JPH0442931Y2 - - Google Patents

Info

Publication number
JPH0442931Y2
JPH0442931Y2 JP11923386U JP11923386U JPH0442931Y2 JP H0442931 Y2 JPH0442931 Y2 JP H0442931Y2 JP 11923386 U JP11923386 U JP 11923386U JP 11923386 U JP11923386 U JP 11923386U JP H0442931 Y2 JPH0442931 Y2 JP H0442931Y2
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
lsi
circuit board
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11923386U
Other languages
Japanese (ja)
Other versions
JPS6327052U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11923386U priority Critical patent/JPH0442931Y2/ja
Publication of JPS6327052U publication Critical patent/JPS6327052U/ja
Application granted granted Critical
Publication of JPH0442931Y2 publication Critical patent/JPH0442931Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔概要〕 冷媒の気化熱を使用して回路基板上に配列して
装着されている半導体チツプを効率的に冷却する
方法として、回路基板を側面部に、凝縮部と冷却
液溜めを上面部に、またスタート用ヒータと冷媒
溜めを底面部に備え、底部に冷媒を入れて減圧排
気し密封した構造。
[Detailed explanation of the invention] [Summary] As a method for efficiently cooling semiconductor chips arranged and mounted on a circuit board using the heat of vaporization of a refrigerant, the circuit board is placed on the side surface and a condensing section is formed. The structure includes a coolant reservoir on the top, a starting heater and a refrigerant reservoir on the bottom, and the refrigerant is put in the bottom, decompressed, and sealed.

〔産業上の利用分野〕[Industrial application field]

本考案は気化熱を利用して効率よく冷却を行う
半導体装置の冷却構造に関する。
The present invention relates to a cooling structure for semiconductor devices that efficiently cools semiconductor devices using heat of vaporization.

情報処理装置の処理能力を向上する方法として
多数の半導体素子から構成されている半導体装置
は単位素子の小形化と共に素子数の増大が行われ
ている。
2. Description of the Related Art As a method for improving the processing performance of information processing devices, semiconductor devices that are composed of a large number of semiconductor elements are being made smaller in size and the number of elements is increased.

すなわち、単位素子を形成する電極寸法や導体
パターン幅は極度に縮小されており、一方素子数
は増大してLSIやVLSIが実用化されている。
That is, the electrode dimensions and conductor pattern widths that form unit elements have been extremely reduced, while the number of elements has increased, and LSI and VLSI have been put into practical use.

また、配線基板への実装方法も改良され、従来
は半導体チツプ毎にハーメチツクシールパツケー
ジに格納してあり、これをプリント配線基板に装
着していたが、今後の形態としてはパツシベーシ
ヨン技術の進歩により、複数個のLSIチツプをセ
ラミツクなどの回路基板に装着してLSIモジユー
ルを作り、これを取替え単位として配線基板に装
着する方法がとられるに到つている。
In addition, the mounting method on wiring boards has been improved. Previously, each semiconductor chip was housed in a hermetically sealed package and attached to the printed wiring board, but the future format will be based on advances in packaging technology. As a result, a method has been adopted in which multiple LSI chips are mounted on a circuit board made of ceramic or the like to create an LSI module, which is then mounted on a wiring board as a replacement unit.

このように単位素子の小形化と高密度化が進む
に従つて半導体装置の発熱量も膨大となり、従来
の空冷方法では素子の温度を最高使用温度範囲内
に保持することは不可能になつた。
As unit elements become smaller and more dense, the amount of heat generated by semiconductor devices also increases, making it impossible to maintain the element temperature within the maximum operating temperature range using conventional air cooling methods. .

すなわち、今までLSIチツプの発熱量は最高で
も4ワツト程度であつたが、VLSIにおいては10
ワツト程度に達しようとしている。
In other words, up until now, the maximum amount of heat generated by an LSI chip was about 4 watts, but in VLSI, the amount of heat generated is about 10 watts.
It is about to reach the level of Watsuto.

以上のことから、半導体装置の冷却方法は従来
の空冷や強制空冷に代わつて液冷が必要となつて
いる。
In view of the above, liquid cooling has become necessary as a cooling method for semiconductor devices in place of conventional air cooling and forced air cooling.

〔従来の技術〕[Conventional technology]

考案者は多数のLSIを多層回路基板に搭載した
半導体装置の液冷方法について既に数件の実用新
案を申請中である。
The inventor is already applying for several utility models for liquid cooling methods for semiconductor devices in which many LSIs are mounted on a multilayer circuit board.

例えば実願昭59−016496(59年2月8日出願)、
実願昭59−019428(59.2.14出願)、実願昭59−
099389(59.6.29出願)、実願昭59−099390(59.6.29
出願)、実願昭59−157527(59.10.18出願)など、 これらの出願の要旨は半導体チツプを装着した
回路基板を非腐蝕性で且つ非解離性で沸点がチツ
プの最高使用温度である85℃以下の冷媒、例えば
フレオン(C2Cl3F3沸点49℃)や各種のフルオロ
カーボン例えばC5F12(沸点30℃)、C6F14(沸点56
℃)などの液に浸漬して密封し、回路基板は容器
の内側に設けたコネクタを通じて外部回路に接続
するか、或いは回路基板を密封容器の側壁として
使用し、裏面より導出したリードピンにコネクタ
を挿入して回路接続を行つている。
For example, Utility Application No. 59-016496 (filed on February 8, 1959),
Utility Application 1983-019428 (filed on 2/14/1959), Utility Application 1987-
099389 (filed on June 29, 1959)
Application), Utility Model Application No. 59-157527 (filed on October 18, 1987), etc. The gist of these applications is to provide circuit boards equipped with semiconductor chips that are non-corrosive, non-dissociable, and whose boiling point is the maximum operating temperature of the chips85. Refrigerants below °C, such as Freon (C 2 Cl 3 F 3 boiling point 49 °C) and various fluorocarbons such as C 5 F 12 (boiling point 30 °C), C 6 F 14 (boiling point 56 °C)
The circuit board can be sealed by immersing it in a liquid such as ℃), and the circuit board can be connected to an external circuit through a connector provided inside the container, or alternatively, the circuit board can be used as a side wall of the sealed container and the connector can be connected to the lead pins brought out from the back side. Inserting it and making circuit connections.

そして、動作中に半導体チツプより沸騰して気
化する冷媒は液中および容器上部の空〓部に設け
てある熱交換機(凝縮器)により冷却して再び液
状の冷媒に戻している。
The refrigerant that boils and evaporates from the semiconductor chip during operation is cooled by a heat exchanger (condenser) provided in the liquid and in the cavity at the top of the container, and is returned to liquid refrigerant.

ここで、各出願の特徴は高温に発熱したLSIチ
ツプから沸騰してくるガス状の冷媒によりLSIチ
ツプが覆われて断熱状態となるのを防ぐと共に如
何にして速やかにガス状の冷媒を液化させるかに
かかつている。
Here, the characteristics of each application are how to prevent the LSI chip from being covered and insulated by the gaseous refrigerant that boils from the LSI chip that generates heat, and how to quickly liquefy the gaseous refrigerant. I'm suffering from a crab.

このように従来の冷却構造は何れも半導体チツ
プを冷媒中に浸漬して冷却する構造がとられてい
る。然し、このような液冷構造は半導体チツプの
発熱量が従来のように数W程度の場合は差支えな
いが、10W程度と大きい場合には激しく沸騰が起
こることにより、チツプの表面が気化したガスに
より覆われて冷媒と遮断されて断熱状態になり、
異常に温度上昇する危険性がある。
As described above, all conventional cooling structures employ a structure in which semiconductor chips are cooled by immersing them in a refrigerant. However, although this type of liquid cooling structure has no problem when the heat output of the semiconductor chip is around a few watts like in the past, when it is as large as around 10 watts, violent boiling occurs and the surface of the chip is exposed to vaporized gas. It is covered by and is cut off from the refrigerant, creating an adiabatic state.
There is a risk of abnormal temperature rise.

そのため、電力消費量の大きな半導体チツプに
も使用可能な冷却構造が求められている。
Therefore, there is a need for a cooling structure that can be used even with semiconductor chips that consume a large amount of power.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

以上記したように電力消費量の大きな半導体チ
ツプを装着した回路基板を冷媒中に浸漬し、半導
体チツプに接した冷媒の気化熱により冷却する方
法は沸騰し気化したガスにより表面が覆われて断
熱状態となる恐れがあり、このような現象の起こ
らない冷却方法が必要である。
As mentioned above, a method in which a circuit board equipped with a semiconductor chip that consumes a large amount of power is immersed in a refrigerant and cooled by the heat of vaporization of the refrigerant that comes into contact with the semiconductor chip is a method in which the surface is covered with boiling and vaporized gas and is insulated. There is a need for a cooling method that does not cause this phenomenon.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は半導体チツプ装着用の凹部をマト
リツクス状に配列して形成してある各凹部に半導
体チツプを嵌入させた回路基板を備えた側面部
と、凝縮器と凝縮液溜めとを備えた上面部と、ス
タート用ヒータと冷媒溜めとを備えた底面部と、
により密封容器が形成されており、該容器内を排
気した後、冷媒を封入してなる半導体装置の冷却
構造により解決することができる。
The above-mentioned problem is solved by forming a matrix of recesses for mounting semiconductor chips.The side surface has a circuit board with a semiconductor chip inserted into each recess, and the upper surface has a condenser and a condensate reservoir. a bottom portion including a starting heater and a refrigerant reservoir;
This problem can be solved by a semiconductor device cooling structure in which a sealed container is formed, and after the inside of the container is evacuated, a refrigerant is sealed.

〔作用〕[Effect]

本考案はヒートパイプの考え方を半導体装置の
冷却構造に応用するものである。
The present invention applies the concept of heat pipes to the cooling structure of semiconductor devices.

第2図はヒートパイプの構成を示す原理図であ
つて、銅(Cu)など熱電導の優れた金属よりな
り、両端を封じたパイプを排気して中に少量の冷
媒が封入されている。
FIG. 2 is a principle diagram showing the structure of a heat pipe. It is made of a metal with excellent thermal conductivity such as copper (Cu), and has both ends sealed, evacuated, and a small amount of refrigerant sealed inside.

そして、一端を加熱し、他端を冷却しておくと
冷却部は冷媒分子の液化によつて減圧状態にある
ために加熱部で気化した冷媒分子1は冷却部に吸
引されて液化し、液化した冷媒分子2は元の方向
に流れて循環し、これにより冷却が行われる。
When one end is heated and the other end is cooled, the cooling part is in a reduced pressure state due to the liquefaction of the refrigerant molecules, so the refrigerant molecules 1 that have been vaporized in the heating part are sucked into the cooling part and liquefied. The refrigerant molecules 2 that have been removed flow and circulate in the original direction, thereby performing cooling.

ここで、ヒートパイプの冷却効率は、 加熱部と冷却部との温度差が大きいほど、 冷媒分子の沸点が低いほど、 顕著である。 Here, the cooling efficiency of the heat pipe is The larger the temperature difference between the heating section and the cooling section, the The lower the boiling point of the refrigerant molecules, Remarkable.

そこで、本考案に係る冷却構造はヒートパイプ
の金属管に当たる中央部分に多数の半導体チツプ
を装着した回路基板を設け、底部に冷媒溜めとス
タート用ヒータを、また上部に凝縮器を設けるこ
とにより冷媒を循環せしめ、上部で液化した冷媒
を半導体チツプ上に流下させ、半導体チツプ上で
気化させながら順次流下させて冷媒溜めに戻す方
法をとることにより、半導体チツプの表面が気泡
により覆われて冷却効果が減少することを防ぐも
のである。
Therefore, in the cooling structure according to the present invention, a circuit board equipped with a large number of semiconductor chips is installed in the central part corresponding to the metal tube of the heat pipe, a refrigerant reservoir and a starting heater are installed at the bottom, and a condenser is installed at the top. By circulating the refrigerant, the refrigerant is liquefied in the upper part, and then flowed down onto the semiconductor chip, vaporized over the semiconductor chip, and then returned to the refrigerant reservoir. By doing so, the surface of the semiconductor chip is covered with air bubbles, resulting in a cooling effect. This prevents a decrease in

〔実施例〕〔Example〕

第1図は本考案を実施した冷却装置の構成を示
すものであつて、同図Aは冷却装置の断面図、ま
た同図Bはこの側面を形成する回路基板の正面図
である。
FIG. 1 shows the configuration of a cooling device embodying the present invention, and FIG. 1A is a sectional view of the cooling device, and FIG. 1B is a front view of a circuit board forming a side surface of the cooling device.

すなわち、多数の半導体チツプ(以下略して
LSI)3を装着した回路基板4を対向させて密封
容器の両面を形成した。
In other words, a large number of semiconductor chips (hereinafter abbreviated as
Circuit boards 4 mounted with LSI) 3 were placed facing each other to form both sides of a sealed container.

そして、上部には二個の冷却パイプ5からなる
凝縮部6と冷却液溜め7とを設け、また下部には
冷媒溜め9があり、その底部にはスタート用ヒー
タ8が設けられている。
A condensing section 6 consisting of two cooling pipes 5 and a coolant reservoir 7 are provided in the upper part, and a refrigerant reservoir 9 is provided in the lower part, and a starting heater 8 is provided at the bottom thereof.

ここで、底部にスタート用ヒータ8を備える理
由はLSIに通電が行われる前は容器内における溶
媒の蒸気圧は低く、上部の冷却液溜め7には冷媒
はなく、上部より冷媒が流下する状態ではないか
らである。
Here, the reason why the starting heater 8 is provided at the bottom is that before the LSI is energized, the vapor pressure of the solvent in the container is low, there is no refrigerant in the upper coolant reservoir 7, and the refrigerant flows down from the top. This is because it is not.

そこで、LSIへの電圧印加に先立ち、まずスタ
ート用ヒータ8に通電して冷媒を気化せしめると
共に冷却パイプ5に水を通して冷却させ、上部の
冷却液溜め7から冷媒を流下させることが必要で
ある。
Therefore, before applying voltage to the LSI, it is necessary to first energize the starting heater 8 to vaporize the refrigerant, cool it by passing water through the cooling pipe 5, and cause the refrigerant to flow down from the upper coolant reservoir 7.

なお、通電によりLSI 3が発熱し、回路基板
4の温度が上昇して冷媒溜め9の冷媒が激しく気
化する状態になればスタート用ヒータ8の加熱は
止めるが、電力消費の少ないLSI 3を使用して
いる場合にはスタート用ヒータ8に引き続け通電
して流下量を一定に保つことが必要である。
Note that if the LSI 3 generates heat when energized, the temperature of the circuit board 4 rises, and the refrigerant in the refrigerant reservoir 9 becomes violently vaporized, the heating of the starting heater 8 will be stopped, but the LSI 3 with low power consumption will be used. If so, it is necessary to keep the starting heater 8 energized to keep the flow rate constant.

なお、LSI 3は冷媒却液溜め7から流下する
冷媒によつて良く濡れることが必要であり、この
ためLSI 3は第1図Aに示すように回路基板4
に設けてある凹部10に嵌入して設けてあり、突
出していないことが必要である。
Note that the LSI 3 needs to be well wetted by the refrigerant flowing down from the refrigerant reservoir 7, and for this reason, the LSI 3 is attached to the circuit board 4 as shown in FIG. 1A.
It is necessary that the recess 10 is fitted into the recess 10 provided in the recess 10, and that the recess 10 does not protrude.

また同図Bに示すように回路基板4には冷媒の
流下を助ける流下溝11を設けて冷媒が選択的に
LSI 3の上を流れるようにするとよい。
In addition, as shown in FIG.
It is better to have it flow over LSI 3.

このようにLSI 3の上に常に冷媒が流下する
ようにすると気泡により覆われて断熱状態となる
ことがないので、冷却は充分に行うことができ
る。
In this way, if the refrigerant always flows down over the LSI 3, the LSI 3 will not be covered with air bubbles and become insulated, so that sufficient cooling can be achieved.

〔考案の効果〕[Effect of idea]

以上記したように本考案の実施により冷却能力
の優れた半導体装置の冷却構造を実用化すること
ができる。
As described above, by implementing the present invention, it is possible to put into practical use a cooling structure for a semiconductor device with excellent cooling ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本考案に係る冷却装置の断面図、第
1図Bは冷却装置内の回路基板の正面図、第2図
はヒートパイプの原理図、である。 図において、3はLSI、4は回路基板、5は冷
却パイプ、6は凝縮部、7は冷却液溜め、8はス
タート用ヒータ、9は冷媒溜め、である。
FIG. 1A is a sectional view of a cooling device according to the present invention, FIG. 1B is a front view of a circuit board in the cooling device, and FIG. 2 is a diagram showing the principle of a heat pipe. In the figure, 3 is an LSI, 4 is a circuit board, 5 is a cooling pipe, 6 is a condensing section, 7 is a coolant reservoir, 8 is a starting heater, and 9 is a refrigerant reservoir.

Claims (1)

【実用新案登録請求の範囲】 半導体チツプ装着用の凹部10をマトリツクス
状に配列して形成してある各凹部10に半導体チ
ツプ3を嵌入させた回路基板4を備えた側面部
と、 凝縮部6と冷却液溜め7とを備えた上面部と、 スタート用ヒータ8と冷媒溜め9とを備えた底
面部と、 により密封容器が形成されており、該容器内を排
気した後、冷媒を封入してなることを特徴とする
半導体装置の冷却構造。
[Scope of Claim for Utility Model Registration] A side portion having a circuit board 4 with a semiconductor chip 3 fitted into each recess 10 formed by arranging recesses 10 for mounting semiconductor chips in a matrix, and a condensing portion 6. A sealed container is formed by a top portion having a heater 8 for starting and a coolant reservoir 7, and a bottom portion having a starting heater 8 and a refrigerant reservoir 9. After the inside of the container is evacuated, a refrigerant is sealed. A cooling structure for a semiconductor device characterized by:
JP11923386U 1986-08-02 1986-08-02 Expired JPH0442931Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11923386U JPH0442931Y2 (en) 1986-08-02 1986-08-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11923386U JPH0442931Y2 (en) 1986-08-02 1986-08-02

Publications (2)

Publication Number Publication Date
JPS6327052U JPS6327052U (en) 1988-02-22
JPH0442931Y2 true JPH0442931Y2 (en) 1992-10-12

Family

ID=31006408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11923386U Expired JPH0442931Y2 (en) 1986-08-02 1986-08-02

Country Status (1)

Country Link
JP (1) JPH0442931Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
WO2012161002A1 (en) * 2011-05-20 2012-11-29 日本電気株式会社 Flat plate cooling device, and method for using same
WO2018179162A1 (en) * 2017-03-29 2018-10-04 日本電気株式会社 Cooling apparatus

Also Published As

Publication number Publication date
JPS6327052U (en) 1988-02-22

Similar Documents

Publication Publication Date Title
TW495660B (en) Micro cooling device
US8490418B2 (en) Method and apparatus for cooling electronics with a coolant at a subambient pressure
EP0251836B1 (en) Integral heat pipe module
JP2007533944A (en) Thermosyphon-based thin cooling system for computers and other electronic equipment
US20080236795A1 (en) Low-profile heat-spreading liquid chamber using boiling
JP6833012B2 (en) Multi-phase heat dissipation device embedded in an electronic device
JPH04233259A (en) Removal device of heat
US20050121180A1 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
JP2008227150A (en) Electronic apparatus
JP2007010211A (en) Cooling device of electronics device
KR20020093897A (en) Cooling device for cooling components of the power electronics, said device comprising a micro heat exchanger
JPH0442931Y2 (en)
JPH02114597A (en) Method of cooling electronic device
US9763359B2 (en) Heat pipe with near-azeotropic binary fluid
JPH04147657A (en) Cooling mechanism for electronic component
JPS6285449A (en) Cooling structure for semiconductor device
JPH0320070B2 (en)
JPH10227585A (en) Heat spreader and cooler employing the same
JPH0632409B2 (en) Electronic device cooling device
JP5860728B2 (en) Electronic equipment cooling system
JPS59232448A (en) Liquid cooled container
JP2746938B2 (en) Cooling device for power supply circuit board
JPH037960Y2 (en)
JP2021507199A (en) High efficiency phase change capacitors for supercomputers
JPS5911515Y2 (en) liquid-containing cooler