JPH0263147A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH0263147A
JPH0263147A JP21417788A JP21417788A JPH0263147A JP H0263147 A JPH0263147 A JP H0263147A JP 21417788 A JP21417788 A JP 21417788A JP 21417788 A JP21417788 A JP 21417788A JP H0263147 A JPH0263147 A JP H0263147A
Authority
JP
Japan
Prior art keywords
semiconductor element
flow route
coolant flow
air
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21417788A
Other languages
Japanese (ja)
Inventor
Mitsutaka Yamada
光隆 山田
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21417788A priority Critical patent/JPH0263147A/en
Publication of JPH0263147A publication Critical patent/JPH0263147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove a coolant vapor air bubble inside a coolant flow route and to prevent a drop in a cooling capacity in a downstream part of the coolant flow route by a method wherein a plurality of pins, for air-bubble suction use, used to suck an air bubble which is generated from the surface of a semiconductor element and which is contained in a coolant liquid are installed in a downstream position of the semiconductor element inside the coolant flow route. CONSTITUTION:A coolant flow route 101 is connected to a heat exchanger via a circulating pump; a coolant liquid 103 is circulated inside the coolant flow route 101 by this system. In addition, also coolant vapor air bubbles 105 which have been sucked by pins 106 for air- bubble suction use are liquefied; after that, the air bubbles are again fed into the coolant flow route 101 by using the circulating pump. The pins 106, for air-bubble suction use, of, e.g., three pieces per semiconductor element chip are installed in a downstream position of a semiconductor element 102 inside the coolant flow route 101. Thereby, since the air bubbles 105 generated by heat of the semiconductor element 102 are sucked on the downstream side of the semiconductor element 102; the air bubbles 105 existing inside the coolant flow route 101 are small, and a cooling capacity in the downstream part of the coolant flow route 101 is not caused. Accordingly, the semiconductor element 102 which generates high heat can be cooled.

Description

【発明の詳細な説明】 〔概要〕 発熱量の大きな半導体素子を効率良く冷却するだめの強
制対流沸騰冷却装置に関し 冷媒流路内の冷媒蒸気気泡を効率良く除去して冷媒流路
下流での冷却能力の低下を防止し、高発熱の半導体素子
を冷却できるようにする。とともにより多数の半導体素
子を一度に冷却できるようにすることを目的とし。
[Detailed Description of the Invention] [Summary] Regarding a forced convection boiling cooling device for efficiently cooling semiconductor elements that generate a large amount of heat, cooling is achieved downstream of the refrigerant flow path by efficiently removing refrigerant vapor bubbles within the refrigerant flow path. To prevent a decline in performance and to cool a semiconductor element that generates a high amount of heat. The purpose is to also be able to cool a larger number of semiconductor devices at once.

冷媒流路内にじか漬けされた複数個の半導体素子を冷媒
液体の強制対流および沸騰により放熱する冷却装置にお
いて、冷媒流路内の半導体素子の下流位置に、半導体素
子の表面から発生し、冷媒液体中に含まれる気泡を吸引
するための気泡吸引用ピンを複数個設けるように構成す
る。
In a cooling device that radiates heat from a plurality of semiconductor elements directly immersed in a refrigerant flow path by forced convection and boiling of refrigerant liquid, heat generated from the surface of the semiconductor element at a downstream position of the semiconductor element in the refrigerant flow path, It is configured to include a plurality of bubble suction pins for sucking bubbles contained in the refrigerant liquid.

(産業上の利用分野〕 本発明は、冷却装置、特に発熱量の大きな半導体素子を
効率良く冷却するための強制対流沸騰冷却装置に関する
(Industrial Application Field) The present invention relates to a cooling device, and particularly to a forced convection boiling cooling device for efficiently cooling a semiconductor element that generates a large amount of heat.

近年、高速コンピュータなどの半導体素子を使用した電
子機器において、半導体素子の発熱量が増大し、この熱
を外部に逃がすために9種々の冷知友法が提案されてい
る。
BACKGROUND ART In recent years, in electronic devices such as high-speed computers that use semiconductor elements, the amount of heat generated by the semiconductor elements has increased, and nine different cooling methods have been proposed to dissipate this heat to the outside.

高速コンピュータでは、半導体素子の高集積化および高
密度実装化により、単位体積あたりの発熱量は飛躍的に
増大している。このため、より一層高効率の冷却技術を
確立する必要がある。
In high-speed computers, the amount of heat generated per unit volume is increasing dramatically due to the high integration and high-density packaging of semiconductor elements. Therefore, it is necessary to establish even more efficient cooling technology.

〔従来の技術〕[Conventional technology]

従来、LSI等の半導体素子を冷却する手段として、半
導体素子に放熱フィンを装着したり、ファンにより半導
体素子を強制空冷する空冷冷却方式や半導体素子を直接
冷媒中に浸漬する冷却方式が採られている。
Conventionally, methods for cooling semiconductor devices such as LSIs include attaching heat dissipation fins to the semiconductor devices, using an air-cooling method in which the semiconductor devices are forced to cool with air using a fan, and cooling methods in which the semiconductor devices are directly immersed in a coolant. There is.

第3図は、後者に属するプール沸騰型冷却装置を示す図
である。
FIG. 3 is a diagram showing a pool boiling type cooling device belonging to the latter category.

第3図において、201は半導体素子、202は実装基
板、203は容器、204は冷媒液体。
In FIG. 3, 201 is a semiconductor element, 202 is a mounting board, 203 is a container, and 204 is a refrigerant liquid.

205は気泡、206は上部空間、207は熱交換パイ
プである。
205 is a bubble, 206 is an upper space, and 207 is a heat exchange pipe.

以下、第3図を用いて、従来のプール沸騰型冷却装置を
説明する。
Hereinafter, a conventional pool boiling type cooling device will be explained using FIG.

複数個の半導体素子201を搭載した実装基板202を
容器203中に満たされた冷媒液体204の中に浸漬さ
せる。
A mounting board 202 on which a plurality of semiconductor elements 201 are mounted is immersed in a refrigerant liquid 204 filled in a container 203.

半導体素子201が発生する熱の一部は、冷媒ン&体2
04の沸騰気化潜熱として吸収される。このとき、冷媒
液体204中に気泡205が発生する。
A part of the heat generated by the semiconductor element 201 is transferred to the coolant and body 2.
It is absorbed as latent heat of boiling and vaporization of 04. At this time, bubbles 205 are generated in the refrigerant liquid 204.

気泡205は、容器203の上部空間206に設けられ
た熱交換パイプ207により液化される。
The air bubbles 205 are liquefied by a heat exchange pipe 207 provided in the upper space 206 of the container 203.

以上、プール沸騰型冷却装置を説明したが、この種の冷
却装置は冷媒液体204が容器203内に閉じ込められ
ているので、放熱量には限界がある。そこで、より大き
な放熱量を得るために、冷媒液体を強制的に対流させる
1強制対流沸騰冷却装置が提案されている。
The pool boiling type cooling device has been described above, but since the refrigerant liquid 204 is confined within the container 203 in this type of cooling device, there is a limit to the amount of heat radiation. Therefore, in order to obtain a larger amount of heat dissipation, a forced convection boiling cooling device has been proposed in which the refrigerant liquid is forced to undergo convection.

強制対流沸騰冷却装置は、第3図に示したプール沸騰型
冷却装置の容器203の外に熱交換器を設け、冷媒液体
を循環ポンプにより、容器203と熱交換器との間を循
環させて放熱量を大きくしたものである。
A forced convection boiling cooling device is a pool boiling type cooling device shown in FIG. 3, in which a heat exchanger is provided outside the container 203, and a refrigerant liquid is circulated between the container 203 and the heat exchanger using a circulation pump. This increases the amount of heat dissipation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の強制対流沸騰冷却装置には、熱伝達効率が高い反
面、沸騰により生じた冷媒の蒸気気泡が。
Although conventional forced convection boiling cooling equipment has high heat transfer efficiency, it does not produce vapor bubbles of the refrigerant caused by boiling.

循環している冷媒液体に混合し、気液2相流となるため
、冷媒液体に対する蒸気気泡の量が増加するほど熱交換
効率が低下する。という問題があった。
Since it mixes with the circulating refrigerant liquid and becomes a gas-liquid two-phase flow, the heat exchange efficiency decreases as the amount of vapor bubbles relative to the refrigerant liquid increases. There was a problem.

また、蒸気気泡の量が増加すると、循環ポンプで加圧し
て循環させている冷媒液体の圧力バランスがくずれ、安
定な冷却を妨げる原因となる脈流が生じる。という問題
もあった。
Furthermore, when the amount of vapor bubbles increases, the pressure balance of the refrigerant liquid that is being pressurized and circulated by the circulation pump is disrupted, and a pulsating flow occurs that prevents stable cooling. There was also the problem.

さらに、半導体素子の発熱量が太き(なると。Furthermore, the amount of heat generated by semiconductor elements increases.

冷媒の沸騰が激しくなるため、複数個の半導体素子を一
度に冷却する構造のものでは沸騰によって生じた気泡の
量が冷媒流路の下流で増加するため。
Because the refrigerant boils violently, the amount of bubbles generated by boiling increases downstream of the refrigerant flow path in systems that cool multiple semiconductor devices at once.

冷却効率が低下し、半導体素子の表面で冷媒が膜沸騰に
達して温度が急上昇するため半導体素子が破壊する。と
いう問題もあった。
The cooling efficiency decreases, the refrigerant reaches film boiling on the surface of the semiconductor element, and the temperature rises rapidly, resulting in destruction of the semiconductor element. There was also the problem.

高発熱密度の半導体素子に対して0強制空冷あるいは伝
導水冷に比べて冷却効率の高い強制対流沸騰冷却を適用
する際に、最も障害となるのは流路内で発生する気液2
相流の処理である。
When applying forced convection boiling cooling, which has higher cooling efficiency than forced air cooling or conduction water cooling, to semiconductor devices with high heat generation density, the biggest obstacle is the gas and liquid generated in the flow path.
It is a phase flow process.

本発明は、冷媒流路内の冷媒蒸気気泡を効率良く除去し
て冷媒流路下流での冷却能力の低下を防止し、高発熱の
半導体素子を冷却できるようにする。とともにより多数
の半導体素子を一度に冷却できるようにした強制対流沸
騰冷却装置を提供することを目的とする。
The present invention efficiently removes refrigerant vapor bubbles in a refrigerant flow path, prevents a decrease in cooling capacity downstream of the refrigerant flow path, and makes it possible to cool semiconductor elements that generate high heat. Another object of the present invention is to provide a forced convection boiling cooling device that can cool a larger number of semiconductor devices at once.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために1本発明の冷却装置は、冷媒
流路内にじか漬けされた複数個の半導体素子を冷媒液体
の強制対流および沸騰により放熱する冷却装置において
、冷媒流路内の半導体素子の下流位置に、半導体素子の
表面から発生し、冷媒液体中に含まれる気泡を吸引する
ための気泡吸引用ピンを複数個設けるように構成する。
In order to achieve the above object, the present invention provides a cooling device that radiates heat from a plurality of semiconductor elements directly immersed in a refrigerant flow path by forced convection and boiling of refrigerant liquid. A plurality of bubble suction pins for sucking bubbles generated from the surface of the semiconductor element and contained in the refrigerant liquid are provided downstream of the semiconductor element.

(作用〕 本発明の冷却装置、特に強制対流沸騰冷却装置は、冷媒
流路内の半導体素子の下流位置に、半導体素子の表面か
ら発生し、冷媒液体中に含まれる気泡を吸引するための
気泡吸引用ピンを複数個設けているので、半導体素子が
発熱によって発生した気泡を半導体素子の・下流側で吸
引するため、冷媒流路内に存在する気泡が少なく5冷媒
流路下流での冷却能力の低下が起こらない、したがって
(Function) The cooling device of the present invention, particularly the forced convection boiling cooling device, has air bubbles generated from the surface of the semiconductor device at a position downstream of the semiconductor device in the coolant flow path and for sucking bubbles contained in the coolant liquid. Since multiple suction pins are provided, the air bubbles generated by the semiconductor element due to heat generation are sucked downstream of the semiconductor element, so there are fewer air bubbles in the refrigerant flow path and the cooling capacity downstream of the refrigerant flow path is increased. Therefore, no decrease in .

高発熱の半導体素子を冷却できる。と同時により多数個
の半導体素子を一度に冷却することが可能になる。
Can cool semiconductor elements that generate high heat. At the same time, it becomes possible to cool a larger number of semiconductor elements at once.

〔実施例〕〔Example〕

第1図は本発明の強制対流沸騰冷却装置の断面図、第2
図は本発明の強制対流沸騰冷却装置の斜視図である。
Figure 1 is a sectional view of the forced convection evaporative cooling device of the present invention, Figure 2
The figure is a perspective view of the forced convection evaporative cooling device of the present invention.

第1図および第2図において、lotは冷媒流路、10
2は半導体素子、103は冷媒液体、104は冷媒液体
の流れ、10りは気泡、106は気泡吸引用ピンである
In FIG. 1 and FIG. 2, lot is a refrigerant flow path, 10
2 is a semiconductor element, 103 is a refrigerant liquid, 104 is a flow of the refrigerant liquid, 10 is a bubble, and 106 is a bubble suction pin.

以下、第1図および第2図を用いて2本発明の1実施例
を説明する。
Hereinafter, two embodiments of the present invention will be described using FIG. 1 and FIG. 2.

本発明の強制対流沸騰冷却装置には、複数本の冷媒流路
101が設けられている。各冷媒流路lO1の内部には
、上流から下流にかけて、複数個の半導体素子102が
載置されている。また、冷媒流路lotの内部には、冷
媒液体の流れ104として示すように、フッ化炭素(C
bF+a )などの冷媒液体103が流速0.5〜1.
2m/sで流れている。冷媒液体103の温度は、20
〜40℃である。
A plurality of refrigerant channels 101 are provided in the forced convection evaporative cooling device of the present invention. A plurality of semiconductor elements 102 are placed inside each refrigerant flow path lO1 from upstream to downstream. Furthermore, inside the refrigerant flow path lot, as shown as a refrigerant liquid flow 104, fluorocarbon (C
Refrigerant liquid 103 such as bF+a) has a flow rate of 0.5 to 1.
It is flowing at 2m/s. The temperature of the refrigerant liquid 103 is 20
~40°C.

冷媒流路101は、循環ポンプ(図示せず)を介して熱
交換器(図示せず)と接続されており。
The refrigerant flow path 101 is connected to a heat exchanger (not shown) via a circulation pump (not shown).

この系により冷媒液体103が冷媒流路101内を循環
するようになっている。また、気泡吸引用ピン106が
吸引した冷媒蒸気気泡105も液化された後、循環ポン
プにより再び冷媒流路101内に送り込まれる。
This system allows the refrigerant liquid 103 to circulate within the refrigerant channel 101. Moreover, after the refrigerant vapor bubbles 105 sucked by the bubble suction pin 106 are also liquefied, they are sent into the refrigerant flow path 101 again by the circulation pump.

次に2本発明の特徴である気泡吸引用ピン106を説明
する。
Next, the bubble suction pin 106, which is a feature of the present invention, will be explained.

気泡吸引用ピン106は、冷媒流路101内の半導体素
子102の下流位置1例えば半導体素子子ノブ端から1
鶴の位置に、半導体素子チップ1個あたり3例えば3個
取り付ける。気泡吸引用ピン1個あたりの気泡の吸引量
は1例えば31/sである。
The bubble suction pin 106 is located at a downstream position 1 of the semiconductor element 102 in the refrigerant flow path 101, for example, 1 from the end of the semiconductor element knob.
For example, 3 pieces per semiconductor element chip are attached at the crane positions. The suction amount of bubbles per bubble suction pin is 1, for example, 31/s.

以上の説明では気泡唆引用ピン106により半導体素子
102の表面で発生した冷媒蒸気気泡を強制的に吸引し
て除去する例を示した。しかしながら5気泡吸引用ピン
106に気泡吸引力を付与しなくとも、気泡吸引用ピン
106を設けるだけでも冷媒蒸気気泡の発生量を減少さ
せるとともに冷却能力を向上させることができる。
In the above description, an example has been shown in which the bubble inducing pin 106 forcibly suctions and removes the refrigerant vapor bubbles generated on the surface of the semiconductor element 102 . However, even if no bubble suction force is applied to the five bubble suction pins 106, the amount of refrigerant vapor bubbles generated can be reduced and the cooling capacity can be improved by simply providing the bubble suction pins 106.

第1表に気泡の発生量の計測例を、また第2表に冷却能
力の計測例を示す。
Table 1 shows an example of measuring the amount of bubbles generated, and Table 2 shows an example of measuring the cooling capacity.

(以下余白) 星上表 気泡の発生量(体積%) *チップの番号は、冷媒流路101内の半導体素子の順
番を表す番号であり、上流より1.2.・・・・・・、
12である。
(Leaving space below) Star table Amount of bubbles generated (volume %) *The chip number represents the order of the semiconductor elements in the refrigerant flow path 101, starting from the upstream: 1.2.・・・・・・、
It is 12.

**条件Aは気泡吸引用ピン106がない場合。**Condition A is when there is no bubble suction pin 106.

条件Bは気泡吸引用ピン106を設けた場合2条件Cは
気泡吸引用ピン106を設け。
Condition B is when the bubble suction pin 106 is provided; Condition C is when the bubble suction pin 106 is provided.

かつ吸引を行った場合を示している。This shows the case where suction is performed.

(以下余白) 11表 冷却能力(W/csl) を−度に冷却することができるようになる。(Margin below) Table 11 Cooling capacity (W/csl) can be cooled down to -degrees.

また、気泡吸引用ピンを取り付けるだけでも冷媒液体の
流れに乱流を生じさせる効果が得られるため、従来より
も高発熱の半導体素子を冷却することができる。
In addition, simply attaching the bubble suction pin has the effect of creating turbulence in the flow of the refrigerant liquid, so it is possible to cool semiconductor elements that generate more heat than before.

したがって1本発明によれば、半導体素子を高密度に実
装することが可能になるので、コンピュータの計算速度
を速めることができ、性能の向上に寄与するところが大
きい。
Therefore, according to the present invention, it is possible to mount semiconductor elements at a high density, so that the calculation speed of a computer can be increased, which greatly contributes to improving performance.

*条件Aは気泡吸引用ピン106がない場合条件Bは気
泡吸引用ピン106を設けた場合。
*Condition A is when the bubble suction pin 106 is not provided, and Condition B is when the bubble suction pin 106 is provided.

条件Cは気泡吸引用ピン106を設け、かつ吸引を行っ
た場合を示している。
Condition C shows the case where the bubble suction pin 106 is provided and suction is performed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷媒流路内の冷媒蒸気気泡を効率良く
除去して冷媒流路下流での冷却能力の低下を防止し、高
発熱の半導体素子を冷却することが可能になる。ととも
により多数個の半導体素子
According to the present invention, it is possible to efficiently remove refrigerant vapor bubbles in a refrigerant flow path, prevent a decrease in cooling capacity downstream of the refrigerant flow path, and cool a semiconductor element that generates a high amount of heat. With the increase in the number of semiconductor devices

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の強制対流沸騰冷却装置の断面図5 第2図は本発明の強制対流沸騰冷却装置の斜視図。 第3図は従来のプール沸騰型冷却装置の例を示す図 である。 第1図および第2図において lOl:冷媒流路 102 : 103 = 104 : l 05 : 106: 半導体素子 冷媒液体 冷媒液体の流れ 気泡 気泡吸引用ピン FIG. 1 is a sectional view 5 of the forced convection evaporative cooling device of the present invention. FIG. 2 is a perspective view of the forced convection evaporative cooling device of the present invention. Figure 3 is a diagram showing an example of a conventional pool boiling type cooling device. It is. In Figures 1 and 2 lOl: Refrigerant flow path 102: 103 = 104: l05: 106: semiconductor element refrigerant liquid refrigerant liquid flow bubbles Air bubble suction pin

Claims (1)

【特許請求の範囲】 冷媒流路(101)内にじか漬けされた複数個の半導体
素子(102)を冷媒液体(103)の強制対流および
沸騰により放熱する冷却装置において、 冷媒流路(101)内の半導体素子(102)の下流位
置に、半導体素子(102)の表面から発生し、冷媒液
体(103)中に含まれる気泡(105)を吸引するた
めの気泡吸引用ピン(106)を複数個設けた ことを特徴とする冷却装置。
[Scope of Claims] A cooling device that radiates heat from a plurality of semiconductor elements (102) directly immersed in a refrigerant flow path (101) by forced convection and boiling of a refrigerant liquid (103), comprising: ) is provided with a bubble suction pin (106) downstream of the semiconductor element (102) for sucking air bubbles (105) generated from the surface of the semiconductor element (102) and contained in the refrigerant liquid (103). A cooling device characterized by having a plurality of cooling devices.
JP21417788A 1988-08-29 1988-08-29 Cooling apparatus Pending JPH0263147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21417788A JPH0263147A (en) 1988-08-29 1988-08-29 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21417788A JPH0263147A (en) 1988-08-29 1988-08-29 Cooling apparatus

Publications (1)

Publication Number Publication Date
JPH0263147A true JPH0263147A (en) 1990-03-02

Family

ID=16651513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21417788A Pending JPH0263147A (en) 1988-08-29 1988-08-29 Cooling apparatus

Country Status (1)

Country Link
JP (1) JPH0263147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480750A2 (en) * 1990-10-11 1992-04-15 Nec Corporation Liquid cooling system for LSI packages
JPH04188649A (en) * 1990-11-19 1992-07-07 Kawasaki Steel Corp Integrated circuit
JPH04196155A (en) * 1990-11-26 1992-07-15 Nec Corp Method for cooling integrated circuit
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480750A2 (en) * 1990-10-11 1992-04-15 Nec Corporation Liquid cooling system for LSI packages
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
EP0817263A2 (en) * 1990-10-11 1998-01-07 Nec Corporation Liquid cooling system for LSI packages
EP0817263A3 (en) * 1990-10-11 1998-01-14 Nec Corporation Liquid cooling system for LSI packages
JPH04188649A (en) * 1990-11-19 1992-07-07 Kawasaki Steel Corp Integrated circuit
JPH04196155A (en) * 1990-11-26 1992-07-15 Nec Corp Method for cooling integrated circuit
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system

Similar Documents

Publication Publication Date Title
TWI631888B (en) Cooling electronic devices in a data center
TWI289039B (en) Cooling apparatus and electronic equipment incorporating the same
US9250024B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US7400505B2 (en) Hybrid cooling system and method for a multi-component electronics system
US8345423B2 (en) Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8929080B2 (en) Immersion-cooling of selected electronic component(s) mounted to printed circuit board
US8351206B2 (en) Liquid-cooled electronics rack with immersion-cooled electronic subsystems and vertically-mounted, vapor-condensing unit
US8179677B2 (en) Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US7944694B2 (en) Liquid cooling apparatus and method for cooling blades of an electronic system chassis
US8422218B2 (en) Liquid cooled condensers for loop heat pipe like enclosure cooling
US8203842B2 (en) Open flow cold plate for immersion-cooled electronic packages
US8964391B2 (en) Sectioned manifolds facilitating pumped immersion-cooling of electronic components
US5427174A (en) Method and apparatus for a self contained heat exchanger
US7961475B2 (en) Apparatus and method for facilitating immersion-cooling of an electronic subsystem
US20110317367A1 (en) Liquid-cooled electronics rack with immersion-cooled electronic subsystems
US20100103618A1 (en) Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
JP2008287733A (en) Liquid cooling system
US10874034B1 (en) Pump driven liquid cooling module with tower fins
JP4603783B2 (en) Liquid cooling system and radiator
JPH0263147A (en) Cooling apparatus
CN116321931A (en) Cooling plate, soaking box and server system
JPH0258296A (en) Cooling device
JPS6154654A (en) Liquid cooling device
JPH0534113Y2 (en)