JPS6399526A - Method for compensating proximity effect of electron beam - Google Patents

Method for compensating proximity effect of electron beam

Info

Publication number
JPS6399526A
JPS6399526A JP62254528A JP25452887A JPS6399526A JP S6399526 A JPS6399526 A JP S6399526A JP 62254528 A JP62254528 A JP 62254528A JP 25452887 A JP25452887 A JP 25452887A JP S6399526 A JPS6399526 A JP S6399526A
Authority
JP
Japan
Prior art keywords
irradiated
reactive layer
reactive
irradiation
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254528A
Other languages
Japanese (ja)
Other versions
JP2546690B2 (en
Inventor
Riu Fuayuu
フアユウ・リウ
Dei Riu Enden
エンデン・デイ・リウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Publication of JPS6399526A publication Critical patent/JPS6399526A/en
Application granted granted Critical
Publication of JP2546690B2 publication Critical patent/JP2546690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Abstract

PURPOSE:To compensate for a proximity effect, by irradiating each part of a reactive layer, which is formed by drying a reactive material that is attached to a substrate, with an E beam, and thereafter burning the reactive layer. CONSTITUTION:A liquid reactive material is poured on an upper surface 12 of a substrate 14. Then a reactive layer 10 is formed by treatment using a suitable method such as burning. The surface of the reactive layer 10 is scanned so as to cross the surface with an E beam lithography. Irradiated parts 22a-22e have different widths by back scattered electrons even if energies projected from E beams 16a-16e are at the same energy level. After the irradiation, burning is performed. Then, the irradiated parts 22a-22e have the approximately same width of, and non-irradiated parts 24-34 have the approximately the same width Sf. This is because molecules are moved from the non-irradiated parts 24-34 to the irradiated parts 22a-22e caused by the burning after the irradiation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は一般的には集積回路製造方法に関し、特に電子
ビームの近接効果を補償する方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates generally to integrated circuit manufacturing methods, and more particularly to methods for compensating for electron beam proximity effects.

〔従来技術およびその問題点〕[Prior art and its problems]

数百または数千の個々の素子を含む集積回路は、通常シ
リコン・ウェー7アのような半導体基板上に形成される
。集積回路を製造するためには、パターン形成された半
導体、絶縁体、導体の材料の層が所望回路が完成するま
で基板表面上に連続的に与えられる。
Integrated circuits containing hundreds or thousands of individual devices are typically formed on semiconductor substrates, such as silicon wafers. To manufacture integrated circuits, successive layers of patterned semiconductor, insulator, and conductor materials are applied onto a substrate surface until the desired circuit is completed.

集積回路の1つの層をパターン形成する典型的な方法は
、基板の上面に反応性材料を付加し、その反応性材料を
放射性エネルギ源に露出し、その反応性材料を現像して
基板表面上に”マスク”を形成するものである。その層
はマスクを介してパターン形成され、その後マスクは除
去される。マスクを形成するプロセスはしばしばリソグ
ラフィと呼ばれる。
A typical method of patterning one layer of an integrated circuit is to add a reactive material to the top surface of the substrate, expose the reactive material to a source of radioactive energy, and develop the reactive material to form a layer on the substrate surface. It forms a “mask” on the surface. The layer is patterned through a mask, and then the mask is removed. The process of forming masks is often called lithography.

たいてい、反応性材料が露出される放射性エネルギは可
視または紫外線領域の電磁放射であシ、反応性材料はフ
ォトレジストであシ、そのプロセスはフォトリングラフ
ィと呼ばれる。しかし、収積回路の寸法が減少するにつ
れて、可視光または紫外線光の比較的長い波長がマスク
の解像度の限定要素となる。結局のところ、短かい波長
の放射エネルギを用いて反応性層を露出することに大き
な関心が存在する。リソグラフィにおいて期待が持たれ
る放射エネルギには電子ビーム(Eビーム)が含まれる
Often, the radioactive energy to which the reactive material is exposed is electromagnetic radiation in the visible or ultraviolet range, the reactive material is a photoresist, and the process is called photolithography. However, as the dimensions of integrated circuits decrease, the relatively long wavelengths of visible or ultraviolet light become a limiting factor in mask resolution. Ultimately, there is great interest in exposing reactive layers using short wavelength radiant energy. Radiant energy that holds promise in lithography includes electron beams (E-beams).

Eビーム・リングラフィ法は秀れた解像度を与えること
ができるけれども、この方法にも問題や欠点がある。E
ビーム・リソグラフィに関連した大きな問題は”近接効
果”と呼ばれるものであム簡単にいうと、Eビーム近接
効果は、Eビームが反応性層、下方層および基板にぶつ
かるときの電子の後方散乱によって生じる。後方散乱の
ために反応性層の各部の有効露出が増大し、構造の寸法
がバラつく。Eビーム近接効果は、大きく分離された形
状では特に厄介ということはないが、格子パターンのよ
うな密集構造の寸法は太きくずれることがある。
Although E-beam phosphorography can provide excellent resolution, this method also has problems and drawbacks. E
A major problem associated with beam lithography is called the "proximity effect." Simply put, the E-beam proximity effect is caused by the backscatter of electrons when the E-beam hits reactive layers, underlying layers, and the substrate. arise. Backscattering increases the effective exposure of each part of the reactive layer and causes variations in the dimensions of the structure. Although E-beam proximity effects are not particularly troublesome for widely separated features, the dimensions of dense structures such as grating patterns can be severely distorted.

Eビーム近接効果に対しては多くの補償方法が提案され
ている。その1つは、Owen他によシ” Proxi
mity Effect Correction fo
r ElectronBeam Lithograph
y by EQualizatior+ ofBack
ground Dose”、 Journal of 
Appl 1edPhysics、 Vol、54.N
o、6 June、1983において提案される。[ゴ
ース) (ghost)Jと命名されているOwen他
の補償法は、まず従来の方法で像領域を照射し、次に、
低い線量(dose)のピントの外れたビームでフィー
ルド領域を照射し後方散乱の電子エネルギを補償するも
のである。その結果、像領域は皆同じレベルのエネルギ
を受け、またフィールド内の背景エネルギ(backg
round energy)は等しくされる。しかし、
ゴースト法は付加的なフィールド照射が必要で、イメー
ジ・コントラストが低くなる。
Many compensation methods have been proposed for the E-beam proximity effect. One of them is Owen et al.
Mity Effect Correction for
r ElectronBeam Lithograph
y by EQUALIZATION+ ofBack
Ground Dose”, Journal of
Appl 1ed Physics, Vol, 54. N
o, 6 June, 1983. Owen et al.'s compensation method, named ghost J, first illuminates the image area in a conventional manner and then
It illuminates the field area with a low dose, out-of-focus beam to compensate for backscattered electron energy. As a result, the image areas all receive the same level of energy and the background energy within the field.
round energy) are made equal. but,
Ghost methods require additional field illumination and result in lower image contrast.

近接効果は、各細分された形状毎に照射線量を調整した
シ、設計パターンの寸法を調整したシすル等、いくつか
の他の方法によっても補償できる。
Proximity effects can also be compensated for by several other methods, such as adjusting the exposure dose for each subdivision, or adjusting the dimensions of the design pattern.

Journal  of Applied Physi
cs、Vol、50+No、6P、4371(1979
)においてParkahは前者の方法を教示し、Ele
ctron and Ion Beam 5cienc
eand Technology、 Blectroc
hemical 5ociety(1978)は後者の
方法を教示している。残念ながら、両方法とも、局所照
射線量、および隣接している構造、空間の寸法、形状、
配置のような要因について、コンピュータや人手による
大量の計算が必要である。
Journal of Applied Physi
cs, Vol, 50+No, 6P, 4371 (1979
Parkah taught the former method in ), and Ele
ctron and Ion Beam 5cienc
eand Technology, Blectroc
Chemical Society (1978) teaches the latter method. Unfortunately, both methods limit the local radiation dose and the size, shape, and shape of adjacent structures and spaces.
Factors such as placement require a large amount of calculation by computer or by hand.

〔発明の目的〕[Purpose of the invention]

本発明の目的はEビーム近接効果を補償する簡単で、経
済的な方法を提供することである。
It is an object of the present invention to provide a simple and economical method of compensating for E-beam proximity effects.

〔発明の概要〕[Summary of the invention]

本発明の一実施例によれば、基板に反応性材料を付加し
、反応性材料を乾燥して反応性層を形成し、反応性層の
各部をIn’−ムで照射し、反応性層を焼いて(bak
e)反応性層の非照射部分(unexposed po
rtion )から照射部分(exposedport
ion)への分子移動を生じさせ、反応性層を現像する
。照射後に焼くことによって生じた分子移動はEビーム
近接効果を補償する傾向を持つ。
According to one embodiment of the present invention, a reactive material is added to a substrate, the reactive material is dried to form a reactive layer, and portions of the reactive layer are irradiated with In'-me. Baked (bak)
e) unexposed parts of the reactive layer
(rtion) to the exposed portion (exposedport
ion) and develop the reactive layer. Molecular movement caused by post-irradiation baking tends to compensate for E-beam proximity effects.

本発明の方法の利点はその簡単さにある。厄介なEビー
ム近接効果は反応性材料を適当に選択し、照射後に焼く
ことによって補償できる。
The advantage of the method of the invention is its simplicity. Troublesome E-beam proximity effects can be compensated for by appropriate selection of reactive materials and baking after irradiation.

本発明の方法の別の利点は、解像度の損失なしに完全に
補償できることである。
Another advantage of the method of the invention is that it can be fully compensated without loss of resolution.

本発明のこれらの、および他の目的、利点は、次の説明
を読み、各図面を検討することによって当業者に明らか
になるだろう。
These and other objects and advantages of the present invention will become apparent to those skilled in the art from reading the following description and studying the drawings.

〔実施例の説明〕[Explanation of Examples]

第2図において、反応性層10が半導体基板14の上表
面12上に形成される。通常は、反応性層10は、基板
14を高速度で回転させながら上表面12に液体の反応
性材料(たとえばフォトレジスト)を注ぎ、次に、オー
プン内で半導体基板14を焼くような適当な方法を用い
て反応性材料を処置(cure)することによって形成
される。フォトレジストを半導体基板14に塗付する方
法は当業者に周知である。反応性層10は、半導体基板
14上に形成される他の層の上にも形成できることに注
意すべきである。
In FIG. 2, a reactive layer 10 is formed on top surface 12 of semiconductor substrate 14. In FIG. Typically, reactive layer 10 is formed by a suitable method such as pouring a liquid reactive material (e.g., photoresist) onto top surface 12 while rotating substrate 14 at high speed and then baking semiconductor substrate 14 in an open space. It is formed by curing a reactive material using a method. Methods of applying photoresist to semiconductor substrate 14 are well known to those skilled in the art. It should be noted that reactive layer 10 can also be formed over other layers formed on semiconductor substrate 14.

線16a、 16b、 16c、 16dおよび16e
は、Eビーム・リソグラフィ装置によって反応性層10
0表面を横切って走査するときのEビームを表わす。E
ビーム線16cが走行する径路18cは反応性層10を
通過し、半導体基板14に入る。他のEビーム線も同様
に反応性層10および半導体基板14に入る。Eビーム
が反応性層10内および半導体基板14の結晶構造内の
原子と衝突するとき、ある割合の電子が、破線20cに
よって示されるように反応性層10に後方散乱される。
Lines 16a, 16b, 16c, 16d and 16e
The reactive layer 10 is formed by an E-beam lithography apparatus.
0 represents the E-beam as it scans across the 0 surface. E
A path 18c along which beam ray 16c travels passes through reactive layer 10 and enters semiconductor substrate 14. Other E-beam rays similarly enter reactive layer 10 and semiconductor substrate 14. When the E-beam collides with atoms within reactive layer 10 and within the crystal structure of semiconductor substrate 14, a percentage of electrons are backscattered into reactive layer 10, as shown by dashed line 20c.

これらの後方散乱電子が上記Eビーム近接効果の主たる
原因である。
These backscattered electrons are the main cause of the E-beam proximity effect.

第1a図では、照射部分22a、22b、2.2c。In FIG. 1a, the illuminated portions 22a, 22b, 2.2c.

22dおよび22eは、それらに対応するEビーム線1
6a〜16eからの照射エネルギが同じエネルギ・レベ
ルであったとしても異なった幅になることがわかる。す
なわち、中央の照射部分22cは幅W1を有し、2つの
照射部分22b、22dはより小さな幅W2を有し、外
側の照射部分22a、22eはさらに小さな幅W3を有
する。そこで、照射部分22a〜22e間の非照射部分
24.26.28および30も幅が変わる。たとえば、
非照射部分26および28は幅S1を有し、非照射部分
24.30は幅S2を有する。非照射部分32.34は
照射部分22a〜22e  によって形成される格子パ
ターン36を囲む周辺領域である。
22d and 22e are the corresponding E beam lines 1
It can be seen that even though the irradiation energies from 6a to 16e have the same energy level, they have different widths. That is, the central illuminated portion 22c has a width W1, the two illuminated portions 22b, 22d have a smaller width W2, and the outer illuminated portions 22a, 22e have an even smaller width W3. Therefore, the non-irradiated portions 24, 26, 28 and 30 between the irradiated portions 22a to 22e also change in width. for example,
The non-illuminated portions 26 and 28 have a width S1 and the non-irradiated portion 24.30 has a width S2. The non-irradiated portions 32,34 are peripheral areas surrounding the grating pattern 36 formed by the illuminated portions 22a-22e.

照射部分22cが最大幅を持つ理由は、他の照射部分よ
りも多くの後方散乱電子、したがって多くの背景エネル
ギ(background energy)を受けるか
らである。同様に、照射部分22bおよび22dはそれ
らが多くの後方散乱背景エネルギを受けるから照射部分
22aおよび22eより幅広くなム一般的にいうと、格
子パターンの中央に近い照射部分は、格子パターンの端
部に近い照射部分は、両者が受けた直接露出エネルギの
量が同じであっても、よシ大きくなる。
The reason the illuminated portion 22c has the largest width is that it receives more backscattered electrons and therefore more background energy than other illuminated portions. Similarly, illuminated portions 22b and 22d are wider than illuminated portions 22a and 22e because they receive more backscattered background energy.Generally speaking, illuminated portions closer to the center of the grating pattern The illuminated area closer to will be larger, even though they both received the same amount of direct exposure energy.

第1b図には、照射してから焼いた後の照射部分22a
〜22eが示されている。図面から判るように、照射部
分22a〜22eはほは同じ幅Wfを有し、非照射部分
24〜30はほぼ同じ幅8fを有する。これは、照射後
に焼くことによって生じた、非照射部分24〜34から
照射部分22a〜22eへの分子移動のためである。
FIG. 1b shows the irradiated area 22a after irradiation and baking.
~22e are shown. As can be seen from the drawings, the illuminated portions 22a-22e have substantially the same width Wf, and the non-irradiated portions 24-30 have approximately the same width 8f. This is due to the movement of molecules from the non-irradiated parts 24-34 to the irradiated parts 22a-22e caused by baking after irradiation.

照射部分22aおよび22eは、それらがより多くの非
照射部分によって囲まれており、したがって移動可能な
分子のより大きな供給源に隣接するから、これら以外の
照射部分よシも余計に成長する。同様に、照射部分22
bおよび22dは、照射部分22cよシも多くの非照射
部分によって囲まれているから照射部分22cよりも余
計に成長する。したがって、一般的にいうと、照射後に
焼くことによって生じた分子移動のために、格子パター
ン36の端部に近い照射部分は格子パターンの中心に近
い照射部分よりも多く成長する。
The irradiated portions 22a and 22e also grow more than the other irradiated portions because they are surrounded by more non-irradiated portions and are therefore adjacent to a larger source of mobile molecules. Similarly, the irradiated portion 22
Since the irradiated portion 22c is also surrounded by many non-irradiated portions, the portions b and 22d grow more than the irradiated portion 22c. Therefore, generally speaking, the irradiated portions closer to the edges of the grating pattern 36 will grow more than the irradiated portions closer to the center of the grating pattern due to molecular movement caused by post-irradiation baking.

照射後に焼くことによって生じる拡散または分子移動効
果はEビーム近接効果に正確に反対の傾向を持っている
ことに注意すべきである。したがって、反応性層の特性
および照射に焼く際のパラメータを正確に制御すること
によって、分子移動効果なEビーム近接効果の補償に用
いることができる。
It should be noted that the diffusion or molecular migration effects caused by post-irradiation baking have exactly the opposite tendency to the E-beam proximity effects. Therefore, by precisely controlling the properties of the reactive layer and the parameters during irradiation, it can be used to compensate for E-beam proximity effects such as molecular migration effects.

本発明の方法は、アメリカ合衆国カリフォルニア用す=
−ヘイルのA Z  Photo Prodactsに
よって製造されたAZ−5214を用いて反応性層を形
成したとき効果的であることが判った。AZ−5214
は公称上、ポジ型フォトレジストである。
The method of the present invention is applicable to California, USA.
- It has been found effective when forming the reactive layer using AZ-5214 manufactured by AZ Photo Products of Hale. AZ-5214
is nominally a positive photoresist.

このフォトレジストは照射後に焼く間に像反転反応を受
け、ネガ型フォトレジストとなる。この像反転現象は、
5pak他(American HoechstCor
poration 、 AZ Photoresist
、 ProductsGroup 、 5unnyva
le 、 Ca1ifornia  による、”Mec
hanism  and  Lithographic
  Evaluationof  Image  Re
versal  in AZ −5214Photor
esist”に記載されている。
This photoresist undergoes an image reversal reaction during baking after irradiation and becomes a negative photoresist. This image reversal phenomenon is
5pak et al. (American Hoechst Cor.
poration, AZ Photoresist
, ProductsGroup , 5unnyva
“Mec” by le, Ca1ifornia
Hanism and Lithographic
Evaluation of Image Re
versatile in AZ-5214Photor
esist”.

本発明の一実施例の方法においては、AZ−5214フ
ォトレジストは従来通シにシリコン・ウエーファに塗付
され、次に、50マイクロ・クーロン/剣dの照射強度
、20 K e Vの加速電圧でベクトル走査、可変形
状EビームJEOL JBX6AIIシステムによって
照射された。照射されたウエーファは次に周囲気圧下で
、100℃〜140℃の温度で30分以上焼かれた。A
Z  Productsから発売されている金属イオン
のない現像剤を用いて像反転したフォトレジストを現像
して所望のマスクを形成した。
In the method of one embodiment of the present invention, AZ-5214 photoresist is conventionally applied to a silicon wafer and then subjected to an irradiation intensity of 50 microcoulombs/d and an accelerating voltage of 20 K e V. was irradiated by a vector-scanned, variable-geometry E-beam JEOL JBX6AII system. The irradiated wafer was then baked under ambient pressure at a temperature of 100°C to 140°C for over 30 minutes. A
The image-reversed photoresist was developed using a metal ion-free developer available from Z Products to form the desired mask.

完成したマスクは照射部分の縁で材料集積(mater
ial build−up )を呈し、また孤立した構
造部においてかなシの線幅増加が生じる。分子移動効果
は、照射線量、照射後に焼く際の温度および時間の複合
関数となると考えられる。
The completed mask has material accumulation at the edge of the irradiated area.
ial build-up), and a sharp increase in line width occurs in isolated structures. Molecular transfer effects are believed to be a complex function of irradiation dose, post-irradiation baking temperature, and time.

観察された分子移動は、照射部分における可動分子がよ
り大きな比較的動きにくいポリマに変換果であると考え
られる。このような拡散は以前に他の情況で観察されて
いる。たとえば、Walker″Reduction 
ofPhotoresist standing Wa
veEffects by Po5t−Exposur
e Bake″、IEEETransactions 
on Electron Device、 July1
975.464ページ、および8 tarove +″
Monomer Redistribution in
 Dry DevelopedX−Ray Re5is
t”、 Varian As5ociates Inc
を参照されたい。
The observed molecular migration is believed to be the result of conversion of mobile molecules in the irradiated region into larger, relatively immobile polymers. Such diffusion has been previously observed in other contexts. For example, Walker″Reduction
ofPhotoresist standing Wa
veEffects by Po5t-Exposur
e Bake'', IEEE Transactions
on Electron Device, July1
975.464 pages, and 8 tarove+″
Monomer redistribution in
Dry DevelopedX-Ray Re5is
t”, Varian As5ociates Inc.
Please refer to

明らかに、照射を行なうと光活性化合物(PAC)ン は化学的に劣化してカルボ験酸を生成し、これにより、
照射後に焼く工程の間に触媒作用によυノボラック樹脂
(Novolac resin )分子の間に架橋結合
反応を引起す。これによって、PAC濃度門配がフォト
レジストの照射部分と非照射部分の間の表面の前後に形
成される。P A C(Mw=500)は/ボア、り樹
脂(Mw = 2,000〜50,000 )よシずり
と小さいから、PAC分子の移動度は非常に高い。それ
故、PAC分子は、照射後に焼く間に7オトレジストの
非照射部分から照射部分へ移動している小さな可動分子
であると想定される。
Apparently, upon irradiation, photoactive compounds (PACs) chemically degrade to form carboxylic acids, which
During the post-irradiation baking step, a catalytic action causes a cross-linking reaction between the Novolac resin molecules. This creates a PAC concentration gate across the surface between the irradiated and non-irradiated portions of the photoresist. Since PAC (Mw = 500) is much smaller than the resin (Mw = 2,000 to 50,000), the mobility of PAC molecules is extremely high. Therefore, the PAC molecules are assumed to be small mobile molecules that migrate from the non-irradiated part of the 7-otresist to the irradiated part during baking after irradiation.

多くの文献が集積回路部品の製造過程において用いられ
る一通常の技術について詳細に鮮明していることに注意
されたい。たとえば、Pres tonPubl is
hing Co、 、 Inc、によって刊行されたS
em1conductor and Integrat
ed C1rcuitFabrication Tec
hniques”を参照のこと。これらの技術は、本発
明の構造の製造において一般的に用いることができる。
It should be noted that many publications describe in detail one common technique used in the manufacturing process of integrated circuit components. For example, Pres tonPubli is
S published by hing Co, Inc.
em1conductor and Integrat
ed C1rcuit Fabrication Tec
These techniques can generally be used in the fabrication of the structures of the present invention.

また、個々の製造工程は市販の集積回路製造機械を用い
て実施できる。本発明の理解に特に必要なものとして、
好適実施例に関する概略の技術データが現在の技術を基
礎として示された。この技術を更に進めるためには当業
者に明らかなように、適当な調整が必まであろう。
Additionally, individual manufacturing steps can be performed using commercially available integrated circuit manufacturing machines. As particularly necessary for understanding the invention:
General technical data regarding the preferred embodiment is presented on the basis of current technology. Appropriate adjustments will be necessary to further advance this technique, as will be apparent to those skilled in the art.

本発明は特定の好適実施例に関して説明したけれども、
前述の説明を読み、図面を検討することによって本発明
の種々の変形、修正は当業者には明らかになるであろう
。したがって、本発明の範囲は特許請求の範囲によって
決定されるべきであム〔発明の効果〕 以上詳細に説明したように、本発明を用いることにより
、従来技術に比較して格段に容易かつ経済的に電子ビー
ムの近接効果の補償を達成することができる。
Although the invention has been described with respect to specific preferred embodiments,
Various variations and modifications of the invention will become apparent to those skilled in the art from reading the foregoing description and studying the drawings. Therefore, the scope of the present invention should be determined by the scope of the claims. [Effects of the Invention] As explained in detail above, by using the present invention, it is much easier and more economical than the prior art. It is possible to achieve compensation for the proximity effect of the electron beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図および第1B図は本発明の一実施例の主要部分
を説明する図、第2図は反応性層への電子ビームの照射
を説明する図である。 10:反応性層、 12:上表面、 14:半導体基板、 22a〜22e:照射部分、 32〜34:非照射部分、 36:格子パターン。
FIGS. 1A and 1B are diagrams for explaining the main parts of an embodiment of the present invention, and FIG. 2 is a diagram for explaining irradiation of the reactive layer with an electron beam. 10: Reactive layer, 12: Upper surface, 14: Semiconductor substrate, 22a to 22e: Irradiated portion, 32 to 34: Non-irradiated portion, 36: Grid pattern.

Claims (1)

【特許請求の範囲】[Claims] 反応性層への電子ビームの照射後前記反応性層の非照射
部分の少なくとも一部から前記反応性層の照射部分の少
なくとも一部への分子移動を起こさせる電子ビーム近接
効果補償方法。
A method for compensating the electron beam proximity effect, in which, after irradiating a reactive layer with an electron beam, molecules move from at least a portion of a non-irradiated portion of the reactive layer to at least a portion of an irradiated portion of the reactive layer.
JP62254528A 1986-10-08 1987-10-08 Electron beam proximity effect compensation method Expired - Lifetime JP2546690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US916662 1986-10-08
US06/916,662 US4988284A (en) 1986-10-08 1986-10-08 Method for compensating for the E-beam proximity effect

Publications (2)

Publication Number Publication Date
JPS6399526A true JPS6399526A (en) 1988-04-30
JP2546690B2 JP2546690B2 (en) 1996-10-23

Family

ID=25437649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254528A Expired - Lifetime JP2546690B2 (en) 1986-10-08 1987-10-08 Electron beam proximity effect compensation method

Country Status (3)

Country Link
US (1) US4988284A (en)
JP (1) JP2546690B2 (en)
DE (1) DE3731897A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736281A (en) * 1996-06-07 1998-04-07 Lucent Technologies Inc. Dose modification proximity effect compensation (PEC) technique for electron beam lithography
US5847959A (en) * 1997-01-28 1998-12-08 Etec Systems, Inc. Method and apparatus for run-time correction of proximity effects in pattern generation
US5849582A (en) * 1997-05-01 1998-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Baking of photoresist on wafers
US6291118B1 (en) 1998-03-27 2001-09-18 Industrial Technology Research Institute Elimination of proximity effect in photoresist
US6040119A (en) * 1998-03-27 2000-03-21 Industrial Technology Research Institute Elimination of proximity effect in photoresist
US6426175B2 (en) 1999-02-22 2002-07-30 International Business Machines Corporation Fabrication of a high density long channel DRAM gate with or without a grooved gate
US6051347A (en) * 1999-03-18 2000-04-18 Taiwan Semiconductor Manufacturing Company Application of e-beam proximity over-correction to compensate optical proximity effect in optical lithography process
US6720565B2 (en) 1999-06-30 2004-04-13 Applied Materials, Inc. Real-time prediction of and correction of proximity resist heating in raster scan particle beam lithography
US6606533B1 (en) 2000-10-12 2003-08-12 International Business Machines Corporation Method and arrangement for controlling image size of integrated circuits on wafers through post-exposure bake hotplate-specific dose feedback

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102735A (en) * 1983-10-25 1985-06-06 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of treating electron beam resist

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931381A (en) * 1985-08-12 1990-06-05 Hoechst Celanese Corporation Image reversal negative working O-quinone diazide and cross-linking compound containing photoresist process with thermal curing treatment
US4929536A (en) * 1985-08-12 1990-05-29 Hoechst Celanese Corporation Image reversal negative working O-napthoquinone diazide and cross-linking compound containing photoresist process with thermal curing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102735A (en) * 1983-10-25 1985-06-06 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of treating electron beam resist

Also Published As

Publication number Publication date
JP2546690B2 (en) 1996-10-23
US4988284A (en) 1991-01-29
DE3731897A1 (en) 1988-04-14

Similar Documents

Publication Publication Date Title
US5111240A (en) Method for forming a photoresist pattern and apparatus applicable therewith
US4099062A (en) Electron beam lithography process
US7767385B2 (en) Method for lithography for optimizing process conditions
US6713236B2 (en) Lithography method for preventing lithographic exposure of peripheral region of semiconductor wafer
JPS5838933B2 (en) hand tie device no seizouhouhou
JPS6399526A (en) Method for compensating proximity effect of electron beam
US6576405B1 (en) High aspect ratio photolithographic method for high energy implantation
JP3081655B2 (en) Method of forming resist pattern
JPS594017A (en) Electron-beam exposure method
US7493186B2 (en) Method and algorithm for the control of critical dimensions in a thermal flow process
JPH0210824A (en) Electron-beam resist developing method
US5186788A (en) Fine pattern forming method
KR20020018280A (en) Method of electron beam lithography by double exposure and fabrication method of photomask using the same
JPH1055068A (en) Production of semiconductor device using high resolving power lithography and device therefor
US5120634A (en) Method for forming patterned resist layer on semiconductor body
EP0103052A1 (en) Method for forming patterned resist layer on semiconductor body
JPH06110214A (en) Formation of resist pattern
JP2604573B2 (en) Fine pattern forming method
KR910006040B1 (en) Method for processing photoresits
Mladenov et al. General problems of high resolution lithography
JPH06120102A (en) Exposure method and aligner
JPH0385544A (en) Resist pattern forming method
JPS6155663B2 (en)
JPH05226211A (en) Exposure method
JPH04107913A (en) Manufacture of semiconductor device