JPS59123252A - Condenser - Google Patents

Condenser

Info

Publication number
JPS59123252A
JPS59123252A JP57233493A JP23349382A JPS59123252A JP S59123252 A JPS59123252 A JP S59123252A JP 57233493 A JP57233493 A JP 57233493A JP 23349382 A JP23349382 A JP 23349382A JP S59123252 A JPS59123252 A JP S59123252A
Authority
JP
Japan
Prior art keywords
condensing
partition wall
chamber
condensing device
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233493A
Other languages
Japanese (ja)
Inventor
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57233493A priority Critical patent/JPS59123252A/en
Publication of JPS59123252A publication Critical patent/JPS59123252A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a condenser with high rate of heat transfer by a method wherein the inside of a condenser container is divided into a mixing chamber and a condensing chamber by a partition wall having a plurality of air passages, and coolant vapor is forced to conduct convection by utilizing the pressure difference due to the difference of temperatures between both of the chambers. CONSTITUTION:The partition wall 3 is provided, and the inside of the closed container 1 is divided, thus forming the mixing chamber 4 and the condensing chamber 5. A partition wall wherein a plurality of the air passages, e.g., holes 2 are formed is used for the partition wall 3. The coolant vapor generated by a heat generator 8 is led to the mixing chamber 4. On the other hand, since a tube 6 is supplied with low temperature fluid, the temperature in the condensing chamber 5 is lower than in the chamber 4, resulting in the decrease of the density of condensed gas, and then the pressure difference generates between the mixing chamber 4 and the condensing chamber 5. The coolant vapor flows into the condensing chamber 5 through the holes 2, is condensed by collision with the upper part of the condensed heat transfer surface of the tube 6, drops to the bent curved surface in the lower part of the partition wall 3 in the form of condensate 7, and then returns to the bottom in the closed container 1 through a condensate reflux passage B.

Description

【発明の詳細な説明】 この発明は、大容量半導体や変圧器などの発熱体を冷却
するために用いられ、フレオンなどの有機冷媒の沸騰現
象によって生じる冷媒蒸気を凝縮させる凝縮装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensing device that is used to cool a heat generating element such as a large-capacity semiconductor or a transformer, and that condenses refrigerant vapor generated by the boiling phenomenon of an organic refrigerant such as Freon.

〔発明の技術背景〕[Technical background of the invention]

従来から重電機器、特に整流器、周数数変換器などの大
容量半導体使用機器あるいは変圧器などの静止機器の冷
却には、風冷、油冷などの冷却方法が採用されている。
BACKGROUND ART Conventionally, cooling methods such as air cooling and oil cooling have been used to cool heavy electrical equipment, particularly equipment using large-capacity semiconductors such as rectifiers and frequency converters, or stationary equipment such as transformers.

しかし、これらの冷却方式においては、重電機器のコン
パクト化、大WJ 量化によるエネルギ密度の増大にと
もなう損失エネルギの除去あるいは機器の不燃性、安全
性々どに大きな問題がある。
However, these cooling methods have major problems in the reduction of the size of heavy electrical equipment, the removal of energy loss due to increased energy density due to large WJ, the non-flammability of the equipment, and safety.

このため、温度上昇を低く抑えるばかりでなく、系全体
の温度を均一に保ち、表面熱伝達率が飛躍的に上昇する
沸騰および凝縮の相変化現象を応用した重電機器が実用
化されつつある。
For this reason, heavy electrical equipment is being put into practical use that not only keeps the temperature rise low, but also maintains the temperature of the entire system uniformly and applies the phase change phenomena of boiling and condensation, which dramatically increases the surface heat transfer coefficient. .

このような重電機器には被冷却体の冷却手段として、フ
I/オンなどの有機冷媒を沸騰させる際の相変化を利用
しているが、連続使用時には発生した冷媒蒸気を凝縮さ
せる凝縮装置が必要不可欠である。
Such heavy electrical equipment utilizes the phase change when boiling an organic refrigerant such as FI/ON as a means of cooling the object to be cooled, but a condensing device that condenses the refrigerant vapor generated during continuous use is used. is essential.

〔背景技術の問題点〕[Problems with background technology]

ところで、この種の凝縮装置は沸騰部と凝縮部から構成
されており、従来この凝縮部の凝縮熱伝達率を高めるた
め、冷却流体路を形成する管体の凝縮伝熱面に凹凸など
を設けたり、拡大伝熱1m効果を付加したりする着想が
見うけられる。一方、沸朕部をも含めた冷却系全体の動
作の良否を左右するものは、この凝縮装置であると言っ
てもよい。しかしながら、この部分の凝縮熱伝達性能を
向上させる対電は未だ不十分であり、実用の域に達して
いるとは言えない。
By the way, this type of condensing device consists of a boiling section and a condensing section. Conventionally, in order to increase the condensing heat transfer coefficient of this condensing section, irregularities were provided on the condensing heat transfer surface of the tube forming the cooling fluid path. There are also ideas for adding an extended heat transfer effect of 1 m. On the other hand, it can be said that this condensing device determines the quality of the operation of the entire cooling system including the boiling part. However, the countercurrent that improves the condensation heat transfer performance of this part is still insufficient, and it cannot be said that it has reached the level of practical use.

〔発明の目的〕[Purpose of the invention]

この発明は上記のよう力事情に基づいてなされたもので
、凝縮熱伝達率を高めることができる凝縮装置を得ると
とを目的とする。
This invention was made based on the above-mentioned circumstances, and an object thereof is to provide a condensing device capable of increasing the condensing heat transfer coefficient.

〔発明の概要〕[Summary of the invention]

この発明は、上記目的を達成するために複数の通気路を
有する隔壁により、密閉容器内を混合室と凝縮室とに区
画し、密閉容器内部の発熱体により生ずる蒸気を前記混
合室から前記通路を介して前記凝縮室内に導くとともに
、凝縮室内で液化された冷媒液を前記発熱体周囲に導く
ようにじたものである。
In order to achieve the above object, the present invention divides the inside of a closed container into a mixing chamber and a condensation chamber by a partition wall having a plurality of ventilation passages, and directs steam generated by a heating element inside the closed container from the mixing chamber to the passageway. The refrigerant liquid is introduced into the condensing chamber through the condensing chamber, and the refrigerant liquid liquefied in the condensing chamber is introduced around the heating element.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の第1の実施例について図面を参照して
説明する。第1図はこの凝縮装置の断面図を示すもので
、この密閉容器1は断面がほぼ台形で上半部が上部に向
って徐々に寸法が大きくラソノ.t+状になっていて、
下半部はストレートになっている。この密閉容器l内に
この上半部側の側壁に大部分かほぼ平行でかつ下端部は
下半部側の側壁に近接するごとく折曲された隔壁3を設
置し、密閉容器l内の上部空間を分割して混合室4と凝
縮室5を形成する。前記隔壁3は複数の通気路例えば孔
2を形成したものを用い、隔壁3の下端部と密閉容器1
とで還流路Bを構成する。前記凝縮室5内には冷却流体
路を形成するa数の断面円形の管体6を図のように配設
するが、谷官体6は水平でかつこの各管体6の凝縮伝熱
面に生成さicる凝縮液7の落下でいずれの管体6も語
れることのないように粕次上下左右にずらして水平に配
設する。各管体6の内部には図示しない低温流体供給部
からの低温流体が供給されるようになっている。さらに
前記密閉容器l内の底部には発熱体8を設置し、前記密
閉容器1内の底部にはフレオンなとの有機冷媒液9を封
入し、ここで発熱体8の発熱により有機冷媒液9の冷媒
蒸気を作る沸騰部を構成する。
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of this condensing device. This closed container 1 has a nearly trapezoidal cross section, and the upper half gradually increases in size toward the top. It has a T+ shape,
The lower half is straight. Inside this airtight container l, a partition wall 3 is installed which is mostly or almost parallel to the side wall on the upper half side and whose lower end is bent so as to be close to the side wall on the lower half side. A mixing chamber 4 and a condensing chamber 5 are formed by dividing the space. The partition wall 3 is formed with a plurality of ventilation passages, for example, holes 2, and the lower end of the partition wall 3 and the airtight container 1 are connected to each other.
This constitutes a reflux path B. Inside the condensation chamber 5, tubes 6 having a circular cross section and having a number of a number of tubes forming cooling fluid passages are arranged as shown in the figure.The valley body 6 is horizontal and the condensing heat transfer surface of each tube 6 In order to prevent any of the tubes 6 from being damaged due to the fall of the condensate 7 generated during the process, the tubes 6 are disposed horizontally so as to be shifted vertically and horizontally. A low-temperature fluid is supplied to the inside of each tube 6 from a low-temperature fluid supply section (not shown). Further, a heating element 8 is installed at the bottom of the airtight container 1, and an organic refrigerant liquid 9 such as Freon is sealed in the bottom of the airtight container 1. It consists of a boiling section that produces refrigerant vapor.

このように構成されたものにおいて、一発熱体8が熱を
発するとこの周囲にある有機冷媒液9が沸騰状態となり
冷媒蒸気Aが発生し、この冷媒蒸気Aは密閉容器l内の
上方の混合室4に導かれる。
In this structure, when one heating element 8 generates heat, the organic refrigerant liquid 9 around it boils and generates refrigerant vapor A, and this refrigerant vapor A is mixed in the upper part of the closed container l. You will be led to room 4.

一方、この混合室4と凝縮室5との間が隔壁3で区画さ
れ、凝縮室5内にある管体6内に低温流体が供給されて
いる。従って凝縮室5内の温度は混合室4より低く、か
つ管体6の凝縮伝熱面で凝縮状態となっていることから
、凝縮室5内は、この凝縮性ガスの濃度か低下して低圧
となる。このため、混合室4と凝縮室5との間に圧力差
が発生し、混合室4内に尋かれた冷媒蒸気Aは、隔壁3
の孔2を通じて凝縮室5に流れ込む。この凝縮室5内に
流れ込んだ冷媒蒸気Aは管体6の凝縮伝熱面の上部に衝
突して凝縮され、ここで凝縮液7となって隔壁3の下部
の折曲面部に落下し、凝縮液還流路Bを辿り密閉容器1
内の底部にもどる。
On the other hand, the mixing chamber 4 and the condensing chamber 5 are partitioned by a partition wall 3, and a low-temperature fluid is supplied into a pipe body 6 within the condensing chamber 5. Therefore, the temperature in the condensing chamber 5 is lower than that in the mixing chamber 4, and since it is in a condensed state on the condensing heat transfer surface of the tube body 6, the concentration of this condensable gas in the condensing chamber 5 decreases and the pressure becomes low. becomes. Therefore, a pressure difference occurs between the mixing chamber 4 and the condensing chamber 5, and the refrigerant vapor A in the mixing chamber 4 is transferred to the partition wall 5.
It flows into the condensation chamber 5 through the hole 2 . The refrigerant vapor A that has flowed into the condensing chamber 5 collides with the upper part of the condensation heat transfer surface of the tube body 6 and is condensed. Here, it becomes condensed liquid 7 and falls on the bent surface at the bottom of the partition wall 3, where it is condensed. Follow liquid return path B to airtight container 1
Return to the bottom inside.

以上述べた第1の実施例では、凝縮室5内の管体6の凝
縮伝熱面の直前に複数の孔2を有する隔壁3を設けたの
で、この隔壁3によって形成された混合室4と凝縮室5
との間に圧力差が生じ、通気孔2を通って凝縮伝熱面へ
進行する冷媒蒸気速朗を高めることができ、旨いtQ縮
酷熱伝達率得ることができる。
In the first embodiment described above, since the partition wall 3 having a plurality of holes 2 is provided immediately before the condensing heat transfer surface of the tube body 6 in the condensing chamber 5, the mixing chamber 4 formed by this partition wall 3 Condensation chamber 5
A pressure difference is generated between the refrigerant vapor and the refrigerant vapor flowing through the vent hole 2 to the condensing heat transfer surface, and a good tQ compression heat transfer coefficient can be obtained.

このことは第2図の実11.空結果からも明らかである
。すなわち、第2図は以上述べたものと全く同一の凝縮
装置(5において、検数の孔2を有する1石壁3が存在
する場合Cと、この隔壁3をとり去った」禍合りとの発
熱体8の出力とで1イ4合冥4内の圧力を比較したもの
である。これから明らかなように隔壁3が存在する方が
内圧の増加はゆるやかであり、使用状況は良好である。
This is fact 11 in Figure 2. This is also clear from the empty results. In other words, Fig. 2 shows a condensing device that is exactly the same as the one described above (in case 5, one stone wall 3 with a number of holes 2 is present, C, and the case where this partition wall 3 is removed). The pressure inside the 1-4 joint 4 is compared with the output of the heating element 8.As is clear from this, the internal pressure increases more slowly when the partition wall 3 is present, and the usage conditions are better.

なお、隔壁3に五)数の孔2が形成されていることから
発生ρ肯ij失が増加するか、内圧の児・加がゆるやか
である。
It should be noted that since five holes 2 are formed in the partition wall 3, the amount of internal pressure generated increases or the internal pressure increases slowly.

次に第2の実施例について第3図を参照して説明する。Next, a second embodiment will be described with reference to FIG.

この実硝りijは密閉容器10内に凝縮性ガスと非4を
縮性力スが混在する凝縮装置1を示すものであり、との
狗成は第1図とほぼ同様で、密閉ネ≠器10の断面構造
、が−知り、これにともかいろ・−縮重5の内部構造が
多少異るだけである。
This actual case shows a condensing device 1 in which a condensable gas and a non-condensable gas coexist in a closed container 10, and the structure is almost the same as that in Fig. 1, and the closed container ≠ The cross-sectional structure of the container 10 is known, and the only difference is the internal structure of the degenerate 5.

この第2の実施例においては、発熱によって発生した蒸
気Aは隔壁3の孔2を通って管体6の凝縮伝熱面に衝突
し、熱伝達率が高まるはかりでなく、管体6の凝縮伝熱
面近傍に外乱する非凝縮性ガスを吹き払う。このため、
この部分の伝熱面は常に凝縮性蒸気に触れるようになり
、非凝綿性ガスによる熱伝達率の低下を回゛仮すること
ができ、凝縮作用が促進される。
In this second embodiment, the steam A generated by heat generation passes through the holes 2 of the partition wall 3 and collides with the condensation heat transfer surface of the tube body 6, and the heat transfer coefficient is not increased, but the condensation of the tube body 6 Blow away non-condensable gas that is disturbed near the heat transfer surface. For this reason,
The heat transfer surface in this part is always in contact with condensable vapor, which makes it possible to reverse the decrease in heat transfer coefficient caused by non-condensable gas, and promotes the condensation action.

一方、凝縮は管体6のみな−らず屈゛閉容器1の表面に
も発生する。凝縮伝熱面を宿する管体6内部に供給され
る冷却流体の温度により凝縮室5内部の圧力分布および
流れが決定され西から、長時間の運転経過後には、低温
の凝縮面近傍に非凝縮性ガスが高濃度で存在するように
なる。
On the other hand, condensation occurs not only on the tube body 6 but also on the surface of the closed container 1. The pressure distribution and flow inside the condensing chamber 5 are determined by the temperature of the cooling fluid supplied to the inside of the tube body 6 which houses the condensing heat transfer surface. Condensable gases become present in high concentrations.

従って、隔壁3からt’flれた箇所に低温の管体6が
設置されているので、その周囲に非凝縮性ガスが捕集さ
れ、隔り、γ3に近い部分の凝縮熱伝達率を良好に保つ
ことができる。
Therefore, since the low-temperature tube body 6 is installed at a location t'fl away from the partition wall 3, non-condensable gas is collected around it, improving the condensation heat transfer coefficient in the area near the partition and γ3. can be kept.

なお、前記非凝縮性ガスとして例え148 F6(六フ
ッ化イオウ)ガスを密閉容器l内に1飄利性ガスと混在
させるのは、凝縮熱伝達性能を著しく低下さぜるので混
在させない方が良いが1、 フレオンなどの冷媒蒸気の
発生が十分でない始動時に問題となる絶縁耐電圧保持の
ために、非凝縮性ガスを相当量混入させる。このような
ことから従来との棹凝縮装置にあっては、大形化が余儀
なくされ、凝縮装置の寸法上、第2次的な対策例えは地
震、設置場所が必要となり実用化する上で太き万障害と
力っていた。
In addition, mixing 148 F6 (sulfur hexafluoride) gas as the non-condensable gas with a non-condensing gas in a closed container will significantly reduce the condensation heat transfer performance, so it is better not to mix it. Good, but 1. A considerable amount of non-condensable gas is mixed in to maintain dielectric withstand voltage, which is a problem at startup when sufficient refrigerant vapor such as Freon is not generated. For this reason, conventional rod condensing devices are forced to be larger, and due to the size of the condensing device, secondary countermeasures such as earthquakes require installation space and are difficult to put into practical use. I was struggling with all my troubles.

第3図の実施例の効果は第4図の実験結果からも明らか
である。すなわち、第4図は全く同一の凝縮装置におい
て、複数の孔2を有する隔壁3が存在する場合Eと、こ
の隔壁3を取シ除いた場合Fとの発熱体8の出力と混合
室4内の圧力を比軸したものである。なお、非凝縮性ガ
スとしてS F6ガスを使用し、冷却媒体としてフロン
(R113)を使用した際の実験結果である。
The effect of the embodiment shown in FIG. 3 is also clear from the experimental results shown in FIG. That is, FIG. 4 shows the output of the heating element 8 and the inside of the mixing chamber 4 in the case E when the partition wall 3 having a plurality of holes 2 is present and in the case F when the partition wall 3 is removed in exactly the same condensing device. It is the ratio of the pressure of Note that these are experimental results when SF6 gas was used as the non-condensable gas and Freon (R113) was used as the cooling medium.

このように、隔壁3が存在する方が隔壁3が存在しない
ものに比べて発生熱損失が増加しても内圧の増加はゆる
ーやかであり、使用状況は良好である。
As described above, when the partition wall 3 is present, the internal pressure increases more slowly than when the partition wall 3 is not present, even if the generated heat loss increases, and the usage conditions are better.

次に、この発明の第3の実施例について、第5図を参照
して説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

この実施例は、断面短形状の密閉容器ll内に複数個の
孔12を有するクランク状の隔壁13を設置7しこれに
より混合室14と凝縮室15とに分割し、また凝縮室1
5内にパイプ16によって連結された冷却流体路を形成
するだめの検数の管体17を垂直に配置し、さらに密閉
容器11の底部に発熱体18を設置し、その周囲に有機
冷媒液を満たしたものである。なお、符号20は凝縮液
還流路を示している。
In this embodiment, a crank-shaped partition wall 13 having a plurality of holes 12 is installed 7 in an airtight container 11 having a short cross-sectional shape, dividing it into a mixing chamber 14 and a condensing chamber 15.
A plurality of tubular bodies 17 forming a cooling fluid path connected by pipes 16 are arranged vertically within the closed container 11, and a heating element 18 is installed at the bottom of the closed container 11, and an organic refrigerant liquid is placed around the heating element 18. It is fulfilled. In addition, the code|symbol 20 has shown the condensate reflux path.

このような構成においても、前記実施例と同様の効果が
得られることは勿論である。
Of course, even in such a configuration, the same effects as in the above embodiment can be obtained.

次に、この発明の第4の実施例について、第6図を参照
して説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIG. 6.

この実施例は第3図における密閉容器10を垂直方向に
ほぼ2分割しこのうち一方を密閉容器21とし、この密
閉容器21内に凝縮室5を1つとし、装置全体の小形化
を図ったものである。この実施例においても第2の実施
例と同様の効果が得られることは勿論である。
In this embodiment, the closed container 10 in FIG. 3 is vertically divided into two parts, one of which is made into a closed container 21, and one condensation chamber 5 is provided in this closed container 21, thereby reducing the size of the entire device. It is something. It goes without saying that this embodiment also provides the same effects as the second embodiment.

次にこの発明の第5の実施例について、第7図を参照し
て!明する。
Next, regarding the fifth embodiment of this invention, please refer to FIG. 7! I will clarify.

この実施例は第6図の密閉容器21を多少かえた形状の
容器22とし、隔壁3から離れた部“分にも管体6と同
様の管体23を2層以上配置したものである。
In this embodiment, a container 22 has a shape slightly different from the closed container 21 shown in FIG. 6, and two or more layers of tubes 23 similar to the tubes 6 are arranged in a portion away from the partition wall 3.

従って、この実施例によれば、隔壁3から離れだ部分に
も管体23を配置しだので、特に非凝縮性ガスと凝縮性
ガスが混在するものに有効である。すなわち、凝縮室5
内の非凝縮性ガスの分布に濃度差が生じ、非凝縮性ガス
溜めとしての機能を持たせることができる。
Therefore, according to this embodiment, since the tube body 23 is arranged even in a portion remote from the partition wall 3, it is particularly effective for a case where non-condensable gas and condensable gas are mixed. That is, the condensing chamber 5
A difference in concentration occurs in the distribution of non-condensable gas within the tank, allowing it to function as a non-condensable gas reservoir.

次に第6の実施例について、第8図を参照して説明する
Next, a sixth embodiment will be described with reference to FIG.

この実施例は、複数の板状成形部材例えば断面形状がコ
字状をなす部材24を互いの間隙25を存するとともに
この間隙25が凝縮管6の斜め上方に位置するように配
置し、これらによシ構成される隔壁26で前記実施例の
隔壁3と同様の作用をもたぜたものである。なお、第8
図において符号27は冷却流体を示している。
In this embodiment, a plurality of plate-shaped molded members, for example, members 24 having a U-shaped cross section, are arranged with a gap 25 between them, and this gap 25 is located diagonally above the condensing pipe 6. The partition wall 26 is constructed in a similar manner and has the same function as the partition wall 3 of the previous embodiment. In addition, the 8th
In the figure, reference numeral 27 indicates a cooling fluid.

この実施例によれば、管体6にそって間隙25が設けら
れているので、冷媒蒸気Aの通りがよく、さらに凝縮熱
伝達率が高くなる。
According to this embodiment, since the gap 25 is provided along the tube body 6, the passage of the refrigerant vapor A is improved, and the condensing heat transfer coefficient is further increased.

次に第7の実施例について、第9図お−よび第10図を
参照して説明する。この実施例は隔壁26として板状成
形部材例えばほぼ断面V字状の部材24を複数個圧いに
通気路を形成するために間隙25を存して配設■7、こ
の間隙25に対向する冷却流体路を形成する管体29の
離線伝熱面30を波形状に成形し、かつこの突出部3θ
Aを前記間隙25に対応させるとともに、その四部30
Bに凝縮伝熱面30に生成される凝縮7f′1.31が
貯留流下するようにしだものである。このように構成さ
れているので、凝縮伝熱面に拡大伝熱面効果が加わると
ともに、凝縮作用の太きい突出部、? OAの周囲の凝
縮液膜の厚さが薄く保たれ、かつ流れの衝突効果が加わ
ることから高い熱伝達率を保持することができる。
Next, a seventh embodiment will be described with reference to FIGS. 9 and 10. In this embodiment, a plurality of plate-shaped molded members 24, for example, members 24 having a substantially V-shaped cross section, are arranged as partition walls 26 with a gap 25 left in order to form a ventilation path. The off-line heat transfer surface 30 of the tube body 29 forming the cooling fluid path is formed into a wave shape, and this protrusion 3θ
A corresponds to the gap 25, and its four parts 30
The condensate 7f'1.31 generated on the condensation heat transfer surface 30 is stored and flows down to B. With this structure, an enlarged heat transfer surface effect is added to the condensing heat transfer surface, and a thick protrusion with a large condensing effect, ? Since the thickness of the condensate film around the OA is kept small and the flow impingement effect is added, a high heat transfer coefficient can be maintained.

なお、この発明は前述した実施例に限らず例えは次のよ
うへしでもよい。すなわち、前述した実施例の通気路の
出1コ部にノズル体を設け、凝縮性蒸気の流動の際の圧
力損失を低減さぜるようにしてもよい。また、凝縮伝熱
面に凝縮液を流下させるだめの溝を持たせ、凝縮液の凝
縮伝熱面からの排除を良好ならしめるようにしてもよい
。さらに隔壁、通気路の形成を任意にしてもよい。その
他、この発明の要旨を変更しない範囲で独々変形して実
施できる。
Incidentally, the present invention is not limited to the above-mentioned embodiment, but may be modified as follows. That is, a nozzle body may be provided at one end of the air passage in the embodiment described above to reduce pressure loss during flow of condensable steam. Further, the condensing heat transfer surface may be provided with a groove for allowing the condensate to flow down, so that the condensate can be efficiently removed from the condensing heat transfer surface. Furthermore, the formation of partition walls and ventilation passages may be made arbitrary. Other modifications may be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたこの発明によれは、凝編器容器内を、ネy数
の通気路を有する隔壁により混合室と凝縮室とに区画し
、前記画室の温度の違いによる圧力差を利用して発熱体
により生ずる蒸気を強制的に対流させるようにしたので
、熱伝達率の高い凝縮装置を提供できる。
According to the invention described above, the inside of the condenser container is divided into a mixing chamber and a condensing chamber by a partition wall having an air passage of Ney's number, and heat is generated by utilizing the pressure difference caused by the temperature difference between the compartments. Since the steam generated by the body is forced to undergo convection, it is possible to provide a condensing device with a high heat transfer coefficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を説明する説明するだ
めの断面図、第4図は第2の実施例の効果を説明するだ
めの特性図、第5図〜第8図は第3の実施例〜第6の実
施例を説明するだめの断面図、第9図および第10図は
第7の実施例を説明するだめの断面図である。 1・・・密閉容器、2・・・通気路例えは孔、3・・苗
種、4・混合室、5・・・凝縮室、6・・冷却流体路を
形成する管体、7・・・凝縮液、8・・発熱体、9・・
有機冷媒液、10.11・・・密閉容器、12 ・通気
路例えば孔、13・・・隔壁、14・・・混合室、15
・・・凝縮室、17・・・冷却流体路を形成する管体、
18・・・発熱体、19・・・有機冷媒液、21,22
・・・密閉容器、23 冷却流体路を形成する管体、2
4・・・板状成形部材、25・・・間隙、26・・・隔
壁、29・・・冷却流体路を形成する管体、30・・・
凝縮伝熱面、A・・・冷媒蒸気、B・・・還流路。 出願人代理人 弁理士 鈴 江 武 彦第1図 第 2 図 慶i44看1友 第3図 第4 図 !L本4〜人 第5図 − /i 第 〆 図 第 7図 ? 第3図 b 第9図 笛/θ図 特許庁長官   若 杉 和 夫 殿 1、事件の表示 g当願昭57−233493号 2、発明の名称 凝  縮  装  T疲 3、補正をする者 事件との関係  特許出願人 (307)東京芝浦Mjf、気株式会社4、代理人
FIG. 1 is a sectional view of a device for explaining the first embodiment of the present invention, FIG. 4 is a characteristic diagram of the device for explaining the effects of the second embodiment, and FIGS. FIGS. 9 and 10 are cross-sectional views for explaining the third to sixth embodiments, and FIGS. 9 and 10 are cross-sectional views for explaining the seventh embodiment. DESCRIPTION OF SYMBOLS 1... Airtight container, 2... Ventilation path, for example, hole, 3... Seedling, 4... Mixing chamber, 5... Condensation chamber, 6... Pipe forming a cooling fluid path, 7...・Condensate, 8... Heating element, 9...
Organic refrigerant liquid, 10.11... Airtight container, 12 - Ventilation path, e.g. hole, 13... Partition wall, 14... Mixing chamber, 15
... Condensation chamber, 17... Pipe body forming a cooling fluid path,
18... Heating element, 19... Organic refrigerant liquid, 21, 22
... Sealed container, 23 Pipe body forming a cooling fluid path, 2
4... Plate-shaped molded member, 25... Gap, 26... Partition wall, 29... Pipe body forming cooling fluid path, 30...
Condensation heat transfer surface, A: refrigerant vapor, B: reflux path. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 44 View 1 Figure 3 Figure 4! L Book 4-Person Figure 5 - /i Volume 7 Figure 7? Figure 3b Figure 9 Whistle/θ Figure Director of the Patent Office Kazuo Wakasugi 1, Indication of the case g This application No. 57-233493 2, Condensed name of the invention T fatigue 3, Case of the person making the amendment Relationship Patent applicant (307) Tokyo Shibaura Mjf, Ki Co., Ltd. 4, agent

Claims (9)

【特許請求の範囲】[Claims] (1)密閉容器内下部に有機冷媒液を封入し、この有機
冷媒液を前記密閉容器内下部に配置汽した発熱体により
冷媒蒸気を発生させ、この冷媒蒸気を前記密閉容器内上
部に配設したイ肖体の凝縮伝熱面で凝縮させて前記有機
冷媒液に循環させる凝縮装置において、前記密閉容器内
上部に複数の通気路を有する隔壁を設けて前記管体の存
在する凝縮室と管体の存在しない混合室に区画し、この
混合室内の前記冷媒蒸気を前記隔壁の通気路を介して前
記凝縮室に導き、前記管体の凝縮伝熱面で液化された冷
媒液を前記発熱体の周囲に導くようにしたことを特徴と
する凝縮装置。
(1) An organic refrigerant liquid is sealed in the lower part of the sealed container, this organic refrigerant liquid is placed in the lower part of the sealed container, a steamed heating element generates refrigerant vapor, and this refrigerant vapor is placed in the upper part of the sealed container. In the condensing device that condenses on the condensation heat transfer surface of the condensing body and circulates it to the organic refrigerant liquid, a partition wall having a plurality of ventilation passages is provided in the upper part of the closed container to separate the condensation chamber where the tube body exists and the tubes. The refrigerant vapor in this mixing chamber is guided to the condensing chamber through the air passage of the partition wall, and the refrigerant liquid liquefied on the condensation heat transfer surface of the tube body is transferred to the heating element. A condensing device characterized in that it is guided around the
(2)  隔壁は一体の板状部拐からなり、これに複数
の通気路を形成したものである特許請求の範囲第1項記
載の凝縮装置。
(2) The condensing device according to claim 1, wherein the partition wall is made of an integral plate-like section, and a plurality of ventilation passages are formed in the partition wall.
(3)隔壁は複数の板状成形部材を互いに間隙を存して
並設し、この間隙で通気路を構成した特許請求の範囲第
1項記載の凝縮装置。
(3) The condensing device according to claim 1, wherein the partition wall includes a plurality of plate-shaped molded members arranged side by side with gaps between them, and the gaps constitute ventilation passages.
(4)隔壁の通気路は、一体の板状部材に形成した孔お
よびこの孔に設けたノズル儀いずれが一方で構成した特
許請求の範囲第2項記載の凝縮装置。
(4) The condensing device according to claim 2, wherein the ventilation path of the partition wall is formed by a hole formed in an integral plate member and a nozzle provided in the hole.
(5)管体は円管部材で形成した特許請求の範囲第1項
記載の凝縮装置。
(5) The condensing device according to claim 1, wherein the tube body is formed of a circular tube member.
(6)管体(dこの凝縮伝熱面を波形に形成したもので
ある特許δI”■求の範囲第1項記載の凝縮装置。
(6) The condensing device described in the scope of the patent δI''■, item 1, wherein the condensing heat transfer surface is formed into a corrugated shape.
(7)凝縮室内(d、、管体を複数心配列して非凝縮性
ガス溜めとしての機能な持った特許請求の範囲第1項記
載の凝縮装置。
(7) The condensing device according to claim 1, wherein the condensing chamber (d) has a plurality of tube bodies arranged to function as a non-condensable gas reservoir.
(8)#縮量内の管体の凝縮液を流下させるだめの溝を
形成した特許請求の範囲第1項記載の凝縮装置。
(8) The condensing device according to claim 1, wherein a groove is formed to allow the condensed liquid of the pipe body within the amount of condensation to flow down.
(9)凝縮室から発熱体のある密閉容器下部に非凝縮性
ガスが還流するのを避け、凝縮液のみが流下還流するよ
うに、隔壁の下端部に還流路を形成した特許請求の範囲
第1項記載の凝縮装置。
(9) A reflux path is formed at the lower end of the partition wall so that only the condensate flows down and refluxes, avoiding non-condensable gas from refluxing from the condensing chamber to the lower part of the closed container where the heating element is located. The condensing device according to item 1.
JP57233493A 1982-12-28 1982-12-28 Condenser Pending JPS59123252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233493A JPS59123252A (en) 1982-12-28 1982-12-28 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233493A JPS59123252A (en) 1982-12-28 1982-12-28 Condenser

Publications (1)

Publication Number Publication Date
JPS59123252A true JPS59123252A (en) 1984-07-17

Family

ID=16955875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233493A Pending JPS59123252A (en) 1982-12-28 1982-12-28 Condenser

Country Status (1)

Country Link
JP (1) JPS59123252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler
JP2014127539A (en) * 2012-12-26 2014-07-07 Fujitsu Ltd Cooler for electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler
JP2014127539A (en) * 2012-12-26 2014-07-07 Fujitsu Ltd Cooler for electronic device

Similar Documents

Publication Publication Date Title
US4027728A (en) Vapor cooling device for semiconductor device
US4036291A (en) Cooling device for electric device
US3024298A (en) Evaporative-gravity cooling systems
US6351951B1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
US20190357378A1 (en) Two-phase immersion cooling system and method with enhanced circulation of vapor flow through a condenser
JPH08340189A (en) Boiling cooling device
KR100368516B1 (en) Continuous steam generator
US4058160A (en) Heat transfer device
JP2010010204A (en) Ebullient cooling device
CN110868839A (en) Cooling device and switching power supply system
JPS59123252A (en) Condenser
EP0117349B1 (en) Cooling apparatus for an electrical transformer
JPS5863111A (en) Electromagnetic induction device
JPH07220936A (en) Transformer cooling structure with looped heat pipe
GB1595094A (en) Method and system for cooling electrical apparatus
US3538718A (en) Refrigeration evaporator heat exchanger
JPS5860512A (en) Evaporation cooling induction electric appliance
CN211635937U (en) Condensation box and condensation water trap
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
Tantolin et al. Experimental study of immersion cooling for power components
US2121999A (en) Vertical heat exchanger
US1711804A (en) Refrigeration
JPS6011422Y2 (en) evaporative cooling equipment
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
CN110375574A (en) A kind of falling liquid film even distribution device that cloth film and exhaust performance can be improved