JPH03237400A - Manufacture of x-ray window - Google Patents

Manufacture of x-ray window

Info

Publication number
JPH03237400A
JPH03237400A JP2033340A JP3334090A JPH03237400A JP H03237400 A JPH03237400 A JP H03237400A JP 2033340 A JP2033340 A JP 2033340A JP 3334090 A JP3334090 A JP 3334090A JP H03237400 A JPH03237400 A JP H03237400A
Authority
JP
Japan
Prior art keywords
ray
film
thin film
resist
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2033340A
Other languages
Japanese (ja)
Other versions
JP2894772B2 (en
Inventor
Iwao Tokawa
東川 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2033340A priority Critical patent/JP2894772B2/en
Publication of JPH03237400A publication Critical patent/JPH03237400A/en
Application granted granted Critical
Publication of JP2894772B2 publication Critical patent/JP2894772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Abstract

PURPOSE:To obtain the X-ray window which is uniform in the quantity of X-ray transmission by forming a negative type X-ray sensitive film on the surface of a X-ray window material film and providing an X-ray sensitive agent film pattern selectively in an area where X-ray transmissivity is large. CONSTITUTION:A Be thin film 1 is formed firstly by a rolling to 30mum film thickness. This Be thin film 1 is not uniform in film thickness and has unevenness exceeding 2.5mum and 1,000mum cycles on both surfaces at random. Then the surface of the Be thin film is coated with negative X-ray resist 2 made of chloromethyl polystyurene to 0.5 mum film thickness. Then the entire surface on the side of the Be thin film 1 is irradiated to expose the X-ray resist 2 to X rays transmitted through the Be thin film. Then development processing is performed to form a resist pattern 3 in the area where the film thickness of the Be thin film 1 is small and the quantity of the X-ray transmission is large. The reverse surface of the Be thin film 1 is processed similarly as mentioned above to form resist patterns on both surfaces of the thin film, and thus the X-ray window is obtained and used to perform extremely uniform exposure.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、X線窓の製造方法に係り、特にX線転写装置
のX線取りたし窓の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing an X-ray window, and particularly to the manufacturing of an X-ray extraction window for an X-ray transfer device.

(従来の技術) 近年、半導体集積回路の高密度化および高集積化への要
求か高まるにつれて、回路パターンの微細加工技術のな
かでも、感光剤にパターンを形成するリソグラフィ技術
の研究開発が急速な進展を見せている。
(Prior art) In recent years, as the demand for higher density and higher integration of semiconductor integrated circuits has increased, research and development of lithography technology, which forms patterns on photosensitive materials, among microfabrication technologies for circuit patterns, has been rapidly progressing. It is showing progress.

現在、量産ラインでは光を露光媒体とするフォトリソグ
ラフィ技術か主流であるが、解像力の限界に近づきつつ
あり、このフォトリソグラフィ技術に代わるものとして
、原理的に解像力が飛躍的に向上するX線リソグラフィ
技術の研究開発が急速な進展をみせている。
Currently, photolithography technology, which uses light as an exposure medium, is the mainstream on mass production lines, but it is approaching its resolution limit, and as an alternative to this photolithography technology, X-ray lithography, which in principle can dramatically improve resolution, is being used. Technology research and development is making rapid progress.

X線リソグラフィでは、光を用いた露光方法とは異なり
所定のパターンを縮小させて転写するような技術は現在
のところない。このため、X線露光では、所定のパター
ンの形成されたX線露光用マスクと試料とを10μmオ
ーダーの間隔で平行に保持し、このX線マスクを通して
X線を照射することにより露光対象物表面に転写ノくタ
ーンを形成する1:1転写方式が採用されている。
In X-ray lithography, unlike exposure methods using light, there is currently no technology for reducing and transferring a predetermined pattern. For this reason, in X-ray exposure, an X-ray exposure mask on which a predetermined pattern is formed and a sample are held parallel to each other at intervals on the order of 10 μm, and X-rays are irradiated through this X-ray mask to expose the surface of the exposed object. A 1:1 transfer method is adopted in which a transfer pattern is formed on each side.

この等倍転写方式では、X線マスクのパターンの転写精
度がそのままデバイス精度になるため、均−な照明を行
うことか不可欠である。
In this same-size transfer method, the transfer accuracy of the X-ray mask pattern directly becomes the device accuracy, so it is essential to provide uniform illumination.

ところで、X線は真空下で発生せしめられるため、X線
源の真空頭載と転写領域との間には隔壁が設けられてお
り、この隔壁に設けられたX線透過性の窓(以下X線窓
と指称す)を介して、転写領域にX線が導かれるように
なっている。
By the way, since X-rays are generated in a vacuum, a partition wall is provided between the vacuum head of the X-ray source and the transfer area, and an X-ray transparent window (hereinafter referred to as X-rays are directed to the transfer area via a line window (referred to as a line window).

このX線窓としては、通常へリリウム(Be)薄膜が用
いられている。Be薄膜は、その加工精度に起因する表
面の凹凸か透過するX線の強度にχ1して不均一性を生
せしめることかある。
As this X-ray window, a helium (Be) thin film is usually used. The Be thin film may have irregularities on its surface due to its processing precision, which may cause unevenness in the intensity of transmitted X-rays due to χ1.

そこで、この不均一性を低減するために、このBe薄膜
からなるX線窓をX線に対して機械的に走査することに
よりより、透過X線強度の均一性を向上させるといつ方
注し提案されている(1989、第26回春季応用物理
学会4a−に−6゜4a−に−7)。
Therefore, in order to reduce this non-uniformity, the uniformity of transmitted X-ray intensity can be improved by mechanically scanning the X-ray window made of this Be thin film with respect to X-rays. It has been proposed (1989, 26th Spring Meeting of the Japan Society of Applied Physics 4a-6°4a-7).

しかしながら、少なくとも片側が真空領域である薄膜を
薄膜の凹凸が均一化される振幅以上の振幅で振動させる
ためには、走査機構を設ける必要がある。また、走査す
る部分とX線源部分は、ベローなどの稼働可能な溝底要
素により結合されていなければならない。この問題は、
Be薄膜に限らず、樹脂Wig等をX線窓として用いる
場合にも共通の問題である。
However, in order to vibrate a thin film whose at least one side is in a vacuum region with an amplitude greater than the amplitude that equalizes the unevenness of the thin film, it is necessary to provide a scanning mechanism. Additionally, the scanning part and the X-ray source part must be connected by a movable groove bottom element, such as a bellows. This problem,
This problem is common not only when using a Be thin film but also when using a resin Wig or the like as an X-ray window.

(発明が解決しようとする課題) このように、従来用いられているX線窓では、均一な透
過性を得るために機械的走査機構を必要とするなと、多
大な装置を必要とするという問題があった。
(Problems to be Solved by the Invention) As described above, conventionally used X-ray windows do not require a mechanical scanning mechanism or a large amount of equipment in order to obtain uniform transparency. There was a problem.

本発明は、前記実情に鑑みてなされたもので、機械的走
査機構を必要とすることなく、X線透過率の均一なX線
窓を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an X-ray window with uniform X-ray transmittance without requiring a mechanical scanning mechanism.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) そこで本発明では、X線窓材料膜表面にネガ型X線感光
剤膜を形成し、X線窓材料膜側からX線露光を行い現像
処理を経て、X線透過率の大きい領域に選択的にX線感
光剤膜パターンを設けるようにしている。
(Means for Solving the Problems) Therefore, in the present invention, a negative X-ray photosensitizer film is formed on the surface of the X-ray window material film, X-ray exposure is performed from the X-ray window material film side, and development processing is performed. The X-ray photosensitive agent film pattern is selectively provided in areas with high radiation transmittance.

(作用) 本発明の方法によれば、X線窓材料膜の透過不均一性に
依存した露光処理か感光材料膜に対してなされ、透過す
るX線量に対応した感光材料膜パターンが形威されるた
めに、X線窓のX線透過率の大きな領域に感光材料膜パ
ターンが残置され、残置された感光材料膜パターンはX
線に対する吸収体として機能するために、感光材料膜パ
ターンの膜厚および感光特性の整合により、X線窓の透
過不均一性を低減することが可能となる。この方法は極
めて簡便な方法である。
(Function) According to the method of the present invention, an exposure process is performed on the photosensitive material film depending on the non-uniformity of transmission of the X-ray window material film, and a pattern of the photosensitive material film corresponding to the amount of transmitted X-rays is formed. In order to
In order to function as an absorber for radiation, it is possible to reduce transmission non-uniformity of the X-ray window by matching the film thickness and photosensitive characteristics of the photosensitive material film pattern. This method is extremely simple.

さらにこのxH感光剤膜パターンをマスクとしてX線窓
材料膜をエツチングするようにしてもよい。すなわち、
X線窓材料膜表面にネガ型X線感光剤膜を形威し、X線
窓材料膜側からX線露光を行い現像処理を経て、X線透
過率の大きい領域に選択的にxm感光剤膜パターンを設
け、さらにこのX線感光剤膜パターンをマスクとしてX
線窓材料膜をエツチングしたのちこのX線感光剤膜パタ
ーンを剥離除去することにより、X線透過率の小さい領
域のX線窓材料膜が薄くなりX線透過率が上かり、X線
透過量の均一なX線窓を提供することが可能となる。こ
の方法は前記方法に比べて工数か増えるが、感光材料膜
パターンをそのまま残した、表面の機械的強度が向上す
る。
Furthermore, the X-ray window material film may be etched using this xH photoresist film pattern as a mask. That is,
A negative X-ray photosensitizer film is formed on the surface of the X-ray window material film, X-ray exposure is performed from the X-ray window material film side, and after development processing, the XM photosensitizer is selectively applied to areas with high X-ray transmittance. A film pattern is provided, and this X-ray photosensitive film pattern is used as a mask for X-ray radiation.
By peeling and removing this X-ray photosensitive agent film pattern after etching the window material film, the X-ray window material film becomes thinner in areas with low X-ray transmittance, increasing the X-ray transmittance and reducing the amount of X-ray transmission. It becomes possible to provide a uniform X-ray window. Although this method requires more man-hours than the above method, it improves the mechanical strength of the surface while leaving the photosensitive material film pattern intact.

また、この工程は繰り返しおこなうことによって、また
両面に同様の処理を行うことによって、より多大な効果
を得ることができる。
Further, by repeating this process or by applying the same treatment to both sides, even greater effects can be obtained.

また、X線窓形成時の露光に用いるX線は、このX線窓
を使用するX線源の波長と同一の波長のものを用いる必
要はなく、より長波長のものを用いることにより、感光
材料膜の感光特性と整合することが可能となり、さらに
均一性の高いX線窓を得ることが可能となる。
In addition, the X-rays used for exposure when forming the X-ray window do not need to have the same wavelength as the X-ray source that uses this X-ray window, but by using a longer wavelength It becomes possible to match the photosensitive characteristics of the material film, and it becomes possible to obtain an X-ray window with higher uniformity.

(実施例) 以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 まず、第1図(a)に示すように、圧延法により膜厚3
0μmのBeHMlを形成する。このBe薄膜1は、膜
厚が均一でなく、両面に2.5μmを越える凹凸か、周
期1000μmを越えランダムに形成されている。
Example 1 First, as shown in FIG. 1(a), a film thickness of 3
Form 0 μm BeHMl. This Be thin film 1 is not uniform in film thickness, and irregularities exceeding 2.5 μm or irregularities exceeding 1000 μm are formed on both surfaces at random.

次いで、第1図(b)に示すように、このBe薄膜表面
に、CMSと指称されている東洋ソーダ社製のクロロメ
チル化ポリスチレンからなるネガ型X線レジスト2を膜
厚0.5μmとなるように塗布した。ここで、Be1M
!表面の凹凸の周期がレジスト膜厚に比べて大きいため
、レジスト膜厚はほぼ一様であった。
Next, as shown in FIG. 1(b), a negative X-ray resist 2 made of chloromethylated polystyrene, manufactured by Toyo Soda Co., Ltd. and designated as CMS, is applied to the surface of this Be thin film to a thickness of 0.5 μm. It was applied like this. Here, Be1M
! Since the period of the surface irregularities was larger than the resist film thickness, the resist film thickness was almost uniform.

続いて、第1図(C)に示すように、このBe薄膜1側
から、X線の全面照射を行い、Be薄膜を透過したX線
により該X線レジスト2を感光する。
Subsequently, as shown in FIG. 1C, the entire surface of the Be thin film 1 is irradiated with X-rays, and the X-ray resist 2 is exposed to the X-rays that have passed through the Be thin film.

ここで用いるX線の波長としては50Aを用いる。The wavelength of the X-ray used here is 50A.

そして、現像処理を経て、第1図(d)に示すように、
Be薄膜1の膜厚が薄くX線透過量か多い領域にレジス
トパターン3が形成される。このようにして得られたレ
ジストパターン面を水平にして210℃30分のベーキ
ング処理を行う。
After the development process, as shown in FIG. 1(d),
A resist pattern 3 is formed in a region where the Be thin film 1 is thin and has a large amount of X-ray transmission. The surface of the resist pattern thus obtained is held horizontal and subjected to baking treatment at 210° C. for 30 minutes.

さらに、再度BeN膜1の裏面に対しても、第1図(a
)乃至第1図(d)で行ったのとまったく同様の処理を
行い、第1図(e)に示すように、Be薄膜の両面にレ
ジストパターンを形成してなるX線窓が得られる。
Furthermore, the back surface of the BeN film 1 is also coated again as shown in FIG.
) to FIG. 1(d) are performed to obtain an X-ray window with resist patterns formed on both sides of the Be thin film, as shown in FIG. 1(e).

この様にして得られたBe薄膜をX線取りたし窓として
用い、波長1. OAのX線源を用いて、シリコン基板
上に膜厚1μmとなるように塗布されたPMMAレジス
トの全面露光を行った後、レジスト膜厚の半分である0
、5μmまて、現像を行い、現像速度のばらつきを測定
した。このとき、シリコン基板表面に残留するレジスト
膜厚のばらつきは±0.03μm程度であった。
The Be thin film obtained in this way was used as an X-ray extraction window, and the wavelength 1. Using an OA X-ray source, a PMMA resist coated on a silicon substrate to a thickness of 1 μm was exposed over the entire surface, and then a
, 5 μm was developed, and the variation in development speed was measured. At this time, the variation in the thickness of the resist film remaining on the silicon substrate surface was approximately ±0.03 μm.

この粘果からも、本発明実施例の方法によって形成した
X線窓を用いることにより極めて均一な露光を行うこと
ができることがわかる。
This viscous product also shows that extremely uniform exposure can be achieved by using the X-ray window formed by the method of the embodiment of the present invention.

実施例2 まず、第2図(a)に示すように、圧延法により膜厚2
5μmのBe薄膜11を形成する。このBeWi膜11
は、膜厚が均一でなく、両面に2,5μmを越える凹凸
が、周期1000μmを越えランダムに形成されている
Example 2 First, as shown in FIG. 2(a), a film thickness of 2
A Be thin film 11 with a thickness of 5 μm is formed. This BeWi film 11
The film thickness is not uniform, and unevenness exceeding 2.5 μm is randomly formed on both surfaces with a period exceeding 1000 μm.

次いで、第2図(b)に示すように、このBe薄膜表面
に、5AL−601ER7と指称されているシ・lプレ
ー社製のネガ型X線レジスト12を膜厚0.75μmと
なるように塗布した。ここでも、Be薄膜表面の凹凸の
周期がレジスト膜厚に比べて大きいため、レジスト膜厚
はほぼ一様であった。
Next, as shown in FIG. 2(b), a negative-type X-ray resist 12 designated as 5AL-601ER7 manufactured by Shipley Co., Ltd. is applied to the surface of this Be thin film to a thickness of 0.75 μm. Coated. Here, too, the period of the irregularities on the surface of the Be thin film was larger than the resist film thickness, so the resist film thickness was almost uniform.

続いて、第2図(C)に示すように、このBe薄膜11
側から、BeFimに垂直となるようにX線の全面照射
を行い、Be薄膜を透過したX線により該X線レジスト
12を感光する。このX線は波長1.00 Aのものを
用いる。
Subsequently, as shown in FIG. 2(C), this Be thin film 11 is
The entire surface is irradiated with X-rays from the side perpendicular to the BeFim, and the X-ray resist 12 is exposed to the X-rays that have passed through the Be thin film. This X-ray has a wavelength of 1.00 A.

そして、現像処理を経て、第1図(d)に示すように、
Be薄膜1の膜厚が薄くX線透過量が多い領域にレジス
トパターン13が形成される。ここで、露光および現像
処理は、残留レジストの膜厚が最も大きい部分において
0.6μmとなるように照射量、および現像条件を調整
した。ここでは露光工程でのX線照射量250 m J
 / cdとし、現像前熱処理条件150℃2分、現像
時間90秒とした。
After the development process, as shown in FIG. 1(d),
A resist pattern 13 is formed in a region where the Be thin film 1 is thin and transmits a large amount of X-rays. Here, in the exposure and development processing, the irradiation amount and development conditions were adjusted so that the thickness of the residual resist was 0.6 μm at the largest portion. Here, the amount of X-ray irradiation in the exposure process was 250 mJ.
/ cd, and the pre-development heat treatment conditions were 150°C for 2 minutes and the development time was 90 seconds.

このようにして得られたレジストパターン面を水平にし
て210℃30分のベーキング処理を行う。
The surface of the resist pattern thus obtained is held horizontal and subjected to baking treatment at 210° C. for 30 minutes.

この後、第2図(e)に示すように、このBe薄膜を平
行平板電極を有する真空容器の株電極上に載置し、Ar
ガスを用いたスパッタリング処理を行い、前記レジスト
パターン13から露呈するBei膜11表面を約0.6
μmエツチングし、レジストパターン13を除去した。
Thereafter, as shown in FIG. 2(e), this Be thin film was placed on the stock electrode of a vacuum container having parallel plate electrodes, and Ar
A sputtering process using gas is performed to reduce the surface of the Bei film 11 exposed from the resist pattern 13 by about 0.6
After μm etching, the resist pattern 13 was removed.

このときのスパッタリング条件は、圧力50 mTor
r 、パワー150Wとし、25分間エツチングを行っ
た。
The sputtering conditions at this time were a pressure of 50 mTor.
r, power was set to 150 W, and etching was performed for 25 minutes.

こののち、さらに、再度Be薄膜11の裏面に対しても
、第2図(a)乃至第2図(e)で行ったのとまったく
同様の処理を行い、第1図(r)に示すように、Be薄
膜透過率の均一なX線窓が得られる。
After this, the back side of the Be thin film 11 is again subjected to the same process as that shown in FIGS. 2(a) to 2(e), and as shown in FIG. 1(r). In addition, an X-ray window with uniform Be thin film transmittance can be obtained.

この様にして得られたBe薄膜をX線取りだし窓として
用い、波長10AのX線を用いて、シリコン基板上に膜
厚1μmとなるように塗布されたP〜iMAレジストの
全面露光を行った後、レジスト膜厚の半分である0、5
μmまで、現像を行い、現像速度のばらつきを測定した
。このとき、シリコン基板表面に残留するレジスト膜厚
のばらつきは±0.02μm程度であった。
Using the Be thin film thus obtained as an X-ray extraction window, the entire surface of the P~iMA resist coated on the silicon substrate to a thickness of 1 μm was exposed using X-rays with a wavelength of 10 A. After that, 0,5 which is half of the resist film thickness.
Development was carried out to .mu.m, and variations in development speed were measured. At this time, the variation in the thickness of the resist film remaining on the silicon substrate surface was approximately ±0.02 μm.

この結果からも、本発明の第2の実施例の方法によって
形成したX線窓を用いることにより極めて均一な露光を
行うことかできることがわかる。
This result also shows that extremely uniform exposure can be achieved by using the X-ray window formed by the method of the second embodiment of the present invention.

なお、前記実施例では、それぞれ両面に1回づつ処理を
行うようにしたが、片面たけても均一性および機械的強
度は向上し、回数を重ねる毎にさらに均一性は向上する
In the above embodiments, each side was treated once, but the uniformity and mechanical strength are improved even if the treatment is applied to one side, and the uniformity is further improved as the number of times is increased.

また、X線窓形成時の露光に用いるX線は、実施例で用
いたちのに限定されることなく、適宜選択iiJ能であ
る。そして、このX線の波長は、X線窓を使用するX線
源の波長と同一の波長のものを用いる必要はなく、より
長波長のものを用いることにより、レジストの感光特性
と整合することが可能となり、さらに均一性の高いX線
窓を得ることか可能となる。
Furthermore, the X-rays used for exposure when forming the X-ray window are not limited to those used in the embodiments, and can be selected as appropriate. The wavelength of this X-ray does not need to be the same as the wavelength of the X-ray source that uses the X-ray window, but it is possible to match the photosensitive characteristics of the resist by using a longer wavelength. This makes it possible to obtain an X-ray window with even higher uniformity.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の方法によれば、X線
窓材料膜表面にネカ型X線感光剤膜を形成し、X線窓材
料膜側からX線露光を行い現像処理を経て、X線透過率
の大きい領域に選択的にX線感光剤膜パターンを設ける
ようにしているため、該X線窓材料膜を透過するX線量
に対応した感光材料膜パターンが形成されるために、X
線窓のX線透過率の大きな領域に感光材料膜パターンが
残置され、これがX線に対する吸収体として機能するた
めに、感光材料膜パターンの膜厚および感光特性の整合
により、X線窓の透過均一性の向上をはかることが可能
となる。
As explained above, according to the method of the present invention, a negative type X-ray photosensitive agent film is formed on the surface of the X-ray window material film, X-ray exposure is performed from the X-ray window material film side, and development processing is performed. Since the X-ray photosensitive material film pattern is selectively provided in areas with high X-ray transmittance, a photosensitive material film pattern corresponding to the amount of X-rays transmitted through the X-ray window material film is formed. X
The photosensitive material film pattern is left in the region of the X-ray window with high X-ray transmittance, and since this functions as an absorber for X-rays, the transmission of the X-ray window is reduced by matching the film thickness and photosensitive characteristics of the photosensitive material film pattern. It becomes possible to improve uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至第1図(e)は本発明の第1の実施例
のxIj!窓の形成工程を示す図、第2図(a)乃至第
2図(「)は本発明の第2の実施例のX線窓の形成工程
を示す図である。 1・・・Be薄膜、2・・・ネガ型X線レジスト、3・
・・レジストパターン、11・・・Be薄膜、12・・
・ネガ型X線レジスト、13・・レジストパターン。 (Q) (b) (C) 第1図(−lの1) (d) 3 (e) 第1図 (そoO2) (Q) (b) (C) 第2図(その1)
FIGS. 1(a) to 1(e) show xIj! of the first embodiment of the present invention. 2(a) to 2(a) are diagrams showing the process of forming an X-ray window according to the second embodiment of the present invention. 1...Be thin film, 2... Negative X-ray resist, 3.
...Resist pattern, 11...Be thin film, 12...
・Negative X-ray resist, 13...Resist pattern. (Q) (b) (C) Figure 1 (-1 of 1) (d) 3 (e) Figure 1 (soO2) (Q) (b) (C) Figure 2 (Part 1)

Claims (1)

【特許請求の範囲】 X線窓材料膜表面にネガ型X線感光剤膜を形成する感光
剤膜形成工程と、 前記X線窓材料膜側からX線露光を行う露光工程と、 前記露光工程で形成された潜像を現像する現像処理工程
とを含み、 前記X線窓材料膜のX線透過率の大きい領域に選択的に
X線感光剤膜パターンを残置せしめるようにしたことを
特徴とするX線窓の製造方法。
[Scope of Claims] A photosensitive agent film forming step of forming a negative X-ray photosensitive agent film on the surface of the X-ray window material film; an exposure step of performing X-ray exposure from the X-ray window material film side; and the exposure step. and a development treatment step of developing the latent image formed by the X-ray window material film, and is characterized in that the X-ray photosensitive agent film pattern is selectively left in areas of high X-ray transmittance of the X-ray window material film. A method for manufacturing an X-ray window.
JP2033340A 1990-02-14 1990-02-14 X-ray window manufacturing method Expired - Fee Related JP2894772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033340A JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033340A JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Publications (2)

Publication Number Publication Date
JPH03237400A true JPH03237400A (en) 1991-10-23
JP2894772B2 JP2894772B2 (en) 1999-05-24

Family

ID=12383839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033340A Expired - Fee Related JP2894772B2 (en) 1990-02-14 1990-02-14 X-ray window manufacturing method

Country Status (1)

Country Link
JP (1) JP2894772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421852A (en) * 1990-05-17 1992-01-24 Canon Inc Manufacturing of x-ray taking out window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421852A (en) * 1990-05-17 1992-01-24 Canon Inc Manufacturing of x-ray taking out window

Also Published As

Publication number Publication date
JP2894772B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JPH03237400A (en) Manufacture of x-ray window
JPS59160144A (en) Photomask
JP2002116315A (en) Manufacturing method for micro optical element
JP2693805B2 (en) Reticle and pattern forming method using the same
JP2002148809A (en) Method for producing resist substrate and resist substrate
JPH0664337B2 (en) Photomask for semiconductor integrated circuit
JPH0431858A (en) Manufacture of mask
JPH0527413A (en) Photomask for exposing device
JPH0580492A (en) Production of photomask having phase shift layer
JPH0845810A (en) Formation of resist pattern
JP2783582B2 (en) Photo mask
JPH0458245A (en) Mask for forming fine pattern and production thereof
JP2617923B2 (en) Pattern formation method
JPH02281725A (en) Projection exposure apparatus
JPH01239928A (en) Formation of pattern
JPH03190217A (en) Manufacture of semiconductor device
JPS58132926A (en) Formation of pattern
JPH0685070B2 (en) Method of developing resist pattern
JPH1055059A (en) Production of photomask and production of semiconductor integrated circuit device
JPH04318852A (en) Resist pattern forming method
JPH0340420A (en) Manufacture of resist image
JPH0864508A (en) Pattern formation
JPS61209442A (en) Formation of pattern
JPS625334B2 (en)
JPH0281048A (en) Method and material for forming pattern

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees