JP7426844B2 - Heat transfer member and cooling device having heat transfer member - Google Patents

Heat transfer member and cooling device having heat transfer member Download PDF

Info

Publication number
JP7426844B2
JP7426844B2 JP2020021992A JP2020021992A JP7426844B2 JP 7426844 B2 JP7426844 B2 JP 7426844B2 JP 2020021992 A JP2020021992 A JP 2020021992A JP 2020021992 A JP2020021992 A JP 2020021992A JP 7426844 B2 JP7426844 B2 JP 7426844B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
transfer member
container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021992A
Other languages
Japanese (ja)
Other versions
JP2021128992A (en
Inventor
智明 虎谷
勇輝 岩野
真人 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2020021992A priority Critical patent/JP7426844B2/en
Publication of JP2021128992A publication Critical patent/JP2021128992A/en
Application granted granted Critical
Publication of JP7426844B2 publication Critical patent/JP7426844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発熱体からの熱を伝えて第1冷媒を液相から気相に相変化させる伝熱部材、およびこの伝熱部材を有する冷却装置に関する。 The present invention relates to a heat transfer member that transfers heat from a heating element to change the phase of a first refrigerant from a liquid phase to a gas phase, and a cooling device that includes this heat transfer member.

近年の電子機器の高機能化に伴い、電子機器内部には、電気・電子部品等の発熱体(以下、単に「発熱体」という場合がある。)が高密度に搭載され、また、発熱体の発熱量が増大化する傾向がある。発熱体の温度が、所定の許容温度を超えて上昇すると、発熱体が誤作動等を起こす原因となることから、発熱体の温度は、常に許容温度以下に維持し続けることが必要である。そのため、電子機器内部には、通常、発熱体を冷却するための冷却装置が搭載されている。このような冷却装置としては、例えば、冷媒を液相から気相に相変化させることによる潜熱(気化熱)を利用した沸騰冷却装置が知られている。 With the increasing functionality of electronic devices in recent years, heating elements such as electrical and electronic components (hereinafter simply referred to as "heating elements") are mounted in a high density inside electronic devices. The amount of heat generated tends to increase. If the temperature of the heating element rises above a predetermined allowable temperature, it may cause the heating element to malfunction, so it is necessary to keep the temperature of the heating element always below the allowable temperature. Therefore, a cooling device for cooling the heating element is usually installed inside the electronic device. As such a cooling device, for example, a boiling cooling device that utilizes latent heat (heat of vaporization) by changing the phase of a refrigerant from a liquid phase to a gas phase is known.

上述したように、電子機器を構成する電気・電子部品等の発熱体では、発熱量が増大化する傾向があることから、沸騰冷却装置の冷却性能のさらなる向上が要求されている。沸騰冷却装置の冷却性能をさらに向上するには、冷媒の液相から気相への相変化を円滑化すること、特に冷媒の加熱・沸騰の発生を円滑化することが有用である。 As described above, heating elements such as electric/electronic components that constitute electronic devices tend to generate more heat, so there is a demand for further improvement in the cooling performance of boiling cooling devices. In order to further improve the cooling performance of the evaporative cooling device, it is useful to smooth the phase change of the refrigerant from the liquid phase to the gas phase, and in particular to smooth the heating and boiling of the refrigerant.

冷媒の加熱・沸騰を円滑化するための手段としては、例えば、特許文献1には、内部に冷媒液を収容するとともに、発熱体から生じた熱が伝熱部材を介して冷媒液に伝達されることで冷媒液を沸騰させる冷媒槽を備えた沸騰冷却装置として、伝熱部材における冷媒液が接触する面に、発熱体から伝熱部材へ伝達される熱の等熱流束線を基準とした形状となるように冷媒液側に向かって突出させた凸部が、全ての発熱体に対応して形成されているとともに、凸部には冷媒液のみが接触している沸騰冷却装置が開示されている。 As a means for smoothing the heating and boiling of the refrigerant, for example, Patent Document 1 discloses a method in which a refrigerant liquid is accommodated inside and heat generated from a heating element is transferred to the refrigerant liquid via a heat transfer member. As a boiling cooling device equipped with a refrigerant tank that boils the refrigerant liquid by Disclosed is an evaporative cooling device in which a convex portion protruding toward the refrigerant liquid side is formed corresponding to all the heating elements, and the convex portion is in contact with only the refrigerant liquid. ing.

特許文献1には、発熱体から伝熱部材へ伝達される熱の等熱流束線の形状が球面であることを前提として、伝熱部材の表面形状を、球面やそれに基づいた階段状や錘状に形成することによって、耐バーンアウト性が高められるとともに、発熱体から伝熱面に伝わる熱の抵抗を抑制できる旨が記載されている。 Patent Document 1 assumes that the shape of isothermal flux lines of heat transferred from a heating element to a heat transfer member is a spherical surface, and describes that the surface shape of the heat transfer member may be a spherical surface, a stepped shape or a weight based on the spherical shape. It is described that by forming the heat exchanger in a shape, burnout resistance can be improved and resistance to heat transmitted from the heating element to the heat transfer surface can be suppressed.

特開2010-016277号公報Japanese Patent Application Publication No. 2010-016277

しかしながら、伝熱部材が冷媒と接触する表面(沸騰面)の形状を球面で構成すると、球の中心から上方に向かう熱流束が大きくなりすぎる傾向にあった。また、特に発熱体が円形でない場合には、沸騰面における熱流束が不均一になる傾向があった。ここで、熱流束と熱伝達率の関係には、熱流束が0から最大熱流束までの間は、熱流束が増加すると熱伝達率が増加する関係にある一方で、熱流束が最大熱流束を超えると、熱流束が増加しても熱伝達率が減少することが知られている。ここで、特許文献1の伝熱部材は、熱流束が低い部分や、熱流束が最大熱流束を超えている部分があるために熱伝達率が高いとはいえず、伝熱部材における冷却効率が十分に高められているとはいえないものであった。そのため、特許文献1の伝熱部材は、冷媒と接触する表面(沸騰面)の形状について、さらなる改善の必要性があった。 However, when the surface of the heat transfer member that contacts the refrigerant (boiling surface) is configured to have a spherical shape, the heat flux upward from the center of the sphere tends to become too large. Furthermore, especially when the heating element is not circular, the heat flux at the boiling surface tends to be non-uniform. Here, the relationship between heat flux and heat transfer coefficient is that while heat flux increases from 0 to maximum heat flux, the heat transfer coefficient increases as heat flux increases; It is known that the heat transfer coefficient decreases even if the heat flux increases when the temperature exceeds . Here, the heat transfer member of Patent Document 1 cannot be said to have a high heat transfer coefficient because there are parts where the heat flux is low and parts where the heat flux exceeds the maximum heat flux, and the cooling efficiency of the heat transfer member is could not be said to have been sufficiently enhanced. Therefore, in the heat transfer member of Patent Document 1, there is a need for further improvement in the shape of the surface (boiling surface) that contacts the refrigerant.

本発明の目的は、コンテナの底部の内面であって、第1冷媒を液相から気相に相変化させた際の潜熱の受け渡し効率を向上させて熱伝達率を高めることを可能にした伝熱部材と、この伝熱部材を有することで冷却効率を向上させた冷却装置を提供することにある。 An object of the present invention is to provide an inner surface of the bottom of a container that is capable of improving the transfer efficiency of latent heat and increasing the heat transfer coefficient when the first refrigerant changes phase from the liquid phase to the gas phase. It is an object of the present invention to provide a cooling device that improves cooling efficiency by having a heat member and this heat transfer member.

上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材において、前記伝熱部材は、前記コンテナの底部の内面に固着される下面から上方に向かって隆起した隆起部を有し、前記隆起部の上面の少なくとも一部に、前記第1冷媒との接触面積を増大させる接触面積増大部が形成され、かつ、前記隆起部の輪郭形状は、前記隆起部の最大厚さ位置を通り、前記隆起部の厚さ方向を含む平面で切断したときの少なくとも一つの断面で見て、略楕円形状を有することを特徴とする伝熱部材。
(2)前記接触面積増大部は、金属焼結体、金属粉集合体または炭素粒子集合体からなる多孔質層を備える、上記(1)に記載の伝熱部材。
(3)前記接触面積増大部は、周期的に配置された複数の凹部を備え、前記凹部は、前記凹部の深さ方向に見て、開口部における幅が最も狭い、上記(1)または(2)に記載の伝熱部材。
(4)前記隆起部は、前記下面を有するベース部と、前記ベース部から上方に向かって延出する、複数の板状または柱状のフィンからなるフィン部とによって構成される、上記(1)から(3)のいずれか1項に記載の伝熱部材。
(5)前記隆起部は、前記下面から上方に向かって隆起したベース部と、前記ベース部から上方に向かって延出する、複数の板状または柱状のフィンからなるフィン部によって構成される、上記(1)から(4)のいずれか1項に記載の伝熱部材。
(6)前記隆起部は、前記少なくとも一つの断面で見て、最大厚さ(A)に対する、前記下面の長さ(B)の比(長短軸比B/A)が、1.2以上3.9以下の範囲である、上記(1)から(5)のいずれか1項に記載の伝熱部材。
(7)底部の外面に、少なくとも1つの発熱体が熱的に接続され、内部空間の下部に、液相の第1冷媒が封入されたコンテナと、前記コンテナの前記内部空間の上部位置にて、前記コンテナを貫通するように延在させ、内部を第2冷媒が流通する凝縮管とを備える冷却装置であって、前記冷却装置は、前記コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材を有し、前記伝熱部材は、前記コンテナの底部の内面に固着される下面から上方に向かって隆起した隆起部を有し、前記隆起部の上面の少なくとも一部に、前記第1冷媒との接触面積を増大させる接触面積増大部が形成され、かつ、前記隆起部の輪郭形状は、前記隆起部の最大厚さ位置を通り、前記隆起部の厚さ方向を含む平面で、切断したときの少なくとも一つの断面で見て、略楕円形状を有することを特徴とする冷却装置。
In order to achieve the above object, the gist of the present invention is as follows.
(1) It is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and the heat from the heating element is transferred to the bottom of the container. In the heat transfer member, the heat transfer member heats and boils the first refrigerant by transmitting the heat to the first refrigerant in a liquid phase sealed in a lower part of the internal space, and changes the phase of the first refrigerant from the liquid phase to the gas phase. The member has a protuberance that protrudes upward from a lower surface that is fixed to the inner surface of the bottom of the container, and has a contact area on at least a portion of the upper surface of the protrusion that increases the contact area with the first refrigerant. An increased area portion is formed, and the contour shape of the raised portion is seen in at least one cross section when cut along a plane passing through the maximum thickness position of the raised portion and including the thickness direction of the raised portion. , a heat transfer member having a substantially elliptical shape.
(2) The heat transfer member according to (1), wherein the contact area increasing portion includes a porous layer made of a metal sintered body, a metal powder aggregate, or a carbon particle aggregate.
(3) The contact area increasing portion includes a plurality of periodically arranged recesses, and the recess has the narrowest width at the opening when viewed in the depth direction of the recess. 2) The heat transfer member according to item 2).
(4) The raised portion is configured by a base portion having the lower surface and a fin portion formed of a plurality of plate-shaped or columnar fins extending upward from the base portion, as described in (1) above. The heat transfer member according to any one of (3) to (3).
(5) The raised portion is constituted by a base portion raised upward from the lower surface and a fin portion formed of a plurality of plate-shaped or columnar fins extending upward from the base portion. The heat transfer member according to any one of (1) to (4) above.
(6) The raised portion has a ratio (major/minor axis ratio B/A) of the length (B) of the lower surface to the maximum thickness (A) of 1.2 or more and 3 .9 or less, the heat transfer member according to any one of (1) to (5) above.
(7) a container in which at least one heating element is thermally connected to the outer surface of the bottom and a liquid-phase first refrigerant is sealed in the lower part of the inner space; , a cooling device including a condensing pipe extending through the container and through which a second refrigerant flows, the cooling device being connected to an inner surface of the bottom of the container and an outer surface of the bottom is formed at a position corresponding to the mounting position of at least one heating element thermally connected to the heating element, and transmits heat from the heating element to a liquid phase first refrigerant sealed in a lower part of the internal space of the container. a heat transfer member that heats and boils the first refrigerant and changes the phase of the first refrigerant from a liquid phase to a gas phase; a raised part raised upward from the raised part, a contact area increasing part for increasing the contact area with the first refrigerant is formed on at least a part of the upper surface of the raised part, and a contour of the raised part. A cooling device characterized in that the shape has a substantially elliptical shape when viewed in at least one cross section when cut on a plane passing through the maximum thickness position of the raised portion and including the thickness direction of the raised portion. .

本発明によれば、第1冷媒を液相から気相に相変化させた際の潜熱の受け渡し効率を向上させて熱伝達率を高めた伝熱部材と、この伝熱部材を有することで冷却効率を向上させた冷却装置を提供することが可能になる。 According to the present invention, there is provided a heat transfer member that improves the transfer efficiency of latent heat when the first refrigerant undergoes a phase change from a liquid phase to a gas phase, thereby increasing the heat transfer coefficient, and cooling by having this heat transfer member. It becomes possible to provide a cooling device with improved efficiency.

図1は、本発明に従う第1実施形態の伝熱部材を有する冷却装置の要部を示す斜視図である。FIG. 1 is a perspective view showing the main parts of a cooling device having a heat transfer member according to a first embodiment of the present invention. 図2は、図1の冷却装置から、伝熱部材だけを抜き出し拡大して示した図であって、図2(a)が斜視図、図2(b)が図2(a)の仮想平面M1で切断したときの断面図である。2 is an enlarged view of only the heat transfer member extracted from the cooling device of FIG. 1, with FIG. 2(a) being a perspective view and FIG. 2(b) being a virtual plane of FIG. 2(a). It is a sectional view when cut along M1. 図3Aは、隆起部の形状を決定する際に行う手順1~6のうちの手順1を説明する図である。FIG. 3A is a diagram illustrating step 1 of steps 1 to 6 performed when determining the shape of the raised portion. 図3Bは、手順2を説明する図である。FIG. 3B is a diagram illustrating procedure 2. 図3Cは、手順3を説明する図である。FIG. 3C is a diagram illustrating procedure 3. 図3Dは、手順4を説明する図である。FIG. 3D is a diagram illustrating step 4. 図3Eは、手順5を説明する図である。FIG. 3E is a diagram illustrating procedure 5. 図3Fは、手順6を説明する図である。FIG. 3F is a diagram illustrating step 6. 図3Gは、手順1~6によって決定される、隆起部の上面の略楕円形状を説明する図である。FIG. 3G is a diagram illustrating the approximately elliptical shape of the upper surface of the protuberance determined by steps 1 to 6. 図4は、本発明に従う第2実施形態の伝熱部材の構造を示した図であって、図4(a)が斜視図、図4(b)が図4(a)の仮想平面M2で切断したときの断面図である。FIG. 4 is a diagram showing the structure of a heat transfer member according to a second embodiment of the present invention, with FIG. 4(a) being a perspective view and FIG. 4(b) being a virtual plane M2 of FIG. 4(a). It is a sectional view when cut. 図5は、本発明に従う第3実施形態の伝熱部材の構造を示した図であって、図5(a)が斜視図、図5(b)が図5(a)の仮想平面M3で切断したときの断面図である。FIG. 5 is a diagram showing the structure of a heat transfer member according to a third embodiment of the present invention, in which FIG. 5(a) is a perspective view and FIG. 5(b) is a virtual plane M3 of FIG. 5(a). It is a sectional view when cut. 図6は、本発明に従う第4実施形態の伝熱部材の構造を示した図であって、図6(a)が斜視図、図6(b)が図6(a)の仮想平面M4で切断したときの断面図である。FIG. 6 is a diagram showing the structure of a heat transfer member according to a fourth embodiment of the present invention, in which FIG. 6(a) is a perspective view and FIG. 6(b) is a virtual plane M4 of FIG. 6(a). It is a sectional view when cut. 図7は、本発明に従う第5実施形態の伝熱部材の構造を示した図であって、図7(a)が斜視図、図7(b)が図7(a)の仮想平面M5で切断したときの断面図である。FIG. 7 is a diagram showing the structure of a heat transfer member according to a fifth embodiment of the present invention, in which FIG. 7(a) is a perspective view and FIG. 7(b) is a virtual plane M5 of FIG. 7(a). It is a sectional view when cut. 図8は、本発明例の伝熱部材と比較例の伝熱部材をそれぞれ有する冷却装置を用いて熱流束と熱抵抗を測定・算出し、算出した熱流束を横軸とし、算出した熱抵抗を縦軸としてプロットした図である。FIG. 8 shows the measurement and calculation of heat flux and thermal resistance using a cooling device having a heat transfer member of an example of the present invention and a heat transfer member of a comparative example, and the horizontal axis is the calculated heat flux, and the calculated thermal resistance is FIG.

次に、本発明のいくつかの実施形態の伝熱部材について、以下で説明する。 Next, heat transfer members according to some embodiments of the present invention will be described below.

<伝熱部材>
(第1実施形態)
図1は、本発明に従う第1実施形態の伝熱部材を有する冷却装置の要部を示す斜視図であって、冷却装置を構成するコンテナの内部構造が分かるように透視した状態で示す。図2は、図1の冷却装置から、伝熱部材だけを抜き出し拡大して示した図であって、図2(a)が斜視図、図2(b)が図2(a)の仮想平面M1で切断したときの断面図である。
<Heat transfer member>
(First embodiment)
FIG. 1 is a perspective view showing the main parts of a cooling device having a heat transfer member according to a first embodiment of the present invention, and is shown in a transparent state so that the internal structure of a container constituting the cooling device can be seen. 2 is an enlarged view of only the heat transfer member extracted from the cooling device of FIG. 1, with FIG. 2(a) being a perspective view and FIG. 2(b) being a virtual plane of FIG. 2(a). It is a sectional view when cut along M1.

第1実施形態に係る伝熱部材10は、図1に記載されるように、コンテナ30の底部31の内面31aであって、底部31の外面31bに熱的に接続される少なくとも1つの発熱体4の取付位置Pに対応する位置に形成され、発熱体4からの熱を、コンテナ30の内部空間Sの下部に封入された液相の第1冷媒R1に伝えることで第1冷媒R1を加熱および沸騰させ、第1冷媒R1を液相から気相に相変化させる伝熱部材10である。この伝熱部材10は、図2(a)、(b)に示すように、コンテナ30の底部31の内面31aに固着される下面11aから上方に向かって隆起した隆起部11を有し、隆起部11の上面11bの少なくとも一部に、第1冷媒R1との接触面積を増大させる接触面積増大部12が形成される。ここで、隆起部11の輪郭形状は、隆起部11の最大厚さ位置11cを通り、隆起部11の厚さ方向を含む平面で、切断したときの少なくとも一つの断面で見て、略楕円形状を有する。 As shown in FIG. 1, the heat transfer member 10 according to the first embodiment includes at least one heating element that is located on the inner surface 31a of the bottom 31 of the container 30 and is thermally connected to the outer surface 31b of the bottom 31. 4, and heats the first refrigerant R1 by transmitting heat from the heating element 4 to the liquid phase first refrigerant R1 sealed in the lower part of the internal space S of the container 30. and a heat transfer member 10 that boils and changes the phase of the first refrigerant R1 from a liquid phase to a gas phase. As shown in FIGS. 2(a) and 2(b), this heat transfer member 10 has a raised portion 11 raised upward from a lower surface 11a fixed to an inner surface 31a of a bottom portion 31 of a container 30. A contact area increasing portion 12 is formed on at least a portion of the upper surface 11b of the portion 11 to increase the contact area with the first refrigerant R1. Here, the contour shape of the raised portion 11 is approximately elliptical when viewed in at least one cross section when cut in a plane passing through the maximum thickness position 11c of the raised portion 11 and including the thickness direction of the raised portion 11. has.

これにより、伝熱部材10が液相の第1冷媒R1と接触する表面(沸騰面)、すなわち、隆起部11の上面11bの断面形状を、略楕円形状にすることで、直線状や円形状で構成した場合と比べて、沸騰面における熱流束を均一に近づけることができる。そのため、隆起部11の上面11bにおける熱伝達率も均一にすることができる。また、沸騰面における熱流束が均一に近づくことで、定格の動作範囲内で、熱流束が最大熱流束を超えて熱伝達率が低下する部分が生じないように構成することが可能になるため、伝熱部材10における熱伝達率を有効に高めることができ、それにより冷却装置の冷却性能を向上させることができる。特に、隆起部11に接触面積増大部12を設けることで、沸騰面の第1冷媒R1との接触面積が拡大するため、沸騰面における熱流束を低下させ、伝熱部材10における熱伝達率をより一層高めることができ、冷却装置の冷却性能もより一層向上させることができる。 Thereby, by making the cross-sectional shape of the surface (boiling surface) of the heat transfer member 10 in contact with the liquid-phase first refrigerant R1, that is, the upper surface 11b of the raised portion 11, into a substantially elliptical shape, it is possible to form a straight or circular shape. The heat flux on the boiling surface can be made more uniform than in the case where the Therefore, the heat transfer coefficient on the upper surface 11b of the raised portion 11 can also be made uniform. In addition, as the heat flux at the boiling surface approaches uniformity, it becomes possible to configure the structure so that there are no parts where the heat flux exceeds the maximum heat flux and the heat transfer coefficient decreases within the rated operating range. , the heat transfer coefficient in the heat transfer member 10 can be effectively increased, thereby improving the cooling performance of the cooling device. In particular, by providing the contact area increasing portion 12 on the raised portion 11, the contact area of the boiling surface with the first refrigerant R1 is expanded, thereby reducing the heat flux at the boiling surface and increasing the heat transfer coefficient in the heat transfer member 10. It is possible to further improve the cooling performance of the cooling device.

(伝熱部材)
伝熱部材10は、コンテナ30の内部空間Sに封入された第1冷媒R1に接触し、第1冷媒R1を通じて熱を伝達することができる構成を有し、例えば冷却装置や熱交換器等のような種々の伝熱装置に用いることができる。なお、図1に示す第1実施形態の伝熱部材10は、冷却装置1に装着して用いた場合を示している。
(heat transfer member)
The heat transfer member 10 is configured to be able to contact the first refrigerant R1 sealed in the internal space S of the container 30 and transfer heat through the first refrigerant R1. It can be used in various heat transfer devices such as. Note that the heat transfer member 10 of the first embodiment shown in FIG. 1 is used by being attached to a cooling device 1.

ここで、伝熱部材10は、冷却装置1を構成するコンテナ30の底部31の内面31aであって、底部31の外面31bに熱的に接続される少なくとも1つの発熱体(図示せず)の取付位置Pに対応する位置に形成され、発熱体4からの熱を、コンテナ30の内部空間Sの下部に封入された液相の第1冷媒R1に伝えることで第1冷媒R1を加熱および沸騰させ、第1冷媒R1を液相から気相に相変化させる。なお、第1冷媒R1は、コンテナ30の内部空間Sでは、液相状態と気相状態に相変化して存在することから、以下では、説明の便宜上、液相の第1冷媒をR1(L)、気相の第1冷媒をR1(g)と区別した符号を付す場合がある。 Here, the heat transfer member 10 is an inner surface 31a of the bottom 31 of the container 30 constituting the cooling device 1, and includes at least one heating element (not shown) that is thermally connected to the outer surface 31b of the bottom 31. It is formed at a position corresponding to the mounting position P, and heats and boils the first refrigerant R1 by transmitting heat from the heating element 4 to the liquid phase first refrigerant R1 sealed in the lower part of the internal space S of the container 30. to change the phase of the first refrigerant R1 from the liquid phase to the gas phase. Note that the first refrigerant R1 exists in the internal space S of the container 30 in a phase-changed state between a liquid phase state and a gas phase state. ), the first refrigerant in the gas phase may be given a different symbol from R1(g).

伝熱部材10が設けられているコンテナ30の内部空間Sは、外部環境に対して密閉された空間であり、脱気処理により減圧されている。これにより、コンテナ30からの液相の第1冷媒R1(L)や気相の第1冷媒R1(g)の漏洩を防ぐとともに、内部空間Sの圧力を調整して、所望の動作温度で動作するように構成されている。 The interior space S of the container 30 in which the heat transfer member 10 is provided is a space that is sealed from the outside environment, and is depressurized by degassing. This prevents leakage of the liquid-phase first refrigerant R1 (L) and gas-phase first refrigerant R1 (g) from the container 30, and adjusts the pressure of the internal space S to operate at a desired operating temperature. is configured to do so.

伝熱部材10は、下面11aがコンテナ30の底部31の内面31aに固着されるように設けられる。ここで、伝熱部材10をコンテナ30に設ける方法としては、例えば、型を用いてコンテナ30の内面31aに伝熱部材10を一体成形して形成する方法や、伝熱部材10をコンテナ30とは別の部材としてコンテナ30の内面に取り付ける方法などが挙げられる。 The heat transfer member 10 is provided so that the lower surface 11a is fixed to the inner surface 31a of the bottom 31 of the container 30. Here, as a method of providing the heat transfer member 10 in the container 30, for example, a method of integrally molding the heat transfer member 10 on the inner surface 31a of the container 30 using a mold, a method of forming the heat transfer member 10 on the inner surface 31a of the container 30 using a mold, or a method of forming the heat transfer member 10 on the inner surface 31a of the container 30 using a mold; As another member, a method of attaching it to the inner surface of the container 30 can be mentioned.

(隆起部)
伝熱部材10は、コンテナ30の底部31の内面31aに固着される下面11aから上方に向かって隆起する隆起部11を有する。ここで、隆起部11の輪郭形状は、隆起部11の最大厚さ位置11cを通り、隆起部11の厚さ方向Yを含む平面で切断したときの少なくとも一つの断面で見て、略楕円形状を有する。これにより、発熱体4の各点から、隆起部11の上面11bまでの距離が最短となる方向が、発熱体4の各点ごとに異なった方向になるため、発熱体4から受け取った熱を、隆起部11の下面11aの面方向Xについて広がり易くすることができる。また、隆起部11において熱が下面11aの面方向Xについて広がり易くなることで、隆起部11の上面11bにおける熱流束を均一に近づけることができ、さらには、上面11bにおける熱伝達率も均一に近づけることができる。また、本発明の伝熱部材10の隆起部11は、熱が下面11aの面方向Xについて広がり易くなることで、定格の動作範囲内で、上面11bでの熱流束が最大熱流束を超えて熱伝達率が低下する部分が生じないように構成することが可能になるため、伝熱部材10における熱伝達率を高めることができる。
(ridge)
The heat transfer member 10 has a protrusion 11 that protrudes upward from a lower surface 11a that is fixed to the inner surface 31a of the bottom 31 of the container 30. Here, the contour shape of the raised portion 11 is approximately elliptical when viewed in at least one cross section taken along a plane passing through the maximum thickness position 11c of the raised portion 11 and including the thickness direction Y of the raised portion 11. has. As a result, the direction in which the distance from each point of the heating element 4 to the upper surface 11b of the raised portion 11 is the shortest is a different direction for each point of the heating element 4, so that the heat received from the heating element 4 is , the lower surface 11a of the raised portion 11 can be made easier to spread in the surface direction X. In addition, since heat spreads easily in the surface direction X of the lower surface 11a in the raised portion 11, the heat flux on the upper surface 11b of the raised portion 11 can be made uniform, and furthermore, the heat transfer coefficient on the upper surface 11b can be made uniform. You can get close. Further, the raised portion 11 of the heat transfer member 10 of the present invention allows heat to spread easily in the surface direction X of the lower surface 11a, so that the heat flux at the upper surface 11b exceeds the maximum heat flux within the rated operating range. Since it becomes possible to configure the structure so that no portion where the heat transfer coefficient decreases occurs, the heat transfer coefficient in the heat transfer member 10 can be increased.

ここで、隆起部11の輪郭形状である略楕円形状は、隆起部11の厚さ方向Yを含む平面で切断したときの断面で見たときに、以下の手順1~5に沿って求められる形状を基準とした略楕円形状を有することが好ましい。 Here, the approximately elliptical shape that is the contour shape of the raised portion 11 is obtained according to the following steps 1 to 5 when viewed in a cross section cut along a plane including the thickness direction Y of the raised portion 11. It is preferable to have a substantially elliptical shape based on the shape.

(手順1)
隆起部11の輪郭形状は、まず、隆起部11の形状の基準となる略楕円の最大高さhと、係数kを設定する。ここで、係数kは、発熱体4の(断面)長さをLとしたとき、図3Aに示すように、略楕円における半周の円弧長がkLとなる。
(Step 1)
To determine the contour shape of the raised portion 11, first, a maximum height h of a substantially ellipse serving as a reference for the shape of the raised portion 11 and a coefficient k are set. Here, when the (cross-sectional) length of the heating element 4 is L, the coefficient k is the arc length of the half circumference of a substantially ellipse, as shown in FIG. 3A.

(手順2)
手順1を行った後に、この断面において、発熱体4に接し、隆起部11の下面11aの面方向Xについての中心に位置する点を点Gとし、発熱体4の一方または他方の端点に接する点を点Gとし、これらの発熱体4に接する点Gと点Gの間を等間隔でn個の区間に分割する(nは任意の数であるが、大きいほうが好ましい)。また、点Gから隆起部11の厚さ方向Yに沿って最大高さhだけ上方にある最大厚さ位置11cを、略楕円上の点Pとする。ここで、発熱体4に接する点G、Gおよび略楕円上の点Pの位置関係は、図3Bに示すとおりである。
(Step 2)
After performing step 1, in this cross section, a point in contact with the heating element 4 and located at the center of the lower surface 11a of the raised portion 11 in the plane direction X is set as point G0 , and one or the other end point of the heating element 4 is The point of contact is defined as a point Gn , and the area between the point G0 and the point Gn , which are in contact with these heating elements 4, is divided into n sections at equal intervals (n is an arbitrary number, but a larger one is preferable). Further, the maximum thickness position 11c located above the point G0 by the maximum height h along the thickness direction Y of the raised portion 11 is defined as a point P0 on the substantially ellipse. Here, the positional relationship between the points G 0 and G n in contact with the heating element 4 and the point P 0 on the substantially ellipse is as shown in FIG. 3B.

(手順3)
手順2を行った後に、略楕円上の点Pを中心に、発熱体4に接する点Gとその隣にある点Gとの距離dをk倍した長さd’を半径とする円弧C1を描く。また、点Gを中心に、最大高さhを半径とする円弧C2を描く。ここで、略楕円上の点P、発熱体4に接する点G、Gと、円弧C1、C2の位置関係は、図3Cに示すとおりである。
(Step 3)
After performing step 2, centering on the point P0 on the approximate ellipse, set the radius to be the length d', which is k times the distance d between the point G0 that touches the heating element 4 and the point G1 next to it. Draw an arc C1. In addition, an arc C2 is drawn with the point G0 as the center and the maximum height h as the radius. Here, the positional relationship between the point P 0 on the substantially ellipse, the points G 0 and G 1 in contact with the heating element 4, and the arcs C1 and C2 is as shown in FIG. 3C.

(手順4)
手順3を行った後に、発熱体4に接する点Gを中心に、線分Gの長さh’を半径とする円弧C3を描く。ここで、発熱体4に接する点Gと、円弧C3の位置関係は、図3Dに示すとおりである。
(Step 4)
After performing step 3, a circular arc C3 is drawn centered on the point G1 in contact with the heating element 4 and having a radius equal to the length h' of the line segment G1P0 . Here, the positional relationship between the point G1 in contact with the heating element 4 and the circular arc C3 is as shown in FIG. 3D.

(手順5)
手順4を行った後に、円弧C1および円弧C2が交差する点を交点q1とし、円弧C1および円弧C3が交差する点を交点q2としたとき、円弧C1上にある交点q1と交点q2の中間点を略楕円上の点Pとする。ここで、円弧C1、C2、C3、交点q1、q2および略楕円上の点Pの位置関係は、図3Eに示すとおりである。
(Step 5)
After performing step 4, if the point where the arc C1 and the arc C2 intersect is set as the intersection q1, and the point where the arc C1 and the arc C3 intersect is set as the intersection q2, then the midpoint between the intersection q1 and the intersection q2 on the arc C1 Let be a point P1 on a substantially ellipse. Here, the positional relationship among the arcs C1, C2, C3, the intersections q1, q2, and the point P1 on the approximate ellipse is as shown in FIG. 3E.

(手順6)
手順5を行った後に、略楕円上の点Pを中心に、上記手順3~手順5を行うことにより、隣接する略楕円上の点Pを求める。以下、略楕円が発熱体4と交わるまで、同様の手順で、隣接する略楕円上の点を求める。このとき、略楕円が発熱体4と交わる位置に、n個目の略楕円上の点Pが求められるように、手順1における略楕円の最大高さhと係数kを調整する。ここで、発熱体4に接する点G~Gおよび略楕円上の点P~Pの位置関係は、図3Fに示すとおりである。
(Step 6)
After performing step 5, the above steps 3 to 5 are performed centering on point P 1 on the approximately ellipse to obtain an adjacent point P 2 on the approximately ellipse. Thereafter, points on adjacent approximate ellipses are determined in the same manner until the approximate ellipse intersects with the heating element 4. At this time, the maximum height h of the approximate ellipse and the coefficient k in step 1 are adjusted so that the n-th point P n on the approximate ellipse is found at the position where the approximate ellipse intersects with the heating element 4 . Here, the positional relationship between the points G 0 to G n in contact with the heating element 4 and the points P 0 to P n on the substantially ellipse is as shown in FIG. 3F.

この手順1~6を行うことによって決定される隆起部11の上面11bの略楕円形状は、図3Gに示すように、発熱体4の各点から隆起部11の上面11bまでの最短距離が最大高さhと同じになり、かつ最短距離になる方向が、発熱体4の各点ごとに異なる方向になるとともに、その方向の向かう先が上面11bの全体に広がる。そのため、発熱体4から受け取った熱を、隆起部11の上面11bの全体に略均等に広げることができる。また、隆起部11の上面11bにおける熱流束がより均一に近づけられるため、上面11bにおける熱伝達率もより均一に近づけることが可能である。 As shown in FIG. 3G, the approximately elliptical shape of the upper surface 11b of the raised portion 11 determined by performing steps 1 to 6 is such that the shortest distance from each point of the heating element 4 to the upper surface 11b of the raised portion 11 is the maximum. The direction that is the same as the height h and has the shortest distance is a different direction for each point on the heating element 4, and the destination of that direction spreads over the entire upper surface 11b. Therefore, the heat received from the heating element 4 can be spread almost evenly over the entire upper surface 11b of the raised portion 11. Furthermore, since the heat flux on the upper surface 11b of the raised portion 11 can be made more uniform, the heat transfer coefficient on the upper surface 11b can also be made more uniform.

本発明における隆起部11は、厚さ方向Yを含む平面で、切断したときの少なくとも一つの断面で見たときに、この手順1~6によって得られる略楕円形状を基準として、厚さ方向Yおよび下面の面方向Xの一方または両方が、±10%の範囲内に収まる輪郭形状を有することが好ましく、±5%の範囲内に収まる輪郭形状を有することがより好ましい。 The raised portion 11 in the present invention is a plane including the thickness direction Y, and when viewed in at least one cross section when cut, the raised portion 11 is defined in the thickness direction Y based on the approximately elliptical shape obtained by steps 1 to 6. It is preferable that one or both of the surface direction X of the lower surface has a contour shape that falls within the range of ±10%, and more preferably that it has a contour shape that falls within the range of ±5%.

また、本発明における隆起部11は、厚さ方向Yを含む平面で、切断したときの少なくとも一つの断面で見たときに、隆起部11の最大厚さ(A)に対する、隆起部11の下面11aの長さ(B)の比(長短軸比B/A)が、1.2以上3.9以下の範囲であることが好ましい。これにより、隆起部11の形状が、上述の手順1~6によって得られる略楕円形状に近付けられるため、発熱体4から受け取った熱を、隆起部11の下面11aの面方向Xについて広がり易くすることができる。 Further, the raised portion 11 in the present invention is a lower surface of the raised portion 11 with respect to the maximum thickness (A) of the raised portion 11 when viewed in at least one cross section when cut in a plane including the thickness direction Y. It is preferable that the ratio of the length (B) of 11a (major axis ratio B/A) is in the range of 1.2 or more and 3.9 or less. As a result, the shape of the raised portion 11 approaches the substantially elliptical shape obtained by steps 1 to 6 described above, so that the heat received from the heating element 4 is easily spread in the surface direction X of the lower surface 11a of the raised portion 11. be able to.

(接触面積増大部)
伝熱部材10の隆起部11には、上面11bの少なくとも一部を構成するように、第1冷媒R1との接触面積を増大させる接触面積増大部12が形成される。これにより、発熱体4の熱は、コンテナ30の底部31の内面31aから隆起部11の下面11aに伝わり、隆起部11の下面11aから上方に向かい、接触面積増大部12が形成されている隆起部11の上面11bから第1冷媒R1に伝えられる。このとき、沸騰面である隆起部11の上面11bに接触面積増大部12が形成されることで、伝熱部材10と第1冷媒R1との接触面積が拡大するため、沸騰面における熱流束を低下させ、伝熱部材10における熱伝達率をより一層高めることができる。
(Increased contact area)
A contact area increasing part 12 that increases the contact area with the first refrigerant R1 is formed on the raised part 11 of the heat transfer member 10 so as to constitute at least a part of the upper surface 11b. Thereby, the heat of the heating element 4 is transmitted from the inner surface 31a of the bottom 31 of the container 30 to the lower surface 11a of the raised portion 11, and is directed upward from the lower surface 11a of the raised portion 11 to the raised portion where the increased contact area 12 is formed. The refrigerant is transmitted from the upper surface 11b of the portion 11 to the first refrigerant R1. At this time, since the contact area increasing portion 12 is formed on the upper surface 11b of the raised portion 11, which is the boiling surface, the contact area between the heat transfer member 10 and the first refrigerant R1 is expanded, so that the heat flux at the boiling surface is reduced. The heat transfer coefficient in the heat transfer member 10 can be further increased.

ここで、接触面積増大部12は、隆起部11の上面11bの全面を構成するように設けられていることが好ましい。これにより、沸騰面となる隆起部11の上面11bの全面において、伝熱部材10と第1冷媒R1の接触面積が増加するため、伝熱部材10における熱流束のばらつきを抑えるとともに、熱伝達率をより一層高めることができる。 Here, it is preferable that the contact area increasing portion 12 is provided so as to constitute the entire upper surface 11b of the raised portion 11. As a result, the contact area between the heat transfer member 10 and the first refrigerant R1 increases over the entire upper surface 11b of the raised portion 11, which becomes the boiling surface, so that variation in heat flux in the heat transfer member 10 is suppressed, and the heat transfer coefficient can be further enhanced.

特に、本実施形態の伝熱部材10は、基材13の表面に、微細な構造物によって接触面積増大部12が形成される。特に、本実施形態の接触面積増大部12は、金属焼結体、金属粉集合体または炭素粒子集合体からなる多孔質層を備える。これにより、多孔質層によって、隆起部11の第1冷媒R1との接触面積が増大するため、伝熱部材10の熱伝達率を高めることができる。また、金属粉を隆起部11の基となる部材の上面に塗布して焼成するなどの簡便な手段によって、微細な構造物を形成することができる。 In particular, in the heat transfer member 10 of this embodiment, the contact area increasing portion 12 is formed on the surface of the base material 13 by a fine structure. In particular, the contact area increasing portion 12 of this embodiment includes a porous layer made of a metal sintered body, a metal powder aggregate, or a carbon particle aggregate. Thereby, the contact area of the raised portion 11 with the first refrigerant R1 is increased by the porous layer, so that the heat transfer coefficient of the heat transfer member 10 can be increased. Further, a fine structure can be formed by a simple method such as applying metal powder to the upper surface of a member that is the base of the raised portion 11 and firing it.

ここで、接触面積増大部12を構成する多孔質層の材料のうち、金属焼結体や金属粉を構成する金属種は、第1冷媒R1と電気化学反応を起こさない金属種を用いることができ、例えば、銅および銅合金のうち1種以上が挙げられる。また、金属焼結体を焼結する前の金属材料の形態は、例えば、金属粉、金属繊維、金属メッシュ、金属編組体、金属箔のうち1種以上が挙げられる。金属焼結体は、金属材料を炉などの加熱手段で焼成して形成することができる。また、炭素粒子集合体を構成する炭素粒子としては、特に限定されず、例えば、カーボンナノ粒子、カーボンブラックが挙げられる。 Here, among the materials of the porous layer constituting the contact area increasing portion 12, the metal species constituting the metal sintered body or the metal powder may be a metal species that does not cause an electrochemical reaction with the first refrigerant R1. Examples include one or more of copper and copper alloys. Further, the form of the metal material before sintering the metal sintered body includes, for example, one or more of metal powder, metal fiber, metal mesh, metal braid, and metal foil. A metal sintered body can be formed by firing a metal material with a heating means such as a furnace. Further, the carbon particles constituting the carbon particle aggregate are not particularly limited, and examples thereof include carbon nanoparticles and carbon black.

他方で、接触面積増大部12が形成される基材13を構成する材料としては、第1冷媒R1と反応しない材料を用いることができ、例えば熱伝導性材料を挙げることができる。基材13を構成する材料の具体例としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、鉄合金(例えばステンレス鋼)などの金属材料や、グラファイトなどの炭素材料を挙げることができる。 On the other hand, a material that does not react with the first refrigerant R1 can be used as a material constituting the base material 13 on which the contact area increasing portion 12 is formed, such as a thermally conductive material. Specific examples of the material constituting the base material 13 include metal materials such as copper, copper alloy, aluminum, aluminum alloy, iron alloy (for example, stainless steel), and carbon materials such as graphite.

本発明の伝熱部材10は、発熱体4が発熱して温度が上昇すると、発熱体4の熱がコンテナ30の底部31を介して伝熱部材10の隆起部11に伝達するとともに、隆起部11から接触面積増大部12にも伝達されるため、隆起部11の外側周囲に位置する第1冷媒R1(L)が、伝熱部材10の隆起部11や接触面積増大部12によって加熱されて温度が上昇して沸騰温度に到達し、気相の第1冷媒R1(g)が発生する。特に、接触面積増大部12が多孔質層によって構成される本実施形態では、多孔質層の内部に液相の第1冷媒R1(L)を流入させて、気泡が成長するまでの時間にわたって保持することができるので、伝熱特性をより一層高められるとともに、ドライアウト発生の抑制にも寄与することができる。 In the heat transfer member 10 of the present invention, when the heat generating element 4 generates heat and the temperature rises, the heat of the heat generating element 4 is transmitted to the raised portion 11 of the heat transfer member 10 via the bottom portion 31 of the container 30, and the raised portion Since the first refrigerant R1 (L) located around the outside of the raised portion 11 is also transmitted from the raised portion 11 of the heat transfer member 10 to the increased contact area portion 12, the first refrigerant R1(L) is heated by the raised portion 11 of the heat transfer member 10 and the increased contact area portion 12. The temperature increases and reaches boiling temperature, and the first refrigerant R1(g) in the gas phase is generated. In particular, in this embodiment in which the contact area increasing portion 12 is constituted by a porous layer, the liquid phase first refrigerant R1 (L) is caused to flow into the porous layer and is held for a period of time until bubbles grow. Therefore, the heat transfer characteristics can be further improved, and it can also contribute to suppressing the occurrence of dryout.

(第2実施形態)
図4は、本発明に従う第2実施形態の伝熱部材の構造を示した図であって、図4(a)が斜視図、図4(b)が図4(a)の仮想平面M2で切断したときの断面図である。第2実施形態の伝熱部材10Aは、接触面積増大部12Aが、周期的に配置された複数の凹部14を備え、この凹部14は、凹部14の深さ方向に見て、開口部14aにおける幅が最も狭くなるように構成される。なお、以下の説明において、上記第1実施形態と同一の構成要素には同一の符号を付してその説明を省略または簡略にし、主に相違点について説明する。
(Second embodiment)
FIG. 4 is a diagram showing the structure of a heat transfer member according to a second embodiment of the present invention, with FIG. 4(a) being a perspective view and FIG. 4(b) being a virtual plane M2 of FIG. 4(a). It is a sectional view when cut. In the heat transfer member 10A of the second embodiment, the contact area increasing portion 12A includes a plurality of periodically arranged recesses 14, and the recesses 14 are arranged at the openings 14a when viewed in the depth direction of the recesses 14. Constructed to have the narrowest width. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals to omit or simplify the description, and mainly differences will be described.

ここで、伝熱部材10Aは、隆起部11Aの上面11bに、接触面積増大部12Aとして、周期的に配置された複数の凹部14を備える。これにより、伝熱部材10と第1冷媒R1の接触面積が拡大するため、沸騰面における熱流束を低下させることができる。また、隆起部11Aの上面11bに形成されている凹部14が、液相の第1冷媒R1(L)の沸騰起点として機能するため、伝熱部材10Aにおける熱伝達率を、より一層高めることができる。 Here, the heat transfer member 10A includes a plurality of recesses 14 arranged periodically on the upper surface 11b of the raised portion 11A as a contact area increasing portion 12A. Thereby, the contact area between the heat transfer member 10 and the first refrigerant R1 is expanded, so that the heat flux at the boiling surface can be reduced. Further, since the recessed portion 14 formed in the upper surface 11b of the raised portion 11A functions as a boiling point for the first refrigerant R1(L) in the liquid phase, it is possible to further increase the heat transfer coefficient in the heat transfer member 10A. can.

また、図4(b)に示すように、隆起部11Aの上面11bの凹部14は、凹部14の深さ方向に見て、開口部14aから下面11aの方向へ向かうにつれて幅広となっていることが好ましい。これにより、凹部14の内部で気相の第1冷媒R1(g)の気泡の成長が促進されるため、隆起部11Aの上面11bへの熱伝達率をより一層高めることができる。 Further, as shown in FIG. 4(b), the recess 14 on the upper surface 11b of the raised portion 11A becomes wider as it goes from the opening 14a toward the lower surface 11a when viewed in the depth direction of the recess 14. is preferred. This promotes the growth of bubbles of the gas phase first refrigerant R1(g) inside the recess 14, so that the heat transfer coefficient to the upper surface 11b of the raised portion 11A can be further increased.

隆起部11Aの上面11bに設けられる、凹部14の開口部14aの平面視(上面11bに対向する方向から見た状態)における形状は、特に限定されず、例えば図4(a)に示すように円形状にすることができる。また、凹部14の開口部14aにおける開口幅は、特に限定されず、例えば、0.03mm以上0.70mm以下の範囲にすることができる。 The shape of the opening 14a of the recess 14 provided on the upper surface 11b of the raised portion 11A in plan view (viewed from the direction facing the upper surface 11b) is not particularly limited, and for example, as shown in FIG. 4(a). It can be made into a circular shape. Further, the opening width of the opening 14a of the recess 14 is not particularly limited, and may be in the range of 0.03 mm or more and 0.70 mm or less, for example.

(第3実施形態)
図5は、本発明に従う第3実施形態の伝熱部材の構造を示した図であって、図5(a)が斜視図、図5(b)が図5(a)の仮想平面M3で切断したときの断面図である。なお、以下の説明において、上記第1実施形態または第2実施形態と同一の構成要素には同一の符号を付してその説明を省略または簡略にし、主に相違点について説明する。
(Third embodiment)
FIG. 5 is a diagram showing the structure of a heat transfer member according to a third embodiment of the present invention, in which FIG. 5(a) is a perspective view and FIG. 5(b) is a virtual plane M3 of FIG. 5(a). It is a sectional view when cut. In the following description, the same components as those in the first embodiment or the second embodiment are given the same reference numerals to omit or simplify the explanation, and mainly differences will be explained.

第3実施形態の伝熱部材10Bは、隆起部11Bが、下面11aを有するベース部15Bと、ベース部15Bから上方に向かって延出する、複数の板状または柱状のフィン16からなるフィン部17とによって構成される。本実施形態では、フィン部17の上端面17aが、第1実施形態の隆起部の上面と同様の、隆起部11Bの上面11bの輪郭形状を形成する。このように、本発明における隆起部11Bは、伝熱部材10の少なくとも一部に設けられていればよく、必ずしも伝熱部材10の全面に設けられていなくてもよい。 In the heat transfer member 10B of the third embodiment, the raised portion 11B is a fin portion consisting of a base portion 15B having a lower surface 11a and a plurality of plate-shaped or columnar fins 16 extending upward from the base portion 15B. 17. In this embodiment, the upper end surface 17a of the fin portion 17 forms the contour shape of the upper surface 11b of the raised portion 11B, which is similar to the upper surface of the raised portion in the first embodiment. In this way, the raised portion 11B in the present invention only needs to be provided on at least a portion of the heat transfer member 10, and does not necessarily need to be provided on the entire surface of the heat transfer member 10.

本実施形態では、フィン16によって、伝熱部材10Bと第1冷媒R1との接触面積が拡大するとともに、対流によってフィン16に沿って第1冷媒R1が上方向に流れることで第1冷媒R1の加熱が促進され、さらにはフィン16の先端が発泡核となって第1冷媒R1の核沸騰が起こり易くなる。そのため、発熱体4から液相の第1冷媒R1(L)への熱伝達を円滑化することができる。 In this embodiment, the fins 16 expand the contact area between the heat transfer member 10B and the first refrigerant R1, and the first refrigerant R1 flows upward along the fins 16 due to convection, so that the first refrigerant R1 increases. Heating is accelerated, and furthermore, the tips of the fins 16 become foaming nuclei, making it easier for the first refrigerant R1 to undergo nucleate boiling. Therefore, heat transfer from the heating element 4 to the liquid phase first refrigerant R1 (L) can be facilitated.

このうち、ベース部15Bは、隆起部11Bの下面11aを構成する。ベース部15Bの平面形状(下面11aの形状)は、発熱体4の取付位置Pに取り付けられた発熱体4の接触面の形状に対応させることが好ましい。例えば、取付位置Pに取り付けられた発熱体4の接触面が矩形である場合、ベース部15Bの平面形状は、図1に示すように矩形状であることが好ましい。なお、ベース部15Bの平面形状としては、矩形状の他、円形、三角形、多角形などの種々の形状が挙げられる。 Among these, the base portion 15B constitutes the lower surface 11a of the raised portion 11B. It is preferable that the planar shape of the base portion 15B (the shape of the lower surface 11a) corresponds to the shape of the contact surface of the heating element 4 attached to the mounting position P of the heating element 4. For example, when the contact surface of the heating element 4 attached at the attachment position P is rectangular, it is preferable that the planar shape of the base portion 15B is rectangular as shown in FIG. Note that the planar shape of the base portion 15B includes various shapes such as a rectangular shape, a circle, a triangle, and a polygon.

また、ベース部15Bの立体的な形状は、下面11aから上方に向かって隆起した形状であることが好ましい。その中でも、ベース部15Bの隆起した部分の輪郭形状は、最大厚さ位置を通り、かつ厚さ方向Yを含む平面で切断したときの少なくとも一つの断面で見て、略楕円形状を有することがより好ましい。さらに好ましくは、上記手順1~5に沿って求められる形状を基準とした、略楕円形状を有する。 Moreover, it is preferable that the three-dimensional shape of the base portion 15B is a shape that bulges upward from the lower surface 11a. Among them, the contour shape of the raised portion of the base portion 15B may have a substantially elliptical shape when viewed in at least one cross section when cut along a plane passing through the maximum thickness position and including the thickness direction Y. More preferred. More preferably, it has a substantially elliptical shape based on the shape determined according to steps 1 to 5 above.

他方で、フィン部17は、ベース部15Bから上方に向かって延出するように設けられた、板状または柱状のフィン16を複数備える。本実施形態に係る伝熱部材10Bは、フィン部17の上端面が隆起部11Bの輪郭形状を形成するものであるため、上述の略楕円形状よりも下側(ベース部15Bに近い側)に、接触面積増大部12Bが構成される。 On the other hand, the fin portion 17 includes a plurality of plate-shaped or column-shaped fins 16 provided so as to extend upward from the base portion 15B. In the heat transfer member 10B according to the present embodiment, since the upper end surface of the fin portion 17 forms the contour shape of the raised portion 11B, the upper end surface of the fin portion 17 forms the contour shape of the raised portion 11B, so that , a contact area increasing portion 12B is configured.

ここで、フィン部17を構成する複数のフィン16は、隆起部11Bの下面11aの面方向に沿って間隔をおいて整列することが好ましい。フィン16の配設数は、図5(a)および図5(b)に記載される本数に限定されず、必要に応じて増減することができる。 Here, the plurality of fins 16 constituting the fin portion 17 are preferably aligned at intervals along the surface direction of the lower surface 11a of the raised portion 11B. The number of fins 16 provided is not limited to the number shown in FIGS. 5(a) and 5(b), and can be increased or decreased as necessary.

フィン16の形成方法としては、例えば、ベース部15Bと別に作製した板状のフィンを、コンテナ30の内面31aに、はんだ付け、ろう付け、溶接、焼結などにより取付(固着)する方法、コンテナ30の内面を切削する方法、押出成形法、エッチング法などが挙げられる。 The fins 16 can be formed by, for example, attaching (fixing) plate-shaped fins made separately from the base portion 15B to the inner surface 31a of the container 30 by soldering, brazing, welding, sintering, etc.; Examples include a method of cutting the inner surface of 30, an extrusion method, an etching method, etc.

(第4実施形態)
図6は、本発明に従う第4実施形態の伝熱部材の構造を示した図であって、図6(a)が斜視図、図6(b)が図6(a)の仮想平面M4で切断したときの断面図である。なお、上記第1実施形態、第2実施形態または第3実施形態と同一の構成要素には同一の符号を付してその説明を省略または簡略にし、主に相違点について説明する。
(Fourth embodiment)
FIG. 6 is a diagram showing the structure of a heat transfer member according to a fourth embodiment of the present invention, in which FIG. 6(a) is a perspective view and FIG. 6(b) is a virtual plane M4 of FIG. 6(a). It is a sectional view when cut. Note that the same components as those in the first embodiment, second embodiment, or third embodiment are given the same reference numerals, and the explanation thereof will be omitted or simplified, and differences will be mainly explained.

第4実施形態の伝熱部材10Cは、隆起部11Cが、下面11aから上方に向かって隆起したベース部15Cと、ベース部15Cから上方に向かって延出する、複数の板状または柱状のフィン16によって構成される。第4実施形態の伝熱部材10Cは、基本構造は第3実施形態の伝熱部材10Bと同じであるが、ベース部15Cの上面15aが、隆起部11Cの輪郭形状を形成していることを特徴としている。 The heat transfer member 10C of the fourth embodiment has a raised portion 11C that includes a base portion 15C that is raised upward from the lower surface 11a, and a plurality of plate-shaped or columnar fins that extend upward from the base portion 15C. 16. The heat transfer member 10C of the fourth embodiment has the same basic structure as the heat transfer member 10B of the third embodiment, but the upper surface 15a of the base portion 15C forms the contour shape of the raised portion 11C. It is a feature.

本実施形態では、上述のフィン16による作用に加えて、ベース部15Cの上面15aが略楕円形状の輪郭形状を有することで、発熱体4から受け取った熱を、隆起部11の下面11aの面方向Xについて広がり易くすることができるため、伝熱部材10における熱伝達率をより一層高めることができる。 In this embodiment, in addition to the effect of the fins 16 described above, the upper surface 15a of the base portion 15C has a substantially elliptical contour shape, so that the heat received from the heating element 4 is transferred to the surface of the lower surface 11a of the raised portion 11. Since it can be made easier to spread in the direction X, the heat transfer coefficient in the heat transfer member 10 can be further increased.

本実施形態に係る伝熱部材10Cは、隆起部11Cの輪郭形状を形成しているベース部15Cから、上方に向かって延出するように設けられた、板状または柱状のフィン16を複数備える。本実施形態に係る伝熱部材10Cは、ベース部15Cの上端面が隆起部11Cの輪郭形状を形成するものであるため、上述の略楕円形状よりも上側(ベース部15Bから遠い側)に、接触面積増大部12Cが構成される。 The heat transfer member 10C according to the present embodiment includes a plurality of plate-shaped or columnar fins 16 extending upward from a base portion 15C forming the outline shape of the raised portion 11C. . In the heat transfer member 10C according to the present embodiment, since the upper end surface of the base portion 15C forms the contour shape of the raised portion 11C, there are A contact area increasing portion 12C is configured.

(第5実施形態)
図7は、本発明に従う第5実施形態の伝熱部材の構造を示した図であって、図7(a)が斜視図、図7(b)が図7(a)の仮想平面M5で切断したときの断面図である。なお、上記第1実施形態~第4実施形態のいずれかと同一の構成要素には同一の符号を付してその説明を省略または簡略にし、主に相違点について説明する。
(Fifth embodiment)
FIG. 7 is a diagram showing the structure of a heat transfer member according to a fifth embodiment of the present invention, with FIG. 7(a) being a perspective view and FIG. 7(b) being a virtual plane M5 of FIG. 7(a). It is a sectional view when cut. Note that the same components as in any of the first to fourth embodiments are given the same reference numerals, and the explanation thereof will be omitted or simplified, and the differences will be mainly explained.

上述の第1実施形態~第4実施形態では、隆起部11の輪郭形状について、隆起部11の厚さ方向Yを含む複数の平面で切断したときの断面で見たときに略楕円形状を有する構成について示したが、かかる構成だけには限定されない。例えば、図7(b)に示すように、隆起部11の厚さ方向Yを含む、少なくとも1つの平面で切断したときの断面で見たときに、略楕円形状を有していればよい。このとき、他の厚さ方向Yを含む平面で切断したときの形状は、矩形などの異なった形状であってもよい。 In the first to fourth embodiments described above, the contour shape of the raised portion 11 has a substantially elliptical shape when viewed in cross section taken along a plurality of planes including the thickness direction Y of the raised portion 11. Although the configuration is shown, the present invention is not limited to this configuration. For example, as shown in FIG. 7B, the protrusion 11 may have a substantially elliptical shape when viewed in cross section along at least one plane including the thickness direction Y. At this time, the shape when cut along another plane including the thickness direction Y may be a different shape such as a rectangle.

<冷却装置>
次に、本発明の実施形態の冷却装置について、以下で説明する。
本実施形態の冷却装置1は、コンテナ30と凝縮管50とを備える。
<Cooling device>
Next, a cooling device according to an embodiment of the present invention will be described below.
The cooling device 1 of this embodiment includes a container 30 and a condensing pipe 50.

コンテナ30は、底部31の外面31bに、少なくとも1つの発熱体が熱的に接続され、内部空間Sの下部に、液相の第1冷媒R1(L)が封入されている。 In the container 30, at least one heating element is thermally connected to the outer surface 31b of the bottom portion 31, and a liquid phase first refrigerant R1 (L) is sealed in the lower part of the internal space S.

凝縮管50は、コンテナ30の内部空間Sの上部位置にて、コンテナ30を貫通しコンテナ30の内外にわたって延在するように配設され、凝縮管50の内部を、第2冷媒R2が流通する。凝縮管50の内部とコンテナ30の内部空間Sとは連通していない。すなわち、凝縮管50の内部を通る第2冷媒R2は、コンテナ30の内部空間Sの下部に封入されている液相の第1冷媒R1(L)、および液相の第1冷媒R1(L)が沸騰して気相になった第1冷媒(g)のいずれとも接触することはない。凝縮管50は、気相になった第1冷媒(g)から熱を吸収する第2冷媒R2を流通し、気相の第1冷媒R1(g)を凝縮させて液相の第一冷媒R1(L)に相変化させるために設けられる部材である。凝縮管50は、冷却効率を高めるため、凝縮管50の外面に、凹凸等の表面積を増大させる部位を形成してもよいが、平滑面であってもよい。また、凝縮管50の内面にも、凹凸等の表面積を増大させる部位を形成してもよいが、平滑面であってもよい。 The condensing pipe 50 is disposed at an upper position of the internal space S of the container 30 so as to penetrate the container 30 and extend both inside and outside the container 30, and the second refrigerant R2 flows through the inside of the condensing pipe 50. . The inside of the condensing pipe 50 and the internal space S of the container 30 are not communicated with each other. That is, the second refrigerant R2 passing through the condensing pipe 50 includes the first liquid refrigerant R1 (L) sealed in the lower part of the internal space S of the container 30 and the first refrigerant R1 (L) in the liquid phase. does not come into contact with any of the first refrigerant (g) that has boiled into a gas phase. The condensing pipe 50 flows through the second refrigerant R2 that absorbs heat from the first refrigerant (g) in the gas phase, condenses the first refrigerant R1 (g) in the gas phase, and converts the first refrigerant R1 in the liquid phase to the first refrigerant R1 in the liquid phase. This is a member provided to change the phase to (L). In order to improve the cooling efficiency, the condensing tube 50 may have a portion increasing the surface area, such as unevenness, on the outer surface of the condensing tube 50, but it may also have a smooth surface. Further, the inner surface of the condensing tube 50 may also have a portion that increases the surface area, such as an uneven surface, but may also be a smooth surface.

冷却装置1は、複数の凝縮管、図1では2本の凝縮管50、50を設けた場合を示している。凝縮管50は、コンテナ30の内部空間Sにおいて、相互に略同一平面状に上下2段に並列配置されている。凝縮管50の横断面形状は、特に限定せず、例えば、図1に示すような円形状の他、楕円形状、扁平形状、四角形状、角丸長方形状など種々の態様が挙げられる。 The cooling device 1 is provided with a plurality of condensing pipes, and in FIG. 1, two condensing pipes 50, 50 are provided. The condensing pipes 50 are arranged in parallel in two stages, upper and lower, in the interior space S of the container 30 so as to be substantially coplanar with each other. The cross-sectional shape of the condensing tube 50 is not particularly limited, and includes various shapes such as a circular shape as shown in FIG. 1, an elliptical shape, a flattened shape, a square shape, and a rounded rectangular shape.

凝縮管50のコンテナ30への取り付け方法は、コンテナ30に凝縮管50ごとに2個の貫通孔51、51を設け、これらの貫通孔51、51に緊密に嵌挿されることで、コンテナ30の内部空間Sの密閉状態を維持したまま、凝縮管50をコンテナ30に取り付けることができる。 The method for attaching the condensing pipes 50 to the container 30 is to provide two through holes 51, 51 for each condensing pipe 50 in the container 30, and to fit the condensing pipes 50 tightly into these through holes 51, 51. The condensing pipe 50 can be attached to the container 30 while keeping the internal space S in a sealed state.

凝縮管50には、液相の2次冷媒R2が凝縮管50の延在方向に沿って一方向(図1では、右から左に向かう方向)に流通している。従って、2次冷媒R2は、凝縮管50の壁面を介して、コンテナ30の内部空間Sの上部位置を貫通するように流通する。2次冷媒R2は、例えば、発熱体の許容最高温度よりも低温の液温まで冷却されている。 A liquid-phase secondary refrigerant R2 flows through the condensing tube 50 in one direction (from right to left in FIG. 1) along the extending direction of the condensing tube 50. Therefore, the secondary refrigerant R2 flows through the wall surface of the condensing pipe 50 and through the upper part of the internal space S of the container 30. The secondary refrigerant R2 is cooled, for example, to a liquid temperature lower than the maximum allowable temperature of the heating element.

コンテナ30の材料としては、特に限定されず、広汎な材料を用いることができ、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金等を挙げることができる。 The material of the container 30 is not particularly limited, and a wide variety of materials can be used, such as copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, titanium alloy, etc. .

凝縮管50の材料としては、特に限定されず、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄合金(例えばステンレス鋼)、チタン、チタン合金等を挙げることができる。 The material of the condensing tube 50 is not particularly limited, and examples thereof include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, iron alloy (for example, stainless steel), titanium, titanium alloy, and the like.

1次冷媒R1(L)としては、特に限定されず、広汎な材料が使用でき、例えば、電気絶縁性の冷媒を挙げることができる。具体例としては、例えば、水、フルオロカーボン類、シクロペンタン、エチレングリコール、およびこれらの混合物等を挙げることができる。これらの1次冷媒R1(L)のうち、電気絶縁性の点から、フルオロカーボン類、シクロペンタン、エチレングリコールが好ましく、フルオロカーボン類が特に好ましい。 The primary refrigerant R1 (L) is not particularly limited, and a wide variety of materials can be used, such as electrically insulating refrigerants. Specific examples include water, fluorocarbons, cyclopentane, ethylene glycol, and mixtures thereof. Among these primary refrigerants R1 (L), fluorocarbons, cyclopentane, and ethylene glycol are preferred from the viewpoint of electrical insulation, and fluorocarbons are particularly preferred.

2次冷媒R2としては、特に限定されず、例えば、水、不凍液(主成分として、例えばエチレングリコールを含む。)等を挙げることができる。 The secondary refrigerant R2 is not particularly limited, and examples thereof include water, antifreeze (containing ethylene glycol as a main component, for example), and the like.

そして、冷却装置1は、上述したような伝熱部材10を有する。 The cooling device 1 includes the heat transfer member 10 as described above.

<冷却装置の冷却メカニズム>
次に、本発明の冷却装置1の冷却メカニズムについて、以下で説明する。
まず、発熱体が発熱すると、冷却装置1を構成するコンテナ30の底部を通じて伝熱部材10に熱が伝達され、伝熱部材10の温度が上昇し、コンテナ30の内部空間Sの下部に封入されている液相の1次冷媒R1(L)が加熱されて、液相の1次冷媒R1(L)が気相の1次冷媒R1(g)へ相変化することで、発熱体からの熱を潜熱として吸収する。次に、気相へ相変化した1次冷媒R1(g)は、コンテナ30の内部空間Sを上方へ移動し、凝縮管50と接触する。凝縮管50の内部には、低温の2次冷媒R2が流通している。このため、気相に相変化した1次冷媒R1(g)は、凝縮管50の外面に接触または接近することで、凝縮管50の熱交換作用により、潜熱を放出し、気相から液相へ相変化する。気相から液相への相変化の際に、気相の1次冷媒R1(g)から放出される潜熱が、凝縮管50を流通する2次冷媒R2へ伝達される。また、液相へ相変化した1次冷媒R1(L)は、重力作用下により、コンテナ30の内部空間Sを上部から下部へと還流する。1次冷媒R1(L)は、コンテナ30の密閉された内部空間Sにて、液相から気相へ相変化と、気相から液相への相変化を繰り返す。なお、冷却装置1では、1次冷媒R1が、コンテナ30の内部空間にて液相から気相への相変化と、気相から液相への相変化を繰り返すにあたり、仕切り板のような1次冷媒R1の循環経路を形成する必要はない。従って、コンテナ30は、単純な構造で形成することが可能である。そして、気相の1次冷媒R1(g)から熱を受けた2次冷媒R2は、凝縮管50の延在方向に沿って冷却装置1の内部から外部へ流通することで、発熱体の熱が冷却装置1の外部へ輸送される。
<Cooling mechanism of cooling device>
Next, the cooling mechanism of the cooling device 1 of the present invention will be explained below.
First, when the heating element generates heat, the heat is transferred to the heat transfer member 10 through the bottom of the container 30 constituting the cooling device 1, the temperature of the heat transfer member 10 rises, and the heat transfer member 10 is sealed in the lower part of the internal space S of the container 30. The liquid-phase primary refrigerant R1 (L) is heated, and the liquid-phase primary refrigerant R1 (L) undergoes a phase change to the gas-phase primary refrigerant R1 (g), which releases heat from the heating element. is absorbed as latent heat. Next, the primary refrigerant R1 (g) that has changed to the gas phase moves upward through the internal space S of the container 30 and comes into contact with the condensing pipe 50. A low-temperature secondary refrigerant R2 flows inside the condensing pipe 50. Therefore, when the primary refrigerant R1 (g) that has changed to the gas phase comes into contact with or approaches the outer surface of the condensing tube 50, it releases latent heat due to the heat exchange action of the condensing tube 50, and changes from the gas phase to the liquid phase. The phase changes to During the phase change from the gas phase to the liquid phase, the latent heat released from the gas phase primary refrigerant R1 (g) is transferred to the secondary refrigerant R2 flowing through the condensing pipe 50. Further, the primary refrigerant R1 (L) that has undergone a phase change to the liquid phase flows back through the internal space S of the container 30 from the upper part to the lower part under the action of gravity. The primary refrigerant R1 (L) repeats a phase change from a liquid phase to a gas phase and from a gas phase to a liquid phase in the sealed internal space S of the container 30. In addition, in the cooling device 1, when the primary refrigerant R1 repeats a phase change from a liquid phase to a gas phase and a phase change from a gas phase to a liquid phase in the internal space of the container 30, a There is no need to form a circulation path for the next refrigerant R1. Therefore, the container 30 can be formed with a simple structure. The secondary refrigerant R2, which has received heat from the gas phase primary refrigerant R1 (g), flows from the inside of the cooling device 1 to the outside along the extending direction of the condensing pipe 50, thereby generating heat from the heating element. is transported to the outside of the cooling device 1.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims. It can be modified to .

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail below based on Examples, but the present invention is not limited thereto.

(本発明例)
本発明例の冷却装置1は、図1に示す内部構造を有するものを構成した。このうち、コンテナ30としては、直方体状の銅製の容器を用いた。また、伝熱部材10としては、銅材料からなり、正方形の下面11aから隆起する隆起部11を有するものを用いた。ここで、隆起部11の輪郭形状は、厚さ方向Yを含み、かつ下面11aを構成する正方形の対角線に沿った平面で切断したときの2つの断面で見て、略楕円の最大高さhを6mm、係数kを2.27としたときに、上記手順1~6によって得られる略楕円形状を基準として、厚さ方向Yおよび下面の面方向Xの両方について±5%の範囲内に収まる輪郭形状を有するように構成した。また、隆起部11の上面11bの全面に、銅粉焼結体を接触面積増大部12として設けた。第1冷媒R1(L)として水を用い、コンテナ30の内部空間Sに第1冷媒R1(L)を充填し、減圧して封入した。
(Example of the present invention)
A cooling device 1 according to an example of the present invention has an internal structure shown in FIG. Among these, as the container 30, a rectangular parallelepiped copper container was used. Furthermore, the heat transfer member 10 used was one made of a copper material and having a raised portion 11 raised from a square lower surface 11a. Here, the contour shape of the raised portion 11 is approximately an ellipse with a maximum height h when viewed in two cross sections including the thickness direction Y and cut along a diagonal line of the square that constitutes the lower surface 11a. is 6 mm and the coefficient k is 2.27, it falls within a range of ±5% in both the thickness direction Y and the lower surface direction It is configured to have a contoured shape. Further, a copper powder sintered body was provided as a contact area increasing portion 12 on the entire upper surface 11b of the raised portion 11. Water was used as the first refrigerant R1 (L), and the interior space S of the container 30 was filled with the first refrigerant R1 (L), and the pressure was reduced and the water was sealed.

(比較例)
比較例の冷却装置1は、隆起部11の上面11bに接触面積増大部12を設けないこと以外は、本発明例と同様に構成した。
(Comparative example)
The cooling device 1 of the comparative example was configured in the same manner as the example of the present invention except that the contact area increasing portion 12 was not provided on the upper surface 11b of the raised portion 11.

(性能評価)
冷却装置の性能評価は以下の条件で行った。
実施例および比較例の冷却装置のそれぞれについて、50~400Wのヒータ(発熱体)を、コンテナの底部の外面に熱伝導グリスを介して接続して入熱し、そのときの凝縮管を通る第2冷媒の温度とヒータの温度との温度差を測定した。そして、測定した温度差を入熱量で除算して熱抵抗(K/W)を算出し、冷却装置の性能を評価した。なお、コンテナの内部空間に封入した第1冷媒および第2冷媒には、いずれも水を用いた。
(Performance evaluation)
Performance evaluation of the cooling device was performed under the following conditions.
For each of the cooling devices of the example and comparative example, a 50 to 400 W heater (heating element) is connected to the outer surface of the bottom of the container via thermal conductive grease to input heat, and a second The temperature difference between the refrigerant temperature and the heater temperature was measured. Then, the measured temperature difference was divided by the amount of heat input to calculate the thermal resistance (K/W), and the performance of the cooling device was evaluated. Note that water was used as both the first refrigerant and the second refrigerant sealed in the internal space of the container.

図8は、本発明例と比較例の冷却装置を用いて測定・算出した熱流束を横軸とし、算出した熱伝達率を縦軸としてプロットした図である。図8の結果から、本発明例の冷却装置は、比較例の冷却装置に比べて、いずれの熱流束においても熱抵抗が小さいため、熱伝達率が向上していることがわかる。 FIG. 8 is a diagram plotting the heat fluxes measured and calculated using the cooling devices of the inventive example and the comparative example on the horizontal axis and the calculated heat transfer coefficient on the vertical axis. From the results in FIG. 8, it can be seen that the cooling device according to the present invention has a lower thermal resistance at all heat fluxes than the cooling device according to the comparative example, so that the heat transfer coefficient is improved.

1 冷却装置
10、10A~10D 伝熱部材
30 コンテナ
31 コンテナの底部
31a コンテナの底部の内面
31b コンテナの底部の外面
11 隆起部
11a 隆起部の下面
11b 隆起部の上面
11c 隆起部の最大厚さ位置
12、12A~12D 接触面積増大部
13 基材
14 凹部
14a 凹部の開口部
15B、15C ベース部
15a ベース部の上面
16 フィン
17 フィン部
17a フィン部の上端面
4 発熱体
h 隆起部の形状の基準となる略楕円の最大高さ
P 発熱体の取付位置
R1 第1冷媒
R1(L) 液相の第1冷媒
R1(g) 気相の第1冷媒
R2 第2冷媒
S 内部空間
X 隆起部の下面の面方向
Y 隆起部の厚さ方向
1 Cooling device 10, 10A to 10D Heat transfer member 30 Container 31 Bottom of the container 31a Inner surface of the bottom of the container 31b Outer surface of the bottom of the container 11 Raised portion 11a Lower surface of the raised portion 11b Upper surface of the raised portion 11c Maximum thickness position of the raised portion 12, 12A to 12D contact area increasing portion 13 base material 14 recess 14a opening of recess 15B, 15C base portion 15a upper surface of base portion 16 fin 17 fin portion 17a upper end surface of fin portion 4 heating element h reference for shape of raised portion Maximum height of the approximately ellipse P Mounting position of the heating element R1 First refrigerant R1 (L) First refrigerant in liquid phase R1 (g) First refrigerant in gas phase R2 Second refrigerant S Internal space X Lower surface of the raised part Planar direction Y Thickness direction of the raised part

Claims (6)

コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱および沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材において、
前記伝熱部材は、前記コンテナの底部の内面に固着される下面から上方に向かって隆起した隆起部を有し
前記隆起部の輪郭形状は、前記隆起部の最大厚さ位置を通り、前記隆起部の厚さ方向を含む平面で切断したときの少なくとも一つの断面で見て、略楕円形状を有し、
前記隆起部の上面の少なくとも一部に、前記第1冷媒との接触面積を増大させる接触面積増大部が形成され、
前記接触面積増大部は、周期的に配置された複数の凹部を備え、かつ、
前記凹部は、前記凹部の深さ方向に見て、開口部における幅が最も狭いことを特徴とする伝熱部材。
It is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and is configured to transfer heat from the heating element to the inner space of the container. A heat transfer member that heats and boils the first refrigerant by transmitting it to a liquid-phase first refrigerant sealed in a lower part, and changes the phase of the first refrigerant from a liquid phase to a gas phase,
The heat transfer member has a protuberance that protrudes upward from a lower surface that is fixed to the inner surface of the bottom of the container ,
The contour shape of the raised part has a substantially elliptical shape when viewed in at least one cross section when cut along a plane that passes through the maximum thickness position of the raised part and includes the thickness direction of the raised part ,
A contact area increasing portion that increases a contact area with the first refrigerant is formed on at least a portion of the upper surface of the raised portion;
The contact area increasing portion includes a plurality of periodically arranged recesses, and
The heat transfer member is characterized in that the recess has the narrowest width at the opening when viewed in the depth direction of the recess .
前記接触面積増大部は、金属焼結体、金属粉集合体または炭素粒子集合体からなる多孔質層を備える、請求項1に記載の伝熱部材。 The heat transfer member according to claim 1, wherein the contact area increasing portion includes a porous layer made of a metal sintered body, a metal powder aggregate, or a carbon particle aggregate. 前記隆起部は、前記下面を有するベース部と、前記ベース部から上方に向かって延出する、複数の板状または柱状のフィンからなるフィン部とによって構成される、請求項1または2に記載の伝熱部材。 3. The protruding portion is configured by a base portion having the lower surface and a fin portion including a plurality of plate-shaped or columnar fins extending upward from the base portion. heat transfer member. 前記隆起部は、前記下面から上方に向かって隆起したベース部と、前記ベース部から上方に向かって延出する、複数の板状または柱状のフィンからなるフィン部によって構成される、請求項1からのいずれか1項に記載の伝熱部材。 1 . The raised portion is configured by a base portion raised upward from the lower surface and a fin portion formed of a plurality of plate-shaped or columnar fins extending upward from the base portion. 3. The heat transfer member according to any one of 3 to 3. 前記隆起部は、前記少なくとも一つの断面で見て、最大厚さ(A)に対する、前記下面の長さ(B)の比(長短軸比B/A)が、1.2以上3.9以下の範囲である、請求項1からのいずれか1項に記載の伝熱部材。 The raised portion has a ratio of the length (B) of the lower surface to the maximum thickness (A) (major axis ratio B/A) of 1.2 or more and 3.9 or less, when viewed in the at least one cross section. The heat transfer member according to any one of claims 1 to 4 , which is in the range of. 底部の外面に、少なくとも1つの発熱体が熱的に接続され、内部空間の下部に、液相の第1冷媒が封入されたコンテナと、
前記コンテナの前記内部空間の上部位置にて、前記コンテナを貫通するように延在させ、内部を第2冷媒が流通する凝縮管と
を備える冷却装置であって、
前記冷却装置は、前記コンテナの底部の内面であって、前記底部の外面に熱的に接続される少なくとも1つの発熱体の取付位置に対応する位置に形成され、前記発熱体からの熱を、前記コンテナの内部空間の下部に封入された液相の第1冷媒に伝えることで前記第1冷媒を加熱・沸騰させ、前記第1冷媒を液相から気相に相変化させる伝熱部材を有し、
前記伝熱部材は、前記コンテナの底部の内面に固着される下面から上方に向かって隆起した隆起部を有し
前記隆起部の輪郭形状は、前記隆起部の最大厚さ位置を通り、前記隆起部の厚さ方向を含む平面で切断したときの少なくとも一つの断面で見て、略楕円形状を有し、
前記隆起部の上面の少なくとも一部に、前記第1冷媒との接触面積を増大させる接触面積増大部が形成され、
前記接触面積増大部は、周期的に配置された複数の凹部を備え、かつ、
前記凹部は、前記凹部の深さ方向に見て、開口部における幅が最も狭いことを特徴とする冷却装置。
At least one heating element is thermally connected to the outer surface of the bottom, and a liquid-phase first refrigerant is sealed in the lower part of the inner space;
A cooling device comprising: a condensing pipe extending through the container at an upper position of the internal space of the container, and through which a second refrigerant flows;
The cooling device is formed on the inner surface of the bottom of the container at a position corresponding to the mounting position of at least one heating element thermally connected to the outer surface of the bottom, and the cooling device is configured to absorb heat from the heating element. The heat transfer member includes a heat transfer member that heats and boils the first refrigerant by transmitting the heat to the liquid phase first refrigerant sealed in the lower part of the internal space of the container, and changes the phase of the first refrigerant from the liquid phase to the gas phase. death,
The heat transfer member has a protuberance that protrudes upward from a lower surface that is fixed to the inner surface of the bottom of the container ,
The contour shape of the raised part has a substantially elliptical shape when viewed in at least one cross section when cut along a plane that passes through the maximum thickness position of the raised part and includes the thickness direction of the raised part ,
A contact area increasing portion that increases a contact area with the first refrigerant is formed on at least a portion of the upper surface of the raised portion;
The contact area increasing portion includes a plurality of periodically arranged recesses, and
The cooling device is characterized in that the recess has the narrowest width at the opening when viewed in the depth direction of the recess .
JP2020021992A 2020-02-13 2020-02-13 Heat transfer member and cooling device having heat transfer member Active JP7426844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021992A JP7426844B2 (en) 2020-02-13 2020-02-13 Heat transfer member and cooling device having heat transfer member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021992A JP7426844B2 (en) 2020-02-13 2020-02-13 Heat transfer member and cooling device having heat transfer member

Publications (2)

Publication Number Publication Date
JP2021128992A JP2021128992A (en) 2021-09-02
JP7426844B2 true JP7426844B2 (en) 2024-02-02

Family

ID=77488925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021992A Active JP7426844B2 (en) 2020-02-13 2020-02-13 Heat transfer member and cooling device having heat transfer member

Country Status (1)

Country Link
JP (1) JP7426844B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049266A (en) 1998-05-25 2000-02-18 Denso Corp Boiling cooler
JP2010016277A (en) 2008-07-07 2010-01-21 Toyota Industries Corp Boiling cooler
JP2019071343A (en) 2017-10-06 2019-05-09 市光工業株式会社 Design method of heat sink and heat sink
JP6606303B1 (en) 2019-04-11 2019-11-13 古河電気工業株式会社 Cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049266A (en) 1998-05-25 2000-02-18 Denso Corp Boiling cooler
JP2010016277A (en) 2008-07-07 2010-01-21 Toyota Industries Corp Boiling cooler
JP2019071343A (en) 2017-10-06 2019-05-09 市光工業株式会社 Design method of heat sink and heat sink
JP6606303B1 (en) 2019-04-11 2019-11-13 古河電気工業株式会社 Cooling system

Also Published As

Publication number Publication date
JP2021128992A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6688863B2 (en) Cooling device and cooling system using the cooling device
JP6542915B2 (en) heat pipe
JP4653247B2 (en) Flat heat pipe and method of manufacturing the same
JP6560425B1 (en) heat pipe
JP6542914B2 (en) heat pipe
JP4653187B2 (en) Thin heat pipe and manufacturing method thereof
JP6582114B1 (en) heatsink
JP6697112B1 (en) heatsink
JPWO2019131790A1 (en) heat pipe
TW201842297A (en) Heat pipe
JP7426844B2 (en) Heat transfer member and cooling device having heat transfer member
WO2020054752A1 (en) Cooling device and cooling system using same
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP7370883B2 (en) Heat transfer member and cooling device having heat transfer member
JP7072547B2 (en) Cooling device and cooling system using cooling device
TWI832194B (en) steam room
JP6868476B2 (en) heat pipe
JP7233336B2 (en) Boiling heat transfer member, cooler with boiling heat transfer member, and cooling device with boiling heat transfer member
JP2021188886A (en) Heat transfer member and cooling device having heat transfer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R151 Written notification of patent or utility model registration

Ref document number: 7426844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151