JP3012665B2 - 有毒及び有害物質で汚染された状態の掘出し埋立材料の処理方法及びプラズマ燃焼式キュポラ - Google Patents

有毒及び有害物質で汚染された状態の掘出し埋立材料の処理方法及びプラズマ燃焼式キュポラ

Info

Publication number
JP3012665B2
JP3012665B2 JP2111594A JP11159490A JP3012665B2 JP 3012665 B2 JP3012665 B2 JP 3012665B2 JP 2111594 A JP2111594 A JP 2111594A JP 11159490 A JP11159490 A JP 11159490A JP 3012665 B2 JP3012665 B2 JP 3012665B2
Authority
JP
Japan
Prior art keywords
shaft furnace
landfill material
plasma
coke
afterburner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2111594A
Other languages
English (en)
Other versions
JPH02298717A (ja
Inventor
シャム・バサント・ディゲ
レイモンド・フランシス・テイラー,ジュニア
ロバート・ジュールズ・ステッフェン
デビッド・マイケル・ロハウス
Original Assignee
ウエスチングハウス・エレクトリック・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウエスチングハウス・エレクトリック・コーポレーション filed Critical ウエスチングハウス・エレクトリック・コーポレーション
Publication of JPH02298717A publication Critical patent/JPH02298717A/ja
Application granted granted Critical
Publication of JP3012665B2 publication Critical patent/JP3012665B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • B09C1/067Reclamation of contaminated soil thermally by vitrification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/14Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of contaminated soil, e.g. by oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/201Waste heat recuperation using the heat in association with another installation with an industrial furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Soil Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Plasma Technology (AREA)

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、掘り出した埋立材料を処理して、埋立材料
中に含まれている有害物質及び有毒物質を分解し又は無
害にする方法及び装置に関する。
〔従来技術及び発明が解決しようとする課題〕
従来、埋立地は多種多様な廃棄物の堆積場所である。
廃棄物の中には、政府の規制により浄化処理が義務付け
られている有毒化学物及び有害化学物質を相当レベル含
有しているものがある。たとえば、鉛、ニッケル及びク
ロムのような重金属或いはポリ塩化ビフェニル(以下、
「PCB」という)のような有毒ハロゲン含有化学物質を
含む材料の取扱いが問題になっている。
便宜上、掘り出した埋立材料を、以下「ELM」ともい
う。
ELMを他の可燃物、通常は一般ごみのちゅうかい(厨
芥)と一緒に燃焼処理する焼却方式が利用又は提案され
ている。かかる焼却方式は有用であるが、潜在的に危険
な物質が大量に流れ出る場合があり、また、最終生成物
としての焼却炉の灰は環境保全上好ましくなく、更に、
有毒重金属の溶出の恐れが依然として存在している。
ELMの処理装置の一形式として、米国特許出願第0,27,
775号明細書に記載されているような熱分解炉がある。
かかる熱分解炉は、実質的に閉鎖された状態又は熱分解
方式で動作する室内を電気的に加熱することによりガラ
ス質又はガラス状の物質を生じる。かかる熱分解炉を用
いる方式はエネルギ費が高いのでこれを最小限に抑える
ことが望ましい。ところで、この方式は、重金属をスラ
グのガラス・マトリックス中に閉じ込めるガラス化材料
を生ぜしめることに成功している。
プラズマ燃焼式キュポラは、ディゲ(Dighe)氏等に
付与された米国特許第4,530,101号明細書、1986年にAFS
会報に掲載された「プラズマ燃焼式キュポラ及び鉄鋳物
溶融技術の革新」と題する論文、米国特許第4,761,793
号、第4,780,132号、第4,769,065号、第4,828,607号、
第4,853,033号、第4,889,556号明細書に記載されている
ように、金属回収としての上記目的に適った従来公知の
装置である。
非プラズマ燃焼式のキュポラは金属及び鉱物を溶融す
る装置として公知であり、かかるキュポラは、底部近傍
に配設された羽口を通してコークス及び吹込み空気(炭
素含有量を多くする場合がある)が導入されるシャフト
炉を利用している。これらの装置は、装入物の微粒子及
び場合によってはガラス状材料を上方に吹き上げること
ができるようにするほどの量の空気が必要になる。さら
に、これら装置の通常の最高温度は約3000゜Fに過ぎな
い。
本発明の目的は、有毒物質及び有害物質を含有するEL
Mを有効且つ経済的に処理する手段を提供することにあ
る。本発明の処理方法では、ELMの処理のためプラズマ
燃焼式キュポラを用いる。キュポラ本体は、頂部近傍に
装入ドアを備えた竪形シャフト炉である。プラズマ・ト
ーチが、キュポラの底部近傍に位置した羽口内に配設さ
れ、プラズマ・トーチは供給ノズルを有する。プラズマ
・トーチは電気的に付勢されて空気からプラズマを生ぜ
しめる。空気がノズルを通って送り込まれ、プラズマ・
トーチにより高温に加熱されてキュポラ内へ供給され
る。
〔課題を解決するための手段〕
本発明の要旨は、有毒及び有害物質で汚染された状態
の掘出し埋立材料の処理方法であって、上部に装入ドア
が配設されると共に底部近傍にプラズマ・トーチが設け
られた竪形シャフト炉を有するプラズマ燃焼式キュポラ
が用いられ、プラズマ・トーチにより空気を高温状態に
加熱し、加熱空気をシャフト炉内へ供給し、加熱空気に
より燃焼に至るまで加熱される炭素質燃料の層をシャフ
ト炉内に形成し、掘出し埋立材料及び反応剤をシャフト
炉の装入ドアを通して装入し、反応剤は、シャフト炉内
の掘出し埋立材料を溶融してガラス質スラグを生ぜしめ
るコークスと石炭を含む追加の炭素質燃料を含み、シャ
フト炉をタッピングしてガラス質スラグを取り出し、シ
ャフト炉からの排ガスをアフターバーナーに導いて排ガ
スに含有されている有毒及び有害物質を分解し、シャフ
ト炉から取り出したガラス質スラグを冷却させて非有害
固形物を生じさせ、炭素質燃料中のコークスは、シャフ
ト炉内の埋立材料に対してかなり高い多孔性を有する燃
料層を形成し、該燃料層にガス流を通過させてこれを固
形化して新たに装入される掘出し埋立材料を支持させ、
埋立材料と反応剤の装入を、これらの別々の層が形成さ
れるような態様で実施することを特徴とする処理方法に
ある。
また、本発明の要旨は、掘出し埋立材料の処理のため
のプラズマ燃焼式キュポラであって、竪形シャフト炉
と、シャフト炉の上部に配設された装入ドアと、シャフ
ト炉の底部近傍に位置した羽口と、羽口と同軸状に配列
されたシュラウド・ノズルを備えた少なくとも一つのプ
ラズマ・トーチと、プラズマ・トーチ及びシュラウド・
ノズルにそれぞれ空気を供給する給気ラインと、プラズ
マ・トーチを付勢してプラズマ・トーチ内へ供給された
空気のプラズマを発生させ、この空気のプラズマが次に
シュラウド・ノズル内へ供給される空気を加熱するよう
にさせる手段と、炭素燃料の層とを有し、該炭素燃料層
は、シャフト炉の底部から、羽口の上方且つ近傍のレベ
ルまでシャフト炉内に堆積すると共にシャフト炉内の材
料に対して或る程度の多孔性を備える、シャフト炉内の
少なくとも約25%のコークスを含み、シャフト炉は、炭
素燃料層上に堆積された状態の装入物を収容し、該装入
物は、掘出し埋立材料と追加の炭素燃料と融剤とを含
み、シャフト炉は、その最上部に、スタック点火装置が
組み込まれたアフターバーナー室を有し、炭素燃料層上
の装入物は、アフターバーナー室内で燃焼される排ガス
を生ぜしめ、シャフト炉は、その最下端部に、装入物か
ら生じた溶融スラグ及び金属を取り出す流し口を有し、
前記プラズマ燃焼式キュポラは更に、埋立材料及び反応
剤を、コークスと石灰石とを含む炭素燃料により画定さ
れる埋立材料と反応剤の別個独立の層を生ぜしめるよう
な所定の順序でシャフト炉に装入する手段を有すること
を特徴とするプラズマ燃焼式キュポラにある。
有利には、キュポラの操業開始の際、キュポラを部分
的に、例えばコークス又はコークスと石炭の混合物のよ
うな炭素質燃料で満たし、これに点火する。適当な操業
温度に達すると、装入物を装入ドアから装入する。ELM
を通常は、反応剤、例えば追加のコークス及び融剤、例
えば石灰石と一緒に装入する。
キュポラ内でELMを溶融させる状態を維持してガラス
質スラグ(鉱さい)を生ぜしめる。更に、ELMと一緒に
装入された金属、例えば、鉄及び銅は溶融状態になって
スラグから重量分析法の原理で分離することになる。コ
ークスはかかる金属の酸化物を還元する。キュポラをタ
ッピングしてガラス質スラグ及び溶融金属を取り出す。
キュポラからの排ガスを、キュポラの上方に配設され
たアフターバーナーまで上昇させて排ガス中に含まれて
いる有毒物質及び有害物質を分解する。キュポラからの
ガラス質スラグを放冷して非有害固形物を生ぜしめ、酸
化物の状態で生じるクロム、鉛及びニッケルのような重
金属が、上記固形物から実質的に溶出しないようにす
る。
本発明によれば、装入量のうち好ましくは約6%が燃
料である。燃料は、PCB等を燃焼させるアフターバーナ
ーの燃焼ガスを全て供給するに十分である。
層形成法により、材料を装入ドアに通してキュポラ内
へ装入堆積させる。すなわち、別個の燃料層を、石灰石
の層、ELMの層又はこれらの混合物の層との間に設け
る。このような層の状態に形成することによりキュポラ
内の背圧の減少が促進される。ガス流量を、毎分約0.9
立方フィートの流量と比べ、鉄鋳物の溶融に用いられる
レベルよりも低いレベル、例えば、好ましくはキュポラ
の横断面積1平方インチ当たり、毎分約0.6立方インチ
まで減少させる。さらに、石灰石の装入量を調節してス
ラグの塩基度を最適化し、所望の流量が得られるように
する。
今、本発明を添付の図面を参照して例示的に説明す
る。
〔実施例〕
第1図は、鉄鋳物の溶融及びスチールベルト・タイヤ
の再生利用に用いられる装置と構成上多くの点で共通し
たプラズマ燃焼式キュポラ10が示されている。キュポラ
10本体は耐火物ライナー13を備えた竪形シャフト炉(以
下、「キュポラ本体」ともいう)12である。キュポラ本
体12の垂直方向上部には、掘り出した埋立材料、即ちEL
Mと共にコークス又はコークスと石炭の混合物である炭
素質燃料(通常は、コークスと石炭の混合物が用いられ
る)のような反応剤及び石炭石のような融剤を装入する
装入ドア14が配設されている。さらに、空気が装入ドア
14を通って流入する。
キュポラ本体12の底部近傍にはプラズマ・トーチ16が
配設され、これらプラズマ・トーチ16はそれぞれ、キュ
ポラ本体に嵌入すると共にシュラウド・ノズル18を備え
た羽口17に嵌め込まれている。各トーチ16には、ライン
又は管路16aを通ってガス、例えば、空気が供給され、
この空気は、付勢状態の互いに離隔した電極の間に生じ
ているアーク中に導入されてイオン化し、プラズマを生
じる。ブラスト用空気が管路18a及びノズル18を通って
トーチ16のすぐ前の位置で接線方向に流入する。ブラス
ト用空気がプラズマに加えられて加熱され、次いで加熱
状態でキュポラ本体12内へ流入する。管路18aを通って
流入する空気は周囲温度状態にあるか、或いは、約1200
゜F(約649℃)まで予熱された状態にある。
キュポラ本体12の上方にはアフターバーナー室(以
下、単に「アフターバーナー」ともいう)20が設けら
れ、キュポラ本体12からの排ガスは上昇してこのアフタ
ーバーナー室20内に入る。アフターバーナーはスタック
点火装置22を備えているが、排ガスとは別に燃料を供給
する必要はない。
ELMを装入ドア14内へ直接供給するには、例えば、ス
キップ巻上装置により支持されたスキップ・バケット又
はフィーダ・ベルトを用いるのが良い。ELMはサイジン
グ又は乾燥処理の面でそれ程、予備処理する必要は無
く、一般的には、受け入れたままの状態で用いられる。
シャフト炉の直径は、ELMの最大サイズ(例えば、ELMと
してエンジン本体又は冷凍装置が含まれる場合がある)
に対応できるよう設定される。他方、所望ならば、ELM
をシュレッダー(細断機)等で予備処理して個々の物の
サイズを小さくすることが適当であることは無論のこと
であるが、このようにする必要がないようキュポラ本体
を設計することが好ましい。経済的なコークスと石炭の
混合物をもスキップ・バケットに投入し、この状態でス
キップ・バケットをスキップ巻上装置により上昇させ、
装入ドア内へ投入する。
一般に、コークスが燃料及び還元剤として好ましく、
以下、コークスを用いる場合につき説明する。石炭と比
較すると、コークスは、装入物の状態で添加される他の
固形物を一層しっかりと支持できると共に適量のガス流
の流通を確実にする。節約のため、多少の量の石炭をコ
ークスに混ぜるのが良い。一般に、燃料は少なくとも約
25%のコークスを含むことが必要である。
操業開始にあたり、キュポラ本体12内に、羽口17から
上方に数インチ、コークスを堆積させる。羽口17を通っ
てキュポラ本体の底部に送り込まれたプラズマ状態の加
熱空気によりコークス層又はコークス床30を点火する。
コークス層が燃焼してキュポラ本体の内張り耐火物が十
分に加熱されると、ELMとコークス(石炭を幾分含有す
るのが良い)と融剤とから成る装入物を装入ドアから装
入する。このキュポラの操業開始準備に要する時間は通
常、約2〜3時間に過ぎない。コークスは燃焼エネルギ
を放出するだけでなく、キュポラのシャフト炉の内部に
多孔性マトリックスを形成して、ELMがマットを形成し
て閉塞現象を生じることが無いようにする。また、石炭
とコークスは両方とも、排ガスに一酸化炭素を与えるの
で、アフターバーナー室内での点火の際にPCBが完全に
分解される。アフターバーナー室20内に熱を供給する補
助燃料を用いる必要は無い。しかしながら、天然ガスの
ような燃料が容易且つ経済的に入手できれば、これを燃
焼させて熱を供給し、これに対応してキュポラ本体内で
コークスの還元を行っても良い。
ELMは、キュポラのシャフト炉12内で下方に落ちる
間、先ず最初に、キュポラ本体の底部の溶融域から立ち
上がる高温ガスにより加熱される。この向流形式の熱交
換現象は、プラズマ燃焼式キュポラのエネルギ効率を得
る上での主要な要因である。PCBはELMから蒸発して他の
排ガス、一般的には、CO、CO2、N2と一緒になってキュ
ポラ本体から出る。
頂部ガスはアフターバーナー・ユニット20まで上昇
し、ここで装入ドア14を通って流入する燃焼用空気と混
合されると共にスタック点火装置22により点火され、PC
Bの分解に十分な温度が得られる。標準的な要件とし
て、かかる物質は少なくとも約2200゜F(約1204℃)の
温度を少なくとも2秒間受けることが挙げられるが、こ
のような条件は本発明では適切且つ容易に得られる。
キュポラのシャフト炉12に沿ってその内部を下方に移
動すると、ELMは、温度が約3000゜F〜約4500゜F(約164
9℃〜約2482℃)の範囲の溶融域(羽口17の近傍で且つ
その上方に位置したコークス層の内部)に入る。ELMの
構成成分は全て、この温度で溶融し、ガラス質のスラグ
(鉱さい)と溶融状態のELM金属部分を生じる。
溶融域の温度及び化学的性質は、所望の性能が得られ
るよう(空気とコークスの供給により)制御される。一
般に、大抵の酸化物、例えば鉄や銅の酸化物は還元され
て溶融状態の金属そのものになる。重金属の金属酸化
物、例えば、クロムやニッケルの酸化物は還元されず、
スラグ中に溶解する。或る種の金属、例えば、亜鉛や鉛
は、これらの酸化物が還元して金属が蒸発しがちであ
る。蒸発した金属はアフターバーナー20内で再び酸化
し、アフターバーナーの排出口から捕集されることにな
る。
プラズマ・トーチの出力は好ましくは、ELMに含有さ
れているシリカ(SiO2)が還元されてシリコンを形成す
るように調節される。シリコンは、溶融金属中で溶解
し、溶融鉄と一緒になって有用且つ貴重な合金鉄を形成
する。この合金鉄は鋳物市場に売り出し可能であるガラ
ス化したELM及び金属は、スキマー24aとダム24bの組合
せにより、キュポラ本体の底部に設けられた流し口24を
通って連続的に取り出される。流し口24からの流出溶融
流は約2500゜F〜2800゜F(約1371℃〜1538℃)の温度状
態にある。スラグはスキマーとダムの組合せにより金属
から分離されてスラグの塊及び金属インゴットが得られ
る。
第2図は、流し口24の拡大図である。溶融状態のスラ
グ40′及び溶融状態の金属42は、キュポラのシャフト炉
12の底部に集まる。キュポラ本体の外部で、軽量のスラ
グ40′はスキマー24aによって閉じ込められ、そして分
離して取り出される。
重い金属はスキマー24aの下を通り抜け、ダム24bの上
を通って、流れ、そして、どんな形状の捕集型にでも流
入する。フライアッシュ(飛灰)等がスラグ内に入り込
む場合が考えられるが、フライアッシュはスラグ40′に
入り込む。
アフターバーナー20を出たガスを、好ましくは、スラ
イバー又はフライアッシュ捕集手段を備えた他の大気汚
染防止設備を通した後に大気中へ排出するのが良い。
本発明の付随的な特徴によれば(即ち、本発明の必須
要件ではないが)、アフターバーナー20から出た高温の
燃焼ガスを伝熱式熱交換器に送ってブラスト用空気及び
アフターバーナーの燃焼用空気を予熱する。本発明のも
う一つの付随的な特徴によれば、アフターバーナーから
の高温ガスをボイラーに送って蒸気を発生させ、これを
プロセス上の各種要件に合わせて用いると発電が得られ
る。
さらにもう一つの変形例では、アフターバーナー20又
はユーティリティー・ボイラーや焼却炉のような他の設
備からの微細廃棄物、例えばフライアッシュを、キュポ
ラの基部の羽口領域に取付けられたノズル18に送り込
む。ビン18b及び管路18cはこの使用目的のために図示さ
れている。この材料は処理に都合の良いようELMと一緒
に同時にガラス化させる。また、或いは別法として、例
えば、鉛又は亜鉛の酸化物を含むフライアッシュを、材
料の固化前に、流し口24の近傍のキュポラ本体12の底部
又は流し口24自体の中で、溶融スラグ内に直接送り込ん
でも良い。これにより、かかる酸化物がスラグ中に溶解
して無害化された状態で処理できるようになる。
ELM処理装置の使用中、可燃性及び不燃性の他の廃棄
物を装入ドアから添加することも可能である。プラズマ
燃焼式キュポラは、多種多様な組成の供給物の使用に適
した融通性のある装置である。
ELMと共に供給された燃料は、炭素を生成し、アフタ
ーバーナー20内で燃料として働いて、PCB等の確実な分
解に十分な量の一酸化炭素を生ぜしめる。この目的のた
め、装入物中の炭素質燃料(コークス)はキュポラ内へ
供給されるプロセス材料の約6重量%以上を占めること
が好ましい。
背圧を減少させるためには、ELM、コークス又は他の
炭素質燃料及び石灰石又は他の融剤を、キュポラ本体内
で混合するのではなく層の状態に配置することが望まし
いということが判明した。たとえば、コークス30をキュ
ポラ本体内へ供給して始動後、ELMの第1の層32をキュ
ポラ本体内へ装入形成し、次に、コークス層33、次い
で、石灰石層34、さらにコークス層35を装入形成するの
が良い。次に、この作業を装入ドア14の近傍まで繰り返
し実施するのが良い。コークス層がELM層と石灰石層と
の間に挟まれた状態で位置するが、ELM層と石灰石層は
所望ならば混合して単一層の状態にしても良い。
ELMを処理するプラズマ燃焼式キュポラの操業効率の
向上のため、コークス(又は炭素質燃料)の床の高さ又
は層の厚さを適切に調節する。最初に装入されたコーク
ス30はキュポラ本体の中で、トーチ16により加熱された
ブラスト用空気をキュポラ本体内へ流入させる手段であ
る羽口17(本質的には中空の管)よりも上方のレベルま
で堆積する。所望のCO対CO2の比を得るには、通常、羽
口17の頂部から約5インチ(約12.7cm)〜約10インチ
(25.4cm)上方の高さ位置まで堆積させることが好まし
い。
もしアフターバーナー20内で燃料として使用するCOの
量を一層多く生ぜしめようとするならば、コークス装入
物30に関して、羽口17よりも約3フィート(約0.914m)
上方まで堆積高さをを高くするのが良い。ブラスト用空
気がキュポラ本体に流入してコークスと発熱反応し、大
量にCO2を生じる。CO2は、もし比較的高い堆積高さの多
量のコークスの還元作用を受けると、反応してCOを生じ
ると共に発熱し、ブードアール(Boudouard)反応と呼
ばれるCO2→CO反応を生じる。したがって、選択可能な
方法としては、多量のCO2排ガスの生成に十分なコーク
ス装入量を用いてコークス層内に生じる熱を最大にする
方法からコークスを増量することによりアフターバーナ
ー内で利用できるCO発生量を最大にする方法まで種々の
ものがある。
当初装入形成するコークス層の高さを装入物のレベル
の周りに維持するが、通常は高低のばらつきがある。
キュポラ内本体内の装入物の装入量全体に対し、炭素
含有燃料を約6%〜約25%、石灰石を約10%〜約45%に
するのが適当且つ好ましい。コークス比、ブラスト用空
気流量及びトーチ出力は、頂部ガス中のCO/CO2のモル比
が0.2〜3.0になるよう、溶融速度に課される要件に基づ
いて調節される。
石灰石の量は好ましくは、容易に得られる中程度の温
度状態でスラグの良好な流動性又は流れ特性を生ぜしめ
る最適な塩基度が得られるよう調節される。塩基度は次
に示す比で規定される。
約0.3未満の値では、スラグは粘性が高いので流速が
非常に遅い。約0.7以上では、スラグは脆砕性が非常に
高くなるので有害物質の封入手段としての働きはあまり
良くない。したがって、約0.3〜約0.7の範囲の塩基度を
有することが好ましい。
ガスの流量(ノズルを通る流量)は、溶融域中におけ
るスラグの水ひ(elutriation)を与える鉄鋳物の溶融
の場合よりもかなり低い値まで減少する。キュポラ本体
内の流量は毎分約0.5立方フィート、即ち約0.014m3(キ
ュポラ本体の横断面積平方インチ当たり)以下、好まし
くは、毎分約0.2〜約1.0(約0.0057m3〜約0.028m3)で
ある。
第3図には、第1図のキュポラが、キュポラ本体12か
らの排ガスのうち何割かを最循環させてトーチ・ノズル
18に戻す通風ファン52を有する再循環ループ50を備えた
状態で示されている。また、再循環ループ50は粒子(フ
ライアッシュ)のトラップ54を有し、かかる粒子は他の
形態の処理物に加えてビン18bを通って再注入され、或
いは、スラグ内へ注入される。
再循環ループ50は、ELMが、回収が望まれる比較的多
量の貴重な金属の酸化物を含有している場合に一層有用
な任意的に用いられる手段である。装入物中の酸化物は
炭素質燃料により還元される傾向があるが、もし過剰な
空気が存在している場合には、逆の反応を生じて再び金
属酸化物になる傾向がある。還元作用の一層強い雰囲気
を得るためには、CO及びNのうち幾らかを抜き出してこ
れをノズルに再導入させて酸素の相対量を少なくするの
が良い。通常、キュポラ本体から出るガスは約800゜F
(約427℃)の温度状態であり、約200゜F(約93℃)の
温度で再び入る。排ガスの再循環により、還元反応の促
進が可能になると共に、もしコークスだけによりブラス
ト用空気中の酸素を制御する場合の必要量よりも小量の
コークスを使用するだけで良い。
第4図は、「下部装入取出し方式」のプラズマ燃焼式
キュポラと呼ばれるもう一つの変形例を示している。第
1図のキュポラと比べ、アフターバーナー室20が装入レ
ベルよりも下方の位置から排ガスを受け入れるような設
計変更がキュポラ本体12の頂部に施されている。ファン
及び空気汚染防止設備(図示せず)がアフターバーナー
の次に配設されている。
第4図では、装入ドア14′は、空気の導入を最小限に
抑える頂部に配置されている。ドア14′は、閉鎖位置で
は、ドア14′をドア・フレーム62に密着保持する巻上装
置ケーブル60によって支持されている。装入材料64は、
ドアの上面の上に供給される。ドアを下降させると、材
料はキュポラ本体内に入り、ガス抜取り部を越えて上方
に堆積している装入物64′の一部となる。ドア14′を素
早く閉鎖すれば、還元作用の強い雰囲気を維持できる。
次頁以降の表は、ELMの代表的組成及び例えば第1図
の構成例によるプラズマ燃焼式キュポラ内でのそれらの
他の処理条件の各種の例を示している。例Iは、材料が
スラグ流と金属流、本質的には約4%のシリコンを含有
する合金鉄の金属流に分離処理されていることが実証さ
れている。排ガスは2200゜F(約1204℃)を越えるアフ
ターバーナー室内温度を生ぜしめた。
【図面の簡単な説明】
第1図は、プラズマ燃焼式キュポラの一構成例を示す概
略縦断面立面図である。 第2図は、第1図のプラズマ燃焼式キュポラの流し口部
分の拡大図である。 第3図は、生成したガスの再循環ループを備えるプラズ
マ燃焼式キュポラの概略縦断面立面図である。 第4図は、本発明のプラズマ燃焼式キュポラのもう一つ
の実施例を示す概略縦断面立面図である。 〔主要な参照符号の説明〕 10……プラズマ燃焼式キュポラ 12……シャフト炉又はキュポラ本体 14,14′……装入ドア 16……プラズマ・トーチ 17……羽口 18……ノズル 20……アフターバーナー又はアフターバーナー室 22……点火装置 24……流し口 30,33,35……コークス層 32……ELM 34……石灰石層 50……再循環ループ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 レイモンド・フランシス・テイラー,ジ ュニア アメリカ合衆国,ペンシルベニア州,ア ーウィン,バリー・ドライブ 53 (72)発明者 ロバート・ジュールズ・ステッフェン アメリカ合衆国,ペンシルベニア州,ホ ワイトホール,ハーター・サークル 3 (72)発明者 デビッド・マイケル・ロハウス アメリカ合衆国,ペンシルベニア州,ジ ャネット,シオドール・ストリート 20 (56)参考文献 特開 昭57−172108(JP,A) 特開 昭58−125785(JP,A) 特開 昭56−34010(JP,A) 特開 昭60−96823(JP,A) 特開 昭57−19097(JP,A) 特開 昭60−251312(JP,A) 実開 昭61−141528(JP,U) 特公 昭56−2243(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F23G 5/00 F23G 5/24 - 5/28 F23G 7/00 F23G 7/14 F23J 1/00 F23J 1/08 F27B 15/00 H05H 1/26

Claims (18)

    (57)【特許請求の範囲】
  1. 【請求項1】有毒及び有害物質で汚染された状態の掘出
    し埋立材料の処理方法であって、上部に装入ドアが配設
    されると共に底部近傍にプラズマ・トーチが設けられた
    竪形シャフト炉を有するプラズマ燃焼式キュポラが用い
    られ、プラズマ・トーチにより空気を高温状態に加熱
    し、加熱空気をシャフト炉内へ供給し、加熱空気により
    燃焼に至るまで加熱される炭素質燃料の層をシャフト炉
    内に形成し、掘出し埋立材料及び反応剤をシャフト炉の
    装入ドアを通して装入し、反応剤は、シャフト炉内の掘
    出し埋立材料を溶融してガラス質スラグを生ぜしめるコ
    ークスと石炭を含む追加の炭素質燃料を含み、シャフト
    炉をタッピングしてガラス質スラグを取り出し、シャフ
    ト炉からの排ガスをアフターバーナーに導いて排ガスに
    含有されている有毒及び有害物質を分解し、シャフト炉
    から取り出したガラス質スラグを冷却させて非有害固形
    物を生じさせ、炭素質燃料中のコークスは、シャフト炉
    内の埋立材料に対してかなり高い多孔性を有する燃料層
    を形成し、該燃料層にガス流を通過させてこれを固形化
    して新たに装入される掘出し埋立材料を支持させ、埋立
    材料と反応剤の装入を、これらの別々の層が形成される
    ような態様で実施することを特徴とする処理方法。
  2. 【請求項2】炭素質燃料は、アフターバーナーに燃料を
    補給するに十分な一酸化炭素を生ぜしめ、アフターバー
    ナーは、排ガスを少なくとも約2秒間、少なくとも約22
    00゜F(約120℃)の温度に曝すのに十分な温度を生じ、
    それにより排ガス中のPCBが満足のゆく程度に分解され
    ることを特徴とする請求項第(1)項記載の処理方法。
  3. 【請求項3】反応剤は更に融剤を含み、装入される融剤
    の大部分は石灰石であることを特徴とする請求項第
    (1)項又は第(2)項記載の処理方法。
  4. 【請求項4】プラズマ・トーチは、温度が少なくとも 3000゜F〜4000゜F(約1649℃〜約2204℃)の溶融域を生
    ぜしめるに十分な量の加熱空気を供給することを特徴と
    する請求項第(1)項〜第(3)項のうちいずれか一つ
    の項に記載の処理方法。
  5. 【請求項5】掘出し埋立材料の溶融により、ガラス質ス
    ラグの他に溶融状態の金属が得られ、掘出し埋立材料は
    一種又は二種以上のシリコン化合物を含み、該シリコン
    化合物は、シャフト炉内で還元されて溶融金属中に溶解
    した状態のシリコンを生じ、かくして鉄−シリコン系合
    金を形成することを特徴とする請求項第(1)項記載の
    処理方法。
  6. 【請求項6】シャフト炉をタッピングしてこれから溶融
    金属及びガラス質スラグを取り出す工程を含み、シャフ
    ト炉はかかるタッピングのためのスキマー及びダムを備
    えた流し口を有することを特徴とする請求項第(5)項
    記載の処理方法。
  7. 【請求項7】アフターバーナーから出る高温燃焼ガスを
    熱交換器に送り、掘出し埋立材料の処理又は他の処理に
    用いられる流体を加熱することを特徴とする請求項第
    (2)項記載の処理方法。
  8. 【請求項8】加熱されたブラスト用空気に加えて、微細
    廃棄物をシャフト炉内へ導入して掘出し埋立材料と共に
    シャフト炉内でガラス化することを特徴とする請求項第
    (1)項記載の処理方法。
  9. 【請求項9】埋立材料及び反応剤に加え、廃棄物をシャ
    フト炉の装入ドアを通して更に追加供給することを特徴
    とする請求項第(6)項記載の処理方法。
  10. 【請求項10】掘出し埋立材料と一緒に追加供給される
    炭素質燃料は、全装入量の少なくとも約6%であり、ア
    ウターバーナー内の燃料として利用される一酸化炭素を
    生ぜしめるに十分な炭素が得られるようにすることを特
    徴とする請求項第(1)項記載の処理方法。
  11. 【請求項11】反応剤はコークス及び石灰石を含み、こ
    れらの材料は埋立材料と一緒に装入されて所定の順序で
    これら材料の交互の又は別々の層を形成してコークスの
    層が他の材料の層の間に位置するようにすることを特徴
    とする請求項第(1)項記載の処理方法。
  12. 【請求項12】シャフト炉内のガス流量を毎分約0.6立
    方フィート(約0.014m3)のレベル以下に調節すること
    を特徴とする請求項第(1)項〜第(11)項のうちいず
    れか一つの項に記載の処理方法。
  13. 【請求項13】融剤の装入量を、ガラス化されたスラグ
    の塩基度が約0.3〜約0.7になるよう調節することを特徴
    とする請求項第(3)項〜第(12)項のうちいずれか一
    つの項に記載の処理方法。
  14. 【請求項14】高温状態の炭素燃料層を、シャフト炉内
    へプラズマ状態の加熱空気を送り込む羽口の上方且つ近
    傍のレベルまで形成し、3000゜F〜4500゜F(約1649℃〜
    約2482℃)の温度範囲の溶融域を高温状態の炭素燃料層
    の頂部近傍に形成して一酸化炭素を発生させ、掘出し埋
    立材料と融剤と追加の炭素燃料とを含む装入物を高温炭
    素燃料層上に供給して溶融域温度で蒸発するPCB含有物
    質を生ぜしめ、クロムとニッケルとから成る群のうち任
    意の金属を還元させないで、鉄と銅と亜鉛と鉛とから成
    る群のうち一又は二以上の金属の化合物を還元させると
    共に溶融金属及びガラス質スラグを生ぜしめることを特
    徴とする請求項第(1)項〜第(13)項のうちいずれか
    一つの項に記載の処理方法。
  15. 【請求項15】発生した蒸発気体及び一酸化炭素を、蒸
    発気体を燃焼させると共に少なくとも約2200゜F(約120
    4℃)の温度に少なくとも約2秒間曝すような動作条件
    に設定されたアフターバーナーまで上昇させることを特
    徴とする請求項第(14)項記載の処理方法。
  16. 【請求項16】溶融金属は、鉄及び銅を含む群から選択
    された金属の化合物の還元により生じる金属を含むこと
    を特徴とする請求項第(14)項記載の処理方法。
  17. 【請求項17】溶融域中における、亜鉛とカドミウムと
    鉛とから成る群から選択された金属の化合物の還元によ
    り、前記金属が蒸発し、該蒸発金属は他の発生蒸発気体
    及び一酸化炭素と共にアフターバーナーまで上昇し、こ
    こで前記金属の酸化物が形成された後、捕集されること
    を特徴とする請求項第(14)項記載の処理方法。
  18. 【請求項18】掘出し埋立材料の処理のためのプラズマ
    燃焼式キュポラであって、竪形シャフト炉と、シャフト
    炉の上部に配設された装入ドアと、シャフト炉の底部近
    傍に位置した羽口と、羽口と同軸状に配列されたシュラ
    ウド・ノズルを備えた少なくとも一つのプラズマ・トー
    チと、プラズマ・トーチ及びシュラウド・ノズルにそれ
    ぞれ空気を供給する給気ラインと、プラズマ・トーチを
    付勢してプラズマ・トーチ内へ供給された空気のプラズ
    マを発生させ、この空気のプラズマが次にシュラウド・
    ノズル内へ供給される空気を加熱するようにさせる手段
    と、炭素燃料の層とを有し、該炭素燃料層は、シャフト
    炉の底部から、羽口の上方且つ近傍のレベルまでシャフ
    ト炉内に堆積すると共にシャフト炉内の材料に対して或
    る程度の多孔性を備える、シャフト炉内の少なくとも約
    25%のコークスを含み、シャフト炉は、炭素燃料層上に
    堆積された状態の装入物を収容し、該装入物は、掘出し
    埋立材料と追加の炭素燃料と融剤とを含み、シャフト炉
    は、その最上部に、スタック点火装置が組み込まれたア
    フターバーナー室を有し、炭素燃料層上の装入物は、ア
    フターバーナー室内で燃焼される排ガスを生ぜしめ、シ
    ャフト炉は、その最下端部に、装入物から生じた溶融ス
    ラグ及び金属を取り出す流し口を有し、前記プラズマ燃
    焼式キュポラは更に、埋立材料及び反応剤を、コークス
    と石灰石とを含む炭素燃料により画定される埋立材料と
    反応剤の別個独立の層を生ぜしめるような所定の順序で
    シャフト炉に装入する手段を有することを特徴とするプ
    ラズマ燃焼式キュポラ。
JP2111594A 1989-04-27 1990-04-25 有毒及び有害物質で汚染された状態の掘出し埋立材料の処理方法及びプラズマ燃焼式キュポラ Expired - Lifetime JP3012665B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US343,694 1989-04-27
US07/343,694 US4998486A (en) 1989-04-27 1989-04-27 Process and apparatus for treatment of excavated landfill material in a plasma fired cupola

Publications (2)

Publication Number Publication Date
JPH02298717A JPH02298717A (ja) 1990-12-11
JP3012665B2 true JP3012665B2 (ja) 2000-02-28

Family

ID=23347216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2111594A Expired - Lifetime JP3012665B2 (ja) 1989-04-27 1990-04-25 有毒及び有害物質で汚染された状態の掘出し埋立材料の処理方法及びプラズマ燃焼式キュポラ

Country Status (5)

Country Link
US (1) US4998486A (ja)
EP (1) EP0395397B1 (ja)
JP (1) JP3012665B2 (ja)
CA (1) CA2013591A1 (ja)
DE (1) DE69002082T2 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU46333B (sh) * 1987-04-30 1993-05-28 Oy Partek Ab Talilna pec
US5319176A (en) * 1991-01-24 1994-06-07 Ritchie G. Studer Plasma arc decomposition of hazardous wastes into vitrified solids and non-hazardous gasses
DE4104507C2 (de) * 1991-02-14 1997-08-07 Elsner Emil Dr Ing Verfahren und Vorrichtung zum Verarbeiten von Abfallstoffen, insbesondere Hausmüll, zu einem brennbaren Gasgemisch, Metallen und Schlacke
US5103578A (en) * 1991-03-26 1992-04-14 Amoco Corporation Method and apparatus for removing volatile organic compounds from soils
US5143000A (en) * 1991-05-13 1992-09-01 Plasma Energy Corporation Refuse converting apparatus using a plasma torch
US5262107A (en) * 1991-06-25 1993-11-16 Applied Extrusion Technologies, Inc. Method of making apertured film fabrics
US5423676A (en) * 1992-03-30 1995-06-13 Osaka Gas Co., Ltd. Waste melting furnace
US5284503A (en) * 1992-11-10 1994-02-08 Exide Corporation Process for remediation of lead-contaminated soil and waste battery
US5439498A (en) * 1992-11-10 1995-08-08 Exide Corporation Process and system for the on-site remediation of lead-contaminated soil and waste battery casings
US5766303A (en) * 1992-11-10 1998-06-16 Exide Corporation Process for the remediation of lead-contaminated soil and waste battery casings
DE4317145C1 (de) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Verfahren und Einrichtung zur Entsorgung unterschiedlich zusammengesetzter Abfallmaterialien
US5399833A (en) * 1993-07-02 1995-03-21 Camacho; Salvador L. Method for vitrification of fine particulate matter and products produced thereby
US5430236A (en) * 1993-08-13 1995-07-04 Pedro B. de Macedo Method for vitrifying ash
WO1997014528A1 (en) * 1993-08-19 1997-04-24 Refranco Corp. Plasmalysis treatment method for waste matter
US5403991A (en) * 1993-08-19 1995-04-04 Refranco Corp. Reactor and method for the treatment of particulate matter by electrical discharge
DE4339675C1 (de) * 1993-11-22 1995-05-04 Messer Griesheim Gmbh Verfahren und Vorrichtung zum Einschmelzen von festen Verbrennungsrückständen
US5534659A (en) * 1994-04-18 1996-07-09 Plasma Energy Applied Technology Incorporated Apparatus and method for treating hazardous waste
US5615627A (en) * 1995-02-23 1997-04-01 Biocon, Incorporated Method and apparatus for destruction of waste by thermal scission and chemical recombination
US5728193A (en) * 1995-05-03 1998-03-17 Philip Services Corp. Process for recovering metals from iron oxide bearing masses
WO1997027903A1 (en) * 1996-01-30 1997-08-07 Vial Jean Luc Apparatus and method for treating solids
KR970069162A (ko) * 1996-04-30 1997-11-07 이대원 플라즈마(Plasma)를 이용한 폴리클로리네이티드바이페닐(Poly Chlorinated Bipheny)폐기물 처리방법
US6355904B1 (en) 1996-06-07 2002-03-12 Science Applications International Corporation Method and system for high-temperature waste treatment
US5827012A (en) * 1997-01-06 1998-10-27 Circeo, Jr.; Louis J. Thermal plasma conversion of local soils into construction materials
US6119607A (en) * 1997-05-09 2000-09-19 Corporation De L'ecole Polytechnique Granular bed process for thermally treating solid waste in a flame
FR2764877B1 (fr) * 1997-06-20 1999-09-03 Europlasma Procede de vitrification d'un materiau pulverulent et dispositif pour la mise en oeuvre de ce procede
US5882737A (en) * 1998-03-20 1999-03-16 Eckhoff; Paul S. Apparatus and method for radiation processing of materials
US6096379A (en) * 1998-03-20 2000-08-01 Eckhoff; Paul S. Radiation processing apparatus and method
IT1313272B1 (it) * 1999-07-29 2002-07-17 Rgr Ambiente Reattori Gassific Procedimento e dispositivo per la pirolisi e gassificazione di rifiuti
US6551563B1 (en) 2000-09-22 2003-04-22 Vanguard Research, Inc. Methods and systems for safely processing hazardous waste
US6514469B1 (en) 2000-09-22 2003-02-04 Yuji Kado Ruggedized methods and systems for processing hazardous waste
US8764978B2 (en) 2001-07-16 2014-07-01 Foret Plasma Labs, Llc System for treating a substance with wave energy from an electrical arc and a second source
US8981250B2 (en) 2001-07-16 2015-03-17 Foret Plasma Labs, Llc Apparatus for treating a substance with wave energy from plasma and an electrical Arc
US10188119B2 (en) 2001-07-16 2019-01-29 Foret Plasma Labs, Llc Method for treating a substance with wave energy from plasma and an electrical arc
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US7857972B2 (en) 2003-09-05 2010-12-28 Foret Plasma Labs, Llc Apparatus for treating liquids with wave energy from an electrical arc
US20050070751A1 (en) * 2003-09-27 2005-03-31 Capote Jose A Method and apparatus for treating liquid waste
SG111177A1 (en) * 2004-02-28 2005-05-30 Wira Kurnia Fine particle powder production
JP2005262099A (ja) * 2004-03-18 2005-09-29 Nippon Steel Corp 有機汚染廃棄物の無害化処理方法及び処理装置
US6971323B2 (en) 2004-03-19 2005-12-06 Peat International, Inc. Method and apparatus for treating waste
SG159538A1 (en) * 2005-02-10 2010-03-30 Wyeth Corp Apparatus and method for radiation processing of fluent food products
US7832344B2 (en) * 2006-02-28 2010-11-16 Peat International, Inc. Method and apparatus of treating waste
WO2008008104A2 (en) 2006-04-05 2008-01-17 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
US7571687B2 (en) * 2006-08-08 2009-08-11 Cornellier J Rene Apparatus for destruction of organic pollutants
US7632394B2 (en) * 2007-05-29 2009-12-15 Westinghouse Plasma Corporation System and process for upgrading heavy hydrocarbons
CN100560238C (zh) * 2007-09-13 2009-11-18 浙江大学 两步式城镇生活垃圾填埋处理系统及其方法
EP2247347A4 (en) * 2008-02-08 2013-08-14 Peat International Inc METHOD AND APPARATUS FOR PROCESSING WASTE
DE102008010919A1 (de) 2008-02-25 2009-09-03 Markus Franssen Abfallverwertungsanlage zur Erzeugung von Energie
JP5415006B2 (ja) * 2008-03-26 2014-02-12 株式会社神鋼環境ソリューション Pcb汚染物処理方法
DE102009014410A1 (de) 2008-03-31 2009-10-01 Etag Production Gmbh Abfallverwertungsanlage zur Erzeugung von Energie
US20090307974A1 (en) * 2008-06-14 2009-12-17 Dighe Shyam V System and process for reduction of greenhouse gas and conversion of biomass
GB2465603B (en) * 2008-11-24 2010-10-13 Tetronics Ltd Method for recovery of metals
US20100199556A1 (en) * 2009-02-11 2010-08-12 Dighe Shyam V Plasma gasification reactor
US9222038B2 (en) * 2009-02-11 2015-12-29 Alter Nrg Corp. Plasma gasification reactor
US20100199557A1 (en) * 2009-02-11 2010-08-12 Dighe Shyam V Plasma gasification reactor
JP5281443B2 (ja) * 2009-03-11 2013-09-04 新日鉄住金エンジニアリング株式会社 廃棄物溶融炉への可燃性ダスト吹き込み方法
US8671855B2 (en) 2009-07-06 2014-03-18 Peat International, Inc. Apparatus for treating waste
US20120061618A1 (en) 2010-09-11 2012-03-15 James Santoianni Plasma gasification reactors with modified carbon beds and reduced coke requirements
US9005320B2 (en) 2011-02-05 2015-04-14 Alter Nrg Corp. Enhanced plasma gasifiers for producing syngas
WO2012109537A1 (en) * 2011-02-10 2012-08-16 James Charles Juranitch Inductive bath plasma cupola
JP5708119B2 (ja) * 2011-03-25 2015-04-30 株式会社Ihi 微粉炭バーナ
GB2490175A (en) * 2011-04-21 2012-10-24 Tetronics Ltd Treatment of waste
US9574770B2 (en) 2012-04-17 2017-02-21 Alter Nrg Corp. Start-up torch
CN105143413B (zh) 2012-12-11 2017-07-04 弗雷特等离子实验室公司 高温逆流涡动反应器系统、方法和装置
MX358199B (es) 2013-03-12 2018-08-08 Foret Plasma Labs Llc Método y aparato para la sinterización de agentes de sostén.
US20200239980A1 (en) 2017-10-13 2020-07-30 Pyrogenesis Canada Inc. Dc arc furnace for waste melting and gasification
US11530158B2 (en) * 2019-08-22 2022-12-20 Xaris Holdings, LLC Amorphous silica products, articles, and particles and methods of producing amorphous silica products, articles, and particles from concrete
CN113483339B (zh) * 2021-06-16 2023-08-25 江苏凯丰新能源科技有限公司 资源化处理铝电解碳电极废料的连续式电热炉及方法
KR102707861B1 (ko) * 2022-02-15 2024-09-19 한국핵융합에너지연구원 토치 결합용 자동 개폐식 용융로 포트 및 이를 이용한 플라즈마 용융로
EP4394296A1 (en) * 2022-12-30 2024-07-03 S.A. Lhoist Recherche Et Developpement Method for calcining carbonated mineral stones in a parallel flow regenerative kiln and implemented kiln
EP4394299A1 (en) * 2022-12-30 2024-07-03 S.A. Lhoist Recherche Et Developpement Process for calcining carbonated mineral stones in an annular vertical kiln and implemented kiln
EP4394295A1 (en) * 2022-12-30 2024-07-03 S.A. Lhoist Recherche Et Developpement Process for calcining carbonated mineral stones in an annular vertical kiln and implemented kiln

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697256A (en) * 1971-02-08 1972-10-10 Isaiah B Engle Method of incinerating refuse
BE786025A (fr) * 1971-07-09 1973-01-08 Union Carbide Corp Procede d'incineration d'ordures
US4078914A (en) * 1973-05-30 1978-03-14 Louis Gold Gasification of coal and refuse in a vertical shaft furnace
DE2904855C3 (de) * 1979-02-09 1981-12-03 Modern Equipment Co., Port Washington, Wis. Koksbeheizter-Kupolofen
US4346661A (en) * 1980-03-20 1982-08-31 Osaka Gas Kabushiki Kaisha Furnace for treating industrial wastes
JPS5712216A (en) * 1980-06-25 1982-01-22 Osaka Gas Co Ltd Method of melting waste
SE451033B (sv) * 1982-01-18 1987-08-24 Skf Steel Eng Ab Sett och anordning for omvandling av avfallsmaterial med plasmagenerator
US4530101A (en) * 1983-04-15 1985-07-16 Westinghouse Electric Corp. Electric arc fired cupola for remelting of metal chips
DE3611429A1 (de) * 1985-02-15 1986-11-06 SKF Steel Engineering AB, Hofors Verfahren zur abfallzersetzung
FR2610087B1 (fr) * 1987-01-22 1989-11-24 Aerospatiale Procede et dispositif pour la destruction de dechets solides par pyrolyse
US4780132A (en) * 1987-05-08 1988-10-25 Electric Power Research Institute Plasma fired cupola
US4769065A (en) * 1987-05-08 1988-09-06 Electric Power Research Institute Control of a plasma fired cupola
US4761793A (en) * 1987-05-08 1988-08-02 Electric Power Research Institute Plasma fired feed nozzle
US4780130A (en) * 1987-07-22 1988-10-25 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder using melt overpressure

Also Published As

Publication number Publication date
EP0395397B1 (en) 1993-06-30
JPH02298717A (ja) 1990-12-11
DE69002082D1 (de) 1993-08-05
CA2013591A1 (en) 1990-10-27
DE69002082T2 (de) 1994-01-27
EP0395397A2 (en) 1990-10-31
US4998486A (en) 1991-03-12
EP0395397A3 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
JP3012665B2 (ja) 有毒及び有害物質で汚染された状態の掘出し埋立材料の処理方法及びプラズマ燃焼式キュポラ
US5042964A (en) Flash smelting furnace
JP3820269B2 (ja) 都市廃棄物その他廃棄物の処理
JPH06128657A (ja) スクラップ連続予熱方法およびその装置
JPH01270990A (ja) 焼却炉の灰に含有された重金属の連続凝集法
EP1310733B1 (en) Method for incineration disposal of waste
JP2000310408A (ja) ごみ処理方法および処理設備
JPH07310917A (ja) 廃棄物燃焼装置からの固体の燃焼残渣を溶融する方法および装置
KR19990008192A (ko) 산화철 함유 매스로부터 금속을 회수하는 방법
RU2343353C2 (ru) Способ безотходной термической переработки твердых коммунальных отходов
KR20220105660A (ko) 개선된 플라즈마 유도된 발연로
JPH07301409A (ja) 有効ガス及び不活性無機残渣を同時に発生させて廃棄物を焼却する方法及び装置
US5685244A (en) Gas-fired smelting apparatus and process
JP3483054B2 (ja) 還元溶融スラグ生成用の直流電気溶融炉
JP2001021129A (ja) 直結型焼却灰溶融設備及びその運転制御方法
EP1227278A2 (en) Waste treatment apparatus
EP0694734B1 (en) Apparatus for incinerating and melting wastes and method of using the same
US4780132A (en) Plasma fired cupola
JP2799550B2 (ja) 溶融炉
US6432162B1 (en) Process for melting ashes, slags or glass
JP2006105431A (ja) ストーカ式焼却炉
JP3962178B2 (ja) 有害物の処理方法およびその装置
JP2001317717A (ja) 含油スラッジ焼却炉および含油スラッジ焼成方法
CN111623353A (zh) 一种针对垃圾的熔融减量化处理系统
JPH09263776A (ja) 有機系廃棄物のガス化処理方法及び固定床ガス化炉