JPH04151860A - Cooling equipment of electronic device - Google Patents

Cooling equipment of electronic device

Info

Publication number
JPH04151860A
JPH04151860A JP2275269A JP27526990A JPH04151860A JP H04151860 A JPH04151860 A JP H04151860A JP 2275269 A JP2275269 A JP 2275269A JP 27526990 A JP27526990 A JP 27526990A JP H04151860 A JPH04151860 A JP H04151860A
Authority
JP
Japan
Prior art keywords
electronic device
cooling
heat
heat exchange
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2275269A
Other languages
Japanese (ja)
Other versions
JP2874100B2 (en
Inventor
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2275269A priority Critical patent/JP2874100B2/en
Publication of JPH04151860A publication Critical patent/JPH04151860A/en
Application granted granted Critical
Publication of JP2874100B2 publication Critical patent/JP2874100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent the decrease or cooling action, by installing a heat exchanging means having a heat exchanging surface which faces the heat generating surface of an electronic device at a specified interval, and preventing the transition from nucleate boiling to film boiling. CONSTITUTION:An electronic device 10 is accommodated in a cooling vessel 12 and cooled by using liquid for cooling. A heat exchanging means 20 having a heat exchanging surface 22 which faces a heat generating surface of the electronic device 10 at a specified interval is installed. Relequefaction of bubbles generated by nucleate boiling of liquid for cooling in the front of the heat generating surface of the electronic device 10 is accelerated, and the bubbles are prevented from growing in a large film type. Thereby nucleate boiling is made to continue and effective cooling can be realized.

Description

【発明の詳細な説明】 〔概 要〕 電子装置の冷却装置に関し、 発熱面における気泡の成長を妨げ、核沸騰から膜沸騰へ
の遷移を防止することを目的とし、電子装置を収容し、
且つ電子装置の発熱面と接触する冷却用液体を封入した
冷却用容器と、電子装置の発熱面と所定の間隔で対向す
る熱交換表面を有する熱交換手段とを備えた構成とする
[Detailed Description of the Invention] [Summary] Regarding a cooling device for an electronic device, the purpose is to prevent the growth of bubbles on a heat-generating surface and to prevent the transition from nucleate boiling to film boiling, and the cooling device accommodates the electronic device.
The apparatus also includes a cooling container filled with a cooling liquid that contacts the heat generating surface of the electronic device, and a heat exchange means having a heat exchange surface facing the heat generating surface of the electronic device at a predetermined interval.

〔産業上の利用分野〕[Industrial application field]

本発明は発熱量の大きな半導体、特にVLSIを高密度
に実装した回路基板等の電子装置の冷却装置に関する。
The present invention relates to a cooling device for an electronic device such as a circuit board on which semiconductors that generate a large amount of heat, particularly VLSIs, are densely mounted.

最近では、コンピュータの高性能化及び小型化を達成す
るために多数のVLSIを高密度に実装した回路基板が
製造されている。半導体素子の消費電力は高速性能を達
成するにつれて増大する傾向にあり、高密度実装された
回路基板では発熱密度が著しく上昇する。このため、そ
のような回路基板等の電子装置を冷却する必要が生じて
きた。
Recently, in order to achieve higher performance and smaller size of computers, circuit boards on which a large number of VLSIs are mounted at high density have been manufactured. The power consumption of semiconductor elements tends to increase as high-speed performance is achieved, and the heat generation density increases significantly in circuit boards that are mounted at high density. Therefore, it has become necessary to cool electronic devices such as circuit boards.

〔従来の技術〕[Conventional technology]

従来、そのような回路基板の冷却のため、回路基板を、
冷却用容器に入れた所定の沸点の冷却用液体に浸漬し、
沸騰冷却を行っていた。沸騰冷却によれば気化熱を利用
するので非常に高効率の冷却を行うことができる。
Conventionally, in order to cool such circuit boards, the circuit boards are
immersed in a cooling liquid of a specified boiling point in a cooling container,
Boiling cooling was performed. Since boiling cooling uses the heat of vaporization, it is possible to perform very highly efficient cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

沸騰冷却の過程では、発熱体の発熱量に応じて核沸騰さ
らに膜沸騰が生じる。回路基板の発生する熱により冷却
用液体の温度が上昇すると回路基板の発熱面と冷却用液
体とが接触する界面において微小な気泡が発生するよう
になる。これが核沸騰(第3図参照)であり、気泡は回
路基板から気化熱を奪い、回路基板を有効に冷却する。
In the process of boiling and cooling, nucleate boiling and film boiling occur depending on the amount of heat generated by the heating element. When the temperature of the cooling liquid increases due to the heat generated by the circuit board, minute bubbles are generated at the interface where the heat generating surface of the circuit board and the cooling liquid come into contact. This is nucleate boiling (see Figure 3), and the bubbles remove vaporization heat from the circuit board, effectively cooling the circuit board.

しかし、回路基板の発熱量がさらに多くなると、微小な
気泡の発生が連続的になり、気泡が成長し、相互に集合
して大きな気泡にこなる。これが膜沸騰(第4図参照)
であり、この状態になると回路基板の発熱面が大きな気
泡膜に包まれて冷却用液体に接触しなくなる。このため
、膜沸騰においては、気泡膜が断熱材のようになり、冷
却用液体に接触しなくなった回路基板の部分は角、に温
度が上昇し、また新しい気泡の生成が阻害されて冷却作
用が低下する。このために、従来は膜沸騰にならないよ
うにかなりの安全を見込んだ条件で冷却を行うことが必
要であり、冷却用容器が大きくなったり、多量の冷却用
液体を使用したりすることが必要であった。
However, as the amount of heat generated by the circuit board increases further, the generation of minute bubbles becomes continuous, the bubbles grow, and they aggregate together to form large bubbles. This is film boiling (see Figure 4)
In this state, the heat generating surface of the circuit board is surrounded by a large bubble film and no longer comes into contact with the cooling liquid. For this reason, in film boiling, the bubble film acts like an insulator, and the temperature of the parts of the circuit board that are no longer in contact with the cooling liquid rises at the corners, and the generation of new bubbles is inhibited, resulting in a cooling effect. decreases. For this reason, conventionally it has been necessary to perform cooling under conditions that allow for considerable safety to avoid film boiling, which requires a large cooling container or the use of a large amount of cooling liquid. Met.

本発明は電子装置の発熱面における気泡の成長を妨げ、
核沸騰から膜沸騰への遷移を防止するようにした電子装
置の冷却装置を提供することを目的とするものである。
The present invention prevents bubble growth on heat generating surfaces of electronic devices,
It is an object of the present invention to provide a cooling device for an electronic device that prevents transition from nucleate boiling to film boiling.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明による電子装置の冷却装置は、電子装置を収容し
、且つ該電子装置を冷却するために少なくとも該電子装
置の発熱面と接触する冷却用液体を封入した冷却用容器
と、該電子装置の発熱面と所定の間隔で対向する熱交換
表面を有する熱交換手段とを備え、該電子装置の発熱面
において発生した冷却用液体の気泡の成長を該電子装置
の発熱面と該熱交換手段の熱交換表面との間で規制し、
核沸騰から膜沸騰への遷移を防止するようにしたことを
特徴とするものである。
A cooling device for an electronic device according to the present invention includes a cooling container filled with a cooling liquid that accommodates an electronic device and contacts at least a heat generating surface of the electronic device in order to cool the electronic device; A heat exchanging means having a heat exchanging surface facing a heat generating surface at a predetermined interval, the growth of bubbles of the cooling liquid generated on the heat generating surface of the electronic device is transferred between the heat generating surface of the electronic device and the heat exchanging means. Regulated between heat exchange surfaces,
This is characterized by preventing the transition from nucleate boiling to film boiling.

〔作 用〕[For production]

上記構成においては、電子装置は冷却用液体により、望
ましくは核沸騰により冷却される。熱交換手段は冷却用
液体を冷却し、特に電子装置の発熱面の前面において冷
却用液体の核沸騰により発生した気泡の再液化を促進し
、気泡が膜状に大きく成長するのを防止し、よって核沸
騰を存続させて有効な冷却が行われるようにする。この
際、電子装置の発熱面と熱交換手段の熱交換表面との間
の間隔が小さいと、気泡はその間隔で制限される大きさ
以上に成長することができず、発熱面を覆うような膜に
成長する前に再液化し、小さな気泡となって離脱する。
In the above configuration, the electronic device is cooled by a cooling liquid, preferably by nucleate boiling. The heat exchange means cools the cooling liquid, promotes reliquefaction of bubbles generated by nucleate boiling of the cooling liquid especially in front of the heat generating surface of the electronic device, and prevents the bubbles from growing into a large film shape. Therefore, nucleate boiling is maintained to ensure effective cooling. At this time, if the distance between the heat generating surface of the electronic device and the heat exchange surface of the heat exchange means is small, the bubbles will not be able to grow beyond the size limited by the distance, and will not be able to cover the heat generating surface. Before it grows into a film, it reliquefies and separates into small bubbles.

逆にこの間隔が狭いと、核沸騰で発生した気泡が素子と
熱交換面の間の隙間を通過できず、気泡も集って断熱状
態となる。
On the other hand, if this interval is narrow, the bubbles generated by nucleate boiling cannot pass through the gap between the element and the heat exchange surface, and the bubbles also gather, resulting in an adiabatic state.

〔実施例〕〔Example〕

第1図は本発明による電子装置の冷却装置を示し、第3
図は第1図の熱交換器を除いた破断斜視図である。電子
装置10は冷却用容器12に収容され、冷却される。こ
の電子装置10は例えば13mm角のLSI 10aを
4×4個フリップチップ実装したセラミック回路基板1
0bからなり、各LSI 10aはパッケージに封入さ
れることなくハンダ11により直接にセラミック回路基
板10bに固定されている。実施例においては、セラミ
ック回路基板10bが冷却用容器12の一部を構成し、
セラミック回路基板10bの前面側のLSI ioaが
冷却用容器12に挿入され、冷却用容器12の外部に位
置するセラミック回路基板10bの背面にはピンIOc
等の電気接続手段が設けられ、周辺器、電源、メモリユ
ニットなどの他の電気(電子)部品と接続できるように
なっている。
FIG. 1 shows a cooling device for an electronic device according to the present invention;
The figure is a cutaway perspective view of FIG. 1 with the heat exchanger removed. The electronic device 10 is housed in a cooling container 12 and cooled. This electronic device 10 includes, for example, a ceramic circuit board 1 on which 4×4 13 mm square LSIs 10a are flip-chip mounted.
Each LSI 10a is directly fixed to a ceramic circuit board 10b with solder 11 without being enclosed in a package. In the embodiment, the ceramic circuit board 10b constitutes a part of the cooling container 12,
The LSI ioa on the front side of the ceramic circuit board 10b is inserted into the cooling container 12, and the pin IOc is inserted in the back side of the ceramic circuit board 10b located outside the cooling container 12.
Electrical connection means such as , etc. are provided to enable connection with other electrical (electronic) components such as peripherals, power supplies, memory units, etc.

冷却用容器12内には電子装置10を冷却するための冷
却用液体14が封入される。冷却用液体14は冷却用容
器12内の所定のレベルまで入れられ、冷却用容器12
内の上方部には蒸気用の空間が残される。
A cooling liquid 14 for cooling the electronic device 10 is sealed within the cooling container 12 . The cooling liquid 14 is poured into the cooling container 12 to a predetermined level, and the cooling liquid 14 is poured into the cooling container 12 to a predetermined level.
A space is left in the upper part for steam.

実施例では、冷却用液体14は所定の温度で沸騰する絶
縁性のパーフルオロカーボンを使用している。
In the embodiment, the cooling liquid 14 is an insulating perfluorocarbon that boils at a predetermined temperature.

例えば、C6F laは沸点が56°Cであり、CsF
 I□は沸点が40°Cである。従って、電子装置10
を例えば85°C以下に維持するためにはこれらの各冷
却用液体14、あるいはその混合物を使用すると好まし
い。
For example, C6F la has a boiling point of 56°C, and CsF
I□ has a boiling point of 40°C. Therefore, electronic device 10
It is preferable to use each of these cooling liquids 14 or a mixture thereof in order to maintain the temperature at, for example, 85° C. or lower.

冷却用容器12の外部には熱交換器16が設けられ、循
環導管18が冷却用容器12と熱交換器16とを接続す
る。熱交換器16としては空冷式のものや水冷式のもの
を使用することができ、下端部に所定量の冷却用液体1
4を溜めるタンクを備えているのが好ましい。循環導管
18にはポンプ等の循環手段が設けられ、冷却用容器1
2内で温かくなった冷却用液体14を熱交換器16に送
り、熱交換器16で冷却された冷却用液体14を冷却用
容器12に循環供給する。
A heat exchanger 16 is provided outside the cooling container 12 , and a circulation conduit 18 connects the cooling container 12 and the heat exchanger 16 . As the heat exchanger 16, an air-cooled type or a water-cooled type can be used, and a predetermined amount of cooling liquid 1 is provided at the lower end.
It is preferable to have a tank for storing 4. The circulation conduit 18 is provided with circulation means such as a pump, and the cooling container 1
The cooling liquid 14 that has become warm inside the container 2 is sent to the heat exchanger 16, and the cooling liquid 14 cooled by the heat exchanger 16 is circulated and supplied to the cooling container 12.

さらに、第1図に示されるように、冷却用容器12内に
は第2の熱交換器20が設けられる。この第2の熱交換
器20も冷却用容器12の一部を構成し、冷却用容器1
2の内部に熱交換表面22を有する。実施例では各LS
110aが発熱面となり、第2の熱交換器20の熱交換
表面22は各LSI 10aの表面と対応する位置関係
で配置される。すなわち、第2の熱交換器20の熱交換
表面22は第2の熱交換器20のベース面から区画毎に
突出し、各区画は各LSI 10aの前面の面積よりも
大きい面積を有する。この突出した熱交換表面22が各
LSI 10aの前面と所定の間隔で対向する。この間
隔は0.5陥以上で2mm以下とするのが好ましい。
Furthermore, as shown in FIG. 1, a second heat exchanger 20 is provided within the cooling container 12. This second heat exchanger 20 also constitutes a part of the cooling container 12.
2 has a heat exchange surface 22 inside. In the example, each LS
110a is a heat generating surface, and the heat exchange surface 22 of the second heat exchanger 20 is arranged in a positional relationship corresponding to the surface of each LSI 10a. That is, the heat exchange surface 22 of the second heat exchanger 20 projects section by section from the base surface of the second heat exchanger 20, and each section has an area larger than the area of the front surface of each LSI 10a. This protruding heat exchange surface 22 faces the front surface of each LSI 10a at a predetermined interval. This interval is preferably 0.5 or more and 2 mm or less.

第2の熱交換器20は冷却水の入口24と出口26とを
備え、この人口24と出口26との間に通路28が設け
られるとともに、各熱交換表面22の近くを通る冷却通
路30が通路28に接続される。各冷却通路30には矢
印によって示されるように冷却水が流れ、各熱交換表面
22を冷却する。第2図に示されるように、各熱交換表
面22は垂直方向に延びる凹凸溝をもつように形成され
、熱交換表面積を増大するとともに、気泡が各LSI 
10aと熱交換表面22との間の微小な間隙を通って上
昇しやすくなっている。
The second heat exchanger 20 has a cooling water inlet 24 and an outlet 26 with a passageway 28 between the inlet 24 and the outlet 26, and a cooling passageway 30 passing near each heat exchange surface 22. It is connected to the passage 28. Cooling water flows through each cooling passage 30 as indicated by the arrows to cool each heat exchange surface 22 . As shown in FIG. 2, each heat exchange surface 22 is formed with uneven grooves extending vertically, increasing the heat exchange surface area and preventing air bubbles from entering each LSI.
It tends to rise through the tiny gap between 10a and the heat exchange surface 22.

以上の構成において、電子装置10を電源に接続して使
用を開始すると、各LSI 10aが発熱する。
In the above configuration, when the electronic device 10 is connected to a power source and started to be used, each LSI 10a generates heat.

各LS110aが発熱すると、冷却用液体14の温度が
上昇して対流が始まり、LSI 10aの熱を奪い、各
LSI 10aを冷却する。冷却用液体14が沸点に達
すると核沸騰が生じ、微小な気泡が浮上していく。
When each LS 110a generates heat, the temperature of the cooling liquid 14 rises and convection begins, removing heat from the LSI 10a and cooling each LSI 10a. When the cooling liquid 14 reaches its boiling point, nucleate boiling occurs and minute bubbles rise to the surface.

この核沸騰領域では、各LSI 10aは発生ずる熱を
冷却用液体14に気化熱として奪われるため、効率よく
冷却され、各LSI 10aの発熱量が多い場合でも冷
却用液体14の沸点よりやや高い温度に止まり、安定的
に冷却される。
In this nucleate boiling region, the heat generated by each LSI 10a is taken away by the cooling liquid 14 as heat of vaporization, so that it is efficiently cooled, and even if the amount of heat generated by each LSI 10a is large, the boiling point is slightly higher than the boiling point of the cooling liquid 14. It stays at the same temperature and is cooled stably.

しかし、冷却用液体14の限界熱流量に対して各LS1
10aの発熱量が多くなると、微小な気泡の発生が連続
的になり、気泡が成長し、相互に集合して大きな気泡に
なる。さらに発熱量が増すと、第4図に示されるように
、各LS110aの面積よりも大きく成長し、LSI 
10aは気泡の膜50で包まれる。
However, for the critical heat flow rate of the cooling liquid 14, each LS1
When the calorific value of 10a increases, the generation of minute bubbles becomes continuous, the bubbles grow, and they aggregate together to form large bubbles. As the amount of heat generated further increases, as shown in FIG. 4, the area of each LS110a grows larger and
10a is surrounded by a membrane 50 of bubbles.

この膜沸騰状態になると各LSI 10aが冷却用液体
14に接触しなくなり、冷却作用が低下することは上述
した通りである。
As described above, when this film boiling state occurs, each LSI 10a does not come into contact with the cooling liquid 14, and the cooling effect is reduced.

本発明においては、第2の熱交換器20の各熱交換表面
22はLSI 10a付近の冷却用液体14を冷却し、
サブクール状態とする。また、各LSI 10aと各熱
交換表面22との間の間隔が適切に小さいと(例えば、
2薗以下であると)、気泡はその間隔で制限される大き
さ(球とした場合の直径)以」−に成長することができ
ず、各LSI 10aを覆うような膜に成長する前に再
液化し、小さな気泡として浮上する。また、各LSI 
loaと熱交換表面22との間の間隔が小さ過ぎると(
例えば、0.5 mm以下であると)、発生した気泡が
各LSI 10aの表面から離脱できず、凝集して膜沸
騰と同様な状態になる。この結果、各LSI 10aの
前面において冷却用液体14の核沸騰により発生した気
泡は再液化が促進され、気泡が膜状に大きく成長するの
を防止する。よって核沸騰を存続させて有効な冷却が行
われるようになる。
In the present invention, each heat exchange surface 22 of the second heat exchanger 20 cools the cooling liquid 14 near the LSI 10a,
Set to subcool state. Furthermore, if the distance between each LSI 10a and each heat exchange surface 22 is appropriately small (for example,
2), the bubbles cannot grow beyond the size (diameter when made into a sphere) limited by the interval, and before they grow into a film that covers each LSI 10a. It re-liquefies and floats up as small bubbles. In addition, each LSI
If the spacing between loa and heat exchange surface 22 is too small (
For example, if the diameter is 0.5 mm or less), the generated bubbles cannot be separated from the surface of each LSI 10a and aggregate, resulting in a state similar to film boiling. As a result, the reliquefaction of the bubbles generated by nucleate boiling of the cooling liquid 14 on the front surface of each LSI 10a is promoted, and the bubbles are prevented from growing into a large film shape. Therefore, nucleate boiling continues and effective cooling is performed.

このようにして、本発明では気泡の成長を妨げ、核沸騰
から膜沸騰への遷移を防止することができる。
In this manner, the present invention can inhibit the growth of bubbles and prevent the transition from nucleate boiling to film boiling.

さらに、各熱交換表面は対向する各LSI 10aの表
面よりも面積が広くないとサブクール効果が低下する。
Furthermore, unless the area of each heat exchange surface is wider than the surface of each LSI 10a facing each other, the subcooling effect will be reduced.

さらに、気泡の成長を阻止するためには、気泡が単に円
滑な熱交換表面に接触するようにするよりも、熱交換表
面22に発熱面に向がって突出する突起を設けて、この
突起が気泡の中に食い込み、気泡を破裂させるようにす
るのがよい。この応用として、熱交換表面22に気泡上
昇方向の凹凸溝(第2図)を設けるのが好ましい。
Additionally, to inhibit bubble growth, rather than simply allowing the bubbles to contact a smooth heat exchange surface, the heat exchange surface 22 may be provided with protrusions that protrude toward the heat generating surface. It is best to allow the liquid to penetrate into the bubbles and cause them to burst. For this application, it is preferable to provide the heat exchange surface 22 with uneven grooves (FIG. 2) in the upward direction of the bubbles.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電子装置を収容
し、且つ該電子装置を冷却するために少なくとも該電子
装置の発熱面と接触する冷却用液体を封入した冷却用容
器と、該電子装置の発熱面と所定の間隔で対向する熱交
換表面を存する熱交換手段とを備えた構成としたので、
電子装置の発熱面の前面において冷却用液体の核沸騰に
より発生した気泡の再液化を促進し、気泡が膜状に大き
く成長するのを防止し、よって核沸騰を存続させて有効
な冷却を行なうことができる。
As described above, according to the present invention, there is provided a cooling container that houses an electronic device and is filled with a cooling liquid that contacts at least a heat generating surface of the electronic device in order to cool the electronic device; Since the structure includes a heat exchange means having a heat exchange surface facing the heat generating surface of the device at a predetermined interval,
Promotes re-liquefaction of the bubbles generated by nucleate boiling of the cooling liquid in front of the heat generating surface of electronic equipment, prevents the bubbles from growing into a large film, and thus allows nucleate boiling to continue for effective cooling. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図は第1図
の熱交換表面を示す正面図、第3図は第1図の熱交換器
を除いた破断斜視図、第4図は膜沸騰を説明する図であ
る。 10a ・L S I、    10 b ・・・回路
基板、12・・・冷却用容器、   14・・・冷却用
液体、20・・・熱交換器、    22・・・熱交換
表面。 第1図の熱交換表面を示す正面図 第2図
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a front view showing the heat exchange surface of FIG. 1, FIG. 3 is a cutaway perspective view of FIG. 1 with the heat exchanger removed, and FIG. The figure is a diagram explaining film boiling. 10a・LSI, 10b...Circuit board, 12...Cooling container, 14...Cooling liquid, 20...Heat exchanger, 22...Heat exchange surface. Front view Figure 2 showing the heat exchange surface of Figure 1

Claims (4)

【特許請求の範囲】[Claims] 1.電子装置(10)を収容し、且つ該電子装置を冷却
するために少なくとも該電子装置の発熱面と接触する冷
却用液体(14)を封入した冷却用容器(12)と、該
電子装置の発熱面と所定の間隔で対向する熱交換表面を
有する熱交換手段(20)とを備え、該電子装置の発熱
面において発生した冷却用液体の気泡の成長を該電子装
置の発熱面と該熱交換手段の熱交換表面との間で規制し
、核沸騰から膜沸騰への遷移を防止するようにした電子
装置の冷却装置。
1. A cooling container (12) containing an electronic device (10) and filled with a cooling liquid (14) that contacts at least a heat generating surface of the electronic device to cool the electronic device; heat exchanging means (20) having a heat exchanging surface facing the electronic device at a predetermined interval, the heat exchanging means (20) having a heat exchanging surface facing the electronic device at a predetermined distance; A cooling device for an electronic device that prevents transition from nucleate boiling to film boiling by regulating heat exchange between the heat exchange surface of the device and the heat exchange surface of the device.
2.上記間隔が0.5mmから2mmの範囲である請求
項1に記載の電子装置の冷却装置。
2. The cooling device for an electronic device according to claim 1, wherein the distance is in a range of 0.5 mm to 2 mm.
3.上記熱交換表面は対向する該電子装置の発熱面より
も面積が広く、熱交換表面には該発熱面に向かって突出
する突起が設けられる請求項1に記載の電子装置の冷却
装置。
3. 2. The cooling device for an electronic device according to claim 1, wherein the heat exchange surface has a larger area than an opposing heat generation surface of the electronic device, and the heat exchange surface is provided with a protrusion projecting toward the heat generation surface.
4.上記熱交換表面は気泡上昇方向の凹凸溝を有する請
求項3に記載の電子装置の冷却装置。
4. 4. The cooling device for an electronic device according to claim 3, wherein the heat exchange surface has uneven grooves in a direction in which bubbles rise.
JP2275269A 1990-10-16 1990-10-16 Electronic equipment cooling system Expired - Lifetime JP2874100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275269A JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275269A JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Publications (2)

Publication Number Publication Date
JPH04151860A true JPH04151860A (en) 1992-05-25
JP2874100B2 JP2874100B2 (en) 1999-03-24

Family

ID=17553074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275269A Expired - Lifetime JP2874100B2 (en) 1990-10-16 1990-10-16 Electronic equipment cooling system

Country Status (1)

Country Link
JP (1) JP2874100B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075493A1 (en) * 2004-12-22 2006-07-20 Tokyo University Of Science Educational Foundation Administrative Organization Vapor cooling method, vapor cooling apparatus, and flow passage structure, and application thereof
JP2008311399A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Heat sink
JP2010121791A (en) * 2008-11-17 2010-06-03 Toyota Industries Corp Ebullient cooling apparatus
WO2010095373A1 (en) * 2009-02-23 2010-08-26 株式会社豊田自動織機 Ebullient cooling apparatus
WO2012025981A1 (en) * 2010-08-23 2012-03-01 富士通株式会社 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075493A1 (en) * 2004-12-22 2006-07-20 Tokyo University Of Science Educational Foundation Administrative Organization Vapor cooling method, vapor cooling apparatus, and flow passage structure, and application thereof
US8061414B2 (en) 2004-12-22 2011-11-22 Tokyo University Of Science Educational Foundation Administrative Organization Boil cooling method, boil cooling apparatus, flow channel structure, and applied technology field thereof
JP2008311399A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Heat sink
JP2010121791A (en) * 2008-11-17 2010-06-03 Toyota Industries Corp Ebullient cooling apparatus
JP4730624B2 (en) * 2008-11-17 2011-07-20 株式会社豊田自動織機 Boiling cooler
WO2010095373A1 (en) * 2009-02-23 2010-08-26 株式会社豊田自動織機 Ebullient cooling apparatus
JP2010196912A (en) * 2009-02-23 2010-09-09 Toyota Industries Corp Ebullient cooling device
WO2012025981A1 (en) * 2010-08-23 2012-03-01 富士通株式会社 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body
JP5590128B2 (en) * 2010-08-23 2014-09-17 富士通株式会社 Cooling device, electronic device having cooling device, and cooling method of heating element

Also Published As

Publication number Publication date
JP2874100B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP5590128B2 (en) Cooling device, electronic device having cooling device, and cooling method of heating element
US7134289B2 (en) Multi-state spray cooling system
US20060162363A1 (en) Two-fluid spray cooling system
US20220187023A1 (en) Shrouded powder patch
JP2004319628A (en) System module
JPH04151860A (en) Cooling equipment of electronic device
JPH05335454A (en) Cooler for electronic apparatus
CN114731772A (en) Nozzle arrangement and cooling module
JPH02114597A (en) Method of cooling electronic device
JP6123172B2 (en) Heating element cooling device, cooling method and information device
JPH0267792A (en) Dip cooling module
JPS6154654A (en) Liquid cooling device
JP2822655B2 (en) Electronic component cooling mechanism
JPH0263147A (en) Cooling apparatus
JPH0442931Y2 (en)
JPH0533015Y2 (en)
JPH0319275Y2 (en)
Huang et al. Experimental study of a two-phase immersion cooling system for the CPU in a PC and a 2U server operated at the overclocking frequency
JPH03224256A (en) Cooling equipment for electronic machinery and apparatus
JPH0534113Y2 (en)
JPH0727637Y2 (en) Immersion cooling structure
JPH037960Y2 (en)
JPH0344065A (en) Semiconductor cooling method
TW202323749A (en) Liquid cooling device, liquid cooling system having the liquid cooling device and electronic device
JP2024021034A (en) Liquid immersion cooling unit and electronic equipment