JP2898125B2 - 復水脱塩装置におけるカチオン交換樹脂の再生方法 - Google Patents

復水脱塩装置におけるカチオン交換樹脂の再生方法

Info

Publication number
JP2898125B2
JP2898125B2 JP3174850A JP17485091A JP2898125B2 JP 2898125 B2 JP2898125 B2 JP 2898125B2 JP 3174850 A JP3174850 A JP 3174850A JP 17485091 A JP17485091 A JP 17485091A JP 2898125 B2 JP2898125 B2 JP 2898125B2
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
tower
regeneration
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3174850A
Other languages
English (en)
Other versions
JPH04371239A (ja
Inventor
克巳 奥川
喬 香川
哲之 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP3174850A priority Critical patent/JP2898125B2/ja
Publication of JPH04371239A publication Critical patent/JPH04371239A/ja
Application granted granted Critical
Publication of JP2898125B2 publication Critical patent/JP2898125B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、火力発電所あるいは原
子力発電所における復水脱塩装置に使用されているイオ
ン交換樹脂の再生方法、特にカチオン交換樹脂の再生方
法の改良に関するものである。
【0002】
【従来の技術】火力発電所や原子力発電所における復水
は、ボイラ,蒸気発生器,原子炉等の蒸気発生手段の腐
食障害防止や放射能低減の観点から高度に浄化する必要
があり、このため混床式の復水脱塩塔を備えた復水脱塩
装置や粉末イオン交換樹脂フィルタ,中空糸膜フィルタ
等の浄化装置が単独あるいは組み合わせて採用されてい
る。
【0003】このうち、上記復水脱塩装置は、通常複数
の復水脱塩塔(以下脱塩塔という)からなる通水系統
と、脱塩塔にて使用したイオン交換樹脂を再生するため
の再生系統とからなり、そして前記脱塩塔は塔内にH形
あるいはNH4形の強酸性カチオン交換樹脂と、OH形
の強塩基性アニオン交換樹脂との混合イオン交換樹脂を
充填してなるものである。
【0004】当該復水脱塩装置においては以下のように
して復水の処理を行う。すなわち、複数の脱塩塔に復水
をそれぞれ並列して通水し、復水中に含まれているNa
イオン,Feイオン,Cuイオン,Clイオン,SO4
イオン等の不純物イオンをイオン交換作用により、また
復水中に含まれている酸化鉄等の金属酸化物を主体とし
た懸濁物質(一般にクラッドと呼ぶ)を濾過作用あるい
は物理的吸着作用により除去して浄化された処理水を得
る。
【0005】このような通水を続行して、複数の脱塩塔
の中の一つが、クラッドの蓄積によって圧力損失の増加
を招いたり、あるいは定体積処理量に達した場合または
当該脱塩塔内のイオン交換樹脂が不純物イオンで飽和し
た場合等、いわゆる通水終点に達した場合には、当該脱
塩塔のみを通水系統から切り離し、脱塩塔内の使用済混
合イオン交換樹脂を再生系統内の再生塔に移送する。当
該樹脂移送終了後、既に再生済のカチオン交換樹脂及び
アニオン交換樹脂を再生系統から前記脱塩塔に移送して
混合イオン交換樹脂層を形成させ、再び復水の通水を開
始する。
【0006】一方、再生塔に移送した使用済の混合イオ
ン交換樹脂に対しては、先ず当該樹脂を水に浸漬した状
態で再生塔内にその下部より空気を吹き込んで空気によ
る撹拌(これをエアスクラビング洗浄という)を行い、
これによって樹脂表面に付着している前記金属酸化物等
を物理的に剥離する操作を実施する。
【0007】次に、再生塔の下部より洗浄水を流入(こ
れを逆洗という)して上記エアスクラビング洗浄(以
下、単にエアスクラビングという)によって剥離した金
属酸化物等の懸濁物質を塔外に排出し、その後常法によ
り逆洗,沈静して下層のカチオン交換樹脂層と上層のア
ニオン交換樹脂層とに分離する。当該分離後、カチオン
交換樹脂層には塩酸,硫酸等の酸再生剤を、アニオン交
換樹脂層には水酸化ナトリウム溶液等のアルカリ再生剤
を通薬し、それぞれ不純物イオンを脱着して両イオン交
換樹脂を再生する。
【0008】なお、この場合の再生系統には、両イオン
交換樹脂を分離して下層にカチオン交換樹脂層、上層に
アニオン交換樹脂層を形成させ、当該分離層を保持させ
たままカチオン交換樹脂層には酸再生剤を、アニオン交
換樹脂層にはアルカリ再生剤を通薬する一塔再生方式
と、両イオン交換樹脂を分離した後、上層のアニオン交
換樹脂を別の再生塔に移送して両イオン交換樹脂を別々
の塔で再生する別塔再生方式とがある。再生を終了した
両イオン交換樹脂は、次の脱塩塔が通水終点に達するま
での間、待機させておく。
【0009】このように復水の浄化に用いられている復
水脱塩装置は複数ある脱塩塔の通水時間を互いにずら
し、ほぼ一定時間毎に各脱塩塔が通水終点に達するよう
に調整しておき、ほぼ均等の通水間隔で各脱塩塔の使用
済混合イオン交換樹脂を順に前記再生系統で再生するも
のである。
【0010】上述のような復水脱塩装置に要求される処
理水の水質は、蒸気発生器,原子炉,ボイラー等の腐食
障害防止やスケール障害防止の観点から近年益々高純度
化する傾向にあり、例えばNaイオン,Clイオンにつ
いてはそれぞれ0.01μg/L(0.01ppb)以
下が目標とされている。そして、復水脱塩装置において
はこのような高純度の処理水を得るために従来より種々
の改善がなされており、その結果、現在は上記目標を充
分に達成することができる段階にある。
【0011】
【発明が解決しようとする問題点】しかしながら、Na
イオンやCl- イオン等の無機イオンの除去に関しては
目標を充分に達成することのできる復水脱塩装置にも、
以下のような問題点がある。すなわち、使用済のイオン
交換樹脂を脱塩塔から再生系統に移送するとともに既に
再生済のイオン交換樹脂を再生系統から上記脱塩塔に移
送し、再び復水の通水を開始した際に、特にその通水初
期において処理水中に極く微量の有機物が漏出するとい
う問題である。
【0012】最近の研究によれば、当該有機物の中には
スチレンスルホン酸のオリゴマーや比較的低分子のポリ
マーが含まれていることがわかっており、そしてこれら
は復水脱塩装置に通常使用されている、スチレンとジビ
ニルベンゼンとの共重合体をスルホン化した強酸性カチ
オン交換樹脂から溶出するものであることが判明してい
る。
【0013】復水脱塩装置の処理水は前述のごとく蒸気
発生器,原子炉,ボイラー等の蒸気発生手段へ供給され
るが、当該処理水中に上述のようなスチレンスルホン酸
のオリゴマーや低分子ポリマーが含まれている場合は、
蒸気発生手段の内部で高温,高圧下に分解されて結果的
にSO4 イオン等が生成され、これが蒸気発生手段等に
腐食等の悪影響をもたらすことになる。
【0014】本発明者等は上述のようなカチオン交換樹
脂からの有機物の溶出原因について種々検討を重ねた結
果、以下のような推定をなすに至った。すなわち、復水
脱塩装置においては、脱塩塔から再生塔へ移送された混
合イオン交換樹脂を比重差によってカチオン交換樹脂と
アニオン交換樹脂とに分離する前に、各樹脂の表面に付
着している酸化鉄等の金属酸化物を剥離するために空気
吹き込みによるエアスクラビングを実施する。
【0015】一方、再生塔へ移送された使用済のカチオ
ン交換樹脂はNaイオン以外にも復水中に含まれている
FeイオンやCuイオンを比較的多量に吸着している。
これらのFeイオンやCuイオンは衆知のごとく優れた
酸化触媒であり、これらの重金属イオンが比較的多量に
吸着されたカチオン交換樹脂は、当該重金属イオンの触
媒作用により、水中の溶存酸素や空気中の酸素との接触
によって極く僅かではあるが酸化分解を受ける。その結
果として、カチオン交換樹脂の母体構造の一部であるス
チレンスルホン酸のオリゴマーや低分子ポリマーからな
る分解物が生成され、これらの分解物が再生後の通水工
程において、特にその初期に漏出するのであろうと推定
したのである。
【0016】したがって、FeイオンやCuイオンが比
較的多量に吸着されているカチオン交換樹脂に対して、
上述のようなエアスクラビングを実施するのは、まさに
カチオン交換樹脂の酸化分解を促進させるようなもので
あり、分解生成物の溶出の点でも、またカチオン交換樹
脂の劣化の点でも好ましくない。
【0017】なお、従来は上述した有機物の漏出を極力
低減するために、再生系統において再生後のカチオン交
換樹脂の洗浄を充分に行い、しかる後に脱塩塔に移送し
て復水の通水を開始するというような方法も実施されて
いたが、当該洗浄には多量の洗浄用純水が必要であると
ともに、長時間を要するという問題点があった。
【0018】本発明は上述のような推定のもとになされ
たものであり、再生系統における前述のようなカチオン
交換樹脂の酸化分解を防止し得る復水脱塩装置における
カチオン交換樹脂の再生方法を提供することを目的とす
るものである。
【0019】上記目的を達成するためになされた本発明
の再生方法は、復水脱塩塔にて使用されたカチオン交換
樹脂を再生するにあたり、酸再生剤の通薬前にエアスク
ラビングせず、酸再生剤の通薬後にエアスクラビング洗
浄を施すことを特徴とするカチオン交換樹脂の再生
方法である。
【0020】
【作用】以下に本発明の再生方法を詳細に説明する。復
水の通水を行って通水終点に達した脱塩塔内の使用済混
合イオン交換樹脂を、再生系統内の再生塔に移送する。
【0021】従来は、前述したごとく当該樹脂移送後直
ちに再生塔内に空気を吹き込み、エアスクラビングを実
施していたので、当該空気中の酸素によってカチオン交
換樹脂の酸化分解が促進されるという問題があったが、
本発明においてはこのような酸化分解を防止するために
この段階でのエアスクラビングをなくし、先ず再生塔の
下部より水(純水)を上昇流で流入させて混合イオン交
換樹脂を水流によってアニオン交換樹脂とカチオン交換
樹脂とに分離する操作を行う。
【0022】その後水の流入を停止して両イオン交換樹
脂を沈静させ、上層にアニオン交換樹脂層を、下層にカ
チオン交換樹脂層をそれぞれ形成させる。なお、上述の
分離操作の間に、混合イオン交換樹脂層中に滞積してい
た、あるいは樹脂表面に付着していた金属酸化物等の懸
濁物質が一部塔外に排出される。
【0023】次いで、両イオン交換樹脂に再生剤を通薬
する工程に移行する。ここで、復水脱塩装置の再生系統
には前述したごとく一塔再生方式と別塔再生方式がある
が、先ず再生塔内にカチオン交換樹脂層とアニオン交換
樹脂層との分離層を保ったままそれぞれの再生剤を通薬
する一塔再生方式の場合は、最初に下層のカチオン交換
樹脂層に塩酸や硫酸等の酸再生剤を通薬し、当該カチオ
ン交換樹脂に吸着されているNaイオンやFeイオン,
Cuイオン等の重金属イオンを脱着させて当該カチオン
交換樹脂を再生する。
【0024】なお、上記使用済のカチオン交換樹脂に
は、NaイオンやFeイオン等の重金属イオンととも
に、微粒子状の酸化鉄を主体とする金属酸化物が物理的
に吸着もしくは付着しているが、上記酸再生剤の通薬に
よりこれらの金属酸化物も大部分溶解し、除去される。
酸再生剤通薬後、引続き純水による押し出し工程および
洗浄工程を常法通り実施し、カチオン交換樹脂の再生工
程を終了する。
【0025】上述のようなカチオン交換樹脂の再生が終
了した後、今度はアニオン交換樹脂の再生を行うが、当
該アニオン交換樹脂の表面には前記カチオン交換樹脂の
場合と同様に金属酸化物等が付着しているので、再生を
行う前に再生塔内に空気を吹き込んでエアスクラビング
洗浄を行うとよい。
【0026】当該エアスクラビング洗浄によりアニオン
交換樹脂の表面に付着していた金属酸化物が剥離される
とともに、カチオン交換樹脂も同時にエアスクラビング
を受けるため、酸再生剤の通薬によって溶解しきれなか
った金属酸化物がカチオン交換樹脂の表面に残留してい
る場合には、この金属酸化物をも剥離することができ
る。なお、当該スクラビング洗浄は、カチオン交換樹脂
に吸着されていたFeイオンやCuイオンをほぼ完全に
脱着した後の段階で行うものであるから、前述したよう
なカチオン交換樹脂の酸化分解はほとんど起こらない。
また、アニオン交換樹脂の場合は、もともとFeイオン
やCuイオンが吸着されていないのでエアスクラビング
を実施しても酸化分解の心配はほとんどない。
【0027】上述のようなエアスクラビング洗浄を行っ
た後、再生塔下部より純水を上昇流で流入させ、エアス
クラビング洗浄によって剥離した金属酸化物を塔外に排
出する。その後、前述した分離操作を行ってカチオン交
換樹脂とアニオン交換樹脂とに再び分離し、しかる後に
アニオン交換樹脂層にアルカリ再生剤を通薬し、アニオ
ン交換樹脂を常法によって再生する。再生済の両イオン
交換樹脂は樹脂貯槽等に移送して貯留し、次の脱塩塔が
通水終点に達するまで待機させておく。
【0028】次に、両イオン交換樹脂を別々の塔で再生
する別塔再生方式の場合は、前述した両イオン交換樹脂
の分離操作を終了した後、上層のアニオン交換樹脂を別
の再生塔に移送し、カチオン交換樹脂が残留している再
生塔には酸再生剤を直ちに通薬してカチオン交換樹脂の
再生を行う。一方、移送したアニオン交換樹脂に対して
は、先ずエアスクラビング洗浄、次いで水洗浄を実施し
て当該アニオン交換樹脂の表面に付着している金属酸化
物を剥離,除去し、その後アルカリ再生剤を通薬して再
生を行う。
【0029】なお、前記カチオン交換樹脂の再生におい
て、酸再生剤の通薬によるカチオン交換樹脂表面に付着
している金属酸化物の溶解,除去が不充分であった場合
は、当該酸再生剤通薬後にエアスクラビングを実施して
残留金属酸化物を除去するとよく、この場合は前述の場
合と同じく、カチオン交換樹脂に吸着されていたFeイ
オン,Cuイオン等を脱着した後であるからカチオン交
換樹脂の酸化分解はほとんど促進されない。
【0030】本発明における酸再生剤としては、復水脱
塩装置のカチオン交換樹脂の再生に通常使用されている
塩酸あるいは硫酸等の酸を使用することができるが、カ
チオン交換樹脂に物理的に吸着されている酸化鉄等の金
属酸化物を溶解させる能力に優れている点で特に塩酸を
使用するのが好ましい。塩酸を使用する場合は、酸再生
剤通薬後のエアスクラビングは多くの場合不要となる。
【0031】これに対して、酸再生剤として例えば硫酸
を使用する場合は、塩酸に比べて金属酸化物の溶解能力
がやや劣るため、当該金属酸化物の溶解,除去が十分に
なされないケースもままある。したがって、このような
場合は酸再生剤を通薬後、カチオン交換樹脂にエアスク
ラビング洗浄を実施して残留金属酸化物を物理的に除去
することが必要となる。
【0032】
【実施例】以下に本発明の実施例を説明する。
【0033】(参考例)(カチオン交換樹脂のスクラビ
ング試験) スチレンとジビニルベンゼンとの共重合物をスルホン化
してなる強酸性カチオン交換樹脂アンバーライト(登録
商標、以下同じ)200CPをカラムに充填し、当該カ
ラムに市販の硫酸第一鉄および硫酸銅の各試薬を溶解し
た合成水を通水してFe2+イオン約600mg/L−
R、Cu2+イオン約300mg/L−Rの割合で吸着し
てなるカチオン交換樹脂(これを金属イオン吸着樹脂と
する)を調整した。
【0034】別に、内部に300mLの純水を入れたガ
ラス容器2個を用意し、それぞれの容器に前記金属イオ
ン吸着樹脂100mLと、市販のFe2 3 粉末を濃度
1,000mg/Lとなるように投入し、これらの容器
を50℃の恒温震盪器の中に入れ、常時撹拌を行いなが
ら一方の容器の水中に空気を、もう一方の容器の水中に
2 ガスをそれぞれ10mL/secの流量で連続的に
吹き込んだ。
【0035】上述のような実験において、一定時間毎に
各容器内の水を採取してそのT.O.C濃度を測定し、
カチオン交換樹脂からの有機物の溶出状況を見た。ま
た、上記と同様の実験をFe2+およびCu2+が吸着され
ていないアンバーライト200CP(これを金属イオン
未吸着樹脂という)についても行った。
【0036】経過時間(hr)と容器内の水のT.O.
C濃度(mgC/L)との関係を図1に示す。なお、図
1においてRUN1〜RUN4はそれぞれ表1に示した
ような実験条件に対応するものである。
【0037】
【表1】 実験条件 ────────────────────────── RUN1 金属イオン吸着樹脂に空気吹き込み RUN2 〃 N2 吹き込み RUN3 金属イオン未吸着樹脂に空気吹き込み RUN4 〃 N2 吹き込み ──────────────────────────
【0038】上記実験において、RUN2およびRUN
4はカチオン交換樹脂を、実質的に酸素が含まれていな
いN2 ガスを用いてスクラビングした場合に相当し、こ
の場合、カチオン交換樹脂の酸化分解は起こらない。し
たがって、RUN2およびRUN4において検出された
T.O.Cは、カチオン交換樹脂中に最初から存在した
有機物の漏出によるものであり、RUN2とRUN4で
多少の違いはあるがこれらはいわゆるブランク値とみな
して良い。
【0039】これに対して、金属イオン吸着樹脂に空気
を吹き込んだRUN1の場合は上記ブランクに比べては
るかに高いT.O.C濃度を示しており、よってこの場
合は空気吹き込みによってカチオン交換樹脂の酸化分解
が促進され、分解生成物としての有機物が水中に溶出し
たと考えられる。
【0040】なお、金属イオン未吸着樹脂とFe2 3
粉末とを投入した容器に空気を吹き込んだRUN3の場
合は、空気を吹き込んだにもかかわらずブランクである
RUN2あるいはRUN4とほぼ同程度のT.O.C濃
度を示しており、したがって懸濁状の金属酸化物(Fe
2 3 粉末)はカチオン交換樹脂の酸化反応をほとんど
促進しないことがわかる。以上の結果から、カチオン交
換樹脂の酸化反応を促進する要因は、当該カチオン交換
樹脂に吸着されているFeイオンやCuイオン等の金属
イオンであることがわかる。
【0041】(実施例)別塔再生方式の復水脱塩装置に
おいて、本発明の再生方法を実際に適用し、従来法との
比較を行った。なお、使用したカチオン交換樹脂はアン
バーライト200CP、アニオン交換樹脂はアンバーラ
イトIRA900CPである。
【0042】本発明の再生方法は図2に示したような手
順で行った。先ず、通水終点に達した脱塩塔から、使用
済の混合イオン交換樹脂を再生塔(これをK再生塔とす
る)に移送し、その後エアスクラビングを実施すること
なく直ちに水流によってアニオン交換樹脂(上層)とカ
チオン交換樹脂(下層)とに分離した。次いで、上層の
アニオン交換樹脂を別の再生塔(これをA再生塔とす
る)に移送した。
【0043】K再生塔に残されたカチオン交換樹脂に対
しては、5%塩酸(HCL)溶液を規定量通薬し、次い
で純水を用いて洗浄を行い、当該カチオン交換樹脂を再
生した。洗浄終了後、K再生塔内に空気を吹き込んでカ
チオン交換樹脂のエアスクラビング洗浄を行い、次に純
水を流入して逆洗洗浄を行った。なお、このようなエア
スクラビングと逆洗洗浄とを計5回繰り返した。
【0044】一方、A再生塔に移送したアニオン交換樹
脂に対しては、先ず上述のようなエアスクラビングと逆
洗洗浄とを計5回行ってアニオン交換樹脂の表面に付着
している金属酸化物等の懸濁物質を剥離,除去し、しか
る後に4%水酸化ナトリウム(NaOH)溶液を規定量
通薬し、更に純水による洗浄を行ってアニオン交換樹脂
を再生した。
【0045】次いで、当該再生済アニオン交換樹脂をK
再生塔に移送し、更に当該K再生塔内にて、K再生塔に
もともと収容されている再生済のカチオン交換樹脂と、
移送された再生済のアニオン交換樹脂とを充分に混合し
た。混合終了後、純水を用いて混合イオン交換樹脂の最
終的な洗浄を行い、しかる後当該混合イオン交換樹脂を
K再生塔から前記脱塩塔へ移送して復水の通水を開始し
た。
【0046】通水開始後、3時間経過した時点で当該脱
塩塔の処理水をサンプリングし、このサンプルの導電率
およびT.O.C濃度を測定するとともに、当該サンプ
ルに紫外線を照射することによってサンプル中に含まれ
ている有機物を分解し、分解液中のSO4 イオン濃度を
測定した。測定結果を表2に示す。
【0047】次に、前述した本発明方法により再生した
カチオン交換樹脂が充填されている前記脱塩塔に、規定
量の復水を通水して通水終点に達せしめた後、当該脱塩
塔内の使用済混合イオン交換樹脂を再びK再生塔に移送
した。K再生塔に移送した混合イオン交換樹脂に対し
て、今度は最初にエアスクラビング洗浄を行う従来法に
よる再生を実施した。なお、エアスクラビング−逆洗洗
浄からなる一連の操作を計5回繰り返した。また、使用
した酸およびアルカリ再生剤の種類,濃度,量等は前記
本発明方法の場合と同じとした。
【0048】再生終了後、カチオン交換樹脂とアニオン
交換樹脂を充分に混合し、純水で最終的に洗浄した後、
混合イオン交換樹脂を前記脱塩塔に移送して復水の通水
を開始した。通水開始後、3時間経過した時点で脱塩塔
の処理水をサンプリングし、このサンプルについて導電
率,T.O.C濃度および紫外線分解後のSO4 イオン
濃度を測定した。測定結果を前記本発明の結果と対比し
て表2に示す。
【0048】
【表2】 測定結果 ───────────────────────────────── 項 目 本発明方法 従来法 ───────────────────────────────── 導電率(μs/cm) 0.058 0.058 T.O.C(ppb) 14 22 SO4 イオン(ppb) 0.8 1.5 (紫外線分解後) ──────────────────────────────────
【0050】表2から明らかなように、本発明方法の場
合は、T.O,C濃度および紫外線分解後のSO4 イオ
ン濃度とともに従来法の場合の1/1.5〜1/2に低
減しており、本発明方法がカチオン交換樹脂の酸化分解
防止および有機性溶出物の低減に極めて効果的であるこ
とがわかる。
【0051】
【効果】以上説明したごとく、本発明によれば復水脱塩
装置に使用されているカチオン交換樹脂のエアスクラビ
ング時における酸化分解を防止することができ、したが
ってカチオン交換樹脂の劣化防止,長寿命化を図ること
ができるとともに、火力発電所におけるボイラー、沸騰
水型(BWR型)原子力発電所における原子炉、更には
加圧水型(PWR型)原子力発電所における蒸気発生器
(SG)等の高温高圧系を構成する部材にとって有害な
SO4 イオン等の発生源となるカチオン交換樹脂からの
酸化分解生成物の溶出、更には通水時における脱塩塔か
らの当該酸化分解生成物の漏出を従来より著しく低減す
ることができる。
【0052】また、カチオン交換樹脂の酸化による劣化
が進行した場合は、分子量100,000以上の比較的
高分子量の分解生成物がカチオン交換樹脂から溶出する
こともあるが、このような高分子量の溶出物が脱塩装置
に使用されているアニオン交換樹脂に吸着されるとこれ
を脱着することが極めて困難であり、かつ吸着量があま
り多くなるとアニオン交換樹脂のイオン交換能力の低下
を引き起こす。その結果、CLイオン,SO4 イオン等
の不純物イオンの除去性能が低下し、前述したような厳
しい水質要求を満足させることができなくなるといった
不具合を生じることがあるが、カチオン交換樹脂の酸化
分解を防止できる本発明方法によれば、このような不具
合を確実に防止することができるという効果もある。
【0053】なお、前述した参考例からわかるように、
従来法における空気によるスクラビングを、N2ス等
の不活性ガスを用いたスクラビングに置き換えることに
よってもカチオン交換樹脂の酸化分解を防止することが
できるが、このような方法は不活性ガスの費用や当該ガ
スを回収する場合の設備等を考えると好ましい方法とは
言い難い。
【図面の簡単な説明】
【図1】参考例におけるカチオン交換樹脂からのT.
O.C(有機物)の溶出状況を示したグラフである。
【図2】実施例における再生方法の手順を示したブロッ
ク図である。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−183950(JP,A) 特開 昭58−216743(JP,A) 特開 昭59−12763(JP,A) 特開 昭60−58241(JP,A) 特開 昭63−88050(JP,A) 特開 昭55−149652(JP,A) 特開 昭59−26143(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 49/00 C02F 1/42

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 復水脱塩塔にて使用されたカチオン交換
    樹脂を再生するにあたり、酸再生剤の通薬前にエアスク
    ラビングせず、酸再生剤の通薬後にエアスクラビング洗
    浄を施すことを特徴とする復水脱塩装置におけるカ
    チオン交換樹脂の再生方法。
  2. 【請求項2】 使用する酸が塩酸である請求項1に記載
    の復水脱塩装置におけるカチオン交換樹脂の再生方法。
JP3174850A 1991-06-20 1991-06-20 復水脱塩装置におけるカチオン交換樹脂の再生方法 Expired - Lifetime JP2898125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174850A JP2898125B2 (ja) 1991-06-20 1991-06-20 復水脱塩装置におけるカチオン交換樹脂の再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174850A JP2898125B2 (ja) 1991-06-20 1991-06-20 復水脱塩装置におけるカチオン交換樹脂の再生方法

Publications (2)

Publication Number Publication Date
JPH04371239A JPH04371239A (ja) 1992-12-24
JP2898125B2 true JP2898125B2 (ja) 1999-05-31

Family

ID=15985746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174850A Expired - Lifetime JP2898125B2 (ja) 1991-06-20 1991-06-20 復水脱塩装置におけるカチオン交換樹脂の再生方法

Country Status (1)

Country Link
JP (1) JP2898125B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776131A (zh) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 一种燃煤发电厂凝结水精处理系统再生废水零排放系统及工艺

Also Published As

Publication number Publication date
JPH04371239A (ja) 1992-12-24

Similar Documents

Publication Publication Date Title
JPH05212382A (ja) 廃液流からの重金属イオン除去方法
JP2001215294A (ja) 復水脱塩装置
JPH0125818B2 (ja)
JPH11352283A (ja) 復水処理方法及び復水脱塩装置
JP2898125B2 (ja) 復水脱塩装置におけるカチオン交換樹脂の再生方法
JP2003230840A (ja) イオン交換体の回生方法及び陰イオン交換体の回生剤
JP2002361245A (ja) 復水脱塩装置内のイオン交換樹脂の再生方法および装置
JPH07232915A (ja) 廃水中のフッ素回収方法
JP2891790B2 (ja) アニオン交換樹脂の再生方法
JPH09262486A (ja) 復水脱塩装置内のイオン交換樹脂の再生方法
JP3963101B2 (ja) バナジウム含有水のイオン交換方法および装置
JPH11216372A (ja) 陽イオン交換樹脂の酸化剤による酸化劣化の防止処理方法
JP3472658B2 (ja) アニオン交換樹脂の回生方法
JP3709645B2 (ja) 復水脱塩装置の再生方法
JP3638624B2 (ja) 混床式ショ糖液精製装置の再生法
JP3598798B2 (ja) 混床式脱塩装置の再生方法
JP2941121B2 (ja) 超純水製造装置
JP3570066B2 (ja) イオン交換装置
JPS61283355A (ja) 強酸性陽イオン交換樹脂からの不純物の遊離を防止する方法
JPH11221561A (ja) 純水装置
JP3963599B2 (ja) 酸成分除去方法
JP2002159867A (ja) アニオン交換樹脂の再生方法
JPH0839059A (ja) 有機アルカリを含む半導体洗浄排水の回収方法
JPS621307B2 (ja)
US3505247A (en) Selective stratification systems of regenerating anion exchange resins

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13