JP2919982B2 - 三次元形状の形成方法 - Google Patents
三次元形状の形成方法Info
- Publication number
- JP2919982B2 JP2919982B2 JP3006015A JP601591A JP2919982B2 JP 2919982 B2 JP2919982 B2 JP 2919982B2 JP 3006015 A JP3006015 A JP 3006015A JP 601591 A JP601591 A JP 601591A JP 2919982 B2 JP2919982 B2 JP 2919982B2
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- section
- light
- layer
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Description
【0001】
【産業上の利用分野】この発明は、三次元形状の形成方
法に関し、詳しくは、光の照射によって硬化する光硬化
性樹脂を用いて、立体的な三次元形状を有する物品を成
形製造する方法に関するものである。
法に関し、詳しくは、光の照射によって硬化する光硬化
性樹脂を用いて、立体的な三次元形状を有する物品を成
形製造する方法に関するものである。
【0002】
【従来の技術】光硬化性樹脂を用いて三次元形状を形成
する方法は、複雑な三次元形状を、成形型や特別な加工
工具を用いることなく、簡単かつ正確に成形できる方法
として、各種製品モデルや立体模型の製造等に利用する
ことが考えられている。具体的な従来技術として、例え
ば、特開昭63-145016 号公報や、特開昭62-101408 号公
報に開示された技術がある。
する方法は、複雑な三次元形状を、成形型や特別な加工
工具を用いることなく、簡単かつ正確に成形できる方法
として、各種製品モデルや立体模型の製造等に利用する
ことが考えられている。具体的な従来技術として、例え
ば、特開昭63-145016 号公報や、特開昭62-101408 号公
報に開示された技術がある。
【0003】特開昭63-145016 号公報に開示された技術
は、光ビームの断面形状を楕円にすることにより、光硬
化層のうち、光ビームの主走査方向の端部における面だ
れが小さくなり、主走査方向の全長にわたって、ほぼ均
一な厚さの光硬化層が得られ、硬化層全体が平坦化し、
下層硬化層形状の乱れによる上下層の分離等が防止さ
れ、高精度の立体形状体が形成できるとしている。
は、光ビームの断面形状を楕円にすることにより、光硬
化層のうち、光ビームの主走査方向の端部における面だ
れが小さくなり、主走査方向の全長にわたって、ほぼ均
一な厚さの光硬化層が得られ、硬化層全体が平坦化し、
下層硬化層形状の乱れによる上下層の分離等が防止さ
れ、高精度の立体形状体が形成できるとしている。
【0004】特開昭62-101408 号公報に開示された技術
は、光ビームすなわち照射光束を、形成すべき三次元形
状の横断面外形に沿う主経路とその周囲とにわたる反復
微小運動を行わせつつ、全体としては前記主経路に沿っ
て移動させて前記横断面外形の外周縁に沿って光を照射
することにより、所望厚みの三次元形状を高い寸法精度
で形成することができるとしている。
は、光ビームすなわち照射光束を、形成すべき三次元形
状の横断面外形に沿う主経路とその周囲とにわたる反復
微小運動を行わせつつ、全体としては前記主経路に沿っ
て移動させて前記横断面外形の外周縁に沿って光を照射
することにより、所望厚みの三次元形状を高い寸法精度
で形成することができるとしている。
【0005】
【発明が解決しようとする課題】ところが、前記先行技
術には、それぞれ問題点があり、改善が要望される。ま
ず、光ビームを断面楕円形状にする技術(特開昭62-101
408 号)では、三次元形状の外形精度にとって最も重要
な外周縁を、正確かつ滑らかに形成することができな
い。これは、上記先行技術では、所望の平面形状を有す
る光硬化層を形成するために、光硬化層となる領域の端
から端まで直線的に光ビームを移動させて帯状の光硬化
部分を形成し、つぎに、この帯状光硬化部分の隣で、光
ビームを再び光硬化層となる領域の端から端まで直線的
に移動させ、こうして形成された帯状の光硬化部分の集
合で所望の平面形状をなす光硬化層を形成しており、こ
のような光ビームの運動をラスタ走査と呼んでいる。と
ころが、この場合、光ビームを直線的に移動させる主走
査方向の両端では、隣合う帯状光硬化部分の間に不連続
な段差や凹凸が生じてしまい、光硬化層の外形を滑らか
に形成することができないのである。
術には、それぞれ問題点があり、改善が要望される。ま
ず、光ビームを断面楕円形状にする技術(特開昭62-101
408 号)では、三次元形状の外形精度にとって最も重要
な外周縁を、正確かつ滑らかに形成することができな
い。これは、上記先行技術では、所望の平面形状を有す
る光硬化層を形成するために、光硬化層となる領域の端
から端まで直線的に光ビームを移動させて帯状の光硬化
部分を形成し、つぎに、この帯状光硬化部分の隣で、光
ビームを再び光硬化層となる領域の端から端まで直線的
に移動させ、こうして形成された帯状の光硬化部分の集
合で所望の平面形状をなす光硬化層を形成しており、こ
のような光ビームの運動をラスタ走査と呼んでいる。と
ころが、この場合、光ビームを直線的に移動させる主走
査方向の両端では、隣合う帯状光硬化部分の間に不連続
な段差や凹凸が生じてしまい、光硬化層の外形を滑らか
に形成することができないのである。
【0006】そこで、光硬化層の外周縁については、前
記のようなラスタ走査を行わず、光硬化層の外周縁の輪
郭線に沿って、曲線あるいは屈曲線状に光ビームを移動
させれば、光硬化層の外周縁を滑らかに形成できると考
えられる。このような光ビームの運動は、ベクトル成分
を有するのでベクトル走査と呼ばれる。ところが、断面
楕円形状の光ビームでは、その短軸方向と長軸方向と
で、光ビームの中心から光ビームの最外周までの距離が
異なっている。光ビームのスポットの連なりによって光
硬化層の外周縁が形成されるのであるから、断面楕円形
状の光ビームをベトクル走査させると、光ビームの移動
方向によって光ビームの中心から最外周までの距離が変
わり、光ビームの中心の移動経路と、光ビームの外周で
描かれる輪郭線とが相違してしまい、光硬化層の外周縁
が不正確になる。
記のようなラスタ走査を行わず、光硬化層の外周縁の輪
郭線に沿って、曲線あるいは屈曲線状に光ビームを移動
させれば、光硬化層の外周縁を滑らかに形成できると考
えられる。このような光ビームの運動は、ベクトル成分
を有するのでベクトル走査と呼ばれる。ところが、断面
楕円形状の光ビームでは、その短軸方向と長軸方向と
で、光ビームの中心から光ビームの最外周までの距離が
異なっている。光ビームのスポットの連なりによって光
硬化層の外周縁が形成されるのであるから、断面楕円形
状の光ビームをベトクル走査させると、光ビームの移動
方向によって光ビームの中心から最外周までの距離が変
わり、光ビームの中心の移動経路と、光ビームの外周で
描かれる輪郭線とが相違してしまい、光硬化層の外周縁
が不正確になる。
【0007】つぎに、前記光ビームを反復微小運動させ
る方法(特開昭62-101408 号)では、光硬化層の外周縁
は滑らかに形成できるが、光ビームを反復微小運動させ
ながら前記主経路に沿う複雑な曲線運動を行わせる必要
があるので、光ビームの移動を迅速に行えず、走査時間
が極めて長くかかるという問題がある。そこで、この発
明の課題は、前記した従来の三次元形状の形成方法にお
ける問題点を解消し、高精度な三次元形状を高速かつ能
率的に形成することのできる方法を提供することにあ
る。
る方法(特開昭62-101408 号)では、光硬化層の外周縁
は滑らかに形成できるが、光ビームを反復微小運動させ
ながら前記主経路に沿う複雑な曲線運動を行わせる必要
があるので、光ビームの移動を迅速に行えず、走査時間
が極めて長くかかるという問題がある。そこで、この発
明の課題は、前記した従来の三次元形状の形成方法にお
ける問題点を解消し、高精度な三次元形状を高速かつ能
率的に形成することのできる方法を提供することにあ
る。
【0008】
【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる三次元形状の形成方法は、光硬化性樹脂
液の薄層に光を照射して所定形状の光硬化層を形成し、
この光硬化層を複数層積み重ねて所望の三次元形状を形
成する方法において、光硬化層のうち外周縁を除く内側
部分となる領域に光を照射するときには、断面楕円形状
の光ビームを用いて、断面楕円形状の短軸方向が主走査
方向となるように直線的に走査し、この直線的走査を、
前記主走査方向と直交する副走査方向に段階的に移動し
ながら繰り返し、光硬化層のうち外周縁となる領域に光
を照射するときには、断面円形状の光ビームを用いて、
外周縁の輪郭形状に沿って走査する。
の発明にかかる三次元形状の形成方法は、光硬化性樹脂
液の薄層に光を照射して所定形状の光硬化層を形成し、
この光硬化層を複数層積み重ねて所望の三次元形状を形
成する方法において、光硬化層のうち外周縁を除く内側
部分となる領域に光を照射するときには、断面楕円形状
の光ビームを用いて、断面楕円形状の短軸方向が主走査
方向となるように直線的に走査し、この直線的走査を、
前記主走査方向と直交する副走査方向に段階的に移動し
ながら繰り返し、光硬化層のうち外周縁となる領域に光
を照射するときには、断面円形状の光ビームを用いて、
外周縁の輪郭形状に沿って走査する。
【0009】光硬化性樹脂の材料や光硬化性樹脂液の薄
層を形成する手段、あるいは、形成された光硬化層を積
み重ねていく手段などは、従来の通常の光硬化性樹脂を
用いた三次元形状の形成方法の場合と同様でよい。光の
照射手段も、基本的には、従来の通常の三次元形状の形
成方法に用いられているレーザ照射装置などと同様のも
のが使用される。但し、この発明では、照射する光ビー
ムの断面形状を変更可能にしておく必要がある。通常の
レーザ照射装置では、光ビームの断面形状は円形である
ので、光ビームの通過経路に、光ビームの断面形状を楕
円形に変える光ビーム変更機構を備えておき、必要に応
じて、光ビームの断面形状を円形から楕円形に変更する
ようにしておくのが好ましい。
層を形成する手段、あるいは、形成された光硬化層を積
み重ねていく手段などは、従来の通常の光硬化性樹脂を
用いた三次元形状の形成方法の場合と同様でよい。光の
照射手段も、基本的には、従来の通常の三次元形状の形
成方法に用いられているレーザ照射装置などと同様のも
のが使用される。但し、この発明では、照射する光ビー
ムの断面形状を変更可能にしておく必要がある。通常の
レーザ照射装置では、光ビームの断面形状は円形である
ので、光ビームの通過経路に、光ビームの断面形状を楕
円形に変える光ビーム変更機構を備えておき、必要に応
じて、光ビームの断面形状を円形から楕円形に変更する
ようにしておくのが好ましい。
【0010】光ビーム変更機構の具体的構造としては、
例えば、1面が平坦でその対向面が円弧凸面になったカ
マボコ型のレンズ(シリンドリカルレンズ)を2枚1組
に組み合わせて、相対的に回転自在に取り付けておけ
ば、互いの円弧凸面を平行に配置したときには、円弧凸
面の軸方向を長軸とする断面楕円形状の光ビームが得ら
れ、互いの円弧凸面を直交するように配置したときに
は、断面円形状の光ビームが得られる。互いの円弧凸面
の交差角度を調整すれば、楕円の短軸と長軸の比率を自
由に変更できる。
例えば、1面が平坦でその対向面が円弧凸面になったカ
マボコ型のレンズ(シリンドリカルレンズ)を2枚1組
に組み合わせて、相対的に回転自在に取り付けておけ
ば、互いの円弧凸面を平行に配置したときには、円弧凸
面の軸方向を長軸とする断面楕円形状の光ビームが得ら
れ、互いの円弧凸面を直交するように配置したときに
は、断面円形状の光ビームが得られる。互いの円弧凸面
の交差角度を調整すれば、楕円の短軸と長軸の比率を自
由に変更できる。
【0011】また、断面楕円形状の光ビームを照射する
照射手段と、断面円形状の光ビームを照射する照射手段
を別個に設置して、必要に応じて使い分けるようにして
もよい。光ビームの照射を行う際の走査手段としては、
主走査方向への直線的な運動を、この主走査方向と直交
する副走査方向に順次平行にずらせながら繰り返す、い
わゆるラスタ走査と、任意の曲線もしくは屈折線に沿っ
て平面上を移動する、いわゆるベクトル走査の両方を行
えるようにしておく。このような走査手段は、従来の通
常のレーザ照射装置における走査手段と同様のものが用
いられる。
照射手段と、断面円形状の光ビームを照射する照射手段
を別個に設置して、必要に応じて使い分けるようにして
もよい。光ビームの照射を行う際の走査手段としては、
主走査方向への直線的な運動を、この主走査方向と直交
する副走査方向に順次平行にずらせながら繰り返す、い
わゆるラスタ走査と、任意の曲線もしくは屈折線に沿っ
て平面上を移動する、いわゆるベクトル走査の両方を行
えるようにしておく。このような走査手段は、従来の通
常のレーザ照射装置における走査手段と同様のものが用
いられる。
【0012】この発明では、光硬化性樹脂液に光ビーム
を照射する際に、光硬化層の外周縁となる領域と、外周
縁を除く内側部分となる領域とで、光ビームの断面形状
および走査方法を変える。まず、前記内側領域では、断
面楕円形状の光ビームを用いるとともに、直線的な走査
の繰り返し、すなわちラスタ走査を行う。このとき、光
ビームの断面楕円形状の短軸方向が主走査方向になるよ
うにしておけば、1回の直線的走査で、断面楕円形状の
長軸長さに相当する広い範囲の光硬化部分を形成でき、
作業能率が良好になる。また、断面楕円形状の光ビーム
は、ビーム径を大きく出力も高く設定しておけば、作業
能率が向上する。
を照射する際に、光硬化層の外周縁となる領域と、外周
縁を除く内側部分となる領域とで、光ビームの断面形状
および走査方法を変える。まず、前記内側領域では、断
面楕円形状の光ビームを用いるとともに、直線的な走査
の繰り返し、すなわちラスタ走査を行う。このとき、光
ビームの断面楕円形状の短軸方向が主走査方向になるよ
うにしておけば、1回の直線的走査で、断面楕円形状の
長軸長さに相当する広い範囲の光硬化部分を形成でき、
作業能率が良好になる。また、断面楕円形状の光ビーム
は、ビーム径を大きく出力も高く設定しておけば、作業
能率が向上する。
【0013】つぎに、外周縁領域では、断面円形状の光
ビームを用いるとともに、外周縁の輪郭形状に沿った曲
線あるいは屈折線状の走査、すなわちベクトル走査を行
う。内側領域に対するラスタ走査は、比較的高速で行っ
て光硬化層の形成を迅速に行うのが好ましい。外周縁領
域に対するベクトル走査は、光硬化層の外形が正確かつ
滑らかに形成されるように、比較的低速で行うのが好ま
しい。また、光ビームのビーム径を小さくするほど、光
硬化層の外周の細かな凹凸まで忠実に成形することがで
きる。
ビームを用いるとともに、外周縁の輪郭形状に沿った曲
線あるいは屈折線状の走査、すなわちベクトル走査を行
う。内側領域に対するラスタ走査は、比較的高速で行っ
て光硬化層の形成を迅速に行うのが好ましい。外周縁領
域に対するベクトル走査は、光硬化層の外形が正確かつ
滑らかに形成されるように、比較的低速で行うのが好ま
しい。また、光ビームのビーム径を小さくするほど、光
硬化層の外周の細かな凹凸まで忠実に成形することがで
きる。
【0014】光ビームの照射は、前記内側領域を先に行
ってから、形成された光硬化部分の外周形状を滑らかに
つなぐように、外周縁領域への照射を行う方法と、先に
外周縁領域への光ビームの照射を行い、形成された枠状
の光硬化部分の内側を埋めるように内側領域への光ビー
ムの照射を行う方法があり、いずれの方法も採用でき
る。
ってから、形成された光硬化部分の外周形状を滑らかに
つなぐように、外周縁領域への照射を行う方法と、先に
外周縁領域への光ビームの照射を行い、形成された枠状
の光硬化部分の内側を埋めるように内側領域への光ビー
ムの照射を行う方法があり、いずれの方法も採用でき
る。
【0015】通常、内側領域を照射する断面楕円形状の
光ビームは、外周縁領域を照射する断面円形状の光ビー
ムよりも、光硬化性樹脂液を光硬化させる硬化深さを深
くできるので、断面円形状の光ビームで複数層分の外周
縁領域のみを光硬化させた後、その内側に残った内側領
域の光硬化性樹脂液を、断面楕円形状の光ビームによる
1度のラスタ走査で光硬化させることも可能である。
光ビームは、外周縁領域を照射する断面円形状の光ビー
ムよりも、光硬化性樹脂液を光硬化させる硬化深さを深
くできるので、断面円形状の光ビームで複数層分の外周
縁領域のみを光硬化させた後、その内側に残った内側領
域の光硬化性樹脂液を、断面楕円形状の光ビームによる
1度のラスタ走査で光硬化させることも可能である。
【0016】
【作用】断面楕円形状の光ビームを用いると、断面円形
状の光ビームに比べて、光硬化性樹脂液の硬化が迅速に
行われ、必要な走査時間が短くて済む。これは、レーザ
発振器などから照射された段階では円形をなす光ビーム
を断面楕円形状に絞り込むと、単位面積当たりの光エネ
ルギーが高くなるので、断面楕円形状の光ビームは断面
円形状の光ビームよりも深い位置まで光硬化性樹脂液を
硬化させることが可能になり、同じ体積の三次元形状を
短い時間で硬化させることができるのである。
状の光ビームに比べて、光硬化性樹脂液の硬化が迅速に
行われ、必要な走査時間が短くて済む。これは、レーザ
発振器などから照射された段階では円形をなす光ビーム
を断面楕円形状に絞り込むと、単位面積当たりの光エネ
ルギーが高くなるので、断面楕円形状の光ビームは断面
円形状の光ビームよりも深い位置まで光硬化性樹脂液を
硬化させることが可能になり、同じ体積の三次元形状を
短い時間で硬化させることができるのである。
【0017】しかし、前記したように、断面楕円形状の
光ビームによるラスタ走査では、光硬化層の外周形状に
凹凸がつき外形精度が出ない。そこで、光硬化層のう
ち、外周縁領域のみは、断面円形状の光ビームを用いて
外周縁領域の輪郭形状に沿ったベクトル走査を行えば、
断面円形状の光ビームが連なってできる光硬化層の外周
形状が滑らかになるとともに、光ビームの中心の通過経
路とその最外周の輪郭線は正確に対応するので、光硬化
層の外周形状は極めて正確に形成される。
光ビームによるラスタ走査では、光硬化層の外周形状に
凹凸がつき外形精度が出ない。そこで、光硬化層のう
ち、外周縁領域のみは、断面円形状の光ビームを用いて
外周縁領域の輪郭形状に沿ったベクトル走査を行えば、
断面円形状の光ビームが連なってできる光硬化層の外周
形状が滑らかになるとともに、光ビームの中心の通過経
路とその最外周の輪郭線は正確に対応するので、光硬化
層の外周形状は極めて正確に形成される。
【0018】すなわち、光硬化層の面積のうち大部分を
占める内側領域については、効率の良い断面楕円形状の
光ビームによるラスタ走査を行い、光硬化層すなわち三
次元形状の外形精度や外面の仕上がりに重要な外周縁領
域については、滑らかで精度の良い断面円形状の光ビー
ムによるベクトル走査を行うことによって、従来の方法
では実現できなかった、高速かつ高精度な作業が可能に
なるのである。
占める内側領域については、効率の良い断面楕円形状の
光ビームによるラスタ走査を行い、光硬化層すなわち三
次元形状の外形精度や外面の仕上がりに重要な外周縁領
域については、滑らかで精度の良い断面円形状の光ビー
ムによるベクトル走査を行うことによって、従来の方法
では実現できなかった、高速かつ高精度な作業が可能に
なるのである。
【0019】
【実施例】ついで、この発明の実施例を、図面を参照し
ながら以下に説明する。図1は、光硬化性樹脂液を用い
た三次元形状の形成方法の基本的な方法を示している。
光硬化性樹脂液20を溜めた樹脂液漕10に、昇降自在
な成形台50が沈められている。樹脂液漕10の上方に
は、レンズ機構35などを通してレーザ光30が照射さ
れるようになっている。
ながら以下に説明する。図1は、光硬化性樹脂液を用い
た三次元形状の形成方法の基本的な方法を示している。
光硬化性樹脂液20を溜めた樹脂液漕10に、昇降自在
な成形台50が沈められている。樹脂液漕10の上方に
は、レンズ機構35などを通してレーザ光30が照射さ
れるようになっている。
【0020】成形台50を、樹脂液20の液面から少し
下に保持した状態で、液面にレーザ光30を照射すれ
ば、液面と成形台50の間に存在する薄層の光硬化性樹
脂液20が光エネルギーを吸収して光硬化する、レーザ
光30を所定の領域で走査すれば、所望形状の光硬化層
40が形成される。光硬化層40が形成されれば、成形
台50を少し沈め、光硬化層40の上に新たな光硬化性
樹脂液50を供給した後、前記同様のレーザ光30の照
射を行う。このようにして、複数層の光硬化層40が積
み重ねられて、目的とする三次元形状の成形品が得られ
る。
下に保持した状態で、液面にレーザ光30を照射すれ
ば、液面と成形台50の間に存在する薄層の光硬化性樹
脂液20が光エネルギーを吸収して光硬化する、レーザ
光30を所定の領域で走査すれば、所望形状の光硬化層
40が形成される。光硬化層40が形成されれば、成形
台50を少し沈め、光硬化層40の上に新たな光硬化性
樹脂液50を供給した後、前記同様のレーザ光30の照
射を行う。このようにして、複数層の光硬化層40が積
み重ねられて、目的とする三次元形状の成形品が得られ
る。
【0021】図2は、光硬化層40を形成する際のレー
ザ光30の走査方法を表している。まず、図2の(I) で
は、レーザ光30の断面形状を楕円形31にするととも
に、光硬化層40を形成しようとする領域の輪郭Sの少
し内側を、断面楕円形状の光ビーム31の短軸方向を主
走査方向として、直線的に走査する。そうすると、図2
の(II)に示すように、断面楕円形状の光ビーム31の長
径を幅とする帯状の光硬化部分41が形成される。1本
の帯状光硬化部分41が形成されると、(I)に示すよう
に、その下で、同じように光ビーム31を直線的に走査
する。このようにして、主走査方向への直線的な走査
と、これと直交する副走査方向への段階的な移動とを交
互に繰り返す、いわゆるラスタ走査を行うことによっ
て、(II)に示すように、複数本の帯状光硬化部分41が
並んで形成される。図では、説明を分かり易くするため
に、帯状光硬化部分41の間に隙間を空けて示している
が、実際には、帯状光硬化部分41が互いに一体化され
た、面状の光硬化部分を形成すればよい。この段階で
は、隣合う帯状光硬化部分41の間には段差があり、外
周形状には凹凸がある。
ザ光30の走査方法を表している。まず、図2の(I) で
は、レーザ光30の断面形状を楕円形31にするととも
に、光硬化層40を形成しようとする領域の輪郭Sの少
し内側を、断面楕円形状の光ビーム31の短軸方向を主
走査方向として、直線的に走査する。そうすると、図2
の(II)に示すように、断面楕円形状の光ビーム31の長
径を幅とする帯状の光硬化部分41が形成される。1本
の帯状光硬化部分41が形成されると、(I)に示すよう
に、その下で、同じように光ビーム31を直線的に走査
する。このようにして、主走査方向への直線的な走査
と、これと直交する副走査方向への段階的な移動とを交
互に繰り返す、いわゆるラスタ走査を行うことによっ
て、(II)に示すように、複数本の帯状光硬化部分41が
並んで形成される。図では、説明を分かり易くするため
に、帯状光硬化部分41の間に隙間を空けて示している
が、実際には、帯状光硬化部分41が互いに一体化され
た、面状の光硬化部分を形成すればよい。この段階で
は、隣合う帯状光硬化部分41の間には段差があり、外
周形状には凹凸がある。
【0022】つぎに、(II)に示すように、断面形状が円
形の光ビーム32を用い、前記帯状光硬化部分41の外
周と、光硬化層40の輪郭形状Sとの間を埋めるよう
に、光ビーム32を走査しながら照射する。これによっ
て、輪郭形状Sの全体が光硬化して、所定形状の光硬化
層40が形成される。このような操作を、繰り返して複
数層の光硬化層40を積み重ね形成し、所望の三次元形
状を得る。
形の光ビーム32を用い、前記帯状光硬化部分41の外
周と、光硬化層40の輪郭形状Sとの間を埋めるよう
に、光ビーム32を走査しながら照射する。これによっ
て、輪郭形状Sの全体が光硬化して、所定形状の光硬化
層40が形成される。このような操作を、繰り返して複
数層の光硬化層40を積み重ね形成し、所望の三次元形
状を得る。
【0023】図3は、光ビーム30の断面形状による硬
化状態の違いを示している。図の下方に表されているよ
うに、(I) に示す断面楕円形状の光ビーム31を照射し
たときに形成される硬化断面40aの深さD1 は、(II)
に示す断面円形状の光ビーム32を照射したときに形成
される硬化断面40bの深さD2 に比べて、はるかに深
くなっている。したがって、レーザ発振器などの光源の
出力が同じであれば、断面楕円形状の光ビーム31のほ
うが、断面円形状の光ビーム32よりも硬化深さを深く
できることがわかる。したがって、1層の光硬化層40
において、断面楕円形状の光ビーム31と断面円形状の
光ビーム32の硬化深さを同じにするには、光源の出力
を調整するのが好ましい。
化状態の違いを示している。図の下方に表されているよ
うに、(I) に示す断面楕円形状の光ビーム31を照射し
たときに形成される硬化断面40aの深さD1 は、(II)
に示す断面円形状の光ビーム32を照射したときに形成
される硬化断面40bの深さD2 に比べて、はるかに深
くなっている。したがって、レーザ発振器などの光源の
出力が同じであれば、断面楕円形状の光ビーム31のほ
うが、断面円形状の光ビーム32よりも硬化深さを深く
できることがわかる。したがって、1層の光硬化層40
において、断面楕円形状の光ビーム31と断面円形状の
光ビーム32の硬化深さを同じにするには、光源の出力
を調整するのが好ましい。
【0024】図4は、断面楕円形状の光ビーム31と断
面円形状光ビーム32の硬化深さの違いを利用して、作
業能率を向上させる方法を示している。例えば、断面楕
円形状の光ビーム31の硬化深さD1を、断面円形状の
光ビーム32の硬化深さD2の2倍に設定しておく。そ
して、光硬化層40の外周縁領域への断面円形状の光ビ
ーム32の照射を、2層分積み重ねて形成した後、2層
分の光硬化部分40bの内側領域に、断面楕円形状の光
ビーム31によるラスタ走査を1回行えば、2層分すな
わち深さD1の硬化作業が完了することになる。図5に
示すように、断面円形状の光ビーム32(硬化深さ
D2)のみを用いる従来の方法に比べて、内側領域の硬
化工程を1回省略できることになる。光硬化層40の大
部分を占める内側領域の硬化工程を短縮化できれば、作
業時間全体の短縮および能率化に大きな効果を発揮でき
る。
面円形状光ビーム32の硬化深さの違いを利用して、作
業能率を向上させる方法を示している。例えば、断面楕
円形状の光ビーム31の硬化深さD1を、断面円形状の
光ビーム32の硬化深さD2の2倍に設定しておく。そ
して、光硬化層40の外周縁領域への断面円形状の光ビ
ーム32の照射を、2層分積み重ねて形成した後、2層
分の光硬化部分40bの内側領域に、断面楕円形状の光
ビーム31によるラスタ走査を1回行えば、2層分すな
わち深さD1の硬化作業が完了することになる。図5に
示すように、断面円形状の光ビーム32(硬化深さ
D2)のみを用いる従来の方法に比べて、内側領域の硬
化工程を1回省略できることになる。光硬化層40の大
部分を占める内側領域の硬化工程を短縮化できれば、作
業時間全体の短縮および能率化に大きな効果を発揮でき
る。
【0025】つぎに、図6は、レーザ発振器などの光源
から照射される光ビーム30から、断面楕円形状の光ビ
ーム31または断面円形状の光ビーム32を簡単に取り
出すことのできる光ビーム変更機構の構造を示してい
る。光ビーム30の通過経路に、一対のレンズ36、3
7を配置している。レンズ36、37は、1面が平坦f
であるととに、その対向面は断面円弧状に突出した円弧
凸面gとなっており、いわゆるカマボコ型のレンズとな
っている。そして、いずれか一方、もしくは両方のレン
ズ36、37が、光ビーム30と直交する面内で回転自
在であるとともに、光ビーム30の光軸方向に移動自在
で、互いの間隔を変更できるように取り付けられてい
る。
から照射される光ビーム30から、断面楕円形状の光ビ
ーム31または断面円形状の光ビーム32を簡単に取り
出すことのできる光ビーム変更機構の構造を示してい
る。光ビーム30の通過経路に、一対のレンズ36、3
7を配置している。レンズ36、37は、1面が平坦f
であるととに、その対向面は断面円弧状に突出した円弧
凸面gとなっており、いわゆるカマボコ型のレンズとな
っている。そして、いずれか一方、もしくは両方のレン
ズ36、37が、光ビーム30と直交する面内で回転自
在であるとともに、光ビーム30の光軸方向に移動自在
で、互いの間隔を変更できるように取り付けられてい
る。
【0026】このようなレンズ系に光ビーム30を通過
させれば、まず、図6のように、レンズ36と37の円
弧凸面gの軸方向が直交している状態では、図7の(a)
に示すように、通常の断面円形状の光ビーム32が得ら
れる。そして、レンズ36、37の間隔を調整すること
によって、ビーム径が拡大縮小できる。つぎに、レンズ
36と37の円弧凸面gの軸方向が互いに平行で、いず
れも垂直方向を向いていれば、図7の(b) に示すよう
に、長軸が垂直方向を向いた断面楕円形状の光ビーム3
1が得られる。レンズ36と37の円弧凸面gの軸方向
が平行で、水平あるいは斜めを向いていれば、図7の
(c)(d)に示すように、長軸がそれぞれの方向を向いた断
面楕円形状の光ビーム31が得られる。さらに、図示し
ないが、レンズ36と37の円弧凸面gの軸方向を平行
状態と直交状態の間で一定の角度交差した状態にすれ
ば、断面楕円形状の長軸と短軸の比率を任意に調整する
ことができる。
させれば、まず、図6のように、レンズ36と37の円
弧凸面gの軸方向が直交している状態では、図7の(a)
に示すように、通常の断面円形状の光ビーム32が得ら
れる。そして、レンズ36、37の間隔を調整すること
によって、ビーム径が拡大縮小できる。つぎに、レンズ
36と37の円弧凸面gの軸方向が互いに平行で、いず
れも垂直方向を向いていれば、図7の(b) に示すよう
に、長軸が垂直方向を向いた断面楕円形状の光ビーム3
1が得られる。レンズ36と37の円弧凸面gの軸方向
が平行で、水平あるいは斜めを向いていれば、図7の
(c)(d)に示すように、長軸がそれぞれの方向を向いた断
面楕円形状の光ビーム31が得られる。さらに、図示し
ないが、レンズ36と37の円弧凸面gの軸方向を平行
状態と直交状態の間で一定の角度交差した状態にすれ
ば、断面楕円形状の長軸と短軸の比率を任意に調整する
ことができる。
【0027】上記のような光ビーム変更機構を用いれ
ば、非常に簡単な構造で、様々な断面形状の光ビーム3
0が簡単に得られる。
ば、非常に簡単な構造で、様々な断面形状の光ビーム3
0が簡単に得られる。
【0028】
【発明の効果】以上に述べた、この発明にかかる三次元
形状の形成方法によれば、光硬化層のうち、内側領域は
断面楕円形状の光ビームによる直線的な走査の繰り返
し、すなわちラスタ走査により、能率的に硬化作業を行
うことができるとともに、外周縁領域は、断面円形状の
光ビームによる輪郭形状に沿ったベクトル走査により、
外形が滑らかで外形精度の高い光硬化層を形成すること
ができる。その結果、高速で能率的に作業が行えると同
時に、得られた三次元形状は高精度で仕上がり良好なも
のとなる。しかも、前記のように、光ビームの形状と走
査方法の組み合わせを選択するだけで、使用する装置の
基本的な構造や個々の作業工程は、通常の三次元形状の
形成方法と同じでよいので、作業は容易で設備コストも
掛からず、極めて簡単かつ経済的である。
形状の形成方法によれば、光硬化層のうち、内側領域は
断面楕円形状の光ビームによる直線的な走査の繰り返
し、すなわちラスタ走査により、能率的に硬化作業を行
うことができるとともに、外周縁領域は、断面円形状の
光ビームによる輪郭形状に沿ったベクトル走査により、
外形が滑らかで外形精度の高い光硬化層を形成すること
ができる。その結果、高速で能率的に作業が行えると同
時に、得られた三次元形状は高精度で仕上がり良好なも
のとなる。しかも、前記のように、光ビームの形状と走
査方法の組み合わせを選択するだけで、使用する装置の
基本的な構造や個々の作業工程は、通常の三次元形状の
形成方法と同じでよいので、作業は容易で設備コストも
掛からず、極めて簡単かつ経済的である。
【図1】 この発明の実施例を示す概略断面図
【図2】 光ビームの走査方法を示す説明図
【図3】 光ビームによる硬化状態を示す説明図
【図4】 作業工程の1例を示す概略断面図
【図5】 従来の作業工程を示す概略断面図
【図6】 光ビーム変更機構の斜視図
【図7】 光ビーム変更機構で得られる光ビームの数例
を示すパターン図
を示すパターン図
20 光硬化性樹脂液 30 光ビーム 31 断面楕円形状の光ビーム 32 断面円形状の光ビーム 40 光硬化層 S 輪郭形状
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−239921(JP,A) 特開 昭63−145016(JP,A) (58)調査した分野(Int.Cl.6,DB名) B29C 67/00
Claims (1)
- 【請求項1】 光硬化性樹脂液の薄層に光を照射して所
定形状の光硬化層を形成し、この光硬化層を複数層積み
重ねて所望の三次元形状を形成する方法において、 光硬化層のうち外周縁を除く内側部分となる領域に光を
照射するときには、断面楕円形状の光ビームを用いて、
断面楕円形状の短軸方向が主走査方向となるように直線
的に走査し、この直線的走査を、前記主走査方向と直交
する副走査方向に段階的に移動しながら繰り返し、 光硬化層のうち外周縁となる領域に光を照射するときに
は、断面円形状の光ビームを用いて、外周縁の輪郭形状
に沿って走査することを特徴とする三次元形状の形成方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3006015A JP2919982B2 (ja) | 1991-01-22 | 1991-01-22 | 三次元形状の形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3006015A JP2919982B2 (ja) | 1991-01-22 | 1991-01-22 | 三次元形状の形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06254971A JPH06254971A (ja) | 1994-09-13 |
JP2919982B2 true JP2919982B2 (ja) | 1999-07-19 |
Family
ID=11626880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3006015A Expired - Fee Related JP2919982B2 (ja) | 1991-01-22 | 1991-01-22 | 三次元形状の形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2919982B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003016031A1 (en) * | 2001-08-16 | 2003-02-27 | Riken | Rapid prototyping method and device using v-cad data |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3412278B2 (ja) * | 1994-09-20 | 2003-06-03 | 株式会社日立製作所 | 光造形装置及び方法 |
JPH10138349A (ja) * | 1996-11-11 | 1998-05-26 | Meiko:Kk | 積層光造形法 |
US6406658B1 (en) * | 1999-02-08 | 2002-06-18 | 3D Systems, Inc. | Stereolithographic method and apparatus for production of three dimensional objects using multiple beams of different diameters |
CN103237521A (zh) * | 2010-05-12 | 2013-08-07 | 迪斯卡斯牙科有限责任公司 | 具有识别装置的牙齿光设备 |
CN103350572B (zh) * | 2013-07-18 | 2016-05-25 | 符晓友 | 3d堆叠打印方法及3d堆叠打印机 |
EP3115182A4 (en) | 2014-03-05 | 2017-03-08 | Panasonic Intellectual Property Management Co., Ltd. | Method for producing three-dimensionally shaped object |
-
1991
- 1991-01-22 JP JP3006015A patent/JP2919982B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003016031A1 (en) * | 2001-08-16 | 2003-02-27 | Riken | Rapid prototyping method and device using v-cad data |
Also Published As
Publication number | Publication date |
---|---|
JPH06254971A (ja) | 1994-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3378862B2 (ja) | 三次元物体を形成する方法および装置 | |
JPH0624773B2 (ja) | 光学的造形法 | |
KR102326904B1 (ko) | 레이저 리소그래피에 의한 3d 구조를 제조하기 위한 방법, 및 해당 컴퓨터 프로그램 제품 | |
JPH02111528A (ja) | 三次元形状の形成方法 | |
JP2919982B2 (ja) | 三次元形状の形成方法 | |
JP2002127260A (ja) | 三次元物体を形成する方法 | |
JP2000263650A (ja) | 光造形装置 | |
JPH10119136A (ja) | 選択光源を用いた光造形法および該造形法によって得られる立体造形物 | |
JPH04113828A (ja) | 大型立体樹脂モデルの製造方法及びその装置 | |
JP2671534B2 (ja) | 三次元形状の形成方法 | |
JPH08238678A (ja) | 光造形装置 | |
JPH05169551A (ja) | 立体像形成方法 | |
JPS63145016A (ja) | 立体形状形成装置 | |
EP0681906B1 (en) | Stereolithographic construction techniques | |
JPH05124115A (ja) | 光学的造形装置及び造形方法 | |
JPH0514839Y2 (ja) | ||
JP3412278B2 (ja) | 光造形装置及び方法 | |
JPH07232383A (ja) | 三次元光造形方法及びその装置 | |
JP3170832B2 (ja) | 光学的造形方法 | |
JPH09141746A (ja) | 3次元モデリング装置 | |
KR100513646B1 (ko) | 스테레오리소그래피 몰딩 방법 | |
JP2561325B2 (ja) | 三次元形状の形成方法 | |
JPH01237122A (ja) | 厚肉断面体の光学的造形法 | |
JP4079544B2 (ja) | 光造形法及びその装置 | |
JPH0224124A (ja) | 光学的造形法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |