JP2894772B2 - X-ray window manufacturing method - Google Patents

X-ray window manufacturing method

Info

Publication number
JP2894772B2
JP2894772B2 JP2033340A JP3334090A JP2894772B2 JP 2894772 B2 JP2894772 B2 JP 2894772B2 JP 2033340 A JP2033340 A JP 2033340A JP 3334090 A JP3334090 A JP 3334090A JP 2894772 B2 JP2894772 B2 JP 2894772B2
Authority
JP
Japan
Prior art keywords
ray
film
thin film
ray window
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2033340A
Other languages
Japanese (ja)
Other versions
JPH03237400A (en
Inventor
巌 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2033340A priority Critical patent/JP2894772B2/en
Publication of JPH03237400A publication Critical patent/JPH03237400A/en
Application granted granted Critical
Publication of JP2894772B2 publication Critical patent/JP2894772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、X線窓の製造方法に係り、特にX線転写装
置のX線取りだし窓の製造に関する。
Description: Object of the Invention (Industrial application field) The present invention relates to a method for manufacturing an X-ray window, and more particularly to a method for manufacturing an X-ray extraction window of an X-ray transfer apparatus.

(従来の技術) 近年、半導体集積回路の高密度化および高集積化への
要求が高まるにつれて、回路パターンの微細加工技術の
なかでも、感光剤にパターンを形成するリソグラフィ技
術の研究開発が急速な進展を見せている。
(Prior Art) In recent years, as the demand for higher density and higher integration of semiconductor integrated circuits has increased, research and development of a lithography technique for forming a pattern on a photosensitive agent has been rapid among fine processing techniques for circuit patterns. Showing progress.

現在、量産ラインでは光を露光媒体とするフォトリソ
グラフィ技術が主流であるが、解像力の限界に近づきつ
つあり、このフォトリソグラフィ技術に代わるものとし
て、原理的に解像力が飛躍的に向上するX線リソグラフ
ィ技術の研究開発が急速な進展をみせている。
At present, photolithography technology using light as the exposure medium is the mainstream in mass production lines, but the resolution is approaching its limit, and as an alternative to this photolithography technology, X-ray lithography in which the resolution is dramatically improved in principle Technology research and development is making rapid progress.

X線リソグラフィでは、光を用いた露光方法とは異な
り所定のパターンを縮小させて転写するような技術は現
在のところない。このため、X線露光では、所定のパタ
ーンの形成されたX線露光用マスクと試料とを10μmオ
ーダーの間隔で平行に保持し、このX線マスクを通して
X線を照射することにより露光対象物表面に転写パター
ンを形成する1:1転写方式が採用されている。
In the X-ray lithography, unlike the exposure method using light, there is currently no technique for transferring a predetermined pattern by reducing it. For this reason, in the X-ray exposure, an X-ray exposure mask on which a predetermined pattern is formed and a sample are held in parallel at an interval of about 10 μm, and X-rays are irradiated through the X-ray mask to thereby expose the surface of the exposure target. A 1: 1 transfer method for forming a transfer pattern is adopted.

この等倍転写方式では、X線マスクのパターンの転写
精度がそのままデバイス精度になるため、均一な照明を
行うことが不可欠である。
In this 1: 1 transfer method, since the transfer accuracy of the pattern of the X-ray mask becomes the device accuracy as it is, it is essential to perform uniform illumination.

ところで、X線は真空下で発生せしめられるため、X
線源の真空領域と転写領域との間には隔壁が設けられて
おり、この隔壁に設けられたX線透過性の窓(以下X線
窓と指称す)を介して、転写領域にX線が導かれるよう
になっている。
By the way, since X-rays are generated under vacuum,
A partition is provided between the vacuum region of the radiation source and the transfer region, and the transfer region is provided with X-rays through an X-ray transparent window (hereinafter referred to as an X-ray window) provided on the partition. Is to be guided.

このX線窓としては、通常ベリリウム(Be)薄膜が用
いられている。Be薄膜は、その加工精度に起因する表面
の凹凸が透過するX線の強度に対して不均一性を生ぜし
めることがある。
As the X-ray window, a beryllium (Be) thin film is usually used. The Be thin film may cause non-uniformity in the intensity of X-rays transmitted by surface irregularities due to the processing accuracy.

そこで、この不均一性を低減するために、このBe薄膜
からなるX線窓をX線に対して機械的に走査することに
よりより、透過X線強度の均一性を向上させるという方
法も提案されている(1989、第26回春季応用物理学会4a
−K−6,4a−K−7)。
Therefore, in order to reduce the non-uniformity, a method of improving the uniformity of the transmitted X-ray intensity by mechanically scanning the X-ray window made of the Be thin film with respect to the X-ray has been proposed. (1989, 26th Spring Applied Physics Society 4a
-K-6,4a-K-7).

しかしながら、少なくとも片側が真空領域である薄膜
を薄膜の凹凸が均一化される振幅以上の振幅で振動させ
るためには、走査機構を設ける必要がある。また、走査
する部分とX線源部分は、ベローなどの稼働可能な構成
要素により結合されていなければならない。この問題
は、Be薄膜に限らず、樹脂薄膜等をX線窓として用いる
場合にも共通の問題である。
However, it is necessary to provide a scanning mechanism in order to vibrate a thin film having at least one side in a vacuum region with an amplitude equal to or greater than the amplitude at which unevenness of the thin film is made uniform. Also, the scanning portion and the X-ray source portion must be connected by an operable component such as a bellows. This problem is not limited to the Be thin film, and is a common problem when a resin thin film or the like is used as the X-ray window.

(発明が解決しようとする課題) このように、従来用いられているX線窓では、均一な
透過性を得るために機械的走査機構を必要とするなど、
多大な装置を必要とするという問題があった。
(Problems to be Solved by the Invention) As described above, the conventionally used X-ray window requires a mechanical scanning mechanism to obtain uniform transmittance.
There is a problem that a large amount of equipment is required.

本発明は、前記実情に鑑みてなされたもので、機械的
走査機構を必要とすることなく、X線透過率の均一なX
線窓を提供することを目的とする。
The present invention has been made in view of the above circumstances, and does not require a mechanical scanning mechanism, and has a uniform X-ray transmittance.
The purpose is to provide line windows.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) そこで本発明では、X線窓材料膜表面にネガ型X線感
光剤膜を形成し、X線窓材料膜側からX線露光を行い現
像処理を経て、X線透過率の大きい領域に選択的にX線
感光剤膜パターンを設けるようにしている。
(Means for Solving the Problems) Therefore, in the present invention, a negative type X-ray photosensitive agent film is formed on the surface of the X-ray window material film, X-ray exposure is performed from the X-ray window material film side, and development processing is performed. An X-ray photosensitive agent film pattern is selectively provided in a region having a high line transmittance.

(作用) 本発明の方法によれば、X線窓材料膜の透過不均一性
に依存した露光処理が感光材料膜に対してなされ、透過
するX線量に対応した感光材料膜パターンが形成される
ために、X線窓のX線透過率の大きな領域に感光材料膜
パターンが残置され、残置された感光材料膜パターンは
X線に対する吸収体として機能するために、感光材料膜
パターンの膜厚および感光特性の整合により、X線窓の
透過不均一性を低減することが可能となる。この方法は
極めて簡便な方法である。
(Operation) According to the method of the present invention, an exposure process is performed on the photosensitive material film depending on the transmission nonuniformity of the X-ray window material film, and a photosensitive material film pattern corresponding to the transmitted X-ray amount is formed. Therefore, the photosensitive material film pattern is left in the region of the X-ray window where the X-ray transmittance is large, and the remaining photosensitive material film pattern functions as an absorber for X-rays. By matching the photosensitive characteristics, it is possible to reduce the transmission non-uniformity of the X-ray window. This method is a very simple method.

さらにこのX線感光剤膜パターンをマスクとしてX線
窓材料膜をエッチングするようにしてもよい。すなわ
ち、X線窓材料膜表面にネガ型X線感光剤膜を形成し、
X線窓材料膜側からX線露光を行い現像処理を経て、X
線透過率の大きい領域に選択的にX線感光剤膜パターン
を設け、さらにこのX線感光剤膜パターンをマスクとし
てX線窓材料膜をエッチングしたのちこのX線感光剤膜
パターンを剥離除去することにより、X線透過率の小さ
い領域のX線窓材料膜が薄くなりX線透過率が上がり、
X線透過量の均一なX線窓を提供することが可能とな
る。この方法は前記方法に比べて工数が増えるが、感光
材料膜パターンをそのまま残した、表面の機械的強度が
向上する。
Further, the X-ray window material film may be etched using the X-ray photosensitive agent film pattern as a mask. That is, a negative type X-ray photosensitive agent film is formed on the surface of the X-ray window material film,
X-ray exposure from the X-ray window material film side
An X-ray photosensitive agent film pattern is selectively provided in a region having a large X-ray transmittance, and further, the X-ray window material film is etched using the X-ray photosensitive agent film pattern as a mask, and then the X-ray photosensitive agent film pattern is peeled off. As a result, the X-ray window material film in the region where the X-ray transmittance is small is thinned, and the X-ray transmittance is increased.
An X-ray window having a uniform X-ray transmission amount can be provided. This method requires more man-hours than the above method, but improves the mechanical strength of the surface while leaving the photosensitive material film pattern as it is.

また、この工程は繰り返しおこなうことによって、ま
た両面に同様の処理を行うことによって、より多大な効
果を得ることができる。
Further, by repeating this step, or by performing the same treatment on both surfaces, a greater effect can be obtained.

また、X線窓形成時の露光に用いるX線は、このX線
窓を使用するX線源の波長と同一の波長のものを用いる
必要はなく、より長波長のものを用いることにより、感
光材料膜の感光特性と整合することが可能となり、さら
に均一性の高いX線窓を得ることが可能となる。
The X-ray used for exposure at the time of forming the X-ray window does not need to have the same wavelength as the wavelength of the X-ray source using the X-ray window. It is possible to match the photosensitive characteristics of the material film, and to obtain an X-ray window with higher uniformity.

(実施例) 以下、本発明の実施例について図面を参照しつつ詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1 まず、第1図(a)に示すように、圧延法により膜厚
30μmのBe薄膜1を形成する。このBe薄膜1は、膜厚が
均一でなく、両面に2.5μmを越える凹凸が、周期1000
μmを越えランダムに形成されている。
Example 1 First, as shown in FIG.
A 30 μm Be thin film 1 is formed. This Be thin film 1 is not uniform in film thickness, and irregularities exceeding 2.5 μm are formed on both surfaces at a period of 1000
It is formed randomly over μm.

次いで、第1図(b)に示すように、このBe薄膜表面
に、CMSと指称されている東洋ソーダ社製のクロロメチ
ル化ポリスチレンからなるネガ型X線レジスト2を膜厚
0.5μmとなるように塗布した。ここで、Be薄膜表面の
凹凸の周期がレジスト膜厚に比べて大きいため、レジス
ト膜厚はほぼ一様であった。
Next, as shown in FIG. 1 (b), a negative type X-ray resist 2 made of chloromethylated polystyrene manufactured by Toyo Soda Co., Ltd.
It was applied to a thickness of 0.5 μm. Here, since the period of the irregularities on the surface of the Be thin film was larger than the resist film thickness, the resist film thickness was almost uniform.

続いて、第1図(c)に示すように、このBe薄膜1側
から、X線の全面照射を行い、Be薄膜を透過したX線に
より該X線レジスト2を感光する。ここで用いるX線の
波長としては50Åを用いる。
Subsequently, as shown in FIG. 1 (c), the entire surface of the Be thin film 1 is irradiated with X-rays, and the X-ray resist 2 is exposed to the X-rays transmitted through the Be thin film. The X-ray wavelength used here is 50 °.

そして、現像処理を経て、第1図(d)に示すよう
に、Be薄膜1の膜厚が薄くX線透過量が多い領域にレジ
ストパターン3が形成される。このようにして得られた
レジストパターン面を水平にして210℃30分のベーキン
グ処理を行う。
Then, through a development process, as shown in FIG. 1D, a resist pattern 3 is formed in a region where the thickness of the Be thin film 1 is small and the amount of X-ray transmission is large. A baking treatment is performed at 210 ° C. for 30 minutes with the thus obtained resist pattern surface horizontal.

さらに、再度Be薄膜1の裏面に対しても、第1図
(a)乃至第1図(d)で行ったのとまったく同様の処
理を行い、第1図(e)に示すように、Be薄膜の両面に
レジストパターンを形成してなるX線窓が得られる。
Further, the same processing as that performed in FIGS. 1A to 1D is performed again on the back surface of the Be thin film 1, and as shown in FIG. An X-ray window formed by forming a resist pattern on both surfaces of the thin film is obtained.

この様にして得られたBe薄膜をX線取りだし窓として
用い、波長10ÅのX線源を用いて、シリコン基板上に膜
厚1μmとなるように塗布されたPMMAレジストの全面露
光を行った後、レジスト膜厚の半分である0.5μmま
で、現像を行い、現像速度のばらつきを測定した。この
とき、シリコン基板表面に残留するレジスト膜厚のばら
つきは±0.03μm程度であった。
Using the thus obtained Be thin film as an X-ray extraction window, the entire surface of a PMMA resist applied to a thickness of 1 μm on a silicon substrate was exposed using an X-ray source having a wavelength of 10 °. Then, development was performed to 0.5 μm, which is half of the resist film thickness, and the variation in development speed was measured. At this time, the variation in the resist film thickness remaining on the silicon substrate surface was about ± 0.03 μm.

この結果からも、本発明実施例の方法によって形成し
たX線窓を用いることにより極めて均一な露光を行うこ
とができることがわかる。
From these results, it can be seen that extremely uniform exposure can be performed by using the X-ray window formed by the method of the embodiment of the present invention.

実施例2 まず、第2図(a)に示すように、圧延法により膜厚
25μmのBe薄膜11を形成する。このBe薄膜11は、膜厚が
均一でなく、両面に2.5μmを越える凹凸が、周期1000
μmを越えランダムに形成されている。
Example 2 First, as shown in FIG.
A 25 μm Be thin film 11 is formed. This Be thin film 11 is not uniform in film thickness, and irregularities exceeding 2.5 μm are formed on both surfaces at a period of 1000
It is formed randomly over μm.

次いで、第2図(b)に示すように、このBe薄膜表面
に、SAL−601ER7と指称されているシップレー社製のネ
ガ型X線レジスト12を膜厚0.75μmとなるように塗布し
た。ここでも、Be薄膜表面の凹凸の周期がレジスト膜厚
に比べて大きいため、レジスト膜厚はほぼ一様であっ
た。
Then, as shown in FIG. 2 (b), a negative X-ray resist 12 manufactured by Shipley and designated as SAL-601ER7 was applied to the surface of the Be thin film so as to have a film thickness of 0.75 μm. Also here, since the period of the irregularities on the surface of the Be thin film was larger than the resist film thickness, the resist film thickness was almost uniform.

続いて、第2図(c)に示すように、このBe薄膜11側
から、Be薄膜に垂直となるようにX線の全面照射を行
い、Be薄膜を透過したX線により該X線レジスト12を感
光する。このX線は波長100Åのものを用いる。
Subsequently, as shown in FIG. 2 (c), the whole surface of the Be thin film 11 is irradiated with X-rays so as to be perpendicular to the Be thin film. Expose. This X-ray has a wavelength of 100 °.

そして、現像処理を経て、第1図(d)に示すよう
に、Be薄膜1の膜厚が薄くX線透過量が多い領域にレジ
ストパターン13が形成される。ここで、露光および現像
処理は、残留レジストの膜厚が最も大きい部分において
0.6μmとなるように照射量、および現像条件を調整し
た。ここでは露光工程でのX線照射量250mJ/cm2とし、
現像前熱処理条件150℃2分現像時間90秒とした。
Then, through a development process, as shown in FIG. 1D, a resist pattern 13 is formed in a region where the thickness of the Be thin film 1 is small and the amount of X-ray transmission is large. Here, the exposure and development processes are performed at the portion where the thickness of the residual resist is largest.
The irradiation amount and the development conditions were adjusted to 0.6 μm. Here, the X-ray irradiation amount in the exposure step is 250 mJ / cm 2 ,
Pre-development heat treatment conditions were 150 ° C. for 2 minutes and development time was 90 seconds.

このようにして得られたレジストパターン面を水平に
して210℃30分のベーキング処理を行う。
A baking treatment is performed at 210 ° C. for 30 minutes with the thus obtained resist pattern surface horizontal.

この後、第2図(e)に示すように、このBe薄膜を平
行平板電極を有する真空容器の株電極上に載置し、Arガ
スを用いたスパッタリング処理を行い、前記レジストパ
ターン13から露呈するBe薄膜11表面を約0.6μmエッチ
ングし、レジストパターン13を除去した。このときのス
パッタリング条件は、圧力50mTorr、パワー150Wとし、2
5分間エッチングを行った。
Thereafter, as shown in FIG. 2 (e), the Be thin film is placed on a base electrode of a vacuum vessel having parallel plate electrodes, and a sputtering process using Ar gas is performed to expose the Be thin film from the resist pattern 13. The surface of the Be thin film 11 was etched by about 0.6 μm to remove the resist pattern 13. The sputtering conditions at this time were a pressure of 50 mTorr, a power of 150 W, and 2
Etching was performed for 5 minutes.

こののち、さらに、再度Be薄膜11の裏面に対しても、
第2図(a)乃至第2図(e)で行ったのとまったく同
様の処理を行い、第1図(f)に示すように、Be薄膜透
過率の均一なX線窓が得られる。
After this, the back surface of the Be thin film 11 is again
By performing exactly the same processing as performed in FIGS. 2 (a) to 2 (e), an X-ray window having a uniform Be thin film transmittance is obtained as shown in FIG. 1 (f).

この様にして得られたBe薄膜をX線取りだし窓として
用い、波長10ÅのX線を用いて、シリコン基板上に膜厚
1μmとなるように塗布されたPMMAレジストの全面露光
を行った後、レジスト膜厚の半分である0.5μmまで、
現像を行い、現像速度のばらつきを測定した。このと
き、シリコン基板表面に残留するレジスト膜厚のばらつ
きは±0.02μm程度であった。
Using the thus obtained Be thin film as an X-ray extraction window, the entire surface of a PMMA resist applied to a thickness of 1 μm on a silicon substrate is exposed using X-rays having a wavelength of 10 °, 0.5 μm, which is half of the resist film thickness,
Development was performed, and the variation in development speed was measured. At this time, the variation in the resist film thickness remaining on the silicon substrate surface was about ± 0.02 μm.

この結果からも、本発明の第2の実施例の方法によっ
て形成したX線窓を用いることにより極めて均一な露光
を行うことができることがわかる。
From this result, it can be seen that extremely uniform exposure can be performed by using the X-ray window formed by the method of the second embodiment of the present invention.

なお、前記実施例では、それぞれ両面に1回づつ処理
を行うようにしたが、片面だけでも均一性および機械的
強度は向上し、回数を重ねる毎にさらに均一性は向上す
る。
In the above-described embodiment, the processing is performed once on each side, but the uniformity and mechanical strength are improved even on only one side, and the uniformity is further improved as the number of times is increased.

また、X線窓形成時の露光に用いるX線は、実施例で
用いたものに限定されることなく、適宜選択可能であ
る。そして、このX線の波長は、X線窓を使用するX線
源の波長と同一の波長のものを用いる必要はなく、より
長波長のものを用いることにより、レジストの感光特性
と整合することが可能となり、さらに均一性の高いX線
窓を得ることが可能となる。
Further, the X-ray used for exposure at the time of forming the X-ray window is not limited to the one used in the embodiment, but can be appropriately selected. The wavelength of the X-ray does not need to be the same as the wavelength of the X-ray source using the X-ray window, but should be longer than that of the X-ray source to match the photosensitive characteristics of the resist. And an X-ray window with higher uniformity can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、本発明の方法によれば、X
線窓材料膜表面にネガ型X線感光剤膜を形成し、X線窓
材料膜側からX線露光を行い現像処理を経て、X線透過
率の大きい領域に選択的にX線窓感光剤膜パターンを設
けるようにしているため、該X線窓材料膜を透過するX
線量に対応した感光材料膜パターンが形成されるため
に、X線窓のX線透過率の大きな領域に感光材料膜パタ
ーンが残置され、これがX線に対する吸収体として機能
するために、感光材料膜パターンの膜厚および感光特性
の整合により、X線窓の透過均一性の向上をはかること
が可能となる。
As described above, according to the method of the present invention, X
A negative-type X-ray photosensitizer film is formed on the surface of the X-ray window material film, X-ray exposure is performed from the X-ray window material film side, and development processing is performed. Since the film pattern is provided, the X-rays that pass through the X-ray window material film
Since the photosensitive material film pattern corresponding to the dose is formed, the photosensitive material film pattern is left in a region of the X-ray window where the X-ray transmittance is large, and this functions as an absorber for X-rays. By matching the pattern film thickness and photosensitive characteristics, it is possible to improve the uniformity of transmission of the X-ray window.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)乃至第1図(e)は本発明の第1の実施例
のX線窓の形成工程を示す図、第2図(a)乃至第2図
(f)は本発明の第2の実施例のX線窓の形成工程を示
す図である。 1……Be薄膜、2……ネガ型X線レジスト、3……レジ
ストパターン、11……Be薄膜、12……ネガ型X線レジス
ト、13……レジストパターン。
FIGS. 1 (a) to 1 (e) are views showing a process of forming an X-ray window according to a first embodiment of the present invention, and FIGS. 2 (a) to 2 (f) are drawings of the present invention. FIG. 9 is a diagram illustrating a process of forming an X-ray window according to a second embodiment. 1 ... Be thin film, 2 ... Negative X-ray resist, 3 ... Resist pattern, 11 ... Be thin film, 12 ... Negative X-ray resist, 13 ... Resist pattern.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線窓材料膜表面にネガ型X線感光剤膜を
形成する感光剤膜形成工程と、 前記X線窓材料膜側からX線露光を行う露光工程と、 前記露光工程で形成された潜像を現像する現像処理工程
とを含み、 前記X線窓材料膜のX線透過率の大きい領域に選択的に
X線感光剤膜パターンを残置せしめるようにしたことを
特徴とするX線窓の製造方法。
A photosensitive agent film forming step of forming a negative type X-ray photosensitive agent film on the surface of the X-ray window material film; an exposure step of performing X-ray exposure from the X-ray window material film side; A developing step of developing the formed latent image, wherein an X-ray photosensitive agent film pattern is selectively left in a region of the X-ray window material film where the X-ray transmittance is large. Manufacturing method of X-ray window.
JP2033340A 1990-02-14 1990-02-14 X-ray window manufacturing method Expired - Fee Related JP2894772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033340A JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033340A JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Publications (2)

Publication Number Publication Date
JPH03237400A JPH03237400A (en) 1991-10-23
JP2894772B2 true JP2894772B2 (en) 1999-05-24

Family

ID=12383839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033340A Expired - Fee Related JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Country Status (1)

Country Link
JP (1) JP2894772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421852A (en) * 1990-05-17 1992-01-24 Canon Inc Manufacturing of x-ray taking out window

Also Published As

Publication number Publication date
JPH03237400A (en) 1991-10-23

Similar Documents

Publication Publication Date Title
US4403151A (en) Method of forming patterns
US6335145B1 (en) Pattern forming method and pattern forming apparatus
US5001039A (en) Method of manufacturing semiconductor device comprising step of patterning resist and light irradiation apparatus used by the manufacturing method
JP2894772B2 (en) X-ray window manufacturing method
US3986876A (en) Method for making a mask having a sloped relief
JPS58124230A (en) Forming method for ultrafine pattern
JPS6399526A (en) Method for compensating proximity effect of electron beam
JP3509761B2 (en) Resist pattern forming method and fine pattern forming method
JP2002148809A (en) Method for producing resist substrate and resist substrate
JPH0544169B2 (en)
JP2506637B2 (en) Pattern forming method
JP2693805B2 (en) Reticle and pattern forming method using the same
JPH0527413A (en) Photomask for exposing device
JPH0580492A (en) Production of photomask having phase shift layer
JP2604573B2 (en) Fine pattern forming method
JPH0685070B2 (en) Method of developing resist pattern
JPH0368531B2 (en)
JPH02281725A (en) Projection exposure apparatus
JPS6279622A (en) Formation of pattern
JPH0385544A (en) Resist pattern forming method
KR920002025B1 (en) Photo-resister hardening method using ultraviolet rays
KR0119272B1 (en) Mixed process with photo-stepper and e-beam process
JPS58145125A (en) Formation of resist mask
JPH07325385A (en) Forming method of photoresist film and photoplate
JPH1195450A (en) Resist pattern forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees