JP2874100B2 - Electronic equipment cooling system - Google Patents

Electronic equipment cooling system

Info

Publication number
JP2874100B2
JP2874100B2 JP2275269A JP27526990A JP2874100B2 JP 2874100 B2 JP2874100 B2 JP 2874100B2 JP 2275269 A JP2275269 A JP 2275269A JP 27526990 A JP27526990 A JP 27526990A JP 2874100 B2 JP2874100 B2 JP 2874100B2
Authority
JP
Japan
Prior art keywords
cooling
electronic device
heat
heat exchange
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2275269A
Other languages
Japanese (ja)
Other versions
JPH04151860A (en
Inventor
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2275269A priority Critical patent/JP2874100B2/en
Publication of JPH04151860A publication Critical patent/JPH04151860A/en
Application granted granted Critical
Publication of JP2874100B2 publication Critical patent/JP2874100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Description

【発明の詳細な説明】 〔概要〕 電子装置の冷却装置に関し、 発熱面における気泡の成長を妨げ、核沸騰から膜沸騰
への遷移を防止することを目的とし、 電子装置を収容し、且つ電子装置の発熱面と接触する
冷却用液体を封入した冷却用容器と、電子装置の発熱面
と所定の間隔で対向する熱交換表面を有する熱交換手段
とを備えた構成とする。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A cooling device for an electronic device, which aims to prevent the growth of bubbles on a heat generating surface and to prevent a transition from nucleate boiling to film boiling, The electronic apparatus includes a cooling container filled with a cooling liquid that is in contact with a heat generating surface of the device, and heat exchange means having a heat exchange surface facing the heat generating surface of the electronic device at a predetermined interval.

〔産業上の利用分野〕[Industrial applications]

本発明は発熱量の大きな半導体、特にVLSIを高密度に
実装した回路基板等の電子装置の冷却装置に関する。
The present invention relates to a cooling device for an electronic device such as a circuit board or the like on which a semiconductor having a large calorific value, particularly a VLSI, is mounted at high density.

最近では、コンピュータの高性能化及び小型化を達成
するために多数のVLSIを高密度に実装した回路基板が製
造されている。半導体素子の消費電力は高速性能を達成
するにつれて増大する傾向にあり、高密度実装された回
路基板では発熱密度が著しく上昇する。このため、その
ような回路基板等の電子装置を冷却する必要が生じてき
た。
Recently, circuit boards on which a large number of VLSIs are mounted at high density have been manufactured in order to achieve higher performance and smaller size of computers. The power consumption of a semiconductor element tends to increase as high-speed performance is achieved, and the heat generation density of a circuit board mounted at a high density increases significantly. For this reason, it has become necessary to cool such electronic devices such as circuit boards.

〔従来の技術〕[Conventional technology]

従来、そのような回路基板の冷却のため、回路基板
を、冷却用容器に入れた所定の沸点の冷却用液体に浸漬
し、沸騰冷却を行っていた。沸騰冷却によれば気化熱を
利用するので非常に高効率の冷却を行うことができる。
Conventionally, in order to cool such a circuit board, the circuit board has been immersed in a cooling liquid having a predetermined boiling point contained in a cooling container to perform boiling cooling. According to the boiling cooling, the heat of vaporization is used, so that very efficient cooling can be performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

沸騰冷却の過程では、発熱体の発熱量に応じて核沸騰
さらに膜沸騰が生じる。回路基板の発生する熱により冷
却用液体の温度が上昇すると回路基板の発熱面と冷却用
液体とが接触する界面において微小な気泡が発生するよ
うになる。これが核沸騰(第3図参照)であり、気泡は
回路基板から気化熱を奪い、回路基板を有効に冷却す
る。しかし、回路基板の発熱量がさらに多くなると、微
小な気泡の発生が連続的になり、気泡が成長し、相互に
集合して大きな気泡になる。これが膜沸騰(第4図参
照)であり、この状態になると回路基板の発熱面が大き
な気泡膜に包まれて冷却用液体に接触しなくなる。この
ため、膜沸騰においては、気泡膜が断熱材のようにな
り、冷却用液体に接触しなくなった回路基板の部分は急
に温度が上昇し、また新しい気泡の生成が阻害されて冷
却作用が低下する。このために、従来は膜沸騰にならな
いようにかなりの安全を見込んだ条件で冷却を行うこと
が必要であり、冷却用容器が大きくなったり、多量の冷
却用液体を使用したりすることが必要であった。
In the process of boiling cooling, nucleate boiling and further film boiling occur according to the calorific value of the heating element. When the temperature of the cooling liquid rises due to the heat generated by the circuit board, minute air bubbles are generated at the interface where the heating surface of the circuit board contacts the cooling liquid. This is nucleate boiling (see FIG. 3), and the air bubbles take away heat of vaporization from the circuit board and effectively cool the circuit board. However, when the amount of heat generated by the circuit board is further increased, the generation of fine bubbles becomes continuous, and the bubbles grow and aggregate with each other to become large bubbles. This is film boiling (see FIG. 4). In this state, the heat generating surface of the circuit board is covered with a large bubble film and does not come into contact with the cooling liquid. For this reason, in film boiling, the bubble film becomes a heat insulating material, the temperature of the portion of the circuit board that has stopped contacting the cooling liquid suddenly rises, and the generation of new bubbles is hindered and the cooling effect is reduced. descend. For this reason, conventionally, it is necessary to perform cooling under conditions that allow for considerable safety so that film boiling does not occur, and it is necessary to increase the size of the cooling container and use a large amount of cooling liquid. Met.

本発明は電子装置の発熱面における気泡の成長を妨
げ、核沸騰から膜沸騰への遷移を防止するようにした電
子装置の冷却装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cooling device for an electronic device that prevents growth of bubbles on a heat generating surface of the electronic device and prevents transition from nucleate boiling to film boiling.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による電子装置の冷却装置は、電子装置を収容
し、且つ該電子装置を冷却するために少なくとも該電子
装置の発熱面と接触する冷却用液体を封入した冷却用容
器と、該電子装置の発熱面と所定の間隔で対向する熱交
換表面を有する熱交換手段とを備え、該熱交換表面は対
向する電子装置の発熱面よりも面積が広く、該熱交換表
面は略平面で該電子装置の発熱面の全体と対向しており
且つ垂直方向に延びる凹凸溝を有し、該電子装置の発熱
面において発生した冷却用液体の気泡の成長を該電子装
置の発熱面と該熱交換手段の熱交換表面との間で規制
し、核沸騰から膜沸騰への遷移を防止するようにしたこ
とを特徴とするものである。
A cooling device for an electronic device according to the present invention includes a cooling container that houses an electronic device and that contains a cooling liquid that contacts at least a heating surface of the electronic device to cool the electronic device; A heat exchange means having a heat exchange surface facing the heat generating surface at a predetermined interval, the heat exchange surface having a larger area than the heat generating surface of the opposing electronic device, wherein the heat exchange surface is substantially planar and The heat generating surface of the electronic device has a concave-convex groove which is opposed to the entire heat generating surface and extends in the vertical direction. It is characterized in that it is regulated between a heat exchange surface and a transition from nucleate boiling to film boiling.

〔作用〕[Action]

上記構成においては、電子装置は冷却用液体により、
望ましくは核沸騰により冷却される。熱交換手段は冷却
用液体を冷却し、特に電子装置の発熱面の前面において
冷却用液体の核沸騰により発生した気泡の再液化を促進
し、気泡が膜状に大きく成長するのを防止し、よって核
沸騰を存続させて有効な冷却が行われるようにする。こ
の際、電子装置の発熱面と熱交換手段の熱交換表面との
間の間隔が小さいと、気泡はその間隔で制限される大き
さ以上に成長することができず、発熱面を覆うような膜
に成長する前に再液化し、小さな気泡となって離脱す
る。逆にこの間隔が狭いと、核沸騰で発生した気泡が素
子と熱交換面の間の隙間を通過できず、気泡も集って断
熱状態となる。
In the above configuration, the electronic device is formed by the cooling liquid.
Preferably, it is cooled by nucleate boiling. The heat exchange means cools the cooling liquid, and promotes the re-liquefaction of bubbles generated by nucleate boiling of the cooling liquid, particularly in front of the heat generating surface of the electronic device, and prevents the bubbles from growing large in a film form, Therefore, effective cooling is performed by maintaining nucleate boiling. At this time, if the distance between the heat generating surface of the electronic device and the heat exchanging surface of the heat exchanging means is small, the bubbles cannot grow to a size larger than the size limited by the distance, and may cover the heat generating surface. Re-liquefies before growing into a film and breaks off as small bubbles. On the other hand, if the interval is small, bubbles generated by nucleate boiling cannot pass through the gap between the element and the heat exchange surface, and the bubbles also collect and become insulated.

〔実施例〕〔Example〕

第1図は本発明による電子装置の冷却装置を示し、第
3図は第1図の熱交換器を除いた破断斜視図である。電
子装置10は冷却用容器12に収容され、冷却される。この
電子装置10は例えば13mm角のLSI 10aを4×4個フリッ
プチップ実装したセラミック回路基板10bからなり、各L
SI 10aはパッケージに封入されることなくハンダ11によ
り直接にセラミック回路基板10bに固定されている。実
施例においては、セラミック回路基板10bが冷却用容器1
2の一部を構成し、セラミック回路基板10bの全面側のLS
I 10aが冷却用容器12に挿入され、冷却用容器12の外部
に位置するセラミック回路基板10bの背面にはピン10c等
の電気接続手段が設けられ、周辺器、電源、メモリユニ
ットなどの他の電気(電子)部品と接続できるようにな
っている。
FIG. 1 shows a cooling device for an electronic device according to the present invention, and FIG. 3 is a cutaway perspective view excluding the heat exchanger of FIG. The electronic device 10 is accommodated in a cooling container 12 and cooled. This electronic device 10 is composed of a ceramic circuit board 10b on which 4 × 4 flip-chip mounted LSIs 10a of 13 mm square are mounted.
The SI 10a is directly fixed to the ceramic circuit board 10b by the solder 11 without being enclosed in a package. In the embodiment, the ceramic circuit board 10b is
2 and a part of the LS on the entire surface of the ceramic circuit board 10b.
I 10a is inserted into the cooling container 12, and electrical connection means such as pins 10c are provided on the back of the ceramic circuit board 10b located outside the cooling container 12, and other devices such as a peripheral device, a power supply, and a memory unit are provided. It can be connected to electrical (electronic) components.

冷却用容器12内には電子装置10を冷却するための冷却
用液体14が封入される。冷却用液体14は冷却用容器12内
の所定のレベルまで入れられ、冷却用容器12内の上方部
には蒸気用の空間が残される。実施例では、冷却用液体
14は所定の温度で沸騰する絶縁性のパーフルオロカーボ
ンを使用している。例えば、C6F14は沸点が56℃であ
り、C5F12は沸点が40℃である。従って、電子装置10を
例えば85℃以下に維持するためにはこれらの各冷却用液
体14、あるいはその混合物を使用すると好ましい。
A cooling liquid 14 for cooling the electronic device 10 is sealed in the cooling container 12. The cooling liquid 14 is filled to a predetermined level in the cooling container 12, and a space for steam is left in the upper part of the cooling container 12. In the embodiment, the cooling liquid
14 uses insulating perfluorocarbon which boils at a predetermined temperature. For example, C 6 F 14 has a boiling point of 56 ° C., and C 5 F 12 has a boiling point of 40 ° C. Therefore, in order to maintain the electronic device 10 at, for example, 85 ° C. or less, it is preferable to use each of these cooling liquids 14 or a mixture thereof.

冷却用容器12の外部には熱交換器16が設けられ、循環
導管18が冷却用容器12と熱交換器16とを接続する。熱交
換器16としては空冷式のものや水冷式のものを使用する
ことができ、下端部に所定量の冷却用液体14を溜めるタ
ンクを備えているのが好ましい。循環導管18にはポンプ
等の循環手段が設けられ、冷却用容器12内で温かくなっ
た冷却用液体14を熱交換機16に送り、熱交換器16で冷却
された冷却用液体14を冷却用容器12に循環供給する。
A heat exchanger 16 is provided outside the cooling vessel 12, and a circulation conduit 18 connects the cooling vessel 12 and the heat exchanger 16. As the heat exchanger 16, an air-cooled type or a water-cooled type can be used, and it is preferable to provide a tank for storing a predetermined amount of the cooling liquid 14 at the lower end. The circulation conduit 18 is provided with circulation means such as a pump, sends the cooling liquid 14 warmed in the cooling container 12 to the heat exchanger 16, and cools the cooling liquid 14 cooled by the heat exchanger 16 into the cooling container. Circulate feed to 12.

さらに、第1図に示されるように、冷却用容器12内に
は第2の熱交換機20が設けられる。この第2の熱交換器
20も冷却用容器12の一部を構成し、冷却用容器12の内部
に熱交換表面22を有する。実施例では各LSI 10aが発熱
面となり、第2の熱交換器20の熱交換表面22は各LSI 10
aの表面と対応する位置関係で配置される。すなわち、
第2の熱交換器20の熱交換表面22は第2の熱交換器20の
ベース面から区画毎に突出し、各区間は各LSI 10aの前
面の面積よりも大きい面積を有する。この突出した熱交
換表面22が各LSI 10aの前面と所定の間隔で対向する。
この間隔は0.5mm以上で2mm以下とするのが好ましい。
Further, as shown in FIG. 1, a second heat exchanger 20 is provided in the cooling container 12. This second heat exchanger
20 also forms part of the cooling container 12 and has a heat exchange surface 22 inside the cooling container 12. In the embodiment, each LSI 10a serves as a heat generating surface, and the heat exchange surface 22 of the second heat exchanger 20 corresponds to each LSI 10a.
They are arranged in a positional relationship corresponding to the surface of a. That is,
The heat exchange surface 22 of the second heat exchanger 20 projects from the base surface of the second heat exchanger 20 for each section, and each section has an area larger than the area of the front surface of each LSI 10a. The protruding heat exchange surface 22 faces the front surface of each LSI 10a at a predetermined interval.
This interval is preferably 0.5 mm or more and 2 mm or less.

第2の熱交換器20は冷却水の入口24と出口26とを備
え、この入口24と出口26との間に通路28が設けられると
ともに、各熱交換表面22の近くを通る冷却通路30が通路
28に接続される。各冷却通路30には矢印によって示され
るように冷却水が流れ、各熱交換表面22を冷却する。第
2図に示されるように、各熱交換表面22は垂直方向に延
びる凹凸溝をもつように形成され、熱交換表面積を増大
するとともに、気泡が各LSI 10aと熱交換表面22との間
の微小な間隙を通って上昇しやすくなっている。
The second heat exchanger 20 has a cooling water inlet 24 and an outlet 26, a passage 28 is provided between the inlet 24 and the outlet 26, and a cooling passage 30 passing near each heat exchange surface 22 is provided. aisle
Connected to 28. Cooling water flows through each cooling passage 30 as shown by arrows, and cools each heat exchange surface 22. As shown in FIG. 2, each heat exchange surface 22 is formed to have a vertically extending concave-convex groove to increase the heat exchange surface area and to reduce air bubbles between each LSI 10a and the heat exchange surface 22. It is easy to ascend through small gaps.

以上の構成において、電子装置10を電源に接続して使
用を開始すると、各LSI 10aが発熱する。各LSI 10aが発
熱すると、冷却用液体14の温度が上昇して対流が始ま
り、LSI 10aの熱を奪い、各LSI 10aを冷却する。冷却用
液体14が沸点に達すると各沸騰が生じ、微小な気泡が浮
上していく。この核沸騰領域では、各LSI 10aは発生す
る熱を冷却用液体14に気化熱として奪われるため、効率
よく冷却され、各LSI 10aの発熱量が多い場合でも冷却
用液体14の沸点よりやや高い温度に止まり、安定的に冷
却される。
In the above configuration, when the electronic device 10 is connected to a power supply and started to be used, each LSI 10a generates heat. When each of the LSIs 10a generates heat, the temperature of the cooling liquid 14 rises and convection starts, so that heat of the LSIs 10a is taken and the respective LSIs 10a are cooled. When the cooling liquid 14 reaches the boiling point, each boiling occurs, and fine bubbles float. In this nucleate boiling region, each LSI 10a is deprived of the generated heat as heat of vaporization by the cooling liquid 14, so that it is cooled efficiently, and even when the heat value of each LSI 10a is large, it is slightly higher than the boiling point of the cooling liquid 14. It stays at the temperature and cools down stably.

しかし、冷却用液体14の限界熱流量に対して各LSI 10
aの発熱量が多くなると、微小な気泡の発生が連続的に
なり、気泡が成長し、相互に集合して大きな気泡にな
る。さらに発熱量が増すと、第4図に示されるように、
各LSI 10aの面積よりも大きく成長し、LSI 10aは気泡の
膜50で包まれる。この膜沸騰状態になると各LSI 10aが
冷却用液体14に接触しなくなり、冷却作用が低下するこ
とは上述した通りである。
However, with respect to the critical heat flow rate of the cooling liquid 14, each LSI 10
When the calorific value of “a” increases, the generation of fine bubbles becomes continuous, and the bubbles grow and aggregate with each other to become large bubbles. When the calorific value further increases, as shown in FIG.
Each LSI 10a grows larger than the area of the LSI 10a, and the LSI 10a is enveloped by the bubble film 50. As described above, when the film is in a boiling state, the respective LSIs 10a do not come into contact with the cooling liquid 14, and the cooling effect is reduced as described above.

本発明においては、第2の熱交換器20の各熱交換表面
22はLSI 10a付近の冷却用液体14を冷却し、サブクール
状態とする。また、各LSI 10aと各熱交換表面22との間
の間隔が適切に小さいと(例えば、2mm以下である
と)、気泡はその間隔で制限される大きさ(球とした場
合の直径)以上に成長することができず、各LSI 10aを
覆うような膜に成長する前に再液化し、小さな気泡とし
て浮上する。また、各LSI 10aと熱交換表面22との間の
間隔が小さ過ぎると(例えば、0.5mm以下であると)、
発生した気泡が各LSI 10aの表面から離脱できず、凝集
して膜沸騰と同様な状態になる。この結果、各LSI 10a
の前面において冷却用液体14の核沸騰により発生した気
泡は再液化が促進され、気泡が膜状に大きく成長するの
を防止する。よって核沸騰を存続させて有効な冷却が行
われるようになる。このようにして、本発明では気泡の
成長を妨げ、核沸騰から膜沸騰への遷移を防止すること
ができる。
In the present invention, each heat exchange surface of the second heat exchanger 20
22 cools the cooling liquid 14 in the vicinity of the LSI 10a to make it into a subcooled state. In addition, if the distance between each LSI 10a and each heat exchange surface 22 is appropriately small (for example, 2 mm or less), the bubbles are larger than the size limited by the distance (the diameter of a sphere). And grows again as small air bubbles before growing into a film covering each LSI 10a. If the distance between each LSI 10a and the heat exchange surface 22 is too small (for example, 0.5 mm or less),
The generated bubbles cannot be separated from the surface of each LSI 10a, and are aggregated into a state similar to film boiling. As a result, each LSI 10a
The bubbles generated by the nucleate boiling of the cooling liquid 14 on the front surface of the substrate are promoted to reliquefy, and the bubbles are prevented from growing into a large film. Therefore, effective cooling is performed while nucleate boiling is maintained. In this manner, the present invention can prevent the growth of bubbles and prevent the transition from nucleate boiling to film boiling.

さらに、各熱交換表面は対向する各LSI 10aの表面よ
りも面積が広くないとサブクール効果が低下する。さら
に、気泡の成長を阻止するためには、気泡が単に円滑な
熱交換表面に接触するようにするよりも、熱交換表面22
に発熱面に向かって突出する突起を設けて、この突起が
気泡の中に食い込み、気泡を破裂させるようにするのが
よい。この応用として、熱交換表面22に気泡上昇方向の
凹凸溝(第2図)を設けるのが好ましい。
Furthermore, the subcooling effect is reduced unless the area of each heat exchange surface is larger than the surface of each of the opposed LSIs 10a. Further, to prevent the growth of bubbles, rather than just let the bubbles contact the smooth heat exchange surface, the heat exchange surface 22
It is preferable to provide a protrusion protruding toward the heat generating surface so that the protrusion bites into the air bubbles and bursts the air bubbles. For this application, it is preferable to provide a concave / convex groove (FIG. 2) on the heat exchange surface 22 in the bubble rising direction.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、電子装置を収
容し、且つ該電子装置を冷却するために少なくとも該電
子装置の発熱面と接触する冷却用液体を封入した冷却用
容器と、該電子装置の発熱面と所定の間隔で対向する熱
交換表面を有する熱交換手段とを備えた構成としたの
で、電子装置の発熱面の前面において冷却用液体の核沸
騰により発生した気泡の再液化を促進し、気泡が膜状に
大きく成長するのを防止し、よって核沸騰を存続させて
有効な冷却を行なうことができる。
As described above, according to the present invention, a cooling container for containing an electronic device and enclosing a cooling liquid for contacting at least a heating surface of the electronic device for cooling the electronic device, A heat exchange means having a heat exchange surface opposed to the heat generation surface of the device at a predetermined interval is provided, so that re-liquefaction of bubbles generated by nucleate boiling of the cooling liquid on the front surface of the heat generation surface of the electronic device can be performed. It promotes and prevents bubbles from growing large in the form of a film, so that nucleate boiling can be maintained and effective cooling can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す断面図、第2図は第1図
の熱交換表面を示す正面図、第3図は第1図の熱交換器
を除いた破断斜視図、第4図は膜沸騰を説明する図であ
る。 10a……LSI、10b……回路基板、12……冷却用容器、14
……冷却用液体、20……熱交換器、22……熱交換表面。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a front view showing the heat exchange surface of FIG. 1, FIG. 3 is a cutaway perspective view excluding the heat exchanger of FIG. The figure illustrates the film boiling. 10a: LSI, 10b: Circuit board, 12: Cooling container, 14
... cooling liquid, 20 ... heat exchanger, 22 ... heat exchange surface.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 23/44 H05K 7/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 23/44 H05K 7/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子装置(10)を収容し、且つ該電子装置
を冷却するために少なくとも該電子装置の発熱面と接触
する冷却用液体(14)を封入した冷却用容器(12)と、
該電子装置の発熱面と所定の間隔で対向する熱交換表面
を有する熱交換手段(20)とを備え、該熱交換表面は対
向する電子装置の発熱面よりも面積が広く、該熱交換表
面は略平面で該電子装置の発熱面の全体と対向しており
且つ垂直方向に延びる凹凸溝を有し、該電子装置の発熱
面において発生した冷却用液体の気泡の成長を該電子装
置の発熱面と該熱交換手段の熱交換表面との間で規制
し、核沸騰から膜沸騰への遷移を防止するようにした電
子装置の冷却装置。
1. A cooling container (12) containing an electronic device (10) and enclosing a cooling liquid (14) in contact with at least a heating surface of the electronic device for cooling the electronic device;
A heat exchange means (20) having a heat exchange surface opposed to the heat generating surface of the electronic device at a predetermined interval, wherein the heat exchange surface has a larger area than the heat generating surface of the opposing electronic device; Has a concave and convex groove which is substantially flat and faces the entire heat generating surface of the electronic device and extends in the vertical direction. The growth of bubbles of the cooling liquid generated on the heat generating surface of the electronic device is caused by the heat generation of the electronic device. A cooling device for an electronic device, wherein the cooling device regulates between a surface and a heat exchange surface of the heat exchange means to prevent a transition from nucleate boiling to film boiling.
【請求項2】上記間隔が0.5mmから2mmの範囲である請求
項1に記載の電子装置の冷却装置。
2. The cooling device for an electronic device according to claim 1, wherein the interval is in a range of 0.5 mm to 2 mm.
JP2275269A 1990-10-16 1990-10-16 Electronic equipment cooling system Expired - Lifetime JP2874100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275269A JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275269A JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Publications (2)

Publication Number Publication Date
JPH04151860A JPH04151860A (en) 1992-05-25
JP2874100B2 true JP2874100B2 (en) 1999-03-24

Family

ID=17553074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275269A Expired - Lifetime JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Country Status (1)

Country Link
JP (1) JP2874100B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061414B2 (en) 2004-12-22 2011-11-22 Tokyo University Of Science Educational Foundation Administrative Organization Boil cooling method, boil cooling apparatus, flow channel structure, and applied technology field thereof
JP4953075B2 (en) * 2007-06-14 2012-06-13 国立大学法人茨城大学 heatsink
JP4730624B2 (en) * 2008-11-17 2011-07-20 株式会社豊田自動織機 Boiling cooler
JP2010196912A (en) * 2009-02-23 2010-09-09 Toyota Industries Corp Ebullient cooling device
WO2012025981A1 (en) * 2010-08-23 2012-03-01 富士通株式会社 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body

Also Published As

Publication number Publication date
JPH04151860A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JP5590128B2 (en) Cooling device, electronic device having cooling device, and cooling method of heating element
CA1115822A (en) Cooling tunnels for semiconductor devices
JP2874100B2 (en) Electronic equipment cooling system
WO2022132581A1 (en) An immersion cooling system
JPH05335454A (en) Cooler for electronic apparatus
JPH02114597A (en) Method of cooling electronic device
JP6123172B2 (en) Heating element cooling device, cooling method and information device
JPS6154654A (en) Liquid cooling device
JPS58114500A (en) High density mounting substrate
JP2677275B2 (en) Cooling medium
JPH0320070B2 (en)
JPS6142864B2 (en)
JPH0533015Y2 (en)
JPH0442931Y2 (en)
JPH0263147A (en) Cooling apparatus
JPH037960Y2 (en)
US20220020737A1 (en) Electronic module
JPH0319275Y2 (en)
CN213279748U (en) Self-cooling mobile phone motherboard
JPS6144450Y2 (en)
JPH03224256A (en) Cooling equipment for electronic machinery and apparatus
JPH0719157Y2 (en) Semiconductor package for immersion cooling
JPS60249351A (en) Boil-cooled type circuit board
JP2503480B2 (en) Integrated circuit cooling structure
JPH02159051A (en) Dipping liquid cooling semiconductor element