JP2010010204A - Ebullient cooling device - Google Patents

Ebullient cooling device Download PDF

Info

Publication number
JP2010010204A
JP2010010204A JP2008164615A JP2008164615A JP2010010204A JP 2010010204 A JP2010010204 A JP 2010010204A JP 2008164615 A JP2008164615 A JP 2008164615A JP 2008164615 A JP2008164615 A JP 2008164615A JP 2010010204 A JP2010010204 A JP 2010010204A
Authority
JP
Japan
Prior art keywords
passage
cooling
liquid refrigerant
evaporation
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008164615A
Other languages
Japanese (ja)
Inventor
Satoshi Hario
聡 針生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008164615A priority Critical patent/JP2010010204A/en
Publication of JP2010010204A publication Critical patent/JP2010010204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ebullient cooling device capable of accelerating efficient circulation of cooling media including a liquid cooling medium and a vapor cooling medium and improving cooling efficiency. <P>SOLUTION: The ebullient cooling device has a condenser provided with a storage chamber (20) for storing the vapor cooling medium and cooling sections (C1-C3) inside which cooling fluid flows, and a liquid cooling medium tank provided with evaporation paths (B1, B2) for evaporating the liquid cooling medium by heat received from a heating element and a reflow path (R) for making condensed liquid condensed in the condenser flow back to the evaporation paths, and the storage chamber includes vapor introducing paths (D1, D2) for introducing the vapor cooling medium to the cooling sections in a reflow direction from the evaporation path to the reflow path for the cooling sections. Since the vapor cooling medium is exposed to the cooling sections from a transverse direction or an oblique direction, a liquid film on the surface of the cooling sections is easily removed, the condensed liquid is easily guided from the evaporation path to the reflow path, and heat exchange efficiency on the surface of the cooling sections and the circulation efficiency of the cooling medium are improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子やその半導体素子を備えるパワーモジュール等の発熱体を冷却する沸騰冷却装置に関する。   The present invention relates to a boiling cooling device that cools a semiconductor element and a heating element such as a power module including the semiconductor element.

発熱量の大きな半導体素子などの発熱体を効率よく冷却でき、冷却装置全体を比較的コンパクトにできる沸騰冷却装置が実用化されつつある。この沸騰冷却装置は、発熱体の発熱を沸点の比較的低い液冷媒へ一時的に伝達し、その伝熱により液冷媒を沸騰、蒸発させて、発熱体の発熱を効率的に移動させることができる。   A boiling cooling device capable of efficiently cooling a heating element such as a semiconductor element having a large calorific value and making the entire cooling device relatively compact is being put into practical use. This boiling cooling device can transfer the heat generated by the heating element to the liquid refrigerant having a relatively low boiling point, and boil and evaporate the liquid refrigerant by the heat transfer, thereby efficiently moving the heat generated by the heating element. it can.

そして液冷媒の沸騰により気化した冷媒蒸気は、熱交換器の一つである凝縮器で冷却されて再び液冷媒に戻り、発熱体の発熱はその凝縮器を介して沸騰冷却装置外へ移動(放熱)する。このような冷媒の潜熱を利用した熱交換が繰り返し行われることにより、発熱体からの放熱が効率よく継続してなされる。
もっとも、このような沸騰冷却装置のコンパクト化を図るには、ヒートポンプである沸騰冷却装置の冷却効率(動作係数、成績係数)をより一層高めることが必要となる。このような沸騰冷却装置として、例えば下記の特許文献に記載のものがある。
特開平3−229493号公報 特開平10−173115号公報
Then, the refrigerant vapor evaporated by the boiling of the liquid refrigerant is cooled by the condenser which is one of the heat exchangers and returned to the liquid refrigerant again, and the heat generated by the heating element moves outside the boiling cooling device through the condenser ( Radiate heat). By repeatedly performing such heat exchange using the latent heat of the refrigerant, heat dissipation from the heating element is efficiently continued.
However, in order to reduce the size of the boiling cooling device, it is necessary to further increase the cooling efficiency (operation coefficient, coefficient of performance) of the boiling cooling device that is a heat pump. Examples of such a boiling cooling device include those described in the following patent documents.
JP-A-3-229493 JP-A-10-173115

特許文献1では、冷却部を伴う凝縮器へ蒸気冷媒をファンで強制的に送る沸騰冷却装置を開示している。もっとも、この沸騰冷却装置では、発熱体が液冷媒槽中に単に浸漬されているだけであり、液冷媒槽内における液冷媒の沸騰や流動を促進して冷却効率を高めることは考慮されていない。   Patent Document 1 discloses a boiling cooling device that forcibly sends a vapor refrigerant by a fan to a condenser with a cooling unit. However, in this boiling cooling device, the heating element is simply immersed in the liquid refrigerant tank, and it is not considered to increase the cooling efficiency by promoting the boiling and flow of the liquid refrigerant in the liquid refrigerant tank. .

特許文献2では、発熱体からの受熱により液冷媒を沸騰させ蒸発させる蒸発通路を、液冷媒槽の両側に設けると共に、蒸気冷媒を冷却して凝縮させた凝縮液を液冷媒槽へ環流させる還流通路を両蒸発通路の中央に配置した沸騰冷却装置が開示されている。
しかし、この沸騰冷却装置の凝縮器は、蒸気冷媒を凝縮させる凝縮部と、その凝縮部を外部から空冷するフィン部とが交互に積層されたラジエターのような形態となっている。このため、その構造上、凝縮液が凝縮部の内壁面に付着し易く、凝縮液は付着している内壁面を伝って重力により蒸発通路へ逆流し易い。従って、特許文献2で想定されるような内壁面から中央に向かう凝縮液の流れは生じ難い。
In Patent Document 2, an evaporating passage for boiling and evaporating liquid refrigerant by receiving heat from a heating element is provided on both sides of the liquid refrigerant tank, and reflux for cooling the vapor refrigerant and condensing the condensed liquid to the liquid refrigerant tank. A boiling cooling device is disclosed in which a passage is arranged at the center of both evaporation passages.
However, the condenser of this boiling cooling device has a configuration like a radiator in which a condensing portion for condensing vapor refrigerant and a fin portion for air-cooling the condensing portion from the outside are alternately stacked. Therefore, due to the structure, the condensate easily adheres to the inner wall surface of the condensing part, and the condensate easily flows back to the evaporation passage by gravity through the adhering inner wall surface. Therefore, the flow of the condensate from the inner wall surface to the center as assumed in Patent Document 2 hardly occurs.

本発明は、このような事情に鑑みて為されたものであり、液冷媒および蒸気冷媒を含めた冷媒の効率的な循環を促進しつつ、冷却効率を高めることができる沸騰冷却装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a boiling cooling apparatus capable of enhancing cooling efficiency while promoting efficient circulation of refrigerants including liquid refrigerant and vapor refrigerant. For the purpose.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、凝縮器が冷却部を有することを前提に、その冷却部へ導入する蒸気冷媒の方向を工夫することで、冷媒が良好に循環し、冷却効率を高めることができることを思いついた。そしてこの知見を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。   As a result of extensive research and trial and error, the inventor has devised the direction of the vapor refrigerant to be introduced into the cooling section on the premise that the condenser has the cooling section. Came up with good circulation and increased cooling efficiency. By developing this knowledge, the present inventor has completed various inventions described below.

〈沸騰冷却装置〉
(1)本発明の沸騰冷却装置は、発熱を伴う発熱体からの受熱により沸騰し得る液冷媒を収容する液冷媒槽と、該液冷媒槽の上方に気密に連結され該発熱体からの受熱により該液冷媒が蒸発して上昇し流入した蒸気冷媒を冷却し凝縮させて液冷媒に戻す凝縮器とを備え、該液冷媒の蒸発と該蒸気冷媒の凝縮の繰り返しにより前記発熱体からの発熱を該凝縮器を介して外部へ移動させる沸騰冷却装置であって、
前記凝縮器は、前記蒸気冷媒を貯留する貯留室と、該貯留室内に配置されると共に冷却流体が内部を流れる冷却部とを有し、
前記液冷媒槽は、前記発熱体からの受熱により前記液冷媒を蒸発させる上下方向に延在する蒸発通路と、該蒸発通路と区画されつつ一部で連通し前記凝縮器で凝縮された凝縮液を該蒸発通路に還流させる還流通路とを有し、
さらに前記貯留室は、前記蒸気通路で発生した蒸気が通る位置に、前記冷却部に向かって傾斜する内壁面を有することを特徴とする。
<Boiling cooler>
(1) The boiling cooling device of the present invention includes a liquid refrigerant tank that contains a liquid refrigerant that can be boiled by receiving heat from a heating element that generates heat, and a heat receiving unit that receives air from the heating element that is airtightly connected above the liquid refrigerant tank. And a condenser that cools and condenses the vapor refrigerant that has flowed up and flows into the liquid refrigerant and returns the liquid refrigerant to the liquid refrigerant, and generates heat from the heating element through repeated evaporation of the liquid refrigerant and condensation of the vapor refrigerant. A boiling cooling device that moves the outside through the condenser,
The condenser has a storage chamber that stores the vapor refrigerant, and a cooling unit that is disposed in the storage chamber and in which a cooling fluid flows.
The liquid refrigerant tank includes an evaporating passage extending in the vertical direction for evaporating the liquid refrigerant by receiving heat from the heating element, and a condensate condensed by the condenser while being partially separated from the evaporating passage. A reflux passage for refluxing the evaporation passage to the evaporation passage,
Further, the storage chamber has an inner wall surface inclined toward the cooling portion at a position where the steam generated in the steam passage passes.

(2)本発明の沸騰冷却装置によれば、先ず、液冷媒槽が蒸発通路と還流通路とに区画されており、液冷媒の循環が還流通路から蒸発通路に向かう一方向になり易い。
次に、蒸気冷媒は凝縮器の冷却部に当たり、冷却、凝縮されて凝縮液となるが、この際、蒸気冷媒はその冷却部に対して特定方向から当たる。つまり、蒸気冷媒は、鉛直下方から鉛直上方へ自然上昇して冷却部に当たるのではなく、冷却部に向かって傾斜する内壁面に誘導され、例えば、液冷媒槽の蒸発通路から還流通路へ向かう環流方向で当たる。なお、この環流方向で当たる場合、環流方向はは鉛直方向成分に対して少なからず水平方向成分をもつから、蒸気冷媒は、いわば、冷却部に対して横方向または斜め方向に当たることになる。
(2) According to the boiling cooling device of the present invention, first, the liquid refrigerant tank is partitioned into the evaporation passage and the reflux passage, and the circulation of the liquid refrigerant tends to be in one direction from the reflux passage to the evaporation passage.
Next, the vapor refrigerant hits the cooling part of the condenser and is cooled and condensed to become a condensed liquid. At this time, the vapor refrigerant hits the cooling part from a specific direction. In other words, the vapor refrigerant does not naturally rise from the vertically lower side to the upper side and hits the cooling part, but is guided to the inner wall surface inclined toward the cooling part. For example, the recirculation flow from the evaporation passage of the liquid refrigerant tank to the reflux passage Hit in the direction. In addition, when it hits in this recirculation | circulation direction, since a recirculation | circulation direction has a horizontal direction component with respect to a vertical direction component, so to speak, a vapor | steam refrigerant | coolant will hit a cooling part in a horizontal direction or a diagonal direction.

いずれにしろ本発明によれば、冷却部に付着した凝縮液は、冷却部の鉛直下方域からやや環流方向よりに流れ易くなる。また、その付近から滴下して液冷媒槽の還流通路へも回収され易くなる。この結果、少なくとも蒸気冷媒が当たる冷却部の表面では、熱交換を阻害する凝縮液の液膜の形成が抑制され、冷却部と蒸気冷媒との間で継続的にかつ安定した熱交換が可能となる。
また、蒸気冷媒が冷却部に向かって流れているため、冷却部から滴下した凝縮液は自ずと液冷媒槽の還流通路へ流れ易くなる。例えば、蒸気冷媒が環流方向へ流れる場合であれば、液冷媒槽と凝縮器との間で蒸発通路→冷却部→還流通路→蒸発通路という適正な冷媒の流れが促進され易くなって、凝縮液が蒸発通路へ滴下等して逆流することも抑制される。
なお、本明細書でいう冷却部に向かう方向(例えば、環流方向)は、水平方向である必要はなく、下斜め方向、上斜め方向さらには上から下に向かう上下方向をも含み得る。
In any case, according to the present invention, the condensate adhering to the cooling part is likely to flow slightly in the recirculation direction from the vertically lower area of the cooling part. Further, the liquid is dropped from the vicinity thereof and is easily collected into the reflux passage of the liquid refrigerant tank. As a result, at least on the surface of the cooling unit where the vapor refrigerant hits, formation of a liquid film of condensate that inhibits heat exchange is suppressed, and continuous and stable heat exchange is possible between the cooling unit and the vapor refrigerant. Become.
Moreover, since the vapor refrigerant is flowing toward the cooling part, the condensate dripped from the cooling part is likely to flow into the reflux passage of the liquid refrigerant tank. For example, in the case where the vapor refrigerant flows in the recirculation direction, it becomes easier to promote an appropriate refrigerant flow between the liquid refrigerant tank and the condenser, that is, the evaporation passage → cooling portion → reflux passage → evaporation passage. Is also prevented from flowing back into the evaporation passage.
In addition, the direction (for example, recirculation | circulation direction) which goes to a cooling part as used in this specification does not need to be a horizontal direction, and can also include the up-down direction which goes to a downward diagonal direction, an upward diagonal direction, and also from the top to the bottom.

発明の実施形態を挙げて本発明をより詳しく説明する。本発明の沸騰冷却装置は、上述した構成に加えて、次に列挙する中から任意に選択した一つまたは二つ以上の構成がさらに付加され得る。また選択される構成は、重畳的かつ任意的に付加可能である。なお、本明細書で説明するいずれの実施形態が最良であるか否かは、対象、要求性能等によって異なることを断っておく。   The present invention will be described in more detail with reference to embodiments of the invention. In addition to the above-described configuration, the boiling cooling device of the present invention may further include one or more configurations arbitrarily selected from the following list. Further, the configuration to be selected can be added in a superimposed manner and arbitrarily. It should be noted that which embodiment described in the present specification is the best depends on the target, required performance, and the like.

〈液冷媒槽〉
本発明の液冷媒槽は液冷媒を収容する容体であり、その容体の内部が区画されることで蒸発通路と還流通路が形成される。
(1)本発明に係る液冷媒は特に限定されないが、例えば、水、アルコール、フロロカーボン、フロン等がある。発熱体の発熱量、沸騰冷却装置のサイズ、冷却効率などに応じて、沸騰、気化および液化を生じ易いものが選択される。
<Liquid refrigerant tank>
The liquid refrigerant tank of the present invention is a container that contains the liquid refrigerant, and an evaporation passage and a reflux passage are formed by partitioning the inside of the container.
(1) The liquid refrigerant according to the present invention is not particularly limited, and examples thereof include water, alcohol, fluorocarbon, and chlorofluorocarbon. Depending on the amount of heat generated by the heating element, the size of the boiling cooling device, the cooling efficiency, etc., those that are likely to cause boiling, vaporization and liquefaction are selected.

(2)蒸発通路は、液冷媒槽の外壁の外側または内側に取り付けられた発熱体の発熱を、液冷媒に伝熱させて、液冷媒を沸騰、蒸発(気化)させる部分である。実質的には沸騰させられた液冷媒中に発生した気泡(蒸気冷媒)が下方から上方へ移動する蒸気通路からなる。 (2) The evaporating passage is a part for transferring the heat generated by the heating element attached to the outside or the inside of the outer wall of the liquid refrigerant tank to the liquid refrigerant to boil and evaporate (vaporize) the liquid refrigerant. The bubble path (vapor refrigerant) generated in the boiled liquid refrigerant substantially consists of a vapor passage through which the bubbles move upward from below.

(3)還流通路は、蒸発通路の液冷媒の上面から蒸発した蒸気冷媒が凝縮器の冷却部で冷却されて凝縮した凝縮液を、前記蒸発通路へ還流させる部分であり、いわば凝縮液が上方から下方へ移動する通路である。
この還流通路の下部と蒸発通路の下部とは連通路などを介して連通している。このため、蒸発通路で加熱された液冷媒が上昇すると共に、還流通路で冷却された液冷媒(凝縮液)が下降することで、還流通路から蒸発通路への流れが自然と生じる。
(3) The recirculation passage is a portion for recirculating the condensed liquid, which is condensed from the vapor refrigerant evaporated from the upper surface of the liquid refrigerant in the evaporating passage, to the evaporating passage. It is a passage that moves downward from
The lower portion of the reflux passage and the lower portion of the evaporation passage communicate with each other through a communication passage. For this reason, the liquid refrigerant heated in the evaporating passage rises and the liquid refrigerant (condensate) cooled in the recirculating passage descends, so that a flow from the recirculating passage to the evaporating passage naturally occurs.

(4)本発明の沸騰冷却装置では、少なくとも蒸発通路と還流通路とが一つずつあるが、それぞれ複数でも良いし、両者が同数である必要もない。それらの配置は、蒸発通路と還流通路とが層状に配置されたものでも良いし、中央に設けた還流通路の周囲を蒸発通路が囲むように配置されたものでも良いし、一角に設けた還流通路の半周囲を蒸発通路がかぎ型(L字型)に囲むように配置されたもの等でもよい。 (4) In the boiling cooling device of the present invention, there is at least one evaporating passage and one recirculating passage. The arrangement may be such that the evaporation passage and the reflux passage are arranged in a layered manner, or may be arranged so that the evaporation passage surrounds the reflux passage provided in the center, or the reflux provided in one corner. The evaporating passage may be arranged in a hook shape (L-shape) around the periphery of the passage.

この際、例えば、液冷媒槽が、外壁の外側または内側に発熱体を取り付ける第1取付部と第2取付部とを少なくとも有し、該液冷媒槽の蒸発通路は、該第1取付部に取り付けられた発熱体から受熱する第1蒸発通路と該第2取付部に取り付けられた発熱体から受熱する第2蒸発通路とを少なくとも有し、還流通路は、該第1取付部との間に該第1蒸発通路が介在していると共に該第2取付部との間に該第2蒸発通路が介在していると好適である。
液冷媒槽の内部をこのような配置にすることで、発熱体と還流通路との間には蒸発通路が介在するようになり、蒸発通路が熱伝達の緩衝域となって、還流通路の液冷媒が発熱体により加熱されることが抑制される。
例えば、前記蒸発通路と前記還流通路の間には、上下方向に延在し、前記蒸発通路と前記還流通路とを区画する仕切部を有するとともに、前記回収板の下部と前記仕切部の上部は接続していると好適である。
In this case, for example, the liquid refrigerant tank has at least a first attachment part and a second attachment part for attaching the heating element to the outside or the inside of the outer wall, and the evaporation passage of the liquid refrigerant tank is connected to the first attachment part. At least a first evaporating passage for receiving heat from the attached heating element and a second evaporating passage for receiving heat from the heating element attached to the second attachment portion, and the reflux passage is between the first attachment portion and It is preferable that the first evaporation passage is interposed and the second evaporation passage is interposed between the second attachment portion and the second attachment portion.
By arranging the inside of the liquid refrigerant tank in this manner, an evaporation passage is interposed between the heating element and the reflux passage, and the evaporation passage serves as a heat transfer buffer region, so that the liquid in the reflux passage can be obtained. The refrigerant is suppressed from being heated by the heating element.
For example, between the evaporation passage and the reflux passage, there is a partition portion that extends in the vertical direction and partitions the evaporation passage and the reflux passage, and the lower portion of the recovery plate and the upper portion of the partition portion are It is preferable that they are connected.

さらにより具体的には、液冷媒槽が、前記第1蒸発通路および前記第2蒸発通路を該液冷媒槽の対向する外壁側に区画すると共に該第1蒸発通路および該第2蒸発通路との間に前記還流通路を区画し、下部で該還流通路から該第1蒸発通路へ連通すると共に該還流通路から該第2蒸発通路へ連通する仕切部を有すると好ましい。
この場合、第1蒸発通路、第2蒸発通路および還流通路の形態に応じて、液冷媒槽内部を仕切る適当な長さの仕切部(例えば、板材)を設けるだけで、冷却効率に優れる簡易に液冷媒槽を形成することが可能となる。
More specifically, the liquid refrigerant tank divides the first evaporation path and the second evaporation path on the opposite outer wall side of the liquid refrigerant tank, and the first evaporating path and the second evaporating path It is preferable that the reflux passage be partitioned in between, and a partition portion that communicates from the reflux passage to the first evaporation passage and to communicate from the reflux passage to the second evaporation passage at a lower portion.
In this case, simply by providing a partition portion (for example, a plate material) of an appropriate length for partitioning the inside of the liquid refrigerant tank according to the form of the first evaporation passage, the second evaporation passage, and the reflux passage, the cooling efficiency can be easily improved. A liquid refrigerant tank can be formed.

〈凝縮器〉
本発明の凝縮器は、発熱体からの受熱により液冷媒が蒸発してできた蒸気冷媒を凝縮させて凝縮液(液冷媒)にすることで、冷媒との間で熱交換するものである。より具体的には、本発明の凝縮器は、液冷媒槽の蒸発通路から上昇し流入してきた蒸気冷媒が貯まる貯留室と、その蒸気冷媒を冷却する冷却部とからなる。
<Condenser>
The condenser of the present invention exchanges heat with the refrigerant by condensing the vapor refrigerant formed by evaporating the liquid refrigerant by receiving heat from the heating element into a condensed liquid (liquid refrigerant). More specifically, the condenser of the present invention includes a storage chamber in which the vapor refrigerant that has flowed up from the evaporation passage of the liquid refrigerant tank is stored, and a cooling unit that cools the vapor refrigerant.

(1)貯留室は、液冷媒槽の上方に気密に連結され、蒸気冷媒を貯留する空間を形成する。
本発明の貯留室は、貯留室を配置された冷却部へ蒸気冷媒を導入させる蒸気導入路を有する。この蒸気導入路の作用効果は前述した通りであるが、この蒸気導入路は、さらに、出口の開口面積が入口の開口面積よりも絞られていると好ましい。
これにより、冷却部に向けて流れる蒸気冷媒の流速が高まり、単位時間あたりの冷却部と蒸気冷媒との熱交換効率が高まる。また、冷却部の表面に凝縮液の液膜が蒸気流によって形成され難くなり、蒸気冷媒と冷却部との間の熱伝達性が向上する。
(1) The storage chamber is air-tightly connected above the liquid refrigerant tank and forms a space for storing the vapor refrigerant.
The storage chamber of the present invention has a vapor introduction path for introducing a vapor refrigerant into the cooling unit in which the storage chamber is arranged. The operational effect of this steam introduction path is as described above, and it is preferable that the opening area of the outlet of the steam introduction path is further narrowed than the opening area of the inlet.
Thereby, the flow rate of the vapor refrigerant flowing toward the cooling unit is increased, and the heat exchange efficiency between the cooling unit and the vapor refrigerant per unit time is increased. In addition, a liquid film of the condensate is hardly formed by the vapor flow on the surface of the cooling unit, and heat transfer between the vapor refrigerant and the cooling unit is improved.

入口形状や出口形状は問わないが、入口の形状は液冷媒槽の蒸発通路の上部開口部の形状に適合していることが好ましい。また、出口部分では、蒸気冷媒の流速が高まるため、角張った形状よりも周囲が滑らかな丸みのある形状の方が好ましい。これにより、蒸発通路から冷却部へスムーズに蒸気冷媒が流れ易くなり、蒸気導入路の出口部分における蒸気冷媒の流速も高まり易い。同様に、蒸気冷媒のスムーズな流れを形成する上で、入口から出口に至る蒸気導入路の断面形状が滑らかに変化しているとが好ましい。   The shape of the inlet and the shape of the outlet are not limited, but the shape of the inlet is preferably adapted to the shape of the upper opening of the evaporation passage of the liquid refrigerant tank. In addition, since the flow rate of the vapor refrigerant is increased at the outlet portion, a rounded shape with a smooth periphery is preferable to an angular shape. As a result, the vapor refrigerant can easily flow smoothly from the evaporation passage to the cooling section, and the flow velocity of the vapor refrigerant at the outlet portion of the vapor introduction path is also likely to increase. Similarly, in order to form a smooth flow of the vapor refrigerant, it is preferable that the cross-sectional shape of the vapor introduction path from the inlet to the outlet changes smoothly.

このような観点から、貯留室は、蒸発通路から蒸気導入路の出口までの途中に蒸気導入路を流れる蒸気冷媒の淀みを抑制する淀抑止部を有すると好ましい。蒸気導入路中に断面や方向が急変する部分等があると、蒸気冷媒は渦を生じてその部分に淀みが形成され易くなる。このような状況になると、蒸気冷媒が蒸気導入路中をスムーズに流れ難くなり、ひいては蒸気冷媒の発生や凝縮に影響し得る。そこで、貯留室中に蒸気冷媒の淀みを抑制する淀抑止部が形成されていると好ましい。この淀抑止部は貯留室中に別途設けても良いが、貯留室の外形自体を工夫して、その外壁が淀抑止部を兼ねるようにしても良い。   From such a viewpoint, it is preferable that the storage chamber has a soot suppressing portion that suppresses stagnation of the steam refrigerant flowing through the steam introduction path in the middle from the evaporation path to the outlet of the steam introduction path. If there is a portion where the cross section or direction changes suddenly in the steam introduction path, the vapor refrigerant will generate a vortex, and stagnation is likely to be formed in that portion. In such a situation, it becomes difficult for the vapor refrigerant to flow smoothly in the vapor introduction path, and as a result, generation and condensation of the vapor refrigerant can be affected. Therefore, it is preferable that a wrinkle suppression portion that suppresses stagnation of the vapor refrigerant is formed in the storage chamber. This wrinkle suppression portion may be provided separately in the storage chamber, but the outer shape of the storage chamber itself may be devised so that the outer wall also serves as the wrinkle suppression portion.

同様のことは、蒸気導入路を出た蒸気冷媒の流れについてもいえる。もっとも、蒸気導入路を出た後の蒸気冷媒は、単にスムーズに流れることよりも、蒸気冷媒が冷却部に適切に当たることが重要である。例えば、冷却部が複数並列している場合であれば、蒸気冷媒が各冷却部にできるだけ均等に分配されるように拡散されると好ましい。
そこで、貯留室は、蒸気導入路の出口から出た蒸気冷媒の淀みを単に抑制するのみならず、蒸気導入路の出口から出た蒸気冷媒をさらに冷却部へ拡散させ誘導する拡散誘導部を有すると好ましい。この拡散誘導部も淀抑止部と同様に、貯留室中に別途設けても良いが、貯留室の筐体形状などを工夫して、その外壁が拡散誘導部を兼ねるようにすると効率的である。
The same applies to the flow of the vapor refrigerant that has exited the vapor introduction path. However, it is important that the vapor refrigerant after it exits the vapor introduction path appropriately hits the cooling section rather than simply flowing smoothly. For example, if a plurality of cooling units are arranged in parallel, it is preferable that the vapor refrigerant is diffused so as to be distributed as evenly as possible to each cooling unit.
Therefore, the storage chamber not only simply suppresses the stagnation of the vapor refrigerant that has exited from the outlet of the steam introduction path, but also has a diffusion guide section that diffuses and induces the vapor refrigerant that has exited from the outlet of the steam introduction path to the cooling section. It is preferable. This diffusion guide part may be provided separately in the storage chamber as well as the soot suppression part, but it is efficient if the housing shape of the storage chamber is devised so that its outer wall also serves as the diffusion guide part. .

(2)冷却部は貯留室内に配置されておれば足りる。冷却部の内部を流れる冷却流体は、気体でも液体でも良い。気体であれば大気(空気)でもよい。液体であれば水等の冷却液を用いることができる。
冷却部は、貯留室の天井部を凹まして冷却通路を形成した構造でも良い。もっとも、冷却部の代表例は冷却管である。この冷却管は、例えば、貯留室内を気密に貫くと共に前記液冷媒とは異なる冷却流体が内部を環流するパイプである。このような貯留室を貫く冷却管は、一本でも複数本でも良いし、直線上でも蛇行していても良いし、また、太くても細くても、さらには配置に応じて冷却管の太さが異なっていてもよい。さらに、貯留室内に収容される冷却管の周囲にはフィンが設けてあっても良い。
冷却管の内部を流れる冷却流体は、その種類は問わないが、水などが代表的である。冷却流体は、冷却管内を充填した状態で流れる必要はなく、冷凍機の膨張室(エバポレータ)のように気相と液相とが混在する状態であってもよい。
(2) It suffices if the cooling unit is disposed in the storage chamber. The cooling fluid flowing inside the cooling unit may be gas or liquid. The atmosphere (air) may be used as long as it is a gas. If it is a liquid, a coolant such as water can be used.
The cooling part may have a structure in which the ceiling part of the storage chamber is recessed to form a cooling passage. However, a typical example of the cooling unit is a cooling pipe. This cooling pipe is, for example, a pipe that penetrates the storage chamber in an airtight manner and that circulates a cooling fluid that is different from the liquid refrigerant. There may be one or a plurality of cooling pipes penetrating such a storage chamber, they may be meandering on a straight line, they may be thick or thin, and the thickness of the cooling pipe may be increased depending on the arrangement. May be different. Further, fins may be provided around the cooling pipe accommodated in the storage chamber.
The type of the cooling fluid flowing inside the cooling pipe is not limited, but water and the like are typical. The cooling fluid does not need to flow in a state in which the inside of the cooling pipe is filled, and may be in a state where a gas phase and a liquid phase are mixed like an expansion chamber (evaporator) of a refrigerator.

(3)本発明の凝縮器は、冷却管から滴下する凝縮液を回収して液冷媒槽の還流通路へ導く回収部を有すると好ましい。この回収部を設けることで、冷媒が蒸発通路→凝縮器→還流通路のように、効率的に循環するようになり、液冷媒槽のサイズや蒸発通路および還流通路の配置などにあまり影響されることなく、凝縮器のサイズや配管などの形態を決定することができ、沸騰冷却装置全体の設計自由度が高くなる。このため、沸騰冷却装置を取り付ける発熱機器の形態などに応じつつ、コンパクトで高効率な沸騰冷却装置とすることも可能となる。 (3) The condenser of the present invention preferably has a recovery unit that recovers the condensate dripped from the cooling pipe and guides it to the reflux passage of the liquid refrigerant tank. By providing this recovery unit, the refrigerant efficiently circulates in the form of the evaporation passage → condenser → reflux passage, and is greatly affected by the size of the liquid refrigerant tank and the arrangement of the evaporation passage and the return passage. Therefore, it is possible to determine the size of the condenser, the form of piping, and the like, and the degree of freedom in designing the whole boiling cooling device is increased. For this reason, it becomes possible to set it as a compact and highly efficient boiling cooling device, according to the form of the heat generating apparatus which attaches a boiling cooling device.

この回収部は、例えば、冷却管の大きさに応じて冷却管の下方に開口する上部開口部と、漏斗状またはすり鉢状に絞られて、滴下した凝縮液を還流通路へ誘導する誘導部と、還流通路の上方に開口する下部開口部とからなる。
ここで、凝縮器(特に貯留室内)に形成される回収部の下部と、液冷媒槽内に形成される仕切部の上部とを接続させ、さらには一体とすることで、蒸気冷媒が蒸発通路から漏れなく冷却管へ誘導されると共に凝縮液が漏れなく還流通路へ回収される。また、回収部と仕切部とを一体化して、一部材をロウ付け等することで沸騰冷却装置を製造した場合、その製造コストの削減にもなる。
The recovery unit includes, for example, an upper opening that opens below the cooling pipe according to the size of the cooling pipe, and a guiding part that is squeezed into a funnel shape or a mortar shape and guides the condensed liquid that has dropped to the reflux passage. And a lower opening that opens above the reflux passage.
Here, by connecting the lower part of the recovery part formed in the condenser (especially in the storage chamber) and the upper part of the partition part formed in the liquid refrigerant tank, and further integrating them, the vapor refrigerant is allowed to evaporate. The condensate is guided to the recirculation passage without leakage while being guided to the cooling pipe without leakage. Further, when the boiling cooling device is manufactured by integrating the collection unit and the partitioning unit and brazing one member, the manufacturing cost can be reduced.

また、この回収部を前記蒸気導入路の形成要素として兼用することで、コンパクトで高効率な沸騰冷却装置を低コストで製造することが可能となる。従って、蒸気導入路の少なくとも一部が回収部(例えば、前記誘導部の外壁面)と前記淀抑止部とにより形成されると好ましい。   In addition, by using this recovery unit also as a component for forming the steam introduction path, a compact and highly efficient boiling cooling device can be manufactured at low cost. Therefore, it is preferable that at least a part of the steam introduction path is formed by the recovery part (for example, the outer wall surface of the guide part) and the soot suppressing part.

より具体的には、本発明の沸騰冷却装置が、前記凝縮器内に配置され、前記還流通路へ向かって傾斜し、前記冷却部から滴下する凝縮液を前記液冷媒槽の還流通路へ導く回収板と、前記貯留室の壁面の前記回収板と対向する位置に形成され、前記回収板と同じ方向に傾斜した下部誘導壁とをさらに備え、前記回収板と前記下部誘導壁との間に蒸気導入路が形成され、前記蒸気導入路は前記蒸発通路に連通し、前記蒸発通路で発生した蒸気は前記蒸気導入路に導入されると好適である。   More specifically, the boiling cooling device according to the present invention is disposed in the condenser, is inclined toward the reflux passage, and recovers the condensed liquid dripping from the cooling section to the reflux passage of the liquid refrigerant tank. A plate and a lower guide wall formed at a position facing the recovery plate on the wall surface of the storage chamber and inclined in the same direction as the recovery plate, and steam between the recovery plate and the lower guide wall Preferably, an introduction path is formed, the steam introduction path communicates with the evaporation passage, and the steam generated in the evaporation passage is introduced into the steam introduction passage.

実施例を挙げて本発明をより具体的に説明する。
〈基本実施例〉
本発明に係る一実施例である沸騰冷却装置Fを図1に示す。沸騰冷却装置Fは、液冷媒槽1と凝縮器2とからなる。
液冷媒槽1は、略直方体状の金属製の筐体10と、筐体10内に上下方向に並列して設けた仕切板15、16(仕切部)とからなる。筐体10の両側の外壁面には取付部11(第1取付部)と取付部12(第2取付部)がそれぞれ設けられており、半導体素子を備えたパワーモジュールH1、H2(発熱体)が取付部11、12にそれぞれ取り付けられる。
The present invention will be described more specifically with reference to examples.
<Basic example>
FIG. 1 shows a boiling cooling device F according to an embodiment of the present invention. The boiling cooling device F includes a liquid refrigerant tank 1 and a condenser 2.
The liquid refrigerant tank 1 includes a substantially rectangular parallelepiped metal case 10 and partition plates 15 and 16 (partition portions) provided in the case 10 in parallel in the vertical direction. Mounting portions 11 (first mounting portions) and mounting portions 12 (second mounting portions) are respectively provided on the outer wall surfaces on both sides of the housing 10, and power modules H1 and H2 (heating elements) each including a semiconductor element. Are attached to the attachment portions 11 and 12, respectively.

仕切板15、16により筐体10内は、薄い直方体状の3つの領域に区画され、両側に蒸発通路B1、B2(第1蒸発通路、第2蒸発通路)が形成され、その中央に還流通路Rが形成される。仕切板15、16は筐体10の側壁にロウ付けされて固定されるが、筐体10の底壁には接合されていない。このため、蒸発通路B1、B2と還流通路Rとはそれぞれ連通可能となっている。
凝縮器2は、有底略六角形柱状の金属製の筐体20(貯留室)と、筐体20内に下方から上方に拡幅した1組の回収板25、26(回収部)と、筐体20を紙面の手前から奥に向かう方向に貫く3本の冷却管C1〜3とからなる。なお、冷却管C1〜C3内は、放熱器(ラジエター等)で冷却された冷却水が循環ポンプによって継続的に循環している。
The inside of the housing 10 is partitioned into three thin rectangular parallelepiped regions by the partition plates 15 and 16, and evaporation passages B1 and B2 (first evaporation passage and second evaporation passage) are formed on both sides. R is formed. The partition plates 15 and 16 are fixed to the side wall of the housing 10 by brazing, but are not joined to the bottom wall of the housing 10. For this reason, the evaporation passages B1 and B2 and the reflux passage R can communicate with each other.
The condenser 2 includes a bottomed substantially hexagonal columnar metal casing 20 (storage chamber), a pair of recovery plates 25 and 26 (collection section) widened in the casing 20 from the bottom to the top, and a casing. It consists of three cooling pipes C1-3 penetrating the body 20 in the direction from the front to the back of the page. In the cooling pipes C1 to C3, cooling water cooled by a radiator (such as a radiator) is continuously circulated by a circulation pump.

筐体20の内部空間が、蒸発通路B1、B2から蒸発した蒸気冷媒が貯留される貯留室となる。この筐体20は下部誘導壁21、22を備え、この下部誘導壁21、22と回収板25、26との協調により、蒸気冷媒の蒸気導入路D1、D2が形成される。なお、蒸気導入路D1、D2の出口の開口面積は、入口の開口面積(蒸発通路B1、B2の上部開口面積)よりも狭く絞られている。   The internal space of the housing 20 serves as a storage chamber in which the vapor refrigerant evaporated from the evaporation passages B1 and B2 is stored. The casing 20 includes lower guide walls 21 and 22, and steam introduction paths D <b> 1 and D <b> 2 for steam refrigerant are formed by cooperation of the lower guide walls 21 and 22 and the recovery plates 25 and 26. Note that the opening area of the outlets of the steam introduction paths D1 and D2 is narrower than the opening area of the inlet (the upper opening area of the evaporation passages B1 and B2).

この蒸気導入路D1、D2の出口で流速を高めた蒸気冷媒は、略直立する中間誘導壁27、28に誘導されて、筐体20の上方に設けられた冷却管C1〜C3へ斜め下方から当たり冷却される。加えて筐体20は上部誘導壁23、24(拡散誘導部)を有するので、蒸気冷媒はさらに冷却管C1〜C3の上方にも誘導される。これにより、蒸気冷媒は直近の冷却管のみならず隣接した他の冷却管へも拡散分配もされ得る。例えば、蒸気導入路D1の出口を出た流速の高められた蒸気冷媒は、中間誘導壁27および上部誘導壁23により斜め下方から冷却管C1へ当たると共に冷却管C2、C3へも分配、拡散される。このように蒸気冷媒が環流方向(蒸発通路B1、B2から凝縮部2を経由して還流通路Rへ向かう方向)へスムーズに流れることで、良好な冷媒循環が得られ、流速の高い蒸気冷媒が少なくとも直近の冷却管へ当たることで、冷却管の表面に付着した凝縮液の液膜が除去され、また、蒸気冷媒が他の冷却管へも分散されることで、蒸気冷媒と冷却管C1〜C3との間でスムーズな熱交換がなされる。   The vapor refrigerant whose flow velocity is increased at the outlets of the vapor introduction paths D1 and D2 is guided to the substantially straight intermediate guiding walls 27 and 28, and obliquely enters the cooling pipes C1 to C3 provided above the housing 20 from below. It is cooled by hit. In addition, since the housing 20 has the upper guide walls 23 and 24 (diffusion guide portions), the vapor refrigerant is further guided also above the cooling pipes C1 to C3. Thus, the vapor refrigerant can be diffused and distributed not only to the nearest cooling pipe but also to other adjacent cooling pipes. For example, the vapor refrigerant having an increased flow velocity exiting the outlet of the steam introduction path D1 hits the cooling pipe C1 from the oblique lower side by the intermediate guide wall 27 and the upper guide wall 23 and is also distributed and diffused to the cooling pipes C2 and C3. The In this way, the vapor refrigerant smoothly flows in the recirculation direction (the direction from the evaporation passages B1 and B2 to the recirculation passage R through the condensing unit 2), whereby a good refrigerant circulation is obtained, and the vapor refrigerant having a high flow velocity is obtained. The liquid film of the condensate adhering to the surface of the cooling pipe is removed by hitting at least the nearest cooling pipe, and the vapor refrigerant and the cooling pipes C1 to C1 are dispersed by being dispersed to other cooling pipes. Smooth heat exchange with C3 is performed.

なお、本実施例の蒸気導入路D1、D2は、下部誘導壁21、22と回収板25、26とにより形成され得るが、それに加えて中間誘導壁27、28および上部誘導壁23、24によって蒸気導入路D1、D2が形成されると考えても良い。   The steam introduction paths D1 and D2 of the present embodiment can be formed by the lower guide walls 21 and 22 and the recovery plates 25 and 26, but in addition to the intermediate guide walls 27 and 28 and the upper guide walls 23 and 24, It may be considered that the steam introduction paths D1 and D2 are formed.

〈変形実施例〉
上述した基本実施例を部分的に変更した変形実施例を図3〜6に示す。なお、図3〜6に示した変形実施例について、図1に示した基本実施例から変更されていない部分には、図1と同じ符号を付した。
(1)図3に示した沸騰冷却装置F2は、沸騰冷却装置Fの凝縮器2を凝縮器220へ変更したものである。凝縮器2に対する凝縮器220の変更点は、凝縮器2の中間誘導壁27、28を省略したところである。
<Modification>
3 to 6 show modified embodiments in which the basic embodiment described above is partially changed. In addition, about the modified example shown in FIGS. 3-6, the same code | symbol as FIG. 1 was attached | subjected to the part which is not changed from the basic example shown in FIG.
(1) The boiling cooling device F2 shown in FIG. 3 is obtained by changing the condenser 2 of the boiling cooling device F to a condenser 220. The change of the condenser 220 with respect to the condenser 2 is that the intermediate guide walls 27 and 28 of the condenser 2 are omitted.

(2)図4に示した沸騰冷却装置F3は、沸騰冷却装置Fの凝縮器2を凝縮器320へ変更したものである。凝縮器2に対する凝縮器320の変更点は、凝縮器2の上部誘導壁23、24の形状が平面状から湾曲状に変更したところである。 (2) The boiling cooling device F3 shown in FIG. 4 is obtained by changing the condenser 2 of the boiling cooling device F to a condenser 320. The change point of the condenser 320 with respect to the condenser 2 is that the shape of the upper guide walls 23 and 24 of the condenser 2 is changed from a flat shape to a curved shape.

(3)図5に示した沸騰冷却装置F4は、沸騰冷却装置Fの凝縮器2を凝縮器420へ変更したものである。凝縮器2に対する凝縮器420の変更点は、凝縮器2の下部誘導壁21、22を省略したところである。 (3) The boiling cooling device F4 shown in FIG. 5 is obtained by changing the condenser 2 of the boiling cooling device F to a condenser 420. The change of the condenser 420 with respect to the condenser 2 is that the lower guide walls 21 and 22 of the condenser 2 are omitted.

(4)図6に示した沸騰冷却装置F5は、沸騰冷却装置Fの凝縮器2を凝縮器520へ変更したものである。凝縮器2に対する凝縮器520の変更点は、凝縮器2の内部に設けていた回収板25、26を省略し、液冷媒槽1の筐体10の外側壁と凝縮器2の筐体20の外側壁とを連続平面状に構成したところである。 (4) The boiling cooling device F5 shown in FIG. 6 is obtained by changing the condenser 2 of the boiling cooling device F to a condenser 520. The change point of the condenser 520 relative to the condenser 2 is that the recovery plates 25 and 26 provided inside the condenser 2 are omitted, and the outer wall of the casing 10 of the liquid refrigerant tank 1 and the casing 20 of the condenser 2 are omitted. The outer wall is configured in a continuous plane.

本発明の基本実施例である沸騰冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooling device which is a basic Example of this invention. その沸騰冷却装置の正面図である。It is a front view of the boiling cooling device. 本発明の第1変形実施例である沸騰冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooling device which is the 1st modification of this invention. 本発明の第2変形実施例である沸騰冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooling device which is the 2nd modification of this invention. 本発明の第3変形実施例である沸騰冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooling device which is the 3rd modification of this invention. 本発明の第4変形実施例である沸騰冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooling device which is the 4th modification of this invention.

符号の説明Explanation of symbols

1 液冷媒槽
2 凝縮器
15、16 仕切板(仕切部)
25、26 回収板(回収部)
B1、B2 蒸発通路
C1〜C3 冷却管(冷却部)
D1、D2 蒸気導入路
H1、H2 パワーモジュール(発熱体)
F 沸騰冷却装置
R 還流通路
M 液冷媒
1 Liquid refrigerant tank 2 Condensers 15 and 16 Partition plate (partition part)
25, 26 Collection board (collection part)
B1, B2 Evaporation passage C1-C3 Cooling pipe (cooling part)
D1, D2 Steam introduction path H1, H2 Power module (heating element)
F Boiling cooling device R Reflux passage M Liquid refrigerant

Claims (5)

発熱を伴う発熱体からの受熱により沸騰し得る液冷媒を収容する液冷媒槽と、
該液冷媒槽の上方に気密に連結され該発熱体からの受熱により該液冷媒が蒸発して上昇し流入した蒸気冷媒を冷却し凝縮させて液冷媒に戻す凝縮器とを備え、
該液冷媒の蒸発と該蒸気冷媒の凝縮の繰り返しにより前記発熱体からの発熱を該凝縮器を介して外部へ移動させる沸騰冷却装置であって、
前記凝縮器は、前記蒸気冷媒を貯留する貯留室と、該貯留室内に配置されると共に冷却流体が内部を流れる冷却部とを有し、
前記液冷媒槽は、前記発熱体からの受熱により前記液冷媒を蒸発させる上下方向に延在する蒸発通路と、該蒸発通路と区画されつつ一部で連通し前記凝縮器で凝縮された凝縮液を該蒸発通路に還流させる還流通路とを有し、
さらに前記貯留室は、前記蒸気通路で発生した蒸気が通る位置に、前記冷却部に向かって傾斜する内壁面を有することを特徴とする沸騰冷却装置。
A liquid refrigerant tank containing a liquid refrigerant that can boil by receiving heat from a heating element with heat generation;
A condenser that is airtightly connected above the liquid refrigerant tank and includes a condenser that cools, condenses, and returns the liquid refrigerant to the liquid refrigerant that evaporates and rises due to heat received from the heating element.
A boiling cooling device for moving heat generated from the heating element to the outside through the condenser by repeating evaporation of the liquid refrigerant and condensation of the vapor refrigerant,
The condenser has a storage chamber that stores the vapor refrigerant, and a cooling unit that is disposed in the storage chamber and in which a cooling fluid flows.
The liquid refrigerant tank includes an evaporating passage extending in the vertical direction for evaporating the liquid refrigerant by receiving heat from the heating element, and a condensate condensed by the condenser while being partially separated from the evaporating passage. A reflux passage for refluxing the evaporation passage to the evaporation passage,
Furthermore, the said storage chamber has an inner wall surface which inclines toward the said cooling part in the position where the vapor | steam generate | occur | produced in the said vapor | steam passage passes, The boiling cooling device characterized by the above-mentioned.
前記凝縮器内に配置され、前記還流通路へ向かって傾斜し、前記冷却部から滴下する凝縮液を前記液冷媒槽の還流通路へ導く回収板と、
前記貯留室の壁面の前記回収板と対向する位置に形成され、前記回収板と同じ方向に傾斜した下部誘導壁とをさらに備え、
前記回収板と前記下部誘導壁との間に蒸気導入路が形成され、
前記蒸気導入路は前記蒸発通路に連通し、前記蒸発通路で発生した蒸気は前記蒸気導入路に導入される請求項1に記載の沸騰冷却装置。
A recovery plate disposed in the condenser, inclined toward the reflux passage, and leading the condensate dripping from the cooling section to the reflux passage of the liquid refrigerant tank;
A lower guide wall that is formed at a position facing the recovery plate on the wall surface of the storage chamber and is inclined in the same direction as the recovery plate;
A steam introduction path is formed between the recovery plate and the lower guide wall;
The boiling cooling apparatus according to claim 1, wherein the steam introduction path communicates with the evaporation passage, and steam generated in the evaporation passage is introduced into the steam introduction path.
前記蒸気導入路は、出口の開口面積が入口の開口面積よりも絞られている請求項2に記載の沸騰冷却装置。   The boiling cooling apparatus according to claim 2, wherein an opening area of the outlet of the steam introduction path is narrower than an opening area of the inlet. 前記蒸発通路と前記還流通路の間には、上下方向に延在し、前記蒸発通路と前記還流通路とを区画する仕切部を有するとともに、前記回収板の下部と前記仕切部の上部は接続している請求項3に記載の沸騰冷却装置。   Between the evaporation passage and the reflux passage, there is a partition portion that extends in the vertical direction and partitions the evaporation passage and the reflux passage, and the lower portion of the recovery plate and the upper portion of the partition portion are connected. The boiling cooling device according to claim 3. 前記液冷媒槽は、外壁の外側または内側に前記発熱体を取り付ける第1取付部と該第1取付部に対向する第2取付部とを少なくとも有し、
該液冷媒槽の蒸発通路は、該第1取付部に取り付けられた発熱体から受熱する第1蒸発通路と該第2取付部に取り付けられた発熱体から受熱する第2蒸発通路とを少なくとも有し、
該液冷媒槽の還流通路は、該第1蒸発通路と該第2蒸発通路との間に介在している請求項1〜4のいずれかに記載の沸騰冷却装置。
The liquid refrigerant tank has at least a first attachment portion that attaches the heating element to the outside or the inside of an outer wall, and a second attachment portion that faces the first attachment portion,
The evaporation passage of the liquid refrigerant tank has at least a first evaporation passage that receives heat from the heating element attached to the first attachment portion and a second evaporation passage that receives heat from the heating element attached to the second attachment portion. And
The boiling cooling device according to any one of claims 1 to 4, wherein the reflux passage of the liquid refrigerant tank is interposed between the first evaporation passage and the second evaporation passage.
JP2008164615A 2008-06-24 2008-06-24 Ebullient cooling device Pending JP2010010204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164615A JP2010010204A (en) 2008-06-24 2008-06-24 Ebullient cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164615A JP2010010204A (en) 2008-06-24 2008-06-24 Ebullient cooling device

Publications (1)

Publication Number Publication Date
JP2010010204A true JP2010010204A (en) 2010-01-14

Family

ID=41590384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164615A Pending JP2010010204A (en) 2008-06-24 2008-06-24 Ebullient cooling device

Country Status (1)

Country Link
JP (1) JP2010010204A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174647A (en) * 2010-02-24 2011-09-08 Showa Denko Kk Heat pipe type radiator
WO2012161002A1 (en) * 2011-05-20 2012-11-29 日本電気株式会社 Flat plate cooling device, and method for using same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
JP2020205025A (en) * 2019-06-17 2020-12-24 緯穎科技服務股▲フン▼有限公司Wiwynn Corporation Immersion cooling module and electronic apparatus having the same
JP2021120611A (en) * 2020-01-31 2021-08-19 古河電気工業株式会社 Heat transfer member and cooling device having the same
US11337336B2 (en) 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094549A (en) * 1973-11-30 1975-07-28
JPS59123252A (en) * 1982-12-28 1984-07-17 Toshiba Corp Condenser
JPS6327052U (en) * 1986-08-02 1988-02-22
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094549A (en) * 1973-11-30 1975-07-28
JPS59123252A (en) * 1982-12-28 1984-07-17 Toshiba Corp Condenser
JPS6327052U (en) * 1986-08-02 1988-02-22
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174647A (en) * 2010-02-24 2011-09-08 Showa Denko Kk Heat pipe type radiator
WO2012161002A1 (en) * 2011-05-20 2012-11-29 日本電気株式会社 Flat plate cooling device, and method for using same
JPWO2012161002A1 (en) * 2011-05-20 2014-07-31 日本電気株式会社 Flat plate cooling device and method of using the same
JP5874935B2 (en) * 2011-05-20 2016-03-02 日本電気株式会社 Flat plate cooling device and method of using the same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
US11337336B2 (en) 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device
TWI768320B (en) * 2019-04-11 2022-06-21 日商古河電氣工業股份有限公司 cooling device
JP2020205025A (en) * 2019-06-17 2020-12-24 緯穎科技服務股▲フン▼有限公司Wiwynn Corporation Immersion cooling module and electronic apparatus having the same
JP7041656B2 (en) 2019-06-17 2022-03-24 緯穎科技服務股▲フン▼有限公司 Immersion cooling module and electronic device with it
JP2021120611A (en) * 2020-01-31 2021-08-19 古河電気工業株式会社 Heat transfer member and cooling device having the same
JP7370883B2 (en) 2020-01-31 2023-10-30 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member

Similar Documents

Publication Publication Date Title
JP2010010204A (en) Ebullient cooling device
JP5678662B2 (en) Boiling cooler
JP4578552B2 (en) Cooling device and power conversion device
JP6749398B2 (en) Heat exchangers and air conditioning systems
WO2011122207A1 (en) Cooling apparatus and cooling system for electronic-device exhaustion
JP2012132661A (en) Cooling device and electronic device
JP5194868B2 (en) Boiling cooler
JP2005195226A (en) Pumpless water cooling system
JP7499354B2 (en) Electrical equipment, panels and heat exchangers
JP2014020755A (en) Downward flow liquid film type evaporator
JP4701147B2 (en) 2-stage absorption refrigerator
JP6626237B2 (en) Boiling cooler
JP2008311399A (en) Heat sink
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
US20240206131A1 (en) Cooling apparatus, system and method of manufacture
TW202235803A (en) Novel heat pipe configurations
JPWO2017110740A1 (en) Heat dissipation device, phase change cooling device using the same, and heat dissipation method
JP2011142298A (en) Boiling cooler
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP2011108685A (en) Natural circulation type boiling cooler
WO2014147838A1 (en) Heat exchanger, cooling system, and electronic equipment
JP5860728B2 (en) Electronic equipment cooling system
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
JP5347919B2 (en) Heating element storage box cooling device
JP2006269694A (en) Power apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100628

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508