JPH04147657A - Cooling mechanism for electronic component - Google Patents

Cooling mechanism for electronic component

Info

Publication number
JPH04147657A
JPH04147657A JP2272842A JP27284290A JPH04147657A JP H04147657 A JPH04147657 A JP H04147657A JP 2272842 A JP2272842 A JP 2272842A JP 27284290 A JP27284290 A JP 27284290A JP H04147657 A JPH04147657 A JP H04147657A
Authority
JP
Japan
Prior art keywords
pump
cooling medium
liquid refrigerant
liquid cooling
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2272842A
Other languages
Japanese (ja)
Other versions
JP2550770B2 (en
Inventor
Yuichi Miyazaki
宮崎 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2272842A priority Critical patent/JP2550770B2/en
Priority to CA002053055A priority patent/CA2053055C/en
Priority to EP19910309381 priority patent/EP0480750A3/en
Priority to EP97114551A priority patent/EP0817263A3/en
Publication of JPH04147657A publication Critical patent/JPH04147657A/en
Priority to US08/155,546 priority patent/US5522452A/en
Application granted granted Critical
Publication of JP2550770B2 publication Critical patent/JP2550770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To raise efficiency of boiling cooling by a method wherein means for decreasing pressure within a hermetically-sealed casing, a nozzle for jetting a liquid cooling medium into a heat sink, and circurating means for circurating the jetted liquid cooling medium and jetting it again are provided. CONSTITUTION:A liquid cooling medium for cooling integrated circuits 2a to 2c is vomited from a pump 15 and jetted from respective nozzles 8a to 8c. At this time, air pressure in an internal space of a chamber 7 is reduced to such a degree that a liquid cooling medium is easily boiled by a pump 12 and a nuclear boiling is generated to further cool the medium. Then, a evaporated cooling medium vapor 17 is sucked by the pump 12 from an inlet 10, transferred to a condenser 13 to be liquefied, transferred to a heat exchanger 14 to be further cooled. and jetted again from the respective nozzles 8a to 8c by the pump 15. While, the nonevaporated liquid cooling medium is accumulated in a cooling medium pool 9, extracted from a cooling medium outlet 11 by a pump 18, and transferred to the heat exchanger 14. Here, the above medium is further cooled together with the liquid cooling medium transferred from the condenser 13, and jetted again from the respective nozzles 8a to 8c by the pump 15.

Description

【発明の詳細な説明】 技術分野 本発明は電子部品冷却機構に関し、特に情報処理装置な
どに使用される集積回路の冷却構造に関する。
TECHNICAL FIELD The present invention relates to an electronic component cooling mechanism, and more particularly to a cooling structure for an integrated circuit used in an information processing device or the like.

従来技術 近年、情報処理装置などに使用される電子回路において
は、益々高集積化する傾向にあり、それにともなって電
子回路が消費する電力も大きくなってきており、電子回
路に使用されるLSI(大規模集積回路)などの素子の
発熱量も増加してきている。
BACKGROUND ART In recent years, electronic circuits used in information processing devices and the like have tended to become more and more highly integrated, and as a result, the power consumed by electronic circuits has also increased. The amount of heat generated by elements such as large-scale integrated circuits is also increasing.

素子の温度が上昇すると、素子の性能が十分に発揮され
ないばかりか、信頼性の面からも大きな問題となる。
If the temperature of the device increases, not only will the device's performance not be fully demonstrated, but it will also pose a serious problem in terms of reliability.

よって、素子から発生した熱をいかに効率よく装置外に
排出するかが、その装置の性能を左右することになる。
Therefore, the performance of the device is determined by how efficiently the heat generated from the elements is discharged to the outside of the device.

この素子を冷却する方法としては、素子にフィンなどの
ヒートシンクを取付けて自然放熱を促す自然空冷や、フ
ァンなどを使用して空気を強制的に衝突させて冷却する
強制空冷などの方法がある。
Methods for cooling this element include natural air cooling, which involves attaching heat sinks such as fins to the element to promote natural heat dissipation, and forced air cooling, which uses a fan or the like to force air to collide with each other to cool the element.

また、近年では液体による冷却も行われており、その液
体冷却の方法としては、冷却水を素子から離れたところ
に流して素子を液体で間接的に冷却する方法や、化学的
に不活性で、電気絶縁性の大きい液体(例えばフッ素系
の不活性液体など)に素子を直接浸漬して冷却する方法
などがある。
In recent years, liquid cooling has also been used; liquid cooling methods include cooling the element indirectly by flowing cooling water away from the element, and cooling the element using a chemically inert liquid. There is a method of cooling the device by directly immersing it in a highly electrically insulating liquid (for example, a fluorine-based inert liquid).

このような従来の電子回路の冷却方法では、最近の素子
の発熱密度が非常に大きくなっているので、上記の冷却
方法では冷却能力が不十分となるという問題がある。
Such conventional cooling methods for electronic circuits have a problem in that the cooling capacity of the above-mentioned cooling methods is insufficient because the heat generation density of recent elements has become extremely large.

特に、冷却効率の比較的良好な沸騰冷却を用いても、冷
却する素子周辺で気化した冷媒蒸気が素子周辺と冷媒と
の間に膜を作ってしまうという膜沸騰を起こしてしまい
、冷却装置の冷却能力が極めて悪くなるという問題があ
る。
In particular, even if boiling cooling, which has relatively good cooling efficiency, is used, film boiling occurs, where the refrigerant vapor that evaporates around the elements to be cooled forms a film between the elements and the refrigerant. There is a problem in that the cooling capacity becomes extremely poor.

発明の目的 本発明は上記のような従来のものの問題点を除去すべく
なされたもので、沸騰冷却の効率を上げることかでき、
冷却能力を大きくすることができる電子部品冷却機構の
提供を目的とする。
Purpose of the Invention The present invention has been made to eliminate the problems of the conventional methods as described above, and is capable of increasing the efficiency of boiling cooling.
The purpose of the present invention is to provide an electronic component cooling mechanism that can increase cooling capacity.

発明の構成 本発明による電子部品冷却機構は、電子部品を搭載する
パッケージと、前記電子部品を冷却するためのヒートシ
ンクと、前記パッケージを搭載する印刷基板と、前記パ
ッケージと前記ヒートシンクと前記印刷基板とを密封す
る密封ケースとを有する電子部品冷却機構であって、前
記密封ケース内を減圧する減圧手段と、前記ヒートシン
クに液体冷媒を噴射する噴射ノズルと、前記噴射ノズル
により前記ヒートシンクに噴射された前記液体冷媒を循
環させて前記噴射ノズルから噴射させる循環手段とを設
けたことを特徴とする。
Structure of the Invention An electronic component cooling mechanism according to the present invention includes a package for mounting an electronic component, a heat sink for cooling the electronic component, a printed circuit board for mounting the package, the package, the heat sink, and the printed circuit board. An electronic component cooling mechanism having a sealed case for sealing the sealed case, a pressure reducing means for reducing the pressure inside the sealed case, an injection nozzle for injecting a liquid refrigerant onto the heat sink, and a liquid refrigerant injected onto the heat sink by the injection nozzle. The apparatus is characterized by further comprising a circulation means for circulating liquid refrigerant and injecting it from the injection nozzle.

実施例 次に、本発明について図面を参照して説明する。Example Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

図において、回路基板1は基板枠4に保持され、この回
路基板1に搭載された集積回路2a〜2cにはヒートシ
ンク3a〜3cが夫々取付けられている。
In the figure, a circuit board 1 is held by a board frame 4, and heat sinks 3a to 3c are attached to integrated circuits 2a to 2c mounted on the circuit board 1, respectively.

また、回路基板1および基板枠4にはねし5a。Further, the circuit board 1 and the board frame 4 are provided with screws 5a.

5bによりチャンハフが固定されており、回路基板1と
チャンバ7との接触面にはOリング6が取付けられてい
るので、回路基板1とチャンバ7とにより囲まれた内部
空間は気密状態となっている。
5b, and an O-ring 6 is attached to the contact surface between the circuit board 1 and the chamber 7, so that the internal space surrounded by the circuit board 1 and the chamber 7 is airtight. There is.

この内部空間には集積回路28〜2Cに取付けられたヒ
ートシンク38〜3Cに夫々対向するようにノズル88
〜8cが設けられており、ノズル8a〜8Cは配管16
によりポンプ15に接続されている。
In this internal space, nozzles 88 are arranged so as to face the heat sinks 38 to 3C attached to the integrated circuits 28 to 2C, respectively.
~8c are provided, and the nozzles 8a~8C are connected to the piping 16.
It is connected to the pump 15 by.

また、チャンバ7には吸引口10と冷媒出口11とが設
けられ、吸引口10にはポンプ12が接続され、冷媒出
口11にはポンプ18が接続されている。
Further, the chamber 7 is provided with a suction port 10 and a refrigerant outlet 11, a pump 12 is connected to the suction port 10, and a pump 18 is connected to the refrigerant outlet 11.

ポンプ12は凝縮器13を介して熱交換器14に接続さ
れ、ポンプ18は熱交換器14に接続され、熱交換器1
4はポンプ15に接続されている。
Pump 12 is connected to heat exchanger 14 via condenser 13, pump 18 is connected to heat exchanger 14, and heat exchanger 1
4 is connected to the pump 15.

集積回路2a〜2cを冷却するための液体冷媒は一定圧
力でポンプ15から吐出され、配管16を介して各ノズ
ル88〜8cから各集積回路2a〜2cのヒートシンク
3a〜3cに噴射され、ヒトシンク3a〜3cに衝突す
ることにより集積回路28〜2cを冷却する。
The liquid refrigerant for cooling the integrated circuits 2a to 2c is discharged from the pump 15 at a constant pressure, and is injected from each nozzle 88 to 8c via the piping 16 to the heat sinks 3a to 3c of the integrated circuits 2a to 2c, and the heat sink 3a -3c cools the integrated circuits 28-2c.

このとき、チャンバ7の内部空間はポンプ12により液
体冷媒が沸騰しやすい気圧に減圧されているため、ヒー
トシンク3a〜3cに衝突した液体冷媒は核沸騰を発生
させて集積回路2a〜2cをさらに冷却する。
At this time, since the internal space of the chamber 7 is depressurized by the pump 12 to a pressure at which the liquid refrigerant easily boils, the liquid refrigerant colliding with the heat sinks 3a to 3c causes nucleate boiling to further cool the integrated circuits 2a to 2c. do.

この核沸騰により気化した冷媒蒸気17は吸弓口10か
らポンプ12により吸引され、凝縮器13に送られて液
化される。
Refrigerant vapor 17 vaporized by this nucleate boiling is sucked through the suction port 10 by the pump 12, sent to the condenser 13, and liquefied.

液化された液体冷媒は熱交換器14に送られてさらに冷
却され、ポンプ15によって各ノズル88〜8cからヒ
ートシンク3a〜3cに再度噴射される。
The liquefied liquid refrigerant is sent to the heat exchanger 14 to be further cooled, and is again injected by the pump 15 from each nozzle 88 to 8c to the heat sinks 3a to 3c.

一方、ヒートシンク38〜3cて気化しなかった液体冷
媒はチャンバ7内の冷媒だまり9に蓄積され、ポンプ1
8により冷媒出口11がら取出されて熱交換器14に送
られる。
On the other hand, the liquid refrigerant that has not been vaporized by the heat sinks 38 to 3c is accumulated in the refrigerant reservoir 9 in the chamber 7, and the pump 1
8, the refrigerant is taken out from the refrigerant outlet 11 and sent to the heat exchanger 14.

熱交換器14てはポンプ18により冷媒だまり9から送
られてきた液体冷媒が凝縮器13から送られてきた液体
冷媒とともにさらに冷却され、ポンプ15によって各ノ
ズル8a〜8cからヒートシンク3a〜3Cに再度噴射
される。
In the heat exchanger 14, the liquid refrigerant sent from the refrigerant reservoir 9 by the pump 18 is further cooled together with the liquid refrigerant sent from the condenser 13, and the pump 15 sends the liquid refrigerant from each nozzle 8a to 8c to the heat sinks 3a to 3C again. Injected.

液体冷媒を上記のように循環させ、液体冷媒をヒートシ
ンク38〜3cに衝突させることにより膜沸騰の発生を
防くことができるとともに、チャンバ7内を液体冷媒か
沸騰しやすい気圧に減圧することによりヒートシンク3
a〜3cての核沸騰を促進することができるので、液体
冷媒のヒートシンク3a〜3cへの衝突とヒートシンク
3a〜3cでの核沸騰とにより集積回路28〜2cをよ
り冷却することができる。
By circulating the liquid refrigerant as described above and causing the liquid refrigerant to collide with the heat sinks 38 to 3c, film boiling can be prevented from occurring, and by reducing the pressure in the chamber 7 to a pressure at which the liquid refrigerant is likely to boil. heat sink 3
Since the nucleate boiling of all of the heat sinks 3a to 3c can be promoted, the integrated circuits 28 to 2c can be further cooled by the collision of the liquid refrigerant with the heat sinks 3a to 3c and the nucleate boiling in the heat sinks 3a to 3c.

第2図は本発明の他の実施例を示す構成図である。図に
おいて、本発明の他の実施例は回路基板1を水平にし、
チャンバ7内に蓄積された液体冷媒19中に集積回路2
8〜2dおよびヒートシンク3a〜3dを浸漬させた以
外は、本発明の一実施例と同様の構成となっており、同
一部品には同一符号を付しである。また、それら同一部
品の動作も本発明の一実施例と同様である。
FIG. 2 is a block diagram showing another embodiment of the present invention. In the figure, another embodiment of the invention has a circuit board 1 horizontally,
Integrated circuit 2 in liquid refrigerant 19 accumulated in chamber 7
The structure is similar to that of the embodiment of the present invention except that the heat sinks 8 to 2d and the heat sinks 3a to 3d are immersed, and the same parts are given the same reference numerals. Further, the operations of these same parts are also similar to those in the embodiment of the present invention.

集積回路2a〜2dを冷却するための液体冷媒は一定圧
力でポンプ15から吐出され、配管16を介して各ノズ
ル8a〜8dから液体冷媒19中に浸漬された各集積回
路28〜2dのヒートシンク38〜3dに噴射され、ヒ
ートシンク38〜3dに衝突することにより集積回路2
8〜2dを冷却する。
A liquid refrigerant for cooling the integrated circuits 2a to 2d is discharged from a pump 15 at a constant pressure, and a heat sink 38 of each integrated circuit 28 to 2d is immersed in the liquid refrigerant 19 from each nozzle 8a to 8d via piping 16. ~3d and collides with the heat sinks 38~3d, thereby damaging the integrated circuit 2.
Cool 8-2d.

このとき、チャンバ7の内部空間はポンプ12により液
体冷媒が沸騰しやすい気圧に減圧されているため、ヒー
トシンク38〜3dに衝突した液体冷媒は核沸騰を発生
させて集積回路2a〜2dをさらに冷却する。
At this time, since the internal space of the chamber 7 is depressurized by the pump 12 to a pressure at which the liquid refrigerant easily boils, the liquid refrigerant colliding with the heat sinks 38 to 3d generates nucleate boiling to further cool the integrated circuits 2a to 2d. do.

この核沸騰により気化した冷媒蒸気17は吸引口10か
らポンプ12により吸引され、凝縮器13に送られて液
化される。
Refrigerant vapor 17 vaporized by this nucleate boiling is sucked through the suction port 10 by the pump 12, sent to the condenser 13, and liquefied.

液化された液体冷媒は熱交換器14に送られてさらに冷
却され、ポンプ15によって各ノズル88〜8dからヒ
ートシンク3a〜3dに再度噴射される。
The liquefied liquid refrigerant is sent to the heat exchanger 14 to be further cooled, and is again injected by the pump 15 from each nozzle 88 to 8d to the heat sinks 3a to 3d.

一方、集積回路2a〜2dおよびヒートシンク3a〜3
dが浸漬された液体冷媒19はポンプ18により冷媒出
口11から取出されて熱交換器14に送られる。
On the other hand, integrated circuits 2a to 2d and heat sinks 3a to 3
The liquid refrigerant 19 in which the liquid refrigerant d is immersed is taken out from the refrigerant outlet 11 by the pump 18 and sent to the heat exchanger 14.

熱交換器14ではポンプ18により冷媒出口11から取
出されて送られてきた液体冷媒が凝縮器13から送られ
てきた液体冷媒とともにさらに冷却され、ポンプ15に
よって各ノズル88〜8dからヒートシンク38〜3d
に再度噴射される。
In the heat exchanger 14, the liquid refrigerant taken out from the refrigerant outlet 11 and sent by the pump 18 is further cooled together with the liquid refrigerant sent from the condenser 13.
is injected again.

液体冷媒を上記のように循環させ、液体冷媒をヒートシ
ンク38〜3dに衝突させることにより膜沸騰の発生を
防ぐことができるとともに、チャンバ7内を液体冷媒か
沸騰しゃすい気圧に減圧することによりヒートシンク3
8〜3dでの核沸騰を促進することができるので、液体
冷媒のヒートシンク38〜3dへの衝突とヒートシンク
3a〜3dての核沸騰と集積回路22〜2dおよびヒー
トシンク38〜3dの液体冷媒中への浸漬とにより集積
回路28〜2dをより冷却することができる。
By circulating the liquid refrigerant as described above and causing the liquid refrigerant to collide with the heat sinks 38 to 3d, film boiling can be prevented from occurring, and by reducing the pressure in the chamber 7 to a pressure at which the liquid refrigerant does not boil, the heat sink 3
Since nucleate boiling at 8-3d can be promoted, the liquid refrigerant impinges on the heat sinks 38-3d, nucleate boils on the heat sinks 3a-3d, and enters the liquid refrigerant in the integrated circuits 22-2d and heat sinks 38-3d. The integrated circuits 28 to 2d can be further cooled by immersion.

このように、液体冷媒をノズル8a〜8dがら噴射させ
て集積回路2a〜2d上のヒートシンク38〜3dに衝
突させて集積回路28〜2dを冷却するとともに、チャ
ンバ7の内部空間をポンプ12により減圧して液体冷媒
の核沸騰を促進するようにすることによって、液体冷媒
のヒートシンク38〜3dへの衝突により膜沸騰の発生
を防ぐことができるので、沸騰冷却の効率を上げること
ができ、冷却能力を従来よりも大幅に大きくすることが
できる。
In this way, the liquid refrigerant is injected from the nozzles 8a to 8d and collides with the heat sinks 38 to 3d on the integrated circuits 2a to 2d to cool the integrated circuits 28 to 2d, and the internal space of the chamber 7 is depressurized by the pump 12. By promoting nucleate boiling of the liquid refrigerant, it is possible to prevent the occurrence of film boiling due to the collision of the liquid refrigerant with the heat sinks 38 to 3d, thereby increasing the efficiency of boiling cooling and increasing the cooling capacity. can be made significantly larger than before.

発明の詳細 な説明したように本発明によれば、密封ケース内を液体
冷媒か沸騰しゃすい気圧に減圧し、噴射ノズルにより液
体冷媒を電子部品に取付けられたヒートシンクに噴射す
るようにすることによって、沸騰冷却の効率を上げるこ
とができ、冷却能力を大きくすることができるという効
果がある。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the pressure inside the sealed case is reduced to a pressure at which the liquid refrigerant boils, and the liquid refrigerant is injected to the heat sink attached to the electronic component using the injection nozzle. This has the effect of increasing the efficiency of boiling cooling and increasing the cooling capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図である。 主要部分の符号の説明 1・・・・回路基板 2a〜2d・・・・・・集積回路 12゜ 38〜3d・・・・・ヒートシンク 7・・・・ チャンバ 8a〜8d・・・・・ノズル 15.18・・・・・ポンプ 13・・・・・凝縮器 14・・・・・熱交換器
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a block diagram showing another embodiment of the present invention. Explanation of symbols of main parts 1...Circuit board 2a-2d...Integrated circuit 12°38-3d...Heat sink 7...Chamber 8a-8d...Nozzle 15.18... Pump 13... Condenser 14... Heat exchanger

Claims (1)

【特許請求の範囲】[Claims] (1)電子部品を搭載するパッケージと、前記電子部品
を冷却するためのヒートシンクと、前記パッケージを搭
載する印刷基板と、前記パッケージと前記ヒートシンク
と前記印刷基板とを密封する密封ケースとを有する電子
部品冷却機構であって、前記密封ケース内を減圧する減
圧手段と、前記ヒートシンクに液体冷媒を噴射する噴射
ノズルと、前記噴射ノズルにより前記ヒートシンクに噴
射された前記液体冷媒を循環させて前記噴射ノズルから
噴射させる循環手段とを設けたことを特徴とする電子部
品冷却機構。
(1) An electronic device having a package on which an electronic component is mounted, a heat sink for cooling the electronic component, a printed circuit board on which the package is mounted, and a sealed case that seals the package, the heat sink, and the printed circuit board. The component cooling mechanism includes a decompression means for reducing the pressure inside the sealed case, an injection nozzle for injecting a liquid refrigerant onto the heat sink, and circulating the liquid refrigerant injected to the heat sink by the injection nozzle to the injection nozzle. An electronic component cooling mechanism characterized by being provided with a circulation means for injecting water from the air.
JP2272842A 1990-10-11 1990-10-11 Electronic component cooling mechanism Expired - Lifetime JP2550770B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2272842A JP2550770B2 (en) 1990-10-11 1990-10-11 Electronic component cooling mechanism
CA002053055A CA2053055C (en) 1990-10-11 1991-10-09 Liquid cooling system for lsi packages
EP19910309381 EP0480750A3 (en) 1990-10-11 1991-10-11 Liquid cooling system for lsi packages
EP97114551A EP0817263A3 (en) 1990-10-11 1991-10-11 Liquid cooling system for LSI packages
US08/155,546 US5522452A (en) 1990-10-11 1993-11-22 Liquid cooling system for LSI packages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272842A JP2550770B2 (en) 1990-10-11 1990-10-11 Electronic component cooling mechanism

Publications (2)

Publication Number Publication Date
JPH04147657A true JPH04147657A (en) 1992-05-21
JP2550770B2 JP2550770B2 (en) 1996-11-06

Family

ID=17519537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272842A Expired - Lifetime JP2550770B2 (en) 1990-10-11 1990-10-11 Electronic component cooling mechanism

Country Status (1)

Country Link
JP (1) JP2550770B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448108A (en) * 1993-11-02 1995-09-05 Hughes Aircraft Company Cooling of semiconductor power modules by flushing with dielectric liquid
US5719444A (en) * 1996-04-26 1998-02-17 Tilton; Charles L. Packaging and cooling system for power semi-conductor
EP1493983A1 (en) * 2002-04-08 2005-01-05 Sharp Kabushiki Kaisha Loop-type thermosiphon and stirling refrigerator
WO2006075493A1 (en) * 2004-12-22 2006-07-20 Tokyo University Of Science Educational Foundation Administrative Organization Vapor cooling method, vapor cooling apparatus, and flow passage structure, and application thereof
JP2007208155A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling system for electronic equipment
JP2008543112A (en) * 2005-06-07 2008-11-27 ウォルベリン チューブ, インコーポレイテッド Heat transfer surface for cooling electronic components
EP1860695A3 (en) * 2006-05-24 2010-06-16 Raytheon Company System and method of jet impingement cooling with extended surfaces
JP2012531056A (en) * 2009-06-25 2012-12-06 インターナショナル・ビジネス・マシーンズ・コーポレーション Cooling device and manufacturing method thereof
US9383145B2 (en) 2005-11-30 2016-07-05 Raytheon Company System and method of boiling heat transfer using self-induced coolant transport and impingements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141613B2 (en) 2000-03-09 2008-08-27 富士通株式会社 Closed cycle refrigerator and dry evaporator for closed cycle refrigerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448108A (en) * 1993-11-02 1995-09-05 Hughes Aircraft Company Cooling of semiconductor power modules by flushing with dielectric liquid
US5719444A (en) * 1996-04-26 1998-02-17 Tilton; Charles L. Packaging and cooling system for power semi-conductor
EP1493983A1 (en) * 2002-04-08 2005-01-05 Sharp Kabushiki Kaisha Loop-type thermosiphon and stirling refrigerator
EP1493983A4 (en) * 2002-04-08 2006-06-07 Sharp Kk Loop-type thermosiphon and stirling refrigerator
WO2006075493A1 (en) * 2004-12-22 2006-07-20 Tokyo University Of Science Educational Foundation Administrative Organization Vapor cooling method, vapor cooling apparatus, and flow passage structure, and application thereof
US8061414B2 (en) 2004-12-22 2011-11-22 Tokyo University Of Science Educational Foundation Administrative Organization Boil cooling method, boil cooling apparatus, flow channel structure, and applied technology field thereof
JP2008543112A (en) * 2005-06-07 2008-11-27 ウォルベリン チューブ, インコーポレイテッド Heat transfer surface for cooling electronic components
US9383145B2 (en) 2005-11-30 2016-07-05 Raytheon Company System and method of boiling heat transfer using self-induced coolant transport and impingements
JP2007208155A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling system for electronic equipment
EP1860695A3 (en) * 2006-05-24 2010-06-16 Raytheon Company System and method of jet impingement cooling with extended surfaces
JP2012531056A (en) * 2009-06-25 2012-12-06 インターナショナル・ビジネス・マシーンズ・コーポレーション Cooling device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2550770B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US11483949B2 (en) Self-contained immersion cooling server assemblies
JP6588654B2 (en) Working medium contact cooling system for high power components and method of operating the same
JP5590128B2 (en) Cooling device, electronic device having cooling device, and cooling method of heating element
US20100328882A1 (en) Direct jet impingement-assisted thermosyphon cooling apparatus and method
CN1179186C (en) Multi-mode, two-phase cooling module
CN101645430B (en) Chip cooling device
JPH04147657A (en) Cooling mechanism for electronic component
WO2023088296A1 (en) Cooling device and electronic apparatus
CN201490185U (en) Chip cooling device
JP5723708B2 (en) Electronic device rejection device
JPH0267792A (en) Dip cooling module
JPS6154654A (en) Liquid cooling device
CN115103580A (en) Electronic device and computing system
JP2822655B2 (en) Electronic component cooling mechanism
JPH05251600A (en) Immersion jet cooling heat sink
JPH0442931Y2 (en)
JPH04196155A (en) Method for cooling integrated circuit
TW202420926A (en) Electronic device
JPH037960Y2 (en)
JPH0258296A (en) Cooling device
JPH0263147A (en) Cooling apparatus
JP2510161Y2 (en) Electronic device cooling device
CN116261314A (en) Rack-mounted server heat dissipation method and device with ejector
KR20230141282A (en) submerged cooling apparatus for electronic components
CN118201305A (en) Local immersion type liquid cooling system