JPH0421852A - Manufacturing of x-ray taking out window - Google Patents

Manufacturing of x-ray taking out window

Info

Publication number
JPH0421852A
JPH0421852A JP2125338A JP12533890A JPH0421852A JP H0421852 A JPH0421852 A JP H0421852A JP 2125338 A JP2125338 A JP 2125338A JP 12533890 A JP12533890 A JP 12533890A JP H0421852 A JPH0421852 A JP H0421852A
Authority
JP
Japan
Prior art keywords
film
ray
extraction window
rays
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125338A
Other languages
Japanese (ja)
Inventor
Mitsuaki Amamiya
光陽 雨宮
Akira Miyake
明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2125338A priority Critical patent/JPH0421852A/en
Publication of JPH0421852A publication Critical patent/JPH0421852A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Abstract

PURPOSE:To improve the uniformity of X-ray transmissivity by applying a negative type photosensitive film on one surface of a Be film of an X-ray taking out window and irradiating the film with X-rays from the opposite side, then developing the film. CONSTITUTION:The negative type photosensitive film 4 is formed by applying a negative resist 4 on one surface of the beryllium Be film 3 and hereafter, the film 4 is irradiated with the X-rays 5 from the opposite side. The negative type photosensitive film 4 hardly remains in the position where the Be film 3 is thick and the negative type photosensitive film 4 conversely remains thick in the position where the Be film 3 is thin if such film is developed. Consequently, the total thickness of the Be film 3 and the negative type photosensitive film 4 is uniformized overall and, therefore, the intensity at which the X-rays are transmitted is eventually averaged. The excellent characteristic to uniformize the X-ray transmissivity is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線取り出し窓の作製方法及び該作製方法によ
り作製されたX線取り出し窓を用いたX線露光装置に関
するものである。特に、X線取り出し窓であるBe窓の
厚さの不均一性やキズ等を補正し、X線透過率の不均一
を改善したX線取り出し窓に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an X-ray extraction window and an X-ray exposure apparatus using the X-ray extraction window manufactured by the manufacturing method. In particular, the present invention relates to an X-ray extraction window that corrects non-uniformity in thickness, scratches, etc. of the Be window, which is an X-ray extraction window, and improves non-uniformity in X-ray transmittance.

(従来技術及びその問題点) 近年、LS1.超LSI等、大容量の集積回路の微細化
に伴い、シンクロトロン放射光(以下SRと称す)を用
いたX線露光が注目を集めてきた。
(Prior art and its problems) In recent years, LS1. With the miniaturization of large-capacity integrated circuits such as VLSIs, X-ray exposure using synchrotron radiation (hereinafter referred to as SR) has attracted attention.

従来この種の露光装置は、第6図に示す様に加速リング
】1から放射されたX線がミラー12によって反射され
露光室13に導かれていた。露光室13の雰囲気はヘリ
ウム(He)や大気であり、一方、ミラー12や加速リ
ング11の雰囲気は超高真空であることから、露光室1
3とミラー12の間に真空隔壁14が設けられている。
In a conventional exposure apparatus of this type, as shown in FIG. 6, X-rays emitted from an acceleration ring 1 are reflected by a mirror 12 and guided to an exposure chamber 13. The atmosphere in the exposure chamber 13 is helium (He) or air, while the atmosphere in the mirror 12 and acceleration ring 11 is ultra-high vacuum.
A vacuum partition 14 is provided between the mirror 12 and the mirror 12 .

この真空隔壁としては、X線透過率が高く機械強度の大
きいベリリウム(Be)製のX線取り出し窓が用いられ
ている。
As this vacuum partition, an X-ray extraction window made of beryllium (Be), which has high X-ray transmittance and high mechanical strength, is used.

ところがBe窓には表面上に凹凸があり、透過したX線
に強度むらが発生し、レジスト上にこの凹凸の形状が転
写されるという問題点が生じている。
However, the Be window has irregularities on its surface, causing unevenness in the intensity of the transmitted X-rays, resulting in the problem that the irregularities are transferred onto the resist.

この凹凸形状については、1989年春の応用物理学会
4a−に−6で圧延膜で5μm、蒸着膜で2μm程度の
ものであることが報告されている。又、この強度むらを
取り除く方法としてBe窓を振動させる方法が、同4a
−に−7で提案されている。
Regarding this uneven shape, it was reported in the Japan Society of Applied Physics 4a-6 in the spring of 1989 that it was about 5 μm for rolled films and 2 μm for vapor deposited films. In addition, as a method of removing this strength unevenness, a method of vibrating the Be window is described in 4a.
It has been proposed in -7.

しかしながら、このBe窓を振動させる方法ではX線露
光装置が機構的に複雑になるという問題点がある。
However, this method of vibrating the Be window has the problem that the X-ray exposure apparatus becomes mechanically complex.

従って、本発明の目的は、X線透過率を一様とする優れ
た特性のX線取り出し窓及び該X線取り出し窓を有する
X線露光装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an X-ray extraction window with excellent characteristics that makes X-ray transmittance uniform, and an X-ray exposure apparatus having the X-ray extraction window.

(問題点を解決するための手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

即ち、本発明は、X$j1取り出し窓の片面に感光性の
膜を塗布し、塗布した面の反対側から露光用光線を照射
後現像する均一化工程を含むことを特徴とするX線取り
出し窓の作製方法及び該X線取り出し窓を有するX線露
光装置である。
That is, the present invention is an X-ray extraction device characterized by including a uniformizing step of applying a photosensitive film to one side of the X$J1 extraction window, irradiating it with exposure light from the opposite side of the applied surface, and then developing it. A method for manufacturing a window and an X-ray exposure apparatus having the X-ray extraction window.

(作 用) 本発明によれば、X綿取り出し窓の片面にネガ型の感光
性被膜を形成し、その被膜の反対面から露光用光線を照
射した後現像することで、X線取り出し窓のX線透過率
の一様性が達成され、この結果、レジスト上にX綿取り
出し窓であるBe窓の表面上の凹凸が転写されることが
ない。
(Function) According to the present invention, a negative photosensitive film is formed on one side of the X-ray extraction window, and by irradiating the film with exposure light from the opposite side and developing it, the X-ray extraction window can be removed. Uniformity of X-ray transmittance is achieved, and as a result, the unevenness on the surface of the Be window, which is the X-cotton extraction window, is not transferred onto the resist.

(実施例) 次に、図面に示す実施例を参照して本発明を更に詳細に
説明する。
(Example) Next, the present invention will be described in further detail with reference to examples shown in the drawings.

第1図は、本発明の第1の実施例であるX線取り出し窓
の作製工程を示した図であり、第3図は、第1図のX線
取り出し窓の一部分を示した図である。
FIG. 1 is a diagram showing the manufacturing process of an X-ray extraction window according to a first embodiment of the present invention, and FIG. 3 is a diagram showing a part of the X-ray extraction window in FIG. 1. .

第1図に示す様に、ネガレジスト4をBe膜3の片面上
に塗布してネガ型感光性被膜4を形成後、その被膜4の
反対面からX線5を照射する。この時、X線の照射量を
適当な量、例えば、最も厚いBe膜3の位置の照射量を
、ネガ型感光性被膜が残り始める照射量り。どなる様に
設定する。
As shown in FIG. 1, a negative photosensitive film 4 is formed by coating a negative resist 4 on one side of the Be film 3, and then X-rays 5 are irradiated from the opposite side of the film 4. At this time, the amount of X-ray irradiation is set to an appropriate amount, for example, the amount of irradiation at the position of the thickest Be film 3 is set to the amount at which the negative photosensitive film begins to remain. Set it so that it roars.

その後これを現像すると、Be膜3の厚い位置では殆ど
ネガ型感光性被膜5が残らず、Be膜3が薄い位置では
逆に厚くネガ型感光性被膜4が残ることになり、この結
果、Be膜3とネガ型感光性被膜4との合計の厚さが全
体に一様となるので、X線の透過する強度が均一化され
ることになる。
When this is then developed, almost no negative photosensitive film 5 remains at the thicker positions of the Be film 3, whereas a thicker negative photosensitive film 4 remains at the thinner Be film 3 positions. Since the total thickness of the film 3 and the negative photosensitive coating 4 is uniform throughout, the intensity of X-ray transmission is made uniform.

次に、以上の現象を第2図と第3図を参照して更に詳細
に説明する。
Next, the above phenomenon will be explained in more detail with reference to FIGS. 2 and 3.

第2図はネガレジスト(クロロメチル化ポリスチレン)
の特性曲線を示すもので、縦軸に規格化残膜率T、横軸
にX線照射量を示した。照射量は、ネガ型感光性被膜4
が残り始める照射量り。
Figure 2 is negative resist (chloromethylated polystyrene)
The vertical axis shows the normalized residual film rate T, and the horizontal axis shows the amount of X-ray irradiation. The irradiation amount is negative photosensitive coating 4
The amount of radiation that begins to remain.

を1として規格化しである。is standardized as 1.

この特性曲線は照射量り。〜2Doの範囲内でT=−y
log D= 1 、61og D    ■で表され
る式でよく近似できる。
This characteristic curve is determined by the irradiance. T=-y within the range of ~2Do
It can be well approximated by the formula expressed as log D=1, 61log D (2).

第3図はBe膜3の表面にレジスト4を塗布した形状を
示したものであり、X線透過領域の最も厚いBe膜膜上
上点Aを透過してきたX線強度をIAとし、最も薄い点
をBとして、この点を透過してきたX線強度を18とす
る。この様な系においてA点の照射量がり。どなる様に
X線を照射するとA、B点の残膜率は夫々O1及び0.
4となり、初期膜厚として2μmネガレジストを塗布し
たとすると、B点には0.8μmのネガ型感光性被膜4
が残ることになる。この結果、元のBe膜3のX線透過
率を比較すると、A点は変化せずにB点のみ透過率か下
がることになり、X線透過率の不均性が緩和されること
になる。
Figure 3 shows the shape of the resist 4 coated on the surface of the Be film 3, where IA is the X-ray intensity that has passed through the top point A on the thickest Be film in the X-ray transmission area, and Let the point be B, and the intensity of the X-rays transmitted through this point be 18. In such a system, the irradiation amount at point A is high. When irradiated with X-rays, the remaining film rates at points A and B become O1 and 0.0, respectively.
4, and if a 2 μm negative resist is applied as the initial film thickness, a 0.8 μm negative photosensitive film 4 is applied at point B.
will remain. As a result, when comparing the X-ray transmittance of the original Be film 3, the transmittance at point A remains unchanged and the transmittance decreases only at point B, which alleviates the non-uniformity of the X-ray transmittance. .

このX線透過率の均一性を、例えば、10人のX線を照
射し、ネガレジスト(クロロメチル化ポリスチレン)を
2μm厚塗布した条件で計算した場合について下記に示
す。
The uniformity of this X-ray transmittance is shown below when calculated under the conditions that, for example, 10 people were irradiated with X-rays and a negative resist (chloromethylated polystyrene) was applied to a thickness of 2 μm.

先ず、厚さtμmのBc43を透過したX線強度工。(
t、)は、 ■o(t)=■o(0)exp(−μB、、−1)  
   ■で求められ、求めた結果を第4図中に工。で示
した。ここでμIleはBe膜の線吸収係数である。
First, the X-ray intensity was transmitted through Bc43 with a thickness of tμm. (
t,) is ■o(t)=■o(0)exp(-μB,,-1)
■The results are shown in Figure 4. It was shown in Here, μIle is the linear absorption coefficient of the Be film.

X線を照射すると裏面に塗布したネガレジストは、Be
膜3を透過してきたこのX線強度■。(1,)に応じて
感光する。最も厚いBe膜3(膜厚し。)を透過したX
線照射量がり。どなる様にX線照射量をあらかじめ設定
すれば、厚さtのBe膜3を透過した照射量D(t、)
は となり、■式から現像後に残るネガ型感光性被膜の膜厚
T Rh)は塗布した膜厚をT、とするとTJt)= 
0.434γ・T + jln−・(to−t)  ■
で表わせる。
When irradiated with X-rays, the negative resist coated on the back side becomes Be
This X-ray intensity that has passed through the membrane 3 is ■. (1,). X transmitted through the thickest Be film 3 (thickness)
Increased radiation dose. If the amount of X-ray irradiation is set in advance so that the amount of irradiation transmitted through the Be film 3 of thickness t is
From the equation (2), the thickness of the negative photosensitive film remaining after development T Rh) is TJt), where T is the applied film thickness.
0.434γ・T + jln-・(to-t) ■
It can be expressed as

この様にしてできたX線取り出し窓の透過率I、(t)
は、レジストの線吸収係数をμRとするとI + (t
l= I o(t) ’ exp(−u R−TR(t
))  ■となり、これをI、(10)  (マスク基
板10μmの位置の透過率)で規格すると第4図に示す
様になる。
Transmittance I, (t) of the X-ray extraction window created in this way
is I + (t
l= I o(t)' exp(-u R-TR(t
)) (2) If this is standardized by I, (10) (transmittance at a position of 10 μm on the mask substrate), the result will be as shown in FIG.

この結果、第4図中の■。とLを比較すれば透過するX
線強度が均一化されたことか明白である。
As a result, ■ in Figure 4. If you compare L with
It is clear that the line intensity has been made uniform.

しかしながら、第4図に示す様にまだ±10%以上透過
するX線強度にむらがある。そこで、上記の均一化工程
により出来たX線取り出し窓に再度均一化工程を繰り返
せば、透過X線強度は一層均一化される。従って、これ
を複数回繰り返すと、所望の値までX線強度を均一化す
ることが出来ることになる。
However, as shown in FIG. 4, there is still unevenness in the transmitted X-ray intensity by ±10% or more. Therefore, by repeating the homogenization process again on the X-ray extraction window created by the above-described homogenization process, the transmitted X-ray intensity can be made even more uniform. Therefore, by repeating this multiple times, the X-ray intensity can be made uniform to a desired value.

例えば、X線透過強度の均一性が±2%のX線取り出し
窓を得たいときは、Be膜3の平均の厚さをtv、最小
の膜厚をjm+。とするととなる様に、均一化工程を繰
り返す回数nを決定すればよい。
For example, when it is desired to obtain an X-ray extraction window with a uniformity of X-ray transmission intensity of ±2%, the average thickness of the Be film 3 is tv, and the minimum film thickness is jm+. The number n of repetitions of the equalization process may be determined so that

ここで■。(1)は、tμm厚のBe膜か均一化工程を
n回繰り返した後の同じ位置でのX線透過強度であり、
次式で表わせる。
Here ■. (1) is the X-ray transmission intensity at the same position after repeating the homogenization process n times for a t μm thick Be film,
It can be expressed by the following formula.

1、(t)= I oexp(−μBe・t)exp[1l−(1−k
)’)μga△L]■ここで△tとkは最大のBe膜厚
をt、とするとΔ1=1.1.−1、 k= 0.434・γ・T、μ3 である。従って■、0式から繰り返し回数nを求ぬると
、 となる。
1, (t) = I oexp(-μBe・t)exp[1l-(1-k
)') μga△L]■Here, △t and k are Δ1=1.1, assuming that the maximum Be film thickness is t. -1, k=0.434・γ・T, μ3. Therefore, if we calculate the number of repetitions n from equation 0, we get:

ここで膜厚to= 10±3μmのBe窓に、γ1.6
のネガレジストを2μm(=TI)塗布した場合を考え
ると0式よりn=9が導ける。
Here, on the Be window with a film thickness to = 10 ± 3 μm, γ1.6
Considering the case where a negative resist of 2 μm (=TI) is applied, n=9 can be derived from equation 0.

これを第4図中にI9として示した。Be膜厚]0±3
μmの範囲でX線透過強度は±2%以内の範囲に入って
いおり、透過X線の均一化が図られていることがわかる
This is shown as I9 in FIG. Be film thickness] 0±3
It can be seen that the transmitted X-ray intensity is within ±2% in the μm range, and that the transmitted X-rays are made uniform.

尚、本発明のX線取り出し窓の作製方法にお(づる均一
化工程でレジストを塗布する面は、複数回均一化工程を
繰り返す際に、同一の面に塗布する必要はなく工程毎に
塗布する面を変えてもよい。
In addition, in the method for producing an X-ray extraction window of the present invention, the surface to which the resist is applied in the uniformization process does not need to be coated on the same surface when the uniformization process is repeated multiple times, but can be applied in each process. You may change the side you play.

又、前述の説明では照射するX線を1.0人としである
が、Be窓上の位置によってX線の波長分布か異なる露
光装置、例えば、ミラー揺動のX線露光装置では露光に
用いるX線を用いて行ってもよい。その場合、例えば、
ミラー揺動のX線露光装置では第5図に示す様に同一高
さ、即ぢ同じ位置yにおいてBe窓の最も厚い点におけ
るX線照射量かり。どなる様にミラーの揺動速度を決定
すればよい。
In addition, in the above explanation, it is assumed that 1.0 persons are irradiated with X-rays, but in an exposure apparatus where the wavelength distribution of X-rays differs depending on the position on the Be window, for example, an X-ray exposure apparatus with a swinging mirror is used for exposure. It may also be performed using X-rays. In that case, for example,
As shown in FIG. 5, in an X-ray exposure device with a mirror swing, the amount of X-ray irradiation is determined at the thickest point of the Be window at the same height and at the same position y. All you have to do is determine the rocking speed of the mirror.

(発明の効果) 以上述べた様に本発明は、X線取り出し窓のBe膜の片
面にネガ型の感光性被膜を塗布し、その被膜の反対面か
らX線を照射した後、現像することでX線取り出し窓の
X線透過率の一様性が達成され、その結果、Be窓の厚
さが10±3μmと不均一な厚さで透過したX線強度に
±20%もむらのある場合でも、本発明の作成工程を施
すことでこのBe窓を透過するX線強度を±2%以内と
いう均なものと出来る。
(Effects of the Invention) As described above, the present invention involves coating a negative photosensitive film on one side of the Be film of the X-ray extraction window, irradiating X-rays from the opposite side of the film, and then developing the film. The uniformity of the X-ray transmittance of the X-ray extraction window was achieved by using the Be Even in this case, by applying the manufacturing process of the present invention, the intensity of X-rays transmitted through this Be window can be made uniform within ±2%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例であるX線取り出し窓
の作製工程を示した図である。 第2図は、ネガレジストの特性曲線を示した図である。 第3図は、第1図のX綿取り出し窓の一部分を示した図
である。 第4図は、本発明の作製工程や前後のX線強度を示す図
である。 第5図は、本発明をミラー揺動型のSR露光装置1 置に応用した図である。 第6図は、一般的なX線露光装置を示す図である。 1:X線取り出し窓 3:Be膜 11+SRリング 13:露光室 2:フランジ 4;感光性被膜 12:X線ミラー 14:真空隔壁 第 図 第2図 第3図 第4図
FIG. 1 is a diagram showing the manufacturing process of an X-ray extraction window according to a first embodiment of the present invention. FIG. 2 is a diagram showing a characteristic curve of a negative resist. FIG. 3 is a diagram showing a portion of the X cotton take-out window in FIG. 1. FIG. 4 is a diagram showing the manufacturing process of the present invention and the X-ray intensity before and after. FIG. 5 is a diagram in which the present invention is applied to a mirror-oscillating type SR exposure apparatus. FIG. 6 is a diagram showing a general X-ray exposure apparatus. 1: X-ray extraction window 3: Be film 11 + SR ring 13: Exposure chamber 2: Flange 4; Photosensitive coating 12: X-ray mirror 14: Vacuum partition Figure 2 Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)X線取り出し窓の片面に感光性の膜を塗布し、塗
布した面の反対側から露光用光線を照射後現像する均一
化工程を含むことを特徴とするX線取り出し窓の作製方
法。
(1) A method for producing an X-ray extraction window characterized by including a uniformization step of applying a photosensitive film to one side of the X-ray extraction window, irradiating an exposure light beam from the opposite side of the coated surface, and then developing it. .
(2)均一化工程を複数回繰り返す請求項1に記載のX
線取り出し窓の作製方法。
(2) X according to claim 1, wherein the homogenizing step is repeated multiple times.
How to make a wire extraction window.
(3)露光用光線がシンクロトロン放射光である請求項
1又は2に記載のX線取り出し窓の作製方法。
(3) The method for producing an X-ray extraction window according to claim 1 or 2, wherein the exposure light is synchrotron radiation.
(4)複数回繰り返す均一化工程の繰り返し工程の回数
nが、感光性樹脂のγ値を初期膜厚Ti、X線の線吸収
係数μ_RとX線マスク基板の平均の厚さt_V、最小
の厚さt_m_i_nとマスク基板の線吸収係数μ_W
によって n≧(ln0.02−ln{μ_M(t_V−t_m_
i_n)})/(ln(1−0.434×γ×Ti×μ
_R))である請求項2に記載のX線取り出し窓の作製
方法。
(4) The number of repetitions n of the homogenization process repeated multiple times determines the γ value of the photosensitive resin, the initial film thickness Ti, the linear absorption coefficient μ_R of X-rays, the average thickness t_V of the X-ray mask substrate, and the minimum Thickness t_m_i_n and linear absorption coefficient μ_W of mask substrate
Therefore, n≧(ln0.02−ln{μ_M(t_V−t_m_
i_n)})/(ln(1-0.434×γ×Ti×μ
_R)) The method for manufacturing an X-ray extraction window according to claim 2.
(5)請求項1乃至4項の工程によって作製されたX線
取り出し窓を有するX線露光装置。
(5) An X-ray exposure apparatus having an X-ray extraction window produced by the process according to any one of claims 1 to 4.
JP2125338A 1990-05-17 1990-05-17 Manufacturing of x-ray taking out window Pending JPH0421852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125338A JPH0421852A (en) 1990-05-17 1990-05-17 Manufacturing of x-ray taking out window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125338A JPH0421852A (en) 1990-05-17 1990-05-17 Manufacturing of x-ray taking out window

Publications (1)

Publication Number Publication Date
JPH0421852A true JPH0421852A (en) 1992-01-24

Family

ID=14907646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125338A Pending JPH0421852A (en) 1990-05-17 1990-05-17 Manufacturing of x-ray taking out window

Country Status (1)

Country Link
JP (1) JPH0421852A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237400A (en) * 1990-02-14 1991-10-23 Toshiba Corp Manufacture of x-ray window

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237400A (en) * 1990-02-14 1991-10-23 Toshiba Corp Manufacture of x-ray window

Similar Documents

Publication Publication Date Title
US4298803A (en) Process and apparatus for making fine-scale patterns
US6017658A (en) Lithographic mask and method for fabrication thereof
JP2751718B2 (en) Exposure mask
US4101782A (en) Process for making patterns in resist and for making ion absorption masks useful therewith
JPH0421852A (en) Manufacturing of x-ray taking out window
JP3918440B2 (en) Light irradiation device with illuminance distribution uniform filter
JPS58118641A (en) Radiation sensitive positive type resist for forming fine pattern
JPH0653106A (en) Formation of fine resist pattern
JPH04139717A (en) Manufacture of x-ray mask
JPH06105678B2 (en) Method for manufacturing semiconductor device
JP2617923B2 (en) Pattern formation method
JP3076646B2 (en) Focusing screen and method of manufacturing the matrix
JP2980397B2 (en) X-ray exposure equipment
JPS62267740A (en) Method for exposing resist
JPS5999720A (en) Forming method of resist image
JPS62144161A (en) Formation of resist pattern
SU1196796A1 (en) Method of forming relief image representation
JPH05136026A (en) Pattern forming method
JPH05217884A (en) Pattern forming method
JPH01243436A (en) Forming method for photo sensitive organic resin film
JPS5987454A (en) Formation of resist pattern
JPH0572579B2 (en)
JPS6066429A (en) Photoelectron image reduced projection type electron beam exposure method
KR0129124B1 (en) Method for treating a surface of photoresist
JPS59119354A (en) Exposing device for manufacturing elastic surface wave element