JPH04139717A - Manufacture of x-ray mask - Google Patents

Manufacture of x-ray mask

Info

Publication number
JPH04139717A
JPH04139717A JP2260618A JP26061890A JPH04139717A JP H04139717 A JPH04139717 A JP H04139717A JP 2260618 A JP2260618 A JP 2260618A JP 26061890 A JP26061890 A JP 26061890A JP H04139717 A JPH04139717 A JP H04139717A
Authority
JP
Japan
Prior art keywords
mask
substrate
ray
film
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2260618A
Other languages
Japanese (ja)
Inventor
Mitsuaki Amamiya
光陽 雨宮
Akira Miyake
明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2260618A priority Critical patent/JPH04139717A/en
Publication of JPH04139717A publication Critical patent/JPH04139717A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an excellent X-ray mask which can cope with a finely constituted integrated circuit by coating one surface of a mask for X-ray exposure mask with a negative photosensitive film and developing the photosensitive film after irradiating the film with X-rays from the surface of the mask on the opposite side of the film. CONSTITUTION:An X-ray mask substrate material 3 which is an X-ray transmissive material is deposited on an Si substrate 2 by a prescribed thickness by vapor deposition, etc. After a pattern 4 is formed on the mask substrate 3 by plating, etching, etc., the substrate 2 on the rear of the substrate 3 is removed by back etching so that a desired field angle can be obtained. After a negative photosensitive film 5 is formed on one surface of the substrate 3 by applying a negative resist, the film 5 is irradiated with X-rays 6 from the surface of the substrate 3 on the opposite side of the film 5, with the irradiation quantity being controlled to a suitable level. When the film 5 is developed, the film 5 does not remain where the substrate 3 is thick and remains as a thick film where the substrate 3 is thin. As a result, the intensity of the X-rays transmitted through this mask is made uniform since the total thickness of the substrate 3 and film 5 becomes uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線露光に用いるマスクの作製方法に関し、特
に、メンブレン膜厚の不均一等によるX線透過率の不均
一を改善したX線マスク作製方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a mask used for X-ray exposure, and in particular to an X-ray mask manufacturing method that improves the non-uniformity of X-ray transmittance due to non-uniformity of membrane thickness, etc. The present invention relates to a mask manufacturing method.

(従来技術と問題点) 近年、LSI、超LSI等、大容量の集積回路の微細化
に伴い、現像後のレジストの線巾の均一性が従来にも増
して厳しく要求される様になってきている。この現像後
のレジストの吸収パターン線巾の均一性を達成するため
には、露光用マスクの線巾の均一性は勿論、露光量の一
様性が重要となる。
(Prior art and problems) In recent years, with the miniaturization of large-capacity integrated circuits such as LSI and VLSI, uniformity of line width of resist after development has become more demanding than ever. ing. In order to achieve uniformity in the absorption pattern line width of the resist after development, not only the uniformity of the line width of the exposure mask but also the uniformity of the exposure amount are important.

一方、吸収体パターンの微細化に伴い可視光に代わり第
6図に示す様なX線露光を行うことが提案されている。
On the other hand, with the miniaturization of absorber patterns, it has been proposed to perform X-ray exposure as shown in FIG. 6 instead of visible light.

このX線露光方法は第6図に示す様に、レジスト7が塗
布されたシリコーンウェハ8上に近接されて置かれたn
光用マスク1を通して、X116を照射することでマス
ク基板3上のパターン4をシリコーンウェハ8上に転写
しようとするものである。この場合に、前述の露光量の
一様性を達成する為には、露光用マスクI上に照射され
るX線6の露光量を所定値に管理すると同時に、X線マ
スク基板3のX線透過率を一様にし、透過光6゛を一様
とする必要がある。
In this X-ray exposure method, as shown in FIG.
The pattern 4 on the mask substrate 3 is to be transferred onto the silicon wafer 8 by irradiating X116 through the optical mask 1. In this case, in order to achieve the uniformity of the exposure amount described above, it is necessary to control the exposure amount of the X-rays 6 irradiated onto the exposure mask I to a predetermined value, and at the same time It is necessary to make the transmittance uniform and the transmitted light 6° uniform.

ところで、この露光用Xllマスクの作製方法としては
、5olid 5tate Technol、、No9
.55f1976)に示されている様に、Si基板上に
5i=N4をN@した後、Si基板をパックエツチング
で除去する方法が一般的である。
By the way, as a method for manufacturing this Xll mask for exposure, 5solid 5tate Technology, No. 9
.. 55f1976), a common method is to remove 5i=N4 on a Si substrate and then remove the Si substrate by pack etching.

しかしながら、従来は、かかる作製工程において5is
N4を広い面積に渡って一様な膜厚で堆積させることは
非常に困難であり、±10%程度の膜厚むらが生じてし
まい、露光用Xl!マスク1を透過したX線6°の強度
にむらが発生し、現像後のレジスト7の線巾の均一性が
達成出来ないという問題があった。
However, conventionally, in this manufacturing process, 5is
It is extremely difficult to deposit N4 with a uniform thickness over a wide area, resulting in film thickness unevenness of about ±10%. There was a problem in that the intensity of X-rays transmitted through the mask 1 at 6° was uneven, and uniformity in the line width of the resist 7 after development could not be achieved.

従って、本発明の目的は、X線マスク基板3のX線透過
率を一様とする優れた特性のXIマスクを提供すること
にある。
Therefore, an object of the present invention is to provide an XI mask with excellent characteristics in which the X-ray transmittance of the X-ray mask substrate 3 is made uniform.

(問題点を解決するための手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

即ち、本発明は、X!!!露光用マスクの片面に感光性
の膜を塗布し、塗布した面の反対側から露光用光線を照
射後現像する均一化工程を含むことを特徴とするx&!
マスクの作製方法である。
That is, the present invention provides X! ! ! x&! characterized by including a uniformization step of applying a photosensitive film to one side of the exposure mask, irradiating the exposure light from the opposite side to the applied side, and then developing.
This is a method for making a mask.

(作 用) 本発明によれば、X線露光用マスクの片面にネガ型の感
光性被膜を形成し、その被膜の反対面からn光用光線を
照射した後現像することで、マスク基板のX線透過率の
一様性が達成され、この結果、シリコーンウェハ8上の
レジスト7に転写されるパターン4の線巾が均一となる
(Function) According to the present invention, a negative photosensitive coating is formed on one side of an X-ray exposure mask, and the coating is irradiated with an n-ray beam from the opposite side and then developed, thereby forming a mask substrate. Uniformity of X-ray transmittance is achieved, and as a result, the line width of the pattern 4 transferred to the resist 7 on the silicone wafer 8 becomes uniform.

(実施例) 次に、図面に示す実施例を参照して本発明を更に詳細に
説明する。
(Example) Next, the present invention will be described in further detail with reference to examples shown in the drawings.

第1図及び第3図は、本発明の実施例であるX線マスク
の作製方法の各工程を示した図である。
FIGS. 1 and 3 are diagrams showing each step of a method for manufacturing an X-ray mask according to an embodiment of the present invention.

第1図(a)に示す様に、まず、Si基板2上にX線透
過性材料である5jsN<等のX線マスク基板材料3を
所定の厚さだけ蒸着等で堆積させる。
As shown in FIG. 1(a), first, an X-ray mask substrate material 3 such as 5jsN, which is an X-ray transparent material, is deposited on a Si substrate 2 to a predetermined thickness by vapor deposition or the like.

次に第1図(b)に示す様に、マスク基板3上にメツキ
、エツチング等の工程によりパターン4を形成した後、
裏面のSi基板2をバックエツチングにより、所望の画
角が得られる様に除去する(第1図(c))、ここまで
の工程は従来行われているX線マスクの作製方法と同様
である。
Next, as shown in FIG. 1(b), after forming a pattern 4 on the mask substrate 3 through processes such as plating and etching,
The Si substrate 2 on the back side is removed by back etching to obtain the desired angle of view (Fig. 1(c)). The steps up to this point are the same as the conventional method of manufacturing an X-ray mask. .

次に第1図(d)に示す様に、X線マスク基板3の片面
にネガレジストを塗布してネガ型感光性被膜5を形成後
、その被膜5の反対面からX線6を照射する。この時、
X線の照射量を適当な量、例えば、最も厚いX線マスク
基板3の位置の照射量を、ネガ型感光性被膜が残り始め
る照射量り。
Next, as shown in FIG. 1(d), a negative resist is applied to one side of the X-ray mask substrate 3 to form a negative photosensitive film 5, and then X-rays 6 are irradiated from the opposite side of the film 5. . At this time,
The amount of X-ray irradiation is set to an appropriate amount, for example, the amount of irradiation at the position of the thickest X-ray mask substrate 3 is set to the amount at which the negative photosensitive film begins to remain.

どなる様に設定する。Set it so that it roars.

その後これを現像すると第1図(e)に示す様に、X線
マスク基板3の厚い位置では殆どネガ型感光性被膜5が
残らず、X線マスク基板3が薄い位置では逆に厚(ネガ
型感光性被膜5が残ることになり、この結果、X線マス
ク基板3とネガ型感光性被膜5との合計の厚さが全体に
一様となるので、X線の透過する強度が均一化されるこ
とになる。
When this is then developed, as shown in FIG. The type photosensitive film 5 remains, and as a result, the total thickness of the X-ray mask substrate 3 and the negative type photosensitive film 5 becomes uniform throughout, so the intensity of X-ray transmission becomes uniform. will be done.

次に、以上の現象を第2図と第3図を参照して更に詳細
に説明する。
Next, the above phenomenon will be explained in more detail with reference to FIGS. 2 and 3.

第2図はネガレジスト(クロロメチル化ポリスチレン)
の特性曲線を示すもので、縦軸に規格化残膜率T、横軸
にX線照射量を示した。照射量は、ネガ型感光性被膜5
が残り始める照射量D0を1として規格化しである。
Figure 2 is negative resist (chloromethylated polystyrene)
The vertical axis shows the normalized residual film rate T, and the horizontal axis shows the amount of X-ray irradiation. The irradiation amount is negative photosensitive coating 5
It is normalized by setting the irradiation dose D0 at which the amount of radiation begins to remain as 1.

この特性曲線は照射量D0〜2D、の範囲内でT=yl
og D= 1 、61og D    ■で表される
式でよ(近似できる。
This characteristic curve is T=yl within the range of irradiation D0 to 2D.
og D= 1, 61og D (can be approximated).

第3図はXIIマスク基板3の表面にレジストを塗布し
た形状を示したものであり、X線透過領域の最も厚いマ
スク基板3上の点Aを透過してきたX線強度な工、とじ
、最も薄い点をBとして、この点を透過してきたX線強
度を1.とする、この様な系においてA点の照射量がD
oとなる様にXA、’B点の残膜率は夫々0、及び0.
4となり、初期膜厚として2μmネガレジストを塗布し
たとすると、B点には0.8umのネガ型感光性被膜5
が残ることになる。この結果、もとのX線マスク基板3
のX線透過率を比較すると、A点は変化せずにB点のみ
透過率が下がることになり、X線透過率の不均一性が緩
和されることになる。
Figure 3 shows the shape of the resist coated on the surface of the XII mask substrate 3. Assuming that the thin point is B, the X-ray intensity that has passed through this point is 1. In such a system, the irradiation amount at point A is D
The remaining film rates at points XA and 'B are 0 and 0.
4, and if a 2 μm negative resist is applied as the initial film thickness, a 0.8 μm negative photosensitive film 5 is applied to point B.
will remain. As a result, the original X-ray mask substrate 3
Comparing the X-ray transmittances of , it is found that the transmittance at point B decreases without changing at point A, and the non-uniformity of the X-ray transmittance is alleviated.

このX線透過率の均一性を、例えば、10人のXMを照
射し、ネガレジスト(クロロメチル化ポリスチレン)を
2μmFJ塗布した条件で計算した場合について下記に
示す。
The uniformity of this X-ray transmittance is shown below when calculated under the conditions that, for example, 10 people were irradiated with XM and a negative resist (chloromethylated polystyrene) was applied at 2 μm FJ.

まず、厚さtμmの5iJ4のX線マスク基板3を透過
したX線強度工。(1)は、 I a(t)= I o(0)・exp(−gy −t
)     ■で求められ、求めた結果を第4図中にI
。で示した。ここでμ2は5ixN4の線吸収係数であ
る。
First, the X-ray intensity was transmitted through an X-ray mask substrate 3 of 5iJ4 with a thickness of t μm. (1) is I a(t)=I o(0)・exp(−gy −t
) and the obtained results are shown in Figure 4.
. It was shown in Here, μ2 is the linear absorption coefficient of 5ixN4.

X線を照射すると裏面に塗布したネガレジストは、X線
マスク基板3を透過してきたこのX線強度Io(tlに
応じて感光する。最も厚いX線マスク基板3(膜厚to
)を透過したX線照射量がり。どなる様にX線照射量を
あらかじめ設定すれば、厚さtのマスク基板3を透過し
た照射量D (t)はとなり、■式から現像後に残るネ
ガ型感光性被膜の膜厚T*(t)は塗布した膜厚をT、
とするとTl1(t)= 0.434・γ・T1μ工・
(tO−t)  ■で表わせる。
When X-rays are irradiated, the negative resist coated on the back side becomes exposed depending on the X-ray intensity Io (tl) transmitted through the X-ray mask substrate 3.The thickest X-ray mask substrate 3 (film thickness to
) The amount of X-ray irradiation transmitted through If the amount of X-ray irradiation is set in advance to ) is the applied film thickness T,
Then, Tl1(t) = 0.434・γ・T1μ・
It can be expressed as (tO-t).

この様にしてできたX線取り出し窓の透過率1t(t)
は、レジストの線吸収係数なμ7とするとIt(t)=
 Io(t) −exp(−μs ・”r+t(t))
  ■となり、これをI、(2)(マスク基板2μmの
位置の透過率)で規格すると第4図に示す様になる。
The transmittance of the X-ray extraction window made in this way is 1t (t)
is the linear absorption coefficient of the resist μ7, then It(t)=
Io(t) −exp(−μs ・”r+t(t))
(2) If this is standardized by I, (2) (transmittance at a position of 2 μm on the mask substrate), the result will be as shown in FIG. 4.

この結果、第4図中のIoと11を比較すれば透過する
X線強度が均一化されたことが明白である。
As a result, by comparing Io and 11 in FIG. 4, it is clear that the transmitted X-ray intensity has been made uniform.

しかしながら、第4図に示す様にまだ±7%以上透過す
るX線強度にむらがある。そこで、上記の均一化工程に
より出来たX線取り出し窓に再度均一化工程を繰り返せ
ば、透過X線強度は一層均一化される。従って、これを
複数回繰り返すと、所望の値までX線強度を均一化する
ことが出来ることになる。
However, as shown in FIG. 4, there is still unevenness in the transmitted X-ray intensity by ±7% or more. Therefore, by repeating the homogenization process again on the X-ray extraction window created by the above-described homogenization process, the transmitted X-ray intensity can be made even more uniform. Therefore, by repeating this multiple times, the X-ray intensity can be made uniform to a desired value.

例えば、X線透過強度の均一性が±2%のマスク基板を
得たいときは、マスク基板3の平均の厚さをtV、最小
の膜厚をtloとするととなる様に、均一化工程を繰り
返す回数nを決定すればよい。
For example, if you want to obtain a mask substrate with a uniformity of X-ray transmission intensity of ±2%, the uniformization process is performed so that the average thickness of the mask substrate 3 is tV and the minimum film thickness is tlo. What is necessary is to determine the number of repetitions n.

ここで1.、(t)は、tum厚のX線マスク基板が均
一化工程をn回繰り返した後の同じ位置でのX線透過強
度であり、次式で表わせる。
Here 1. , (t) is the X-ray transmission intensity at the same position after the tum-thick X-ray mask substrate repeats the uniformization process n times, and can be expressed by the following equation.

ha(t)= I o・exp(−μmt)exp[−(1−(1−k
)lll uuΔt]■ここでΔtとkは最大のX線マ
スク基板厚をtIII+とすると △1=111.−1、 k=0.434  ・γ・TI  LL+tである。従
って■、0式から繰り返し回数nを求めると、 となる。
ha(t)=Io・exp(-μmt)exp[-(1-(1-k
) lll uuΔt]■Here, Δt and k are Δ1=111, assuming that the maximum X-ray mask substrate thickness is tIII+. -1, k=0.434 ・γ・TI LL+t. Therefore, if we calculate the number of repetitions n from formula 0, we get:

ここで膜厚t0=2±0.2pmのXllマスク基板に
、γ=1.6のネガレジストを2μm(=T1)塗布し
た場合を考えると0式よりn=6が導ける。
Here, if we consider the case where 2 μm (=T1) of negative resist with γ=1.6 is coated on an Xll mask substrate with a film thickness t0=2±0.2 pm, n=6 can be derived from equation 0.

これを第4図中に■6として示した。マスク基板の膜厚
2±0.2μmの範囲でX線透過強度は±2%以内の範
囲に入っていおり、透過X線の均一化が図られているこ
とがわかる。
This is shown as ■6 in FIG. It can be seen that the transmitted X-ray intensity is within ±2% in the range of the film thickness of the mask substrate of 2±0.2 μm, and that the uniformity of the transmitted X-rays is achieved.

尚、本発明のX線マスクの作製方法における均一化工程
でレジストを塗布する面は、パターン4の反対側である
必要は必ずしもな(、パターン4の面に塗布しても良い
し、複数回均一化工程を繰り返す場合には交互に行って
もよい、更に、St基板上に5idLを蒸着後パターン
4の作製前にSL基板をバックエツチングする場合にお
いては、パターン4の作製前に本発明の均一化工程を行
ってもよい。
It should be noted that the surface on which the resist is applied in the uniformization step in the method of manufacturing an X-ray mask of the present invention does not necessarily have to be the opposite side of the pattern 4 (it may be applied on the surface of the pattern 4, or the resist may be applied multiple times). When the uniformization process is repeated, it may be performed alternately.Furthermore, when the SL substrate is back-etched after evaporating 5idL on the St substrate and before the fabrication of the pattern 4, the process of the present invention may be performed before the fabrication of the pattern 4. A homogenization step may also be performed.

又、露光位置によってX線の波長分布が異なる露光装置
、例えば、ミラー揺動のX線露光装置では露光に用いる
X線を用いて上記の均一化工程を行ってもよい。その場
合は第5図に示す様に、同一高さ即ち同じ位置において
、X線マスク基板3の最も厚い点におけるXl!照射量
がDoとなる様にミラー11の揺動速度を決定すればよ
い。
Further, in an exposure apparatus in which the wavelength distribution of X-rays differs depending on the exposure position, for example, an X-ray exposure apparatus with a swinging mirror, the above-described uniformization process may be performed using the X-rays used for exposure. In that case, as shown in FIG. 5, at the same height, that is, at the same position, Xl! at the thickest point of the X-ray mask substrate 3! The swinging speed of the mirror 11 may be determined so that the irradiation amount becomes Do.

(発明の効果) 以上述べた様に本発明は、X線露光用マスクの片面にネ
ガ型の感光性被膜を塗布し、その被膜の反対面からX線
を照射した後、現像することでマスク基板のX線透過率
の一様性が達成され、現像後のレジストの線巾が均一と
なり、集積回路の微細化に対処し得る優れたX線マスク
を得られる。
(Effects of the Invention) As described above, the present invention applies a negative photosensitive coating to one side of an X-ray exposure mask, irradiates X-rays from the opposite side of the coating, and then develops the mask. Uniform X-ray transmittance of the substrate is achieved, the line width of the resist after development is uniform, and an excellent X-ray mask that can cope with miniaturization of integrated circuits can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は、本発明の実施例であるX線マスク
の作製工程を示した図である。 第2図は、本発明で使用するネガ型の感光性被膜の特性
を示した図である。 第4図は、本発明の作製方法の均一化工程前後の透過X
線強度の一様性を示した図である。 第5図は、シンクロトロン放射光を露光光線に利用する
露光装置に本発明を応用した図である。 第6図は、従来のX線露光によるX線マスクを示した図
である。 マスク SL基板等で構成されるフレーム マスク基板    4:パターン ネガ型感光性被膜 6:X線 レジスト     8:シリコーンウエハSRリング 
  11:X線ミラー 第 図 第2図 DOSE[DO] 第3図 1゜ 第4図 第5図 第6図
FIGS. 1 and 3 are diagrams showing the manufacturing process of an X-ray mask according to an embodiment of the present invention. FIG. 2 is a diagram showing the characteristics of the negative photosensitive coating used in the present invention. Figure 4 shows the transmitted X before and after the uniformization process of the manufacturing method of the present invention.
It is a figure showing the uniformity of line intensity. FIG. 5 is a diagram in which the present invention is applied to an exposure apparatus that uses synchrotron radiation as an exposure beam. FIG. 6 is a diagram showing an X-ray mask for conventional X-ray exposure. Frame mask substrate composed of mask SL substrate etc. 4: Patterned negative photosensitive coating 6: X-ray resist 8: Silicone wafer SR ring
11: X-ray mirror Figure 2 DOSE [DO] Figure 3 1゜ Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)X線露光用マスクの片面に感光性の膜を塗布し、
塗布した面の反対側から露光用光線を照射後現像する均
一化工程を含むことを特徴とするX線マスクの作製方法
(1) Coat a photosensitive film on one side of the X-ray exposure mask,
1. A method for producing an X-ray mask, comprising a uniformizing step of irradiating an exposure light beam from the opposite side to the coated surface and then developing.
(2)均一化工程を複数回繰り返す請求項1に記載のX
線マスクの作製方法。
(2) X according to claim 1, wherein the homogenizing step is repeated multiple times.
How to make a line mask.
(3)露光用光線がシンクロトロン放射光である請求項
1及び2に記載のX線マスクの作製方法。
(3) The method for producing an X-ray mask according to Claims 1 and 2, wherein the exposure light is synchrotron radiation.
(4)複数回繰り返す均一化工程の繰り返し工程の回数
nが、感光性樹脂のγ値を初期膜厚Ti、X線の線吸収
係数μ_RとX線マスク基板の平均の厚さt_V、最小
の厚さt_m_i_nとマスク基板の線吸収係数μ_M
によって n≧[ln0.02−ln{μ_M(t_V−t_m_
i_n)}]/{ln(1−0.434×γ×Ti×μ
_R)}である請求項2に記載のX線マスクの作製方法
(4) The number of repetitions n of the homogenization process repeated multiple times determines the γ value of the photosensitive resin, the initial film thickness Ti, the linear absorption coefficient μ_R of X-rays, the average thickness t_V of the X-ray mask substrate, and the minimum Thickness t_m_i_n and linear absorption coefficient μ_M of mask substrate
Therefore, n≧[ln0.02−ln{μ_M(t_V−t_m_
i_n)}/{ln(1-0.434×γ×Ti×μ
_R)}. The method for producing an X-ray mask according to claim 2.
JP2260618A 1990-10-01 1990-10-01 Manufacture of x-ray mask Pending JPH04139717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260618A JPH04139717A (en) 1990-10-01 1990-10-01 Manufacture of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260618A JPH04139717A (en) 1990-10-01 1990-10-01 Manufacture of x-ray mask

Publications (1)

Publication Number Publication Date
JPH04139717A true JPH04139717A (en) 1992-05-13

Family

ID=17350430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260618A Pending JPH04139717A (en) 1990-10-01 1990-10-01 Manufacture of x-ray mask

Country Status (1)

Country Link
JP (1) JPH04139717A (en)

Similar Documents

Publication Publication Date Title
JP2002525652A (en) How to use the adjustment exposure mask
JP3918440B2 (en) Light irradiation device with illuminance distribution uniform filter
JPH04139717A (en) Manufacture of x-ray mask
US5543252A (en) Method for manufacturing exposure mask and the exposure mask
JPH07106224A (en) Pattern forming method
JPH0421852A (en) Manufacturing of x-ray taking out window
JP3518497B2 (en) Photomask for exposure
JPH06105678B2 (en) Method for manufacturing semiconductor device
JP3076646B2 (en) Focusing screen and method of manufacturing the matrix
JPS62267740A (en) Method for exposing resist
JP2617923B2 (en) Pattern formation method
JPH01243436A (en) Forming method for photo sensitive organic resin film
JP3179127B2 (en) Pattern formation method
JPH0527413A (en) Photomask for exposing device
JPH0213781B2 (en)
JPH01239928A (en) Formation of pattern
TW495851B (en) Photo-lithographic method for semiconductors
JP2004077771A (en) Diffraction grating mask
JPH07209850A (en) Formation of resist pattern
JPH09190963A (en) Mask, and device production method using this, and exposure device
JPH02199401A (en) Production of diffraction grating
KR920002025B1 (en) Photo-resister hardening method using ultraviolet rays
JPS6043655A (en) Formation of resist pattern
JPS622536A (en) Mask for electron beam exposing device and manufacture thereof
JPS62144161A (en) Formation of resist pattern