° C., and 1 hour at 100 ° C.
After a 5-μm-thick adhesive layer made of an acrylic resin was formed on a polyethylene terephthalate film having a dimensional change rate of −0.01% after holding for 10 hours, the ten-point average roughness on the adhesive layer side was 0.5%. -7.0 μm, the ten-point average roughness of the surface opposite to the adhesive layer side is 0.5 μm, and the thickness is 12 μm.
Various types of films with a metal foil for forming a wiring circuit layer were prepared by forming a copper foil having a thickness of 100 g / 25 mm with an adhesive force of 100 g / 25 mm.

【0072】その後、実施例1と全く同様にして、各金
属箔付きフィルムを用いて配線基板を作製し、実施例1
と同様な評価を行い結果を表6に示した。
Thereafter, in the same manner as in Example 1, a wiring board was produced using each film with a metal foil.
The same evaluation was performed, and the results are shown in Table 6.

【0073】[0073]

【表6】 [Table 6]

【0074】表6の結果から明らかなように、金属箔の
接着層側の十点平均粗さが1μmよりも小さい試料No.
6−1では、グランド層形成部において絶縁基板との間
に隙間が発生する積層不良が多数発生した。また、十点
平均粗さが6μmよりも大きい試料No.6−7では、接
着層が銅箔表面に残存したのに対して、金属箔の接着層
側の十点平均粗さが1〜6μmの本発明では、接着層が
銅箔上に残存せず、積層不良の発生もなかった。
As is clear from the results in Table 6, the sample No. having a ten-point average roughness on the adhesive layer side of the metal foil smaller than 1 μm.
In 6-1, a large number of lamination failures occurred in which a gap was formed between the ground layer forming portion and the insulating substrate. In Sample No. 6-7, in which the ten-point average roughness was larger than 6 μm, the adhesive layer remained on the copper foil surface, whereas the ten-point average roughness on the adhesive layer side of the metal foil was 1 to 6 μm. In the present invention, the adhesive layer did not remain on the copper foil, and no lamination failure occurred.

【0075】[0075]

【発明の効果】以上詳述したように、本発明の金属箔付
きフィルムは、用いる樹脂フィルムとして高温における
寸法変化、樹脂フィルムの厚み、接着層の厚み、金属箔
の厚み、金属箔の表面粗さ、および金属箔の粘着力を適
正な範囲に制御することによって、大面積の配線回路層
を内層化した場合においても積層不良がなく、またバイ
アホール導体に薬液等が浸入することがなく、しかも転
写後の寸法精度に優れた配線回路層を形成できることか
ら、高信頼性の配線基板を提供することができる。
As described in detail above, the film with a metal foil of the present invention can be used as a resin film to have a dimensional change at a high temperature, a thickness of a resin film, a thickness of an adhesive layer, a thickness of a metal foil, and a surface roughness of the metal foil. By controlling the adhesive strength of the metal foil to an appropriate range, even when the large-area wiring circuit layer is formed as an inner layer, there is no lamination failure, and no chemical solution or the like penetrates into the via-hole conductor, Moreover, since a wiring circuit layer having excellent dimensional accuracy after transfer can be formed, a highly reliable wiring board can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の工程を説明するための図で
ある。
FIG. 1 is a view for explaining steps of a manufacturing method of the present invention.

【図2】本発明における金属箔の接着力を測定する方法
を説明するための図である。
FIG. 2 is a diagram for explaining a method for measuring the adhesive force of a metal foil according to the present invention.

【符号の説明】[Explanation of symbols]

A 金属箔付きフィルム 1 樹脂フィルム 2 接着層 3 金属箔 4 配線回路層 5 絶縁基板 A Film with metal foil 1 Resin film 2 Adhesive layer 3 Metal foil 4 Wiring circuit layer 5 Insulating substrate

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】100℃で1時間保持した後の寸法変化率
が0.1%以内の樹脂フィルムの表面に接着層を介して
金属箔が形成されてなり、前記樹脂フィルムの厚みが1
0〜100μm、前記接着層の厚みが3μm以上、前記
金属箔の厚みが1〜35μm、前記金属箔の少なくとも
前記接着層と接する側の十点平均粗さ(Rz)が1〜6
μmであり、且つ前記金属箔の粘着力が50〜500g
/25mmであることを特徴とする金属箔付きフィル
ム。
A metal foil is formed on a surface of a resin film having a dimensional change rate of 0.1% or less after holding at 100 ° C. for one hour via an adhesive layer, and the resin film has a thickness of 1%.
0 to 100 μm, the thickness of the adhesive layer is 3 μm or more, the thickness of the metal foil is 1 to 35 μm, and the ten-point average roughness (Rz) of the metal foil at least on the side in contact with the adhesive layer is 1 to 6
μm, and the adhesive strength of the metal foil is 50 to 500 g.
/ 25 mm, a film with a metal foil.
【請求項2】100℃で1時間保持した後の寸法変化率
が0.1%以内の樹脂フィルムの表面に接着層を介して
金属箔が形成されてなり、前記樹脂フィルムの厚みが1
0〜100μm、前記接着層の厚みが3μm以上、前記
金属箔の厚みが1〜35μm、前記金属箔の少なくとも
前記接着層と接する側の十点平均粗さ(Rz)が1〜6
μmであり、且つ前記金属箔の粘着力が50〜500g
/25mmの金属箔付きフィルムに対して、該フィルム
表面の前記金属箔を配線回路パターン状に加工した後、
配線回路層が形成された前記金属箔付きフィルムと熱硬
化性樹脂を含有する半硬化の絶縁基板とを積層し、前記
樹脂フィルムおよび前記接着層を剥離して前記配線回路
層を前記絶縁基板に転写させる工程と、前記配線回路層
が転写された前記単層の配線基板を複数層積層圧着する
工程と、前記絶縁基板中の熱硬化性樹脂が完全に硬化す
るに十分な温度で加熱し一括して完全硬化する工程とを
具備することを特徴とする配線基板の製造方法。
2. A resin film having a dimensional change rate of 0.1% or less after holding at 100 ° C. for 1 hour, a metal foil formed on the surface of the resin film via an adhesive layer, and the resin film having a thickness of 1%.
0 to 100 μm, the thickness of the adhesive layer is 3 μm or more, the thickness of the metal foil is 1 to 35 μm, and the ten-point average roughness (Rz) of the metal foil at least on the side in contact with the adhesive layer is 1 to 6
μm, and the adhesive strength of the metal foil is 50 to 500 g.
For a film with a metal foil of / 25 mm, after processing the metal foil on the film surface into a wiring circuit pattern,
The film with a metal foil on which a wiring circuit layer is formed and a semi-cured insulating substrate containing a thermosetting resin are laminated, and the resin film and the adhesive layer are peeled off to form the wiring circuit layer on the insulating substrate. Transferring, bonding and laminating a plurality of layers of the single-layer wiring substrate to which the wiring circuit layer has been transferred, and heating and heating at a temperature sufficient to completely cure the thermosetting resin in the insulating substrate. And completely curing the substrate.
JP10244250A 1998-08-31 1998-08-31 Film with metal foil and method of manufacturing wiring board using the same Expired - Fee Related JP3071764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244250A JP3071764B2 (en) 1998-08-31 1998-08-31 Film with metal foil and method of manufacturing wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244250A JP3071764B2 (en) 1998-08-31 1998-08-31 Film with metal foil and method of manufacturing wiring board using the same

Publications (2)

Publication Number Publication Date
JP2000071387A JP2000071387A (en) 2000-03-07
JP3071764B2 true JP3071764B2 (en) 2000-07-31

Family

ID=17115970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244250A Expired - Fee Related JP3071764B2 (en) 1998-08-31 1998-08-31 Film with metal foil and method of manufacturing wiring board using the same

Country Status (1)

Country Link
JP (1) JP3071764B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548895B2 (en) * 2000-03-28 2010-09-22 京セラ株式会社 Manufacturing method of ceramic wiring board
CN1218333C (en) * 2000-12-28 2005-09-07 Tdk株式会社 Laminated circuit board and prodroduction method for electronic part, and laminated electronic part
JP4587576B2 (en) * 2001-01-30 2010-11-24 京セラ株式会社 Multilayer wiring board
JP4562110B2 (en) * 2001-02-16 2010-10-13 大日本印刷株式会社 Laminated body limited to applications to which wet etching is applied, electronic circuit component using the same, and manufacturing method thereof
JP4794080B2 (en) * 2001-07-30 2011-10-12 京セラ株式会社 Manufacturing method of metal layer transfer film
JP4850275B2 (en) * 2009-07-27 2012-01-11 京セラ株式会社 Manufacturing method of ceramic wiring board
SG11201708850VA (en) * 2015-12-25 2018-07-30 Furukawa Electric Co Ltd Tape for semiconductor processing

Also Published As

Publication number Publication date
JP2000071387A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US7351915B2 (en) Printed circuit board including embedded capacitor having high dielectric constant and method of fabricating same
US7198996B2 (en) Component built-in module and method for producing the same
JP3051700B2 (en) Method of manufacturing multilayer wiring board with built-in element
JP3236818B2 (en) Method for manufacturing multilayer wiring board with built-in element
JPH11126978A (en) Multilayered wiring board
JPH10173316A (en) Wiring substrate-forming transfer sheet and manufacture of wiring-substrate using the same
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
JP4129166B2 (en) Electrolytic copper foil, film with electrolytic copper foil, multilayer wiring board, and manufacturing method thereof
JP2004007006A (en) Multilayer wiring board
JP3037662B2 (en) Multilayer wiring board and method of manufacturing the same
JP3071764B2 (en) Film with metal foil and method of manufacturing wiring board using the same
JP4895448B2 (en) Multilayer wiring board
JP3085658B2 (en) Wiring board and manufacturing method thereof
JP3786512B2 (en) Manufacturing method of multilayer wiring board
JP3199637B2 (en) Method for manufacturing multilayer wiring board
JP3085649B2 (en) Transfer sheet and method of manufacturing wiring board using the same
JPH10107445A (en) Multi-layered wiring board and manufacture thereof
JPH11103165A (en) Multilayered wiring board and its manufacture
JP4632514B2 (en) Wiring board and manufacturing method thereof
JP3981314B2 (en) Manufacturing method of multilayer wiring board
JP3758811B2 (en) Transfer sheet and wiring board manufacturing method using the same
JPH10335834A (en) Multilayered wiring board
JP3238901B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2000277922A (en) Multilayer printed interconnection board and manufacture thereof
JP4570225B2 (en) Film with metal foil and method for producing multilayer wiring board using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees