JP7370883B2 - Heat transfer member and cooling device having heat transfer member - Google Patents

Heat transfer member and cooling device having heat transfer member Download PDF

Info

Publication number
JP7370883B2
JP7370883B2 JP2020014450A JP2020014450A JP7370883B2 JP 7370883 B2 JP7370883 B2 JP 7370883B2 JP 2020014450 A JP2020014450 A JP 2020014450A JP 2020014450 A JP2020014450 A JP 2020014450A JP 7370883 B2 JP7370883 B2 JP 7370883B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer member
plate
refrigerant
continuous cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020014450A
Other languages
Japanese (ja)
Other versions
JP2021120611A (en
Inventor
智明 虎谷
博史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2020014450A priority Critical patent/JP7370883B2/en
Publication of JP2021120611A publication Critical patent/JP2021120611A/en
Application granted granted Critical
Publication of JP7370883B2 publication Critical patent/JP7370883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発熱体からの熱を伝えて第1冷媒を液相から気相に相変化させる伝熱部材、およびこの伝熱部材を有する冷却装置に関する。 The present invention relates to a heat transfer member that transfers heat from a heating element to change the phase of a first refrigerant from a liquid phase to a gas phase, and a cooling device that includes this heat transfer member.

近年の電子機器の高機能化に伴い、電子機器内部には、電気・電子部品等の発熱体(以下、単に「発熱体」という場合がある。)が高密度に搭載され、また、発熱体の発熱量が増大化する傾向がある。発熱体の温度が、所定の許容温度を超えて上昇すると、発熱体が誤作動等を起こす原因となることから、発熱体の温度は、常に許容温度以下に維持し続けることが必要である。そのため、電子機器内部には、通常、発熱体を冷却するための冷却装置が搭載されている。このような冷却装置としては、例えば、冷媒を液相から気相に相変化させることによる潜熱(気化熱)を利用した沸騰冷却装置が知られている。 With the increasing functionality of electronic devices in recent years, heating elements such as electrical and electronic components (hereinafter simply referred to as "heating elements") are mounted in a high density inside electronic devices. The amount of heat generated tends to increase. If the temperature of the heating element rises above a predetermined permissible temperature, it may cause the heating element to malfunction, so it is necessary to maintain the temperature of the heating element at or below the permissible temperature at all times. Therefore, a cooling device for cooling the heating element is usually installed inside the electronic device. As such a cooling device, for example, a boiling cooling device that utilizes latent heat (heat of vaporization) by changing the phase of a refrigerant from a liquid phase to a gas phase is known.

上述したように、電子機器を構成する電気・電子部品等の発熱体では、発熱量が増大化する傾向があることから、沸騰冷却装置の冷却性能のさらなる向上が要求されている。沸騰冷却装置の冷却性能をさらに向上するには、冷媒の液相から気相への相変化を円滑化すること、特に冷媒の加熱・沸騰の発生を円滑化することが有用である。 As described above, heating elements such as electric/electronic components that constitute electronic devices tend to generate more heat, so there is a demand for further improvement in the cooling performance of boiling cooling devices. In order to further improve the cooling performance of the evaporative cooling device, it is useful to smooth the phase change of the refrigerant from the liquid phase to the gas phase, and in particular to smooth the heating and boiling of the refrigerant.

冷媒の加熱・沸騰を円滑化するための手段としては、例えば、特許文献1には、内部に加熱流体が流れる管本体の外周面に、複数の第1のフィンと、前記複数の第1フィンと所定間隔を隔てて設けられた複数の第2フィンとを備え、これら第1フィンと第2フィンとを組み合わせることにより、冷媒を流入する流入口を有する空洞が形成され、前記空洞内に流入した前記冷媒が前記加熱媒体によって沸騰したときの気泡を外部に排出する複数の排出口が形成され、冷媒の流入と気泡の排出をスムーズにして伝熱性能を向上させた沸騰用伝熱管が開示されている。 As a means for smoothing the heating and boiling of the refrigerant, for example, Patent Document 1 discloses that a plurality of first fins are provided on the outer circumferential surface of a tube body through which a heating fluid flows; and a plurality of second fins provided at predetermined intervals, and by combining these first fins and second fins, a cavity having an inlet into which the refrigerant flows is formed, and the refrigerant flows into the cavity. Disclosed is a boiling heat exchanger tube in which a plurality of discharge ports are formed for discharging bubbles to the outside when the refrigerant is boiled by the heating medium, and the heat transfer performance is improved by smoothing the inflow of the refrigerant and the discharge of the bubbles. has been done.

このように、冷媒と接触する沸騰面(特許文献1では管本体の外周面)を、内部が広く入り口が狭い多数の空洞を有するキャビティ構造にして形成すると、冷却性能を含む伝熱性能が向上することが知られている。 In this way, by forming the boiling surface that comes into contact with the refrigerant (the outer peripheral surface of the tube body in Patent Document 1) with a cavity structure having a large number of cavities with a wide interior and a narrow entrance, heat transfer performance including cooling performance is improved. It is known to do.

特開2005-121238号公報Japanese Patent Application Publication No. 2005-121238

しかしながら、特許文献1では、多数の空洞を、管本体の外周面に管周方向に連続するように形成されていることから、空洞の管周方向開口端は存在しないため、冷媒が管周方向開口端から空洞内に浸入することはできない。このため、特許文献1記載の伝熱管では、空洞の上部に形成した0.02~0.2mmの狭い間隔の流入口から冷媒が空洞内に浸入することになる。しかし、排出口は、流入口よりも開口サイズが大きいことから、冷媒は、流入口からだけではなく、同時に排出口からも空洞内に浸入しやすいと考えられる。この結果、空洞内への冷媒の流入と、空洞外への気泡の排出を円滑に行うことができているとは言えず、さらに改善の必要性があった。 However, in Patent Document 1, since a large number of cavities are formed on the outer circumferential surface of the tube body so as to be continuous in the circumferential direction, there is no opening end of the cavities in the circumferential direction. It is not possible to enter the cavity through the open end. Therefore, in the heat exchanger tube described in Patent Document 1, the refrigerant enters the cavity through the inlet ports formed at the upper part of the cavity and spaced narrowly at intervals of 0.02 to 0.2 mm. However, since the outlet has a larger opening size than the inlet, it is thought that the refrigerant tends to enter the cavity not only from the inlet but also from the outlet at the same time. As a result, it cannot be said that the flow of refrigerant into the cavity and the discharge of bubbles to the outside of the cavity can be performed smoothly, and there is a need for further improvement.

また、冷媒の加熱・沸騰を円滑化するための他の手段としては、例えば、冷媒と接触する表面(沸騰面)に、粒子状の金属粉の焼結体からなるウィック構造体を備える構成が挙げられる。このようなウィック構造体は、液相の冷媒の保持力には優れているものの、ウィック構造体内に浸入する冷媒の流れと、沸騰によって生じる気泡がウィック構造体の外部に放出されるときの流れとがぶつかり合う結果として、冷媒が液相から気相に相変化した際の潜熱の受け渡し(熱伝達率)が十分に行われているとは言い難く、熱伝達率をより高めることができる表面(沸騰面)の新たな構造(形状)を開発することが望まれている。 In addition, as another means for smoothing the heating and boiling of the refrigerant, for example, a structure in which a wick structure made of a sintered body of particulate metal powder is provided on the surface that contacts the refrigerant (boiling surface) is available. Can be mentioned. Although such a wick structure has an excellent ability to retain liquid phase refrigerant, the flow of the refrigerant that enters the wick structure and the flow of bubbles generated by boiling when they are released to the outside of the wick structure As a result of the refrigerant colliding with each other, it is difficult to say that the transfer of latent heat (heat transfer coefficient) when the refrigerant changes phase from the liquid phase to the gas phase is carried out sufficiently. It is desired to develop a new structure (shape) of (boiling surface).

本発明の目的は、コンテナの底部の内面であって、底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成される、第1冷媒と接触する表面(沸騰面)の形状の適正化を図ることによって、第1冷媒を液相から気相に相変化させた際の潜熱の受け渡し効率を向上させて熱伝達率を高めることを可能にした伝熱部材、およびこの伝熱部材を有することで、冷却効率を向上させた冷却装置を提供することにある。 An object of the present invention is to provide a first refrigerant-contacting surface ( By optimizing the shape of the boiling surface (boiling surface), it is possible to improve the efficiency of latent heat transfer and increase the heat transfer coefficient when the first refrigerant changes from the liquid phase to the gas phase. An object of the present invention is to provide a cooling device having improved cooling efficiency by having this heat transfer member.

上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材において、前記伝熱部材が、前記コンテナの底部の内面に固着される下面を有する板状部と、前記板状部の上面を含み、前記板状部の上面に沿って連続して延在する少なくとも1本の連続空洞と、前記連続空洞の延在方向に沿う間隔をおいて前記連続空洞を挟む両側に位置し、前記板状部の上面に配設される対をなす複数の柱状フィン部とを備え、前記連続空洞は、前記対をなす柱状フィン部に挟まれた位置の天井部分に、開口が形成されていることを特徴とする伝熱部材。
(2)前記柱状フィン部の高さは、前記連続空洞の高さの2倍以上である、上記(1)に記載の伝熱部材。
(3)前記複数の柱状フィン部は、前記連続空洞を挟む両側位置に、それぞれ前記連続空洞の延在方向に沿う間隔をおいて整列する柱状フィン部の群を構成する、上記(1)または(2)に記載の伝熱部材。
(4)上記(1)~(3)のいずれか1項に記載の伝熱部材の製造方法であって、前記板状部の上面に、凹凸形状の上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化された被加工素材を構成する前記板状フィン部の前記上端部分の凹部位置を加工することによって、前記複数の柱状フィン部、および前記連続空洞の、前記開口を形成していない天井部分を形成することを特徴とする伝熱部材の製造方法。
(5)上記(1)~(3)のいずれか1項に記載の伝熱部材の製造方法であって、前記板状部の上面に、フラットな上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化された被加工素材を構成する前記板状フィン部の前記上端部分の所定の位置を加工することによって、前記複数の柱状フィン部、および前記連続空洞の、前記開口を形成していない天井部分を形成することを特徴とする伝熱部材の製造方法。
(6)底部の外面に、少なくとも1つの発熱体が熱的に接続され、内部空間の下部に、液相の第1冷媒が封入されたコンテナと、前記コンテナの前記内部空間の上部位置にて、前記コンテナを貫通するように延在させ、内部を第2冷媒が流通する凝縮管とを備える冷却装置であって、前記冷却装置は、前記コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材を有し、前記伝熱部材が、前記コンテナの底部の内面に固着される下面を有する板状部と、前記板状部の上面を含み、前記板状部の上面に沿って連続して延在する少なくとも1本の連続空洞と、前記連続空洞の延在方向に沿う間隔をおいて前記連続空洞を挟む両側に位置し、前記板状部の上面に配設される対をなす複数の柱状フィン部とを備え、前記連続空洞は、前記対をなす柱状フィン部に挟まれた位置の天井部分に、開口が形成されていることを特徴とする冷却装置。
In order to achieve the above object, the gist of the present invention is as follows.
(1) It is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and the heat from the heating element is transferred to the bottom of the container. In the heat transfer member, the heat transfer member heats and boils the first refrigerant by transmitting the heat to the first refrigerant in a liquid phase sealed in a lower part of the internal space, and changes the phase of the first refrigerant from the liquid phase to the gas phase. The member includes a plate-shaped part having a lower surface fixed to the inner surface of the bottom of the container, and an upper surface of the plate-shaped part, and at least one continuous piece that extends continuously along the upper surface of the plate-shaped part. a cavity, and a plurality of columnar fin parts forming a pair located on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity and disposed on the upper surface of the plate-like part, A heat transfer member characterized in that the continuous cavity has an opening formed in a ceiling portion at a position sandwiched between the pair of columnar fin portions.
(2) The heat transfer member according to (1) above, wherein the height of the columnar fin portion is at least twice the height of the continuous cavity.
(3) The plurality of columnar fin portions constitute a group of columnar fin portions arranged on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity, or (1) above; The heat transfer member according to (2).
(4) The method for manufacturing a heat transfer member according to any one of (1) to (3) above, wherein a plurality of plate-shaped fin portions each having an uneven upper end portion are provided on the upper surface of the plate-shaped portion. By machining the recess position of the upper end portion of the plate-like fin portion that constitutes the integrated workpiece material with the fins facing each other at intervals, the plurality of columnar fin portions and the continuous cavity are . A method of manufacturing a heat transfer member, comprising forming a ceiling portion in which the opening is not formed.
(5) The method for manufacturing a heat transfer member according to any one of (1) to (3) above, wherein a plurality of plate-shaped fin portions each having a flat upper end portion are provided on the upper surface of the plate-shaped portion. By machining predetermined positions of the upper end portions of the plate-like fin portions constituting the integrated workpiece material while facing each other at intervals, the plurality of columnar fin portions and the continuous cavity are . A method of manufacturing a heat transfer member, comprising forming a ceiling portion in which the opening is not formed.
(6) a container in which at least one heating element is thermally connected to the outer surface of the bottom and a liquid-phase first refrigerant is sealed in the lower part of the inner space; , a cooling device including a condensing pipe extending through the container and through which a second refrigerant flows, the cooling device being connected to an inner surface of the bottom of the container and an outer surface of the bottom is formed at a position corresponding to the mounting position of at least one heating element thermally connected to the heating element, and transmits heat from the heating element to a liquid phase first refrigerant sealed in a lower part of the internal space of the container. a heat transfer member that heats and boils the first refrigerant and changes the phase of the first refrigerant from a liquid phase to a gas phase; the heat transfer member is fixed to the inner surface of the bottom of the container; at least one continuous cavity that includes the upper surface of the plate-shaped part and extends continuously along the upper surface of the plate-shaped part, and an interval along the extending direction of the continuous cavity. and a plurality of paired columnar fin portions located on both sides of the continuous cavity and arranged on the upper surface of the plate-like portion, the continuous cavity being sandwiched between the pair of columnar fin portions. A cooling device characterized in that an opening is formed in a ceiling portion at a position where the cooling device is opened.

本発明によれば、第1冷媒を液相から気相に相変化させた際の潜熱の受け渡し効率を向上させて熱伝達率を高めた伝熱部材、およびこの伝熱部材を有することで、冷却効率を向上させた冷却装置を提供することが可能になる。 According to the present invention, by having a heat transfer member that improves the transfer efficiency of latent heat when changing the phase of the first refrigerant from the liquid phase to the gas phase and increases the heat transfer coefficient, and this heat transfer member, It becomes possible to provide a cooling device with improved cooling efficiency.

図1は、本発明に従う第1実施形態の伝熱部材を有する冷却装置の要部を示す斜視図である。FIG. 1 is a perspective view showing the main parts of a cooling device having a heat transfer member according to a first embodiment of the present invention. 図2は、図1の冷却装置を構成する伝熱部材の一部を抜き出して拡大して示した斜視図である。FIG. 2 is an enlarged perspective view of a part of the heat transfer member constituting the cooling device of FIG. 1. 図3(a)、(b)は、凹凸形状の上端部分を有する板状フィン部の凹部をプレス加工することによって、伝熱部材の板状部の上面に連続空洞を形成したときの説明図である。FIGS. 3(a) and 3(b) are explanatory diagrams when a continuous cavity is formed on the upper surface of the plate-shaped part of the heat transfer member by pressing the concave part of the plate-shaped fin part having an uneven upper end part. It is. 図4(a)、(b)は、フラットな上端部分を有する板状フィン部の上端部分の所定の位置をプレス加工することによって、伝熱部材の板状部の上面に連続空洞を形成したときの説明図である。4(a) and (b) show that a continuous cavity is formed on the upper surface of the plate-shaped part of the heat transfer member by pressing a predetermined position of the upper end part of the plate-shaped fin part having a flat upper end part. FIG. 図5は、第2実施形態の伝熱部材の一部を拡大して示した斜視図である。FIG. 5 is an enlarged perspective view of a part of the heat transfer member of the second embodiment. 図6は、第3実施形態の伝熱部材(の一部)を、3枚の板材を用いて形成したときの説明図であって、図6(a)が、1枚の矩形状板と2枚の打抜き加工板の接合前の状態、図6(b)が、1枚の矩形状板の上面に、2枚の打抜き加工板を接合し、その後、矢印方向に曲げ加工を施す直前の状態、図6(c)が曲げ加工を施して伝熱部材を形成したときの状態を示す。FIG. 6 is an explanatory diagram when (part of) the heat transfer member of the third embodiment is formed using three plate materials, and FIG. Figure 6(b) shows the state before joining two punched plates, and the state immediately before joining the two punched plates to the top surface of one rectangular plate and then bending them in the direction of the arrow. FIG. 6(c) shows the state when the heat transfer member is formed by bending. 図7は、比較例の伝熱部材の斜視図である。FIG. 7 is a perspective view of a heat transfer member of a comparative example. 図8は、本発明例の伝熱部材と比較例の伝熱部材をそれぞれ有する冷却装置を用いて熱流束と熱伝達率を測定・算出し、算出した熱流束を横軸とし、算出した熱伝達率を縦軸としてプロットした図である。Figure 8 shows the heat flux and heat transfer coefficient measured and calculated using a cooling device having the heat transfer member of the present invention example and the heat transfer member of the comparative example, and the horizontal axis is the calculated heat flux, and the calculated heat FIG. 3 is a diagram plotting transmissibility on the vertical axis.

次に、本発明のいくつかの実施形態の伝熱部材について、以下で説明する。 Next, heat transfer members according to some embodiments of the present invention will be described below.

<伝熱部材>
(第1実施形態)
図1は、本発明に従う第1実施形態の伝熱部材を有する冷却装置の要部を示す斜視図であって、冷却装置を構成するコンテナの内部構造が分かるように透視した状態で示す。図2は、図1の冷却装置を構成する伝熱部材の一部を抜き出して拡大して示した斜視図である。
<Heat transfer member>
(First embodiment)
FIG. 1 is a perspective view showing the main parts of a cooling device having a heat transfer member according to a first embodiment of the present invention, and is shown in a transparent state so that the internal structure of a container constituting the cooling device can be seen. FIG. 2 is an enlarged perspective view of a part of the heat transfer member constituting the cooling device of FIG. 1.

本発明の伝熱部材10は、コンテナ30の内部空間Sに封入された第1冷媒R1に接触し、第1冷媒R1を通じて熱を伝達することができる構成を有し、例えば冷却装置や熱交換器等のような種々の伝熱装置に用いることができる。なお、図1に示す第1実施形態の伝熱部材10は、冷却装置1に装着して用いた場合を示している。 The heat transfer member 10 of the present invention has a configuration that can contact the first refrigerant R1 sealed in the internal space S of the container 30 and transfer heat through the first refrigerant R1, such as a cooling device or a heat exchanger. It can be used in various heat transfer devices such as containers. Note that the heat transfer member 10 of the first embodiment shown in FIG. 1 is used by being attached to a cooling device 1.

伝熱部材10は、冷却装置1を構成するコンテナ30の底部31の内面31aであって、底部31の外面31bに熱的に接続される少なくとも1つの発熱体(図示せず)の取付位置Pに対応する位置に形成され、発熱体からの熱を、コンテナ30の内部空間Sの下部に封入された液相の第1冷媒R1に伝えることで第1冷媒R1を加熱・沸騰させ、第1冷媒R1を液相から気相に相変化させる。なお、第1冷媒R1は、コンテナ30の内部空間Sでは、液相状態と気相状態に相変化して存在することから、以下では、説明の便宜上、液相の第1冷媒をR1(L)、気相の第1冷媒をR1(g)と区別した符号を付す場合がある。 The heat transfer member 10 is located on the inner surface 31a of the bottom 31 of the container 30 constituting the cooling device 1, and is located at a mounting position P of at least one heating element (not shown) that is thermally connected to the outer surface 31b of the bottom 31. The first refrigerant R1 is heated and boiled by transmitting heat from the heating element to the liquid phase first refrigerant R1 sealed in the lower part of the internal space S of the container 30. The phase of the refrigerant R1 is changed from a liquid phase to a gas phase. Note that the first refrigerant R1 exists in the internal space S of the container 30 in a phase-changed state between a liquid phase state and a gas phase state. ), the first refrigerant in the gas phase may be given a different symbol from R1(g).

コンテナ30の内部空間Sは、外部環境に対して密閉された空間であり、脱気処理により減圧されている。 The internal space S of the container 30 is a space sealed from the external environment, and is depressurized by degassing.

伝熱部材10は、板状部11と、連続空洞12と、柱状フィン部13とで主として構成されている。 The heat transfer member 10 mainly includes a plate-shaped portion 11, a continuous cavity 12, and a columnar fin portion 13.

伝熱部材10を構成する材料としては、特に限定されず、例えば熱伝導性材料を挙げることができる。伝熱部材10を構成する材料の具体例としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、鉄合金(例えばステンレス鋼)等の金属材料や、グラファイト等の炭素材料を挙げることができる。また、伝熱部材10は、例えば板状部11や柱状フィン部13の表面に、金属焼結体等の熱伝導性材料の焼結体や炭素粒子及び/または金属粉の集合体等の粒子状の熱伝導性材料の集合体を層状に形成してもよい。これにより、焼結体等を層状に形成した伝熱部材10の表面が多孔質層となって、1次冷媒R1(L)が多孔質層内に、より長い時間保持されて伝熱特性が高まるため、1次冷媒R1の液相から気相への相変化がさらに促進されて、冷却装置1の冷却性能をさらに向上させることができる。 The material constituting the heat transfer member 10 is not particularly limited, and examples thereof include thermally conductive materials. Specific examples of the material constituting the heat transfer member 10 include metal materials such as copper, copper alloy, aluminum, aluminum alloy, iron alloy (for example, stainless steel), and carbon materials such as graphite. The heat transfer member 10 also includes particles such as a sintered body of a thermally conductive material such as a metal sintered body, an aggregate of carbon particles and/or metal powder, etc. An aggregate of thermally conductive materials may be formed in a layered manner. As a result, the surface of the heat transfer member 10 formed of a layered sintered body or the like becomes a porous layer, and the primary refrigerant R1 (L) is retained in the porous layer for a longer time, improving heat transfer characteristics. Therefore, the phase change of the primary refrigerant R1 from the liquid phase to the gas phase is further promoted, and the cooling performance of the cooling device 1 can be further improved.

板状部11は、コンテナ30の底部31の内面31aに装着(固着)される下面を有する。板状部の形状は、特に限定する必要はなく、図1に示すような矩形状の他、円形、三角形、多角形などの種々の形状が挙げられ、特にコンテナ30の底部31の外面31bの、発熱体の取付位置Pに取り付けられた発熱体の接触面の形状に対応させた形状にすることが好ましい。 The plate-shaped portion 11 has a lower surface that is attached (fixed) to the inner surface 31a of the bottom portion 31 of the container 30. The shape of the plate part does not need to be particularly limited, and various shapes such as a rectangular shape as shown in FIG. 1, a circle, a triangle, and a polygon can be mentioned. , it is preferable that the shape corresponds to the shape of the contact surface of the heating element attached to the mounting position P of the heating element.

連続空洞12は、板状部11の上面11aを含み、板状部11の上面11aに沿って連続して延在し、少なくとも1本の連続空洞12が、伝熱部材10に形成されている。 The continuous cavity 12 includes the upper surface 11a of the plate-shaped part 11 and extends continuously along the upper surface 11a of the plate-shaped part 11, and at least one continuous cavity 12 is formed in the heat transfer member 10. .

連続空洞12は、対をなす柱状フィン部13に挟まれた位置の天井部分に、開口Oが形成されている。連続空洞12は、延在方向開口端17から、連続空洞12の延在方向Lに向かって眺めたとき、空間が連続している延在形状を有している。この延在形状は、連続していればよく、また、直線状だけではなく曲線状であってもよい。 The continuous cavity 12 has an opening O formed in the ceiling portion at a position sandwiched between the pair of columnar fin portions 13. The continuous cavity 12 has an extended shape in which the space is continuous when viewed from the extension direction opening end 17 toward the extension direction L of the continuous cavity 12. This extended shape only needs to be continuous, and may be not only linear but also curved.

柱状フィン部13は、連続空洞12の延在方向Lに沿う間隔をおいて連続空洞12を挟む両側に位置し、対をなす複数の柱状フィン部13が、板状部11の上面に配設されている。 The columnar fin portions 13 are located on both sides of the continuous cavity 12 at intervals along the extending direction L of the continuous cavity 12, and a plurality of paired columnar fin portions 13 are arranged on the upper surface of the plate-like portion 11. has been done.

本実施形態の伝熱部材10は、発熱体が発熱して温度が上昇している場合、発熱体の熱がコンテナ30の底部31を介して伝熱部材10の板状部11に伝達するとともに、板状部11から柱状フィン部13にも伝達される。そのため、伝熱部材10では、連続空洞12の外側周囲に位置する第1冷媒R1(L)が、伝熱部材10の板状部11および柱状フィン部13によって直ちに加熱されて温度が上昇し、温度が上昇した状態の液相の第1冷媒R1(L)が、主として連続空洞12の延在方向開口端17から連続空洞12内に流入するため、流入した液相の第1冷媒R1(L)は、少ない熱量で沸騰温度に到達し、気泡が発生する。気泡の発生は、その撹乱効果によって熱伝達率を著しく向上させることができる。また、連続空洞12は、流入した液相の第1冷媒R1(L)を、気泡が成長するまでのある程度の時間は保持することができるので、ドライアウト発生の抑制にも寄与する。そして、連続空洞12内で加熱・沸騰されて発生した気泡は、これを核としてより大きな気泡に成長し、成長した気泡が、連続空洞12の上部(天井部分)に形成した開口Oを通じて連続空洞12の外部に出ていく、いわゆる核沸騰が促進される。この結果、第1冷媒R1(L)を液相から気相に相変化させた際の潜熱の受け渡し効率が高められて熱伝達率が向上する。 In the heat transfer member 10 of the present embodiment, when the heating element generates heat and the temperature rises, the heat of the heating element is transferred to the plate-shaped part 11 of the heat transfer member 10 via the bottom 31 of the container 30. , is also transmitted from the plate portion 11 to the columnar fin portion 13. Therefore, in the heat transfer member 10, the first refrigerant R1 (L) located around the outside of the continuous cavity 12 is immediately heated by the plate portion 11 and the columnar fin portion 13 of the heat transfer member 10, and its temperature rises. Since the first refrigerant R1 (L) in the liquid phase whose temperature has increased flows into the continuous cavity 12 mainly from the opening end 17 in the extending direction of the continuous cavity 12, the first refrigerant R1 (L) in the liquid phase that has flowed into the continuous cavity 12 ) reaches boiling temperature with a small amount of heat and bubbles are generated. The generation of air bubbles can significantly improve the heat transfer coefficient due to its disturbing effect. In addition, the continuous cavity 12 can hold the liquid-phase first refrigerant R1 (L) that has flown in for a certain period of time until bubbles grow, which also contributes to suppressing the occurrence of dryout. The bubbles generated by heating and boiling within the continuous cavity 12 grow into larger bubbles using this as a nucleus, and the grown bubbles pass through the opening O formed in the upper part (ceiling part) of the continuous cavity 12 to the continuous cavity. This promotes so-called nucleate boiling, which occurs outside of 12. As a result, the efficiency of transferring latent heat when the first refrigerant R1 (L) is changed from the liquid phase to the gas phase is increased, and the heat transfer coefficient is improved.

柱状フィン部13の高さh1は、連続空洞12の高さh2の2倍以上であることが好ましい。柱状フィン部13の高さh1が、連続空洞12の高さh2の2倍未満であると、第1冷媒R1(L)を十分に昇温した状態で連続空洞内に流入させることができず、核沸騰を短時間で効率よく発生させることができない傾向があるからである。 It is preferable that the height h1 of the columnar fin portion 13 is at least twice the height h2 of the continuous cavity 12. If the height h1 of the columnar fin portion 13 is less than twice the height h2 of the continuous cavity 12, the first refrigerant R1 (L) cannot be caused to flow into the continuous cavity in a sufficiently heated state. This is because there is a tendency that nucleate boiling cannot be efficiently generated in a short period of time.

柱状フィン部13は、複数配設され、複数の柱状フィン部13は、連続空洞12を挟む両側位置に配設され、それぞれ連続空洞12の延在方向Lに沿う間隔をおいて整列する柱状フィン部の群14-1、14-2を構成することが好ましい。図1では、複数の柱状フィン部13が、7本の連続空洞12、12、・・の間と、両最外側に位置する2本の連続空洞12、12のそれぞれ外側に配設され、連続空洞12の延在方向Lに沿う間隔をおいて、各8個の柱状フィン部13、13、・・を整列する、8列の柱状フィン部の群14-1、14-2、・・、14-8(柱状フィン部13の合計配設数が64個)を構成した場合を一例として示している。しかしながら、柱状フィン部13および連続空洞12の配設数は、必要に応じて増減することができる。 A plurality of columnar fin portions 13 are arranged, and the plurality of columnar fin portions 13 are arranged on both sides of the continuous cavity 12, and are arranged at intervals along the extending direction L of the continuous cavity 12. It is preferable to form groups 14-1 and 14-2 of the parts. In FIG. 1, a plurality of columnar fin portions 13 are disposed between seven continuous cavities 12, 12, . Groups 14-1, 14-2, . . . of eight rows of columnar fin portions in which eight columnar fin portions 13, 13, . . . are arranged at intervals along the extending direction L of the cavity 12. 14-8 (the total number of columnar fin portions 13 is 64) is shown as an example. However, the number of columnar fin portions 13 and continuous cavities 12 can be increased or decreased as necessary.

柱状フィン部13および連続空洞12の(開口Oを形成していない)天井部分16の形成方法は、特に限定はしないが、例えば、まず、板状部の上面に、複数の板状フィン部が間隔をおいて対向配置した状態で一体化された被加工素材10´を作製する。この被加工素材の作製方法についても特に限定はしないが、例えば、切削加工、精密鋳造等の鋳造、金属粉末射出成形(MIM)、3Dプリンタなどによる作成が挙げられる。次に、作製した被加工素材に、プレス加工、曲げ加工またはレーザ加工等を施すことによって、柱状フィン部13および連続空洞12の天井部分16を形成することができる。 The method of forming the columnar fin portion 13 and the ceiling portion 16 of the continuous cavity 12 (which does not form the opening O) is not particularly limited, but for example, first, a plurality of plate-like fin portions are formed on the upper surface of the plate-like portion. A workpiece material 10' is produced in which the workpiece materials 10' are integrated in a state where they are arranged facing each other with a gap between them. There are no particular limitations on the method for producing the material to be processed, but examples thereof include cutting, casting such as precision casting, metal powder injection molding (MIM), 3D printer, and the like. Next, the columnar fin portion 13 and the ceiling portion 16 of the continuous cavity 12 can be formed by subjecting the produced workpiece material to pressing, bending, laser processing, or the like.

図3(a)、(b)に示す実施形態では、被加工素材10´として、板状部の上面に、凹凸形状(好適にはパルス波形状)の上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化されたものを用い、これらの板状フィン部のそれぞれの上端部分の凹部位置15´を加工(例えばプレス加工)することによって、柱状フィン部13、および連続空洞12の天井部分16を形成したときの例を示したものである。 In the embodiment shown in FIGS. 3(a) and 3(b), the workpiece material 10' includes a plurality of plate-like fin parts having an uneven shape (preferably a pulse wave shape) on the upper surface of the plate-like part. The columnar fin parts 13, and shows an example of forming the ceiling portion 16 of the continuous cavity 12.

また、図4(a)、(b)に示す実施形態では、被加工素材10A´として、板状部の上面に、フラットな上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化されたものを用い、これらの板状フィン部のそれぞれの上端部分の所定の位置15A´を加工(例えばプレス加工)することによって、柱状フィン部13、および連続空洞12の天井部分16を形成したときの例を示したものである。 Further, in the embodiment shown in FIGS. 4A and 4B, a plurality of plate-shaped fin parts each having a flat upper end portion are arranged facing each other at intervals on the upper surface of the plate-shaped part as the workpiece material 10A'. By processing (for example, press processing) a predetermined position 15A' of the upper end portion of each of these plate-like fin parts, the columnar fin part 13 and the ceiling of the continuous cavity 12 are formed. This is an example of forming the portion 16.

図3(a)、(b)に示す実施形態では、プレス加工時のプレス圧力を低くしても、柱状フィン部13の高さ寸法を大きくすることができるという利点がある。また、図4(a)、(b)に示す実施形態では、柱状フィン部13の高さ寸法を高くする場合には、プレス圧力を高く設定する必要はあるものの、プレス加工位置15A´を、図3(a)、(b)に示す実施形態のように、板状フィン部の上端部分の凹部位置15´に合わせてプレス加工する必要がないので、プレス加工が容易にできるなどの利点がある。このため、柱状フィン部13および連続空洞12の天井部分16の形成方法は、伝熱部材10の形状・寸法に合わせて、適宜選択することができる。 The embodiment shown in FIGS. 3A and 3B has the advantage that the height of the columnar fin portion 13 can be increased even if the press pressure during press working is lowered. Furthermore, in the embodiment shown in FIGS. 4(a) and 4(b), when increasing the height dimension of the columnar fin portion 13, it is necessary to set the press pressure high, but the press working position 15A' is Unlike the embodiments shown in FIGS. 3(a) and 3(b), there is no need to perform press processing to match the concave position 15' in the upper end portion of the plate-shaped fin portion, so there are advantages such as easy press processing. be. Therefore, the method of forming the columnar fin portion 13 and the ceiling portion 16 of the continuous cavity 12 can be appropriately selected depending on the shape and dimensions of the heat transfer member 10.

また、図1では、同じ柱状フィン部の群14-1(または14-2、・・)を構成する、隣接する柱状フィン部13,13同士の配設ピッチ間隔は、図3(a)に示す板状フィン部の上端部分の凹部位置15´または図4(a)に示す板状フィン部の上端部分の所定位置15A´する被加工領域の、連続空洞12の延在方向に沿った寸法を変更することによって適宜調整することができる。 In addition, in FIG. 1, the arrangement pitch between adjacent columnar fin portions 13, 13 constituting the same columnar fin group 14-1 (or 14-2, . . . ) is as shown in FIG. 3(a). Dimensions along the extending direction of the continuous cavity 12 of the processed area at the concave position 15' of the upper end portion of the plate-shaped fin portion shown in FIG. It can be adjusted as appropriate by changing .

コンテナ30の底部31の内面31aへの伝熱部材10の装着方法としては、例えば、型を用いてコンテナ30の内面31aに一体成形法によって形成する方法や、コンテナ30とは、別部材をコンテナ30の内面に取り付ける方法等が挙げられる。柱状フィン部13の形成方法としては、例えば、別途作製した板状フィンをコンテナ30の内面31aに、はんだ付け、ろう付け、溶接、焼結等による取付(固着)方法、コンテナ30の内面を切削する方法、押出成形法、エッチング法等が挙げられる。 The method of attaching the heat transfer member 10 to the inner surface 31a of the bottom portion 31 of the container 30 includes, for example, a method of integrally forming the heat transfer member 10 on the inner surface 31a of the container 30 using a mold, or a method of forming a separate member from the container 30 into the inner surface 31a of the container 30. Examples include a method of attaching it to the inner surface of 30. The method of forming the columnar fin portion 13 includes, for example, attaching (fixing) a separately manufactured plate-like fin to the inner surface 31a of the container 30 by soldering, brazing, welding, sintering, etc., or cutting the inner surface of the container 30. Examples include methods such as a method of molding, an extrusion molding method, an etching method, and the like.

(第2実施形態)
また、図5は、第2実施形態の伝熱部材の一部を拡大して示した斜視図である。第2実施形態の伝熱部材10Bは、板状部11Bと、連続空洞12Bと、柱状フィン部13Bとで主として構成されている点では、第1実施形態の伝熱部材10と同じ構成を有しているが、一定の厚さを有する板状部11の代わりに、薄板部11aと厚板部11bとが連結されてステップ状の厚さを有する板状部11Bを用いている点が構成上で大きく異なる。また、連続空洞12Bの、開口Oを形成していない天井部分16Bを構成する、連続空洞12Bを挟んで両側に位置する加工部分15Bの上面高さ位置が相互にずれて形成されている。これは、薄板部11aと厚板部11bを有する板状部11Bの厚さの違いによる段差から生じたものである。さらに、伝熱部材10Bでは、異なる高さを有する複数の柱状フィン部13Bを配設したものである。これによって、板状部11Bの上面11aが平面でなく、段差等を有するような立体形状である場合も、その立体形状に合わせて、連続空洞12Bや柱状フィン13Bを形成することができる。
(Second embodiment)
Further, FIG. 5 is an enlarged perspective view of a part of the heat transfer member of the second embodiment. The heat transfer member 10B of the second embodiment has the same configuration as the heat transfer member 10 of the first embodiment in that it is mainly composed of a plate portion 11B, a continuous cavity 12B, and a columnar fin portion 13B. However, instead of the plate-like part 11 having a constant thickness, a plate-like part 11B having a stepped thickness is used by connecting a thin plate part 11a and a thick plate part 11b. The above differs greatly. Furthermore, the upper surface height positions of the processed portions 15B located on both sides of the continuous cavity 12B, which constitute the ceiling portion 16B in which the opening O is not formed, of the continuous cavity 12B are formed to be shifted from each other. This is caused by a difference in level due to the difference in thickness between the plate portion 11B, which includes the thin plate portion 11a and the thick plate portion 11b. Furthermore, the heat transfer member 10B is provided with a plurality of columnar fin portions 13B having different heights. As a result, even if the upper surface 11a of the plate-shaped portion 11B is not flat but has a three-dimensional shape with steps or the like, the continuous cavity 12B and columnar fins 13B can be formed in accordance with the three-dimensional shape.

(第3実施形態)
図6(a)~(c)は、第3実施形態の伝熱部材の一部を拡大して示した斜視図である。図6(a)は、1枚の矩形状板21と2枚の打抜き加工板22、23の接合前の状態を示す。図6(b)は、1枚の矩形状板21の上面に2枚の打抜き加工板22,23を接合して接合部Wを形成し、その後、矢印方向Fに力を加えて曲げ加工を施す直前の状態を示す。図6(c)は、曲げ加工を施して伝熱部材を形成したときの状態を示す。第3実施形態の伝熱部材10Cは、基本構造は第1実施形態の伝熱部材10と同じであるが、構成上の異なる点は、連続空洞12Cの天井部分16Cが、図6(b)に示すように、連続空洞12Cを挟んで位置する柱状フィン部の群のうちの1方の柱状フィン部の群を構成する、隣接する柱状フィン部13C、13C同士の間に位置する部分15C´を曲げ加工することによって連続空洞12cの天井部分16Cを形成している点である。
(Third embodiment)
FIGS. 6(a) to 6(c) are partially enlarged perspective views of the heat transfer member of the third embodiment. FIG. 6(a) shows the state before joining one rectangular plate 21 and two punched plates 22 and 23. In FIG. 6(b), two punched plates 22 and 23 are joined to the upper surface of one rectangular plate 21 to form a joint W, and then a force is applied in the direction of the arrow F to bend the plate. Shows the state immediately before application. FIG. 6(c) shows the state when the heat transfer member is formed by bending. The heat transfer member 10C of the third embodiment has the same basic structure as the heat transfer member 10 of the first embodiment, but the difference in structure is that the ceiling portion 16C of the continuous cavity 12C is as shown in FIG. 6(b). As shown in FIG. 1, a portion 15C' located between adjacent columnar fin portions 13C and 13C forming one group of columnar fin portions of the group of columnar fin portions located across the continuous cavity 12C. The ceiling portion 16C of the continuous cavity 12c is formed by bending.

<冷却装置>
次に、本発明の実施形態の冷却装置について、以下で説明する。
本実施形態の冷却装置1は、コンテナ30と凝縮管50とを備える。
<Cooling device>
Next, a cooling device according to an embodiment of the present invention will be described below.
The cooling device 1 of this embodiment includes a container 30 and a condensing pipe 50.

コンテナ30は、底部31の外面31bに、少なくとも1つの発熱体が熱的に接続され、内部空間Sの下部に、液相の第1冷媒R1(L)が封入されている。 In the container 30, at least one heating element is thermally connected to the outer surface 31b of the bottom portion 31, and a liquid phase first refrigerant R1 (L) is sealed in the lower part of the internal space S.

凝縮管50は、コンテナ30の内部空間Sの上部位置にて、コンテナ30を貫通しコンテナ30の内外にわたって延在するように配設され、凝縮管50の内部を、第2冷媒R2が流通する。凝縮管50の内部とコンテナ30の内部空間Sとは連通していない。すなわち、凝縮管50の内部を通る第2冷媒R2は、コンテナ30の内部空間Sの下部に封入されている液相の第1冷媒R1(L)、および液相の第1冷媒R1(L)が沸騰して気相になった第1冷媒(g)のいずれとも接触することはない。凝縮管50は、気相になった第1冷媒(g)から熱を吸収する第2冷媒R2を流通し、気相の第1冷媒R1(g)を凝縮させて液相の第一冷媒R1(L)に相変化させるために設けられる部材である。凝縮管50は、冷却効率を高めるため、凝縮管50の外面に、凹凸等の表面積を増大させる部位を形成してもよいが、平滑面であってもよい。また、凝縮管50の内面にも、凹凸等の表面積を増大させる部位を形成してもよいが、平滑面であってもよい。 The condensing pipe 50 is disposed at an upper position of the internal space S of the container 30 so as to penetrate the container 30 and extend both inside and outside the container 30, and the second refrigerant R2 flows through the inside of the condensing pipe 50. . The inside of the condensing pipe 50 and the internal space S of the container 30 are not communicated with each other. That is, the second refrigerant R2 passing through the condensing pipe 50 includes the first liquid refrigerant R1 (L) sealed in the lower part of the internal space S of the container 30 and the first refrigerant R1 (L) in the liquid phase. does not come into contact with any of the first refrigerant (g) that has boiled into a gas phase. The condensing pipe 50 flows through the second refrigerant R2 that absorbs heat from the first refrigerant (g) in the gas phase, condenses the first refrigerant R1 (g) in the gas phase, and converts the first refrigerant R1 in the liquid phase to the first refrigerant R1 in the liquid phase. This is a member provided to change the phase to (L). In order to improve the cooling efficiency, the condensing tube 50 may have a portion increasing the surface area, such as unevenness, on the outer surface of the condensing tube 50, but it may also have a smooth surface. Further, the inner surface of the condensing tube 50 may also have a portion that increases the surface area, such as an uneven surface, but may also be a smooth surface.

冷却装置1は、複数の凝縮管、図1では2本の凝縮管50、50を設けた場合を示している。凝縮管50は、コンテナ30の内部空間Sにおいて、相互に略同一平面状に上下2段に並列配置されている。凝縮管50の横断面形状は、特に限定せず、例えば、図1に示すような円形状の他、楕円形状、扁平形状、四角形状、角丸長方形状など種々の態様が挙げられる。 The cooling device 1 is provided with a plurality of condensing pipes, and in FIG. 1, two condensing pipes 50, 50 are provided. The condensing pipes 50 are arranged in parallel in two stages, upper and lower, in the interior space S of the container 30 so as to be substantially coplanar with each other. The cross-sectional shape of the condensing tube 50 is not particularly limited, and includes various shapes such as a circular shape as shown in FIG. 1, an elliptical shape, a flattened shape, a square shape, and a rounded rectangular shape.

凝縮管50のコンテナ30への取り付け方法は、コンテナ30に凝縮管50ごとに2個の貫通孔51、51を設ける。これらの貫通孔51、51に緊密に嵌挿されることで、コンテナ30の内部空間Sの密閉状態を維持したまま、凝縮管50をコンテナ30に取り付けることができる。 A method for attaching the condensing pipe 50 to the container 30 is to provide two through holes 51, 51 for each condensing pipe 50 in the container 30. By tightly fitting into these through-holes 51, 51, the condensing pipe 50 can be attached to the container 30 while maintaining the sealed state of the internal space S of the container 30.

凝縮管50には、液相の2次冷媒R2が凝縮管50の延在方向に沿って一方向(図1では、右から左に向かう方向)に流通している。従って、2次冷媒R2は、凝縮管50の壁面を介して、コンテナ30の内部空間Sの上部位置を貫通するように流通する。2次冷媒R2は、例えば、発熱体の許容最高温度よりも低温の液温まで冷却されている。 A liquid-phase secondary refrigerant R2 flows through the condensing tube 50 in one direction (from right to left in FIG. 1) along the extending direction of the condensing tube 50. Therefore, the secondary refrigerant R2 flows through the wall surface of the condensing pipe 50 and through the upper part of the internal space S of the container 30. The secondary refrigerant R2 is cooled, for example, to a liquid temperature lower than the maximum allowable temperature of the heating element.

コンテナ30の材料としては、特に限定されず、広汎な材料が使用でき、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金等を挙げることができる。 The material of the container 30 is not particularly limited, and a wide variety of materials can be used, such as copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, titanium alloy, and the like.

凝縮管50の材料としては、特に限定されず、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄合金(例えばステンレス鋼)、チタン、チタン合金等を挙げることができる。 The material of the condensing tube 50 is not particularly limited, and examples thereof include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, iron alloy (for example, stainless steel), titanium, titanium alloy, and the like.

1次冷媒R1(L)としては、特に限定されず、広汎な材料が使用でき、例えば、電気絶縁性の冷媒を挙げることができる。具体例としては、例えば、水、フルオロカーボン類、シクロペンタン、エチレングリコール、およびこれらの混合物等を挙げることができる。これらの1次冷媒R1(L)のうち、電気絶縁性の点から、フルオロカーボン類、シクロペンタン、エチレングリコールが好ましく、フルオロカーボン類が特に好ましい。 The primary refrigerant R1 (L) is not particularly limited, and a wide variety of materials can be used, such as electrically insulating refrigerants. Specific examples include water, fluorocarbons, cyclopentane, ethylene glycol, and mixtures thereof. Among these primary refrigerants R1 (L), fluorocarbons, cyclopentane, and ethylene glycol are preferred from the viewpoint of electrical insulation, and fluorocarbons are particularly preferred.

2次冷媒R2としては、特に限定されず、例えば、水、不凍液(主成分として、例えばエチレングリコールを含む。)等を挙げることができる。 The secondary refrigerant R2 is not particularly limited, and examples thereof include water, antifreeze (containing ethylene glycol as a main component, for example), and the like.

そして、冷却装置1は、上述したような伝熱部材10を有する。 The cooling device 1 includes the heat transfer member 10 as described above.

<冷却装置の冷却メカニズム>
次に、本発明の冷却装置1の冷却メカニズムについて、以下で説明する。
まず、発熱体が発熱すると、冷却装置1を構成するコンテナ30の底部を通じて伝熱部材10に熱が伝達され、伝熱部材10の温度が上昇し、コンテナ30の内部空間Sの下部に封入されている液相の1次冷媒R1(L)が加熱されて、液相の1次冷媒R1(L)が気相の1次冷媒R1(g)へ相変化することで、発熱体からの熱を潜熱として吸収する。次に、気相へ相変化した1次冷媒R1(g)は、コンテナ30の内部空間Sを上方へ移動し、凝縮管50と接触する。凝縮管50の内部には、低温の2次冷媒R2が流通している。このため、気相に相変化した1次冷媒R1(g)は、凝縮管50の外面に接触または接近することで、凝縮管50の熱交換作用により、潜熱を放出し、気相から液相へ相変化する。気相から液相への相変化の際に、気相の1次冷媒R1(g)から放出される潜熱が、凝縮管50を流通する2次冷媒R2へ伝達される。また、液相へ相変化した1次冷媒R1(L)は、重力作用下により、コンテナ30の内部空間Sを上部から下部へと還流する。1次冷媒R1(L)は、コンテナ10の密閉された内部空間Sにて、液相から気相へ相変化と、気相から液相への相変化を繰り返す。なお、冷却装置1では、1次冷媒R1が、コンテナ30の内部空間にて液相から気相への相変化と、気相から液相への相変化を繰り返すにあたり、仕切り板のような1次冷媒R1の循環経路を形成する必要はない。従って、コンテナ30は、単純な構造で形成することが可能である。そして、気相の1次冷媒R1(g)から熱を受けた2次冷媒R2は、凝縮管50の延在方向に沿って冷却装置1の内部から外部へ流通することで、発熱体の熱が冷却装置1の外部へ輸送される。
<Cooling mechanism of cooling device>
Next, the cooling mechanism of the cooling device 1 of the present invention will be explained below.
First, when the heating element generates heat, the heat is transferred to the heat transfer member 10 through the bottom of the container 30 constituting the cooling device 1, the temperature of the heat transfer member 10 rises, and the heat transfer member 10 is sealed in the lower part of the internal space S of the container 30. The liquid-phase primary refrigerant R1 (L) is heated, and the liquid-phase primary refrigerant R1 (L) undergoes a phase change to the gas-phase primary refrigerant R1 (g), which releases heat from the heating element. is absorbed as latent heat. Next, the primary refrigerant R1 (g) that has changed to the gas phase moves upward through the internal space S of the container 30 and comes into contact with the condensing pipe 50. A low-temperature secondary refrigerant R2 flows inside the condensing pipe 50. Therefore, when the primary refrigerant R1 (g) that has changed to the gas phase comes into contact with or approaches the outer surface of the condensing tube 50, it releases latent heat due to the heat exchange action of the condensing tube 50, and changes from the gas phase to the liquid phase. The phase changes to During the phase change from the gas phase to the liquid phase, the latent heat released from the gas phase primary refrigerant R1 (g) is transferred to the secondary refrigerant R2 flowing through the condensing pipe 50. Further, the primary refrigerant R1 (L) that has undergone a phase change to the liquid phase flows back through the internal space S of the container 30 from the upper part to the lower part under the action of gravity. The primary refrigerant R1 (L) repeats a phase change from a liquid phase to a gas phase and from a gas phase to a liquid phase in the sealed internal space S of the container 10. In addition, in the cooling device 1, when the primary refrigerant R1 repeats a phase change from a liquid phase to a gas phase and a phase change from a gas phase to a liquid phase in the internal space of the container 30, a There is no need to form a circulation path for the next refrigerant R1. Therefore, the container 30 can be formed with a simple structure. The secondary refrigerant R2, which has received heat from the gas phase primary refrigerant R1 (g), flows from the inside of the cooling device 1 to the outside along the extending direction of the condensing pipe 50, thereby generating heat from the heating element. is transported to the outside of the cooling device 1.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims. It can be modified to .

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail below based on Examples, but the present invention is not limited thereto.

(本発明例)
本発明例の冷却装置1は、図1に示す内部構造を有する。コンテナ30は、直方体状の銅製の容器である。伝熱部材10は、銅材料を用いて形成した。連続空洞12は、直線状に連続して延在する複数本を並列に配置した。柱状フィン部13は、角柱形状を有し、連続空洞12の延在方向に沿う間隔をおいて連続空洞を挟む両側に位置し、複数の柱状フィン部からなる柱状フィン部の群の複数列を、板状部11の上面11aに配設した。連続空洞12は、対をなす柱状フィン部13、13に挟まれた位置の天井部分に開口Oを形成した。また、柱状フィン部間部分である加工部分15は、プレス加工によって形成し、同じ柱状フィン部の群に位置する加工部分15、15同士の配設ピッチは1.0mmであった。第1冷媒R1(L)には水を用い、コンテナ30の内部空間Sに第1冷媒R1(L)を充填し、減圧して封入した。
(Example of the present invention)
A cooling device 1 according to an example of the present invention has an internal structure shown in FIG. The container 30 is a rectangular parallelepiped-shaped copper container. The heat transfer member 10 was formed using a copper material. A plurality of continuous cavities 12 are arranged in parallel to extend continuously in a straight line. The columnar fin portions 13 have a prismatic shape, are located on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity 12, and have a plurality of rows of a group of columnar fin portions each consisting of a plurality of columnar fin portions. , are arranged on the upper surface 11a of the plate-shaped portion 11. The continuous cavity 12 has an opening O formed in the ceiling portion at a position sandwiched between the pair of columnar fin parts 13, 13. Further, the processed portions 15, which are the portions between the columnar fin portions, were formed by press working, and the arrangement pitch between the processed portions 15, 15 located in the same group of columnar fin portions was 1.0 mm. Water was used as the first refrigerant R1 (L), and the interior space S of the container 30 was filled with the first refrigerant R1 (L), which was then sealed under reduced pressure.

(比較例)
比較例の冷却装置は、図7に示すように、銅材料からなり、平板形状を有する板状体101と、この板状体101の上面を被覆する、銅粉からなる焼結層102とで構成した伝熱部材100を用いたこと以外は、本発明例と同様に構成した。
(Comparative example)
As shown in FIG. 7, the cooling device of the comparative example includes a plate-like body 101 made of copper material and having a flat plate shape, and a sintered layer 102 made of copper powder that covers the upper surface of this plate-like body 101. The configuration was the same as the example of the present invention except that the configured heat transfer member 100 was used.

(性能評価)
冷却装置の性能評価は以下の条件で行った。
図1に示す冷却装置、または伝熱部材を図6に示す伝熱部材に置き換えて作製した冷却装置のそれぞれについて、50~400Wのヒータ(発熱体)を、コンテナの底部の外面に熱伝導グリスを介して接続して入熱し、そのときの凝縮管を通る第2冷媒の温度とヒータの温度との温度差を測定した。そして、測定した温度差を入熱量で除算して熱抵抗を算出し、この算出した熱抵抗(K/W)から熱伝達率(kW/mK)を算出し、冷却装置の性能を評価した。なお、コンテナの内部空間に封入した第1冷媒および第2冷媒には、いずれも水を用いた。
(Performance evaluation)
Performance evaluation of the cooling device was performed under the following conditions.
For each cooling device shown in Fig. 1 or a cooling device produced by replacing the heat transfer member with the heat transfer member shown in Fig. 6, a 50-400W heater (heating element) is attached to the outer surface of the bottom of the container with thermal conductive grease. The temperature difference between the temperature of the second refrigerant passing through the condensing pipe and the temperature of the heater at that time was measured. Then, the thermal resistance is calculated by dividing the measured temperature difference by the amount of heat input, and the heat transfer coefficient (kW/m 2 K) is calculated from this calculated thermal resistance (K/W) to evaluate the performance of the cooling device. did. Note that water was used as both the first refrigerant and the second refrigerant sealed in the internal space of the container.

図8は、本発明例と比較例の冷却装置を用いて測定・算出した熱流束を横軸とし、算出した熱伝達率を縦軸としてプロットした図である。図8の結果から、本発明例の冷却装置は、比較例の冷却装置に比べて、いずれの熱流束においても熱伝達率が高く、また、熱流束の数値が大きくなるほど、熱伝達率の向上割合が高いことがわかる。 FIG. 8 is a diagram plotting the heat fluxes measured and calculated using the cooling devices of the inventive example and the comparative example on the horizontal axis and the calculated heat transfer coefficient on the vertical axis. From the results in FIG. 8, the cooling device of the present invention has a higher heat transfer coefficient at all heat fluxes than the cooling device of the comparative example, and the heat transfer coefficient improves as the heat flux value increases. It can be seen that the percentage is high.

1 冷却装置
10、10A、10B、10C 伝熱部材
10´、10A´、10B´、10C´ 被加工素材
30 コンテナ
31 コンテナの底部
31a コンテナの底部の内面
31b コンテナの底部の外面
11、11A、11B,11C 板状部
11a 板状部の薄板部
11b 板状部の厚板部
12、12A、12B、12C 連続空洞
13、13A、13B、13C 柱状フィン部
17 連続空洞の延在方向開口端
14-1~14-8 柱状フィン部の群
16、16A、16B、16C 連続空洞の天井部分
15、15A、15B,15C 柱状フィン部間部分(または加工部分)
21 矩形状板
22、23 打抜き加工板
50 凝縮管
51 貫通孔
100 伝熱部材
101 板状部
102 焼結層
h1 柱状フィン部の高さ
h2 連続空洞の高さ
L 連続空洞の延在方向
O 開口
P 発熱体の取付位置
R1 第1冷媒
R1(L) 液相の第1冷媒
R1(g) 気相の第1冷媒
R2 第2冷媒
S 内部空間
W 接合部

1 Cooling device 10, 10A, 10B, 10C Heat transfer member 10', 10A', 10B', 10C' Work material 30 Container 31 Bottom of container 31a Inner surface of bottom of container 31b Outer surface of bottom of container 11, 11A, 11B , 11C Plate-shaped part 11a Thin plate part of the plate-shaped part 11b Thick plate part of the plate-shaped part 12, 12A, 12B, 12C Continuous cavity 13, 13A, 13B, 13C Column-shaped fin part 17 Opening end in the extending direction of continuous cavity 14- 1 to 14-8 Group of columnar fin parts 16, 16A, 16B, 16C Ceiling part of continuous cavity 15, 15A, 15B, 15C Part between columnar fin parts (or processed part)
21 Rectangular plate 22, 23 Punched plate 50 Condensing tube 51 Through hole 100 Heat transfer member 101 Plate portion 102 Sintered layer h1 Height of columnar fin portion h2 Height of continuous cavity L Extending direction of continuous cavity O Opening P Mounting position of heating element R1 First refrigerant R1 (L) First refrigerant in liquid phase R1 (g) First refrigerant in gas phase R2 Second refrigerant S Internal space W Joint part

Claims (6)

コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材において、
前記伝熱部材が、前記コンテナの底部の内面に固着される下面を有する板状部と、
前記板状部の上面を含み、前記板状部の上面の一方向に沿って連続して延在する少なくとも1本の連続空洞と、
前記連続空洞の延在方向に沿う間隔をおいて前記連続空洞を挟む両側に位置し、前記板状部の上面に配設される対をなす複数の柱状フィン部と
を備え、
前記連続空洞は、前記対をなす柱状フィン部に挟まれた位置の天井部分に、開口が形成されていることを特徴とする伝熱部材。
It is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and is configured to transfer heat from the heating element to the inner space of the container. A heat transfer member that heats and boils the first refrigerant by transmitting it to a liquid-phase first refrigerant sealed in a lower part, and changes the phase of the first refrigerant from a liquid phase to a gas phase,
a plate-shaped portion having a lower surface on which the heat transfer member is fixed to the inner surface of the bottom of the container;
at least one continuous cavity that includes the upper surface of the plate-like part and extends continuously along one direction of the upper surface of the plate-like part;
a plurality of columnar fin portions forming a pair located on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity and disposed on the upper surface of the plate-like portion;
The heat transfer member is characterized in that the continuous cavity has an opening formed in a ceiling portion at a position sandwiched between the pair of columnar fin portions.
前記柱状フィン部の高さは、前記連続空洞の高さの2倍以上である、請求項1に記載の伝熱部材。 The heat transfer member according to claim 1, wherein the height of the columnar fin portion is at least twice the height of the continuous cavity. 前記複数の柱状フィン部は、前記連続空洞を挟む両側位置に、それぞれ前記連続空洞の延在方向に沿う間隔をおいて整列する柱状フィン部の群を構成する、請求項1または2に記載の伝熱部材。 The plurality of columnar fin portions constitute a group of columnar fin portions that are arranged on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity, respectively. Heat transfer member. 請求項1~3のいずれか1項に記載の伝熱部材の製造方法であって、
前記板状部の上面に、凹凸形状の上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化された被加工素材を構成する前記板状フィン部の前記上端部分の凹部位置を加工することによって、前記複数の柱状フィン部、および前記連続空洞の、前記開口を形成していない天井部分を形成することを特徴とする伝熱部材の製造方法。
A method for manufacturing a heat transfer member according to any one of claims 1 to 3, comprising:
The upper end portion of the plate-like fin portion that constitutes an integrated workpiece material in which a plurality of plate-like fin portions each having an uneven upper end portion are arranged facing each other at intervals on the upper surface of the plate-like portion. A method for manufacturing a heat transfer member, characterized in that the plurality of columnar fin portions and the ceiling portion of the continuous cavity in which the opening is not formed are formed by processing the recessed portion positions of the heat transfer member.
請求項1~3のいずれか1項に記載の伝熱部材の製造方法であって、
前記板状部の上面に、フラットな上端部分を有する複数の板状フィン部が間隔をおいて対向配置した状態で一体化された被加工素材を構成する前記板状フィン部の前記上端部分の所定の位置を加工することによって、前記複数の柱状フィン部、および前記連続空洞の、前記開口を形成していない天井部分を形成することを特徴とする伝熱部材の製造方法。
A method for manufacturing a heat transfer member according to any one of claims 1 to 3, comprising:
The upper end portion of the plate-like fin portion constitutes a workpiece material in which a plurality of plate-like fin portions each having a flat upper end portion are arranged facing each other at intervals on the upper surface of the plate-like portion. A method for manufacturing a heat transfer member, characterized in that the plurality of columnar fin portions and a ceiling portion of the continuous cavity in which the opening is not formed are formed by processing a predetermined position.
底部の外面に、少なくとも1つの発熱体が熱的に接続され、内部空間の下部に、液相の第1冷媒が封入されたコンテナと、
前記コンテナの前記内部空間の上部位置にて、前記コンテナを貫通するように延在させ、内部を第2冷媒が流通する凝縮管と
を備える冷却装置であって、
前記冷却装置は、前記コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材を有し、
前記伝熱部材が、前記コンテナの底部の内面に固着される下面を有する板状部と、
前記板状部の上面を含み、前記板状部の上面の一方向に沿って連続して延在する少なくとも1本の連続空洞と、
前記連続空洞の延在方向に沿う間隔をおいて前記連続空洞を挟む両側に位置し、前記板状部の上面に配設される対をなす複数の柱状フィン部と
を備え、
前記連続空洞は、前記対をなす柱状フィン部に挟まれた位置の天井部分に、開口が形成されていることを特徴とする冷却装置。
At least one heating element is thermally connected to the outer surface of the bottom, and a liquid-phase first refrigerant is sealed in the lower part of the inner space;
A cooling device comprising: a condensing pipe extending through the container at an upper position of the internal space of the container, and through which a second refrigerant flows;
The cooling device is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and the cooling device is configured to absorb heat from the heating element. The heat transfer member includes a heat transfer member that heats and boils the first refrigerant by transmitting the heat to the liquid phase first refrigerant sealed in the lower part of the internal space of the container, and changes the phase of the first refrigerant from the liquid phase to the gas phase. death,
a plate-shaped portion having a lower surface on which the heat transfer member is fixed to the inner surface of the bottom of the container;
at least one continuous cavity that includes the upper surface of the plate-like part and extends continuously along one direction of the upper surface of the plate-like part;
a plurality of columnar fin portions forming a pair located on both sides of the continuous cavity at intervals along the extending direction of the continuous cavity and disposed on the upper surface of the plate-like portion;
The cooling device is characterized in that the continuous cavity has an opening formed in a ceiling portion at a position sandwiched between the pair of columnar fin portions.
JP2020014450A 2020-01-31 2020-01-31 Heat transfer member and cooling device having heat transfer member Active JP7370883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020014450A JP7370883B2 (en) 2020-01-31 2020-01-31 Heat transfer member and cooling device having heat transfer member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020014450A JP7370883B2 (en) 2020-01-31 2020-01-31 Heat transfer member and cooling device having heat transfer member

Publications (2)

Publication Number Publication Date
JP2021120611A JP2021120611A (en) 2021-08-19
JP7370883B2 true JP7370883B2 (en) 2023-10-30

Family

ID=77269885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014450A Active JP7370883B2 (en) 2020-01-31 2020-01-31 Heat transfer member and cooling device having heat transfer member

Country Status (1)

Country Link
JP (1) JP7370883B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161594A (en) 2001-09-14 2003-06-06 Denso Corp Evaporation cooler
JP2005150489A (en) 2003-11-18 2005-06-09 Fuji Electric Systems Co Ltd Boiling cooler for semiconductor device
JP2010010204A (en) 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2013004562A (en) 2011-06-13 2013-01-07 Hitachi Ltd Ebullient cooling system
JP6606303B1 (en) 2019-04-11 2019-11-13 古河電気工業株式会社 Cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161594A (en) 2001-09-14 2003-06-06 Denso Corp Evaporation cooler
JP2005150489A (en) 2003-11-18 2005-06-09 Fuji Electric Systems Co Ltd Boiling cooler for semiconductor device
JP2010010204A (en) 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2013004562A (en) 2011-06-13 2013-01-07 Hitachi Ltd Ebullient cooling system
JP6606303B1 (en) 2019-04-11 2019-11-13 古河電気工業株式会社 Cooling system

Also Published As

Publication number Publication date
JP2021120611A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP7189903B2 (en) Chillers and cooling systems using chillers
CN211240587U (en) Heat radiator
JP6738226B2 (en) Cooling system
US20200173731A1 (en) Heat sink
TWI426859B (en) Heat dissipation module, flat heat column thereof and manufacturing method for flat heat column
JP6358872B2 (en) Boiling cooler for heating element
CN212876430U (en) Heat radiator
CN107421364A (en) Equalizing plate structure and its manufacture method
EP3813098A1 (en) Vapor chamber
JP7370883B2 (en) Heat transfer member and cooling device having heat transfer member
JP2017015269A (en) Ebullition heat transfer member and ebullition cooling device using the same
CN113543575A (en) Radiator and communication equipment
WO2020054752A1 (en) Cooling device and cooling system using same
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
US20200329584A1 (en) Heat exchanger with integrated two-phase heat spreader
JP7426844B2 (en) Heat transfer member and cooling device having heat transfer member
JP2001133174A (en) Cooling body
JP2003197839A (en) Boiler/cooler for heater element
CN215814050U (en) Compact server radiator
JP6376967B2 (en) Boiling heat transfer member and boiling cooling device using the same
JP7072547B2 (en) Cooling device and cooling system using cooling device
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
JP2013219125A (en) Heat exchanger
TWI832194B (en) steam room
JP2018081955A (en) Heat transfer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R151 Written notification of patent or utility model registration

Ref document number: 7370883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151