JP2013069740A - Flat plate type cooling device and usage of the same - Google Patents

Flat plate type cooling device and usage of the same Download PDF

Info

Publication number
JP2013069740A
JP2013069740A JP2011205518A JP2011205518A JP2013069740A JP 2013069740 A JP2013069740 A JP 2013069740A JP 2011205518 A JP2011205518 A JP 2011205518A JP 2011205518 A JP2011205518 A JP 2011205518A JP 2013069740 A JP2013069740 A JP 2013069740A
Authority
JP
Japan
Prior art keywords
flat plate
heat
refrigerant
region
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011205518A
Other languages
Japanese (ja)
Inventor
Minoru Yoshikawa
実 吉川
Hitoshi Sakamoto
仁 坂本
Masaki Chiba
正樹 千葉
Kenichi Inaba
賢一 稲葉
Arihito Matsunaga
有仁 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011205518A priority Critical patent/JP2013069740A/en
Publication of JP2013069740A publication Critical patent/JP2013069740A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the improvement of cooling performance leads to the size increase of a cooling device, which uses a vapor cooling method.SOLUTION: A flat plate type cooling device of the invention has: a first flat plate; a second flat plate facing the first flat plate; a flat plate like container including a frame body part for connecting the first flat plate with the second flat plate; a coolant enclosed in the flat plate like container; and a passage wall which connects the first flat plate with the second flat plate and controls a coolant passage in the flat plate container. The flat plate like container includes: a heat reception region which is thermally connected to a heating body disposed on at least one of the first flat plate and the second flat plate; and a heat radiation region which is thermally connected to a heat radiation part disposed on at least one of the first flat plate and the second flat plate. The heat radiation region has multiple passage plates forming the coolant passage in the heat radiation region.

Description

本発明は、半導体装置や電子機器などの冷却装置に関し、特に、冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた平板型冷却装置及びその使用方法に関する。   The present invention relates to a cooling device such as a semiconductor device or an electronic device, and more particularly, to a flat plate cooling device using a boiling cooling system that transports and dissipates heat by a vaporization and condensation cycle of a refrigerant and a method of using the same.

近年、半導体装置や電子機器などの高性能化、高機能化に伴い、それらの発熱量も増大している。一方、携帯機器の普及等により半導体装置や電子機器などの小型化が進んでいる。このような背景から、高効率で小型の冷却装置が求められている。冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた冷却装置は、ポンプなどの駆動部を必要としない。そのため小型化に適していることから、半導体装置や電子機器などの冷却装置として期待されている。   In recent years, the amount of heat generated by semiconductor devices and electronic devices has been increased with higher performance and higher functionality. On the other hand, downsizing of semiconductor devices and electronic devices is progressing due to the spread of portable devices. From such a background, a highly efficient and small cooling device is demanded. A cooling device using a boiling cooling method that transports and dissipates heat by a cycle of vaporization and condensation of the refrigerant does not require a drive unit such as a pump. Therefore, since it is suitable for downsizing, it is expected as a cooling device for semiconductor devices and electronic devices.

このような沸騰冷却方式を用いた冷却装置(以下では、「沸騰冷却装置」とも言う)の一例が特許文献1に記載されている。特許文献1に記載された関連する沸騰冷却装置は、発熱体の熱を受ける液体冷媒を内部に貯留する冷媒貯留部と、冷媒貯留部に接続され、蒸発した冷媒蒸気を凝縮する凝縮部とを有する。冷媒貯留部と凝縮部はそれぞれ直方体状である金属性の筐体から構成される。関連する沸騰冷却装置は、冷媒貯留部および凝縮部の内部を複数の通路に区画する一対の通路形成板を備え、これによって冷媒貯留部に第1冷媒通路と第2冷媒通路が、凝縮部に第3冷媒通路と第4冷媒通路が形成される。さらに凝縮部は、内部を冷却流体が流通する中空板状の凝縮管を備え、凝縮管は冷媒蒸気の流れ方向に対し傾斜して配置した構成としている。   An example of a cooling device using such a boiling cooling system (hereinafter also referred to as “boiling cooling device”) is described in Patent Document 1. A related boiling cooling device described in Patent Document 1 includes a refrigerant storage unit that stores therein a liquid refrigerant that receives heat from a heating element, and a condensation unit that is connected to the refrigerant storage unit and condenses evaporated refrigerant vapor. Have. Each of the refrigerant storage unit and the condensing unit is composed of a metallic casing having a rectangular parallelepiped shape. The related boiling cooling device includes a pair of passage forming plates that divide the inside of the refrigerant reservoir and the condenser into a plurality of passages, whereby the first refrigerant passage and the second refrigerant passage are provided in the condenser in the refrigerant reservoir. A third refrigerant passage and a fourth refrigerant passage are formed. Further, the condensing unit includes a hollow plate-like condensing pipe through which a cooling fluid flows, and the condensing pipe is arranged to be inclined with respect to the flow direction of the refrigerant vapor.

そして関連する沸騰冷却装置によれば、凝縮管が傾斜して配置されていることから、冷媒蒸気が凝縮管の表面を円滑に流動することが可能となり、凝縮管による冷媒蒸気の凝縮能力を向上させることができる、としている。   In addition, according to the related boiling cooling device, the condenser pipe is inclined, so that the refrigerant vapor can smoothly flow on the surface of the condenser pipe, and the condensation capacity of the refrigerant vapor by the condenser pipe is improved. It can be made to.

特開2010−236792号公報(段落「0025」〜「0042」)JP 2010-236792 (paragraphs “0025” to “0042”)

上述したように関連する沸騰冷却装置では、通路形成板によって、液体冷媒の沸騰により生じた冷媒の気泡および冷媒蒸気が流動する第1および第3冷媒通路と、凝縮管において凝縮された冷媒が流動する第2および第4冷媒通路が形成される。そして、第1冷媒通路と第2冷媒通路、および第3冷媒通路と第4冷媒通路はそれぞれ、筐体の外壁面と平行に積層して構成される。そのため、関連する沸騰冷却装置の厚さが増大し、装置が大型化してしまう、という問題があった。   As described above, in the related boiling cooling device, the passage forming plate causes the refrigerant bubbles generated by the boiling of the liquid refrigerant and the refrigerant vapor to flow, and the refrigerant condensed in the condenser pipe to flow. Second and fourth refrigerant passages are formed. Then, the first refrigerant passage and the second refrigerant passage, and the third refrigerant passage and the fourth refrigerant passage are respectively laminated in parallel with the outer wall surface of the housing. For this reason, there is a problem that the thickness of the related boiling cooling device increases and the device becomes large.

このように、関連する沸騰冷却装置においては、冷却性能の向上を図ると、装置が大型化してしまう、という問題があった。   Thus, the related boiling cooling device has a problem that the size of the device increases when the cooling performance is improved.

本発明の目的は、上述した課題である、沸騰冷却方式を用いた冷却装置においては、冷却性能の向上を図ると、装置が大型化してしまう、という課題を解決する平板型冷却装置及びその使用方法を提供することにある。   The object of the present invention is a flat plate cooling apparatus and its use which solve the problem that the apparatus becomes large when the cooling performance is improved in the cooling apparatus using the boiling cooling system, which is the problem described above. It is to provide a method.

本発明の平板型冷却装置は、第1の平板と、第1の平板に対向する第2の平板と、第1の平板と第2の平板を接続する枠体部とを備えた平板状容器と、平板状容器に封入された冷媒と、第1の平板と第2の平板を接続し、平板状容器内の冷媒の流路を制御する流路壁、とを有し、平板状容器は、第1の平板および第2の平板の少なくとも一方に配置される発熱体と熱的に接続する受熱領域と、第1の平板および第2の平板の少なくとも一方に配置される放熱部と熱的に接続する放熱領域、とを備え、放熱領域は、放熱領域における冷媒の流路を構成する複数の流路板を有する。   A flat plate cooling device according to the present invention includes a flat plate container including a first flat plate, a second flat plate facing the first flat plate, and a frame body portion connecting the first flat plate and the second flat plate. And a refrigerant sealed in the flat container, a flow path wall for connecting the first flat plate and the second flat plate and controlling the flow path of the refrigerant in the flat container, , A heat receiving region thermally connected to a heating element disposed on at least one of the first flat plate and the second flat plate, and a heat dissipating portion disposed on at least one of the first flat plate and the second flat plate A heat dissipation area connected to the heat dissipation area, and the heat dissipation area includes a plurality of flow path plates constituting a flow path of the refrigerant in the heat dissipation area.

本発明の平板型冷却装置の使用方法は、本発明の平板型冷却装置を、受熱領域と放熱領域を結ぶ直線軸が、鉛直方向と垂直である第1の配置状態と、受熱領域と放熱領域を結ぶ直線軸が、鉛直方向と平行である第2の配置状態、との間で切り換えて使用する。   The method of using the flat plate cooling device of the present invention includes the flat plate cooling device of the present invention, a first arrangement state in which a linear axis connecting the heat receiving region and the heat radiating region is perpendicular to the vertical direction, and the heat receiving region and the heat radiating region. Are used by switching between the second arrangement state in which the linear axis connecting the two is parallel to the vertical direction.

本発明の平板型冷却装置によれば、小型であって、冷却性能が向上した沸騰冷却方式の平板型冷却装置が得られる。   According to the flat plate type cooling device of the present invention, a boiling cooling type flat plate type cooling device having a small size and improved cooling performance can be obtained.

本発明の第1の実施形態に係る平板型冷却装置の使用状態を模式的に示す斜視図である。It is a perspective view which shows typically the use condition of the flat type cooling device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る平板型冷却装置の構成を示す図であり、(a)は上面透視図、(b)は(a)中のB−B線断面図、(c)は(b)中のC−C線断面図である。It is a figure which shows the structure of the flat type cooling device which concerns on the 1st Embodiment of this invention, (a) is a top perspective view, (b) is the BB sectional drawing in (a), (c) is It is CC sectional view taken on the line in (b). 本発明の第1の実施形態に係る平板型冷却装置の構成を示す断面図である。It is sectional drawing which shows the structure of the flat type cooling device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る平板型冷却装置の使用方法について説明するための平板型冷却装置の模式的な断面図である。It is typical sectional drawing of the flat plate cooling device for demonstrating the usage method of the flat plate cooling device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る平板型冷却装置の構成を示す断面図である。It is sectional drawing which shows the structure of the flat type cooling device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る平板型冷却装置の構成を示す断面図である。It is sectional drawing which shows the structure of the flat type cooling device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る平板型冷却装置の構成を示す図であり、(a)は上面透視図、(b)は(a)中のB−B線断面図、(c)は(a)中のC−C線断面図である。It is a figure which shows the structure of the flat type cooling device which concerns on the 4th Embodiment of this invention, (a) is a top surface perspective view, (b) is the BB sectional drawing in (a), (c) is It is CC sectional view taken on the line in (a).

以下に、図面を参照しながら、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る平板型冷却装置100の使用状態を模式的に示す斜視図である。平板型冷却装置100は冷媒が封入された平板状容器を有する。冷媒に低沸点の材料を用い、平板状容器に冷媒を注入した後に真空排気することにより、平板状容器の内部を常に冷媒の飽和蒸気圧に維持することができる。図1中の点線は、冷媒の液相と気相の界面を模式的に示したものである。
[First Embodiment]
FIG. 1 is a perspective view schematically showing a usage state of the flat plate cooling device 100 according to the first embodiment of the present invention. The flat plate cooling device 100 has a flat container in which a refrigerant is sealed. By using a low-boiling-point material for the refrigerant and injecting the refrigerant into the flat container and then evacuating it, the inside of the flat container can always be maintained at the saturated vapor pressure of the refrigerant. The dotted line in FIG. 1 schematically shows the interface between the liquid phase and the gas phase of the refrigerant.

平板型冷却装置100を構成する平板状容器の外面に、発熱体500および放熱フィンなどからなる放熱部600を熱的に接続して使用する。発熱体500からの熱量が平板状容器を介して冷媒に伝達され、冷媒が気化する。このとき、発熱体500からの熱量は気化熱として冷媒に奪われるため、発熱体500の温度上昇が抑制される。気化した冷媒は平板状容器の内部を放熱部600側に拡散し、放熱部600の放熱フィン等を用いて放熱し、凝縮する。このように、平板型冷却装置100は冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた構成である。   A heat radiating part 600 including a heating element 500 and heat radiating fins is thermally connected to the outer surface of a flat container constituting the flat plate cooling device 100 for use. The amount of heat from the heating element 500 is transmitted to the refrigerant through the flat container, and the refrigerant is vaporized. At this time, since the amount of heat from the heating element 500 is lost to the refrigerant as heat of vaporization, the temperature rise of the heating element 500 is suppressed. The vaporized refrigerant diffuses inside the flat container toward the heat dissipating part 600, dissipates heat using the heat dissipating fins of the heat dissipating part 600, and condenses. As described above, the flat plate cooling device 100 has a configuration using a boiling cooling system in which heat is transported and released by a refrigerant vaporization and condensation cycle.

なお、図1では、発熱体500と放熱部600がいずれも平板型冷却装置100の一方の面に配置された場合を示したが、これに限らず、対向する面にそれぞれ配置することとしてもよい。また、放熱部600を構成する放熱フィンの向きも図1に示したものに限らない。   1 shows a case where both the heating element 500 and the heat radiating unit 600 are arranged on one surface of the flat plate cooling device 100, but the present invention is not limited to this. Good. Further, the direction of the heat dissipating fins constituting the heat dissipating unit 600 is not limited to that shown in FIG.

平板型冷却装置100の構成について、図2を用いてさらに詳細に説明する。図2は、本発明の第1の実施形態に係る平板型冷却装置100の構成を示す図であり、(a)は上面透視図、(b)は(a)中のB−B線断面図、(c)は(b)中のC−C線断面図である。平板型冷却装置100は、第1の平板111と、第1の平板111に対向する第2の平板112と、第1の平板111と第2の平板112を接続する枠体部113とを備えた平板状容器110を有する。この平板状容器110には冷媒120が封入されている。そして、平板状容器110の内部に、第1の平板111と第2の平板112を接続し、平板状容器110内の冷媒120の流路を制御する流路壁130を備える。   The configuration of the flat plate cooling device 100 will be described in more detail with reference to FIG. 2A and 2B are diagrams showing a configuration of the flat plate cooling device 100 according to the first embodiment of the present invention, where FIG. 2A is a top perspective view, and FIG. 2B is a cross-sectional view taken along line BB in FIG. (C) is the CC sectional view taken on the line in (b). The flat plate cooling device 100 includes a first flat plate 111, a second flat plate 112 that faces the first flat plate 111, and a frame body portion 113 that connects the first flat plate 111 and the second flat plate 112. A flat plate container 110 is provided. A refrigerant 120 is sealed in the flat container 110. In addition, a flow path wall 130 that connects the first flat plate 111 and the second flat plate 112 and controls the flow path of the refrigerant 120 in the flat container 110 is provided inside the flat container 110.

図2(b)に示すように、平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される発熱体500と熱的に接続する受熱領域140を有する。また、平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される放熱部600と熱的に接続する放熱領域150を有する。そして、放熱領域150は、放熱領域150における冷媒120の流路である溝状流路162を構成する複数の流路板160を備えた構成とした。これらの部材を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウムなどを用いることができる。また、冷媒120としては例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどを用いることができる。   As shown in FIG. 2B, the flat container 110 has a heat receiving region 140 that is thermally connected to the heating element 500 disposed on at least one of the first flat plate 111 and the second flat plate 112. In addition, the flat container 110 has a heat dissipation region 150 that is thermally connected to the heat dissipation portion 600 disposed on at least one of the first flat plate 111 and the second flat plate 112. The heat radiation area 150 includes a plurality of flow path plates 160 that constitute the groove-shaped flow paths 162 that are the flow paths of the refrigerant 120 in the heat radiation area 150. As a material constituting these members, a metal having excellent thermal conductivity, such as aluminum, can be used. Moreover, as the refrigerant | coolant 120, hydrofluorocarbon, hydrofluoroether, etc. which are insulating and inactive materials can be used, for example.

次に、本実施形態による平板型冷却装置100の動作について、図2(b)を用いて説明する。同図において、冷媒120の気相と液相の界面を点線で示す。すなわち、図面の上下方向が鉛直方向である。受熱領域140に存在する冷媒は発熱体500から熱量を奪って気化し、平板状容器110の内部を流路壁130に沿って放熱領域150に向けて流動する。放熱領域150に達した気相の冷媒は、複数の流路板160の間に形成された開放端を備えた溝状流路162を通過し、溝状流路162内で冷却されて凝縮する。凝縮した冷媒は重力により溝状流路162内を降下し、液相の冷媒中に流入する。凝縮した冷媒(凝縮冷媒)は放熱領域150においてさらに冷却されて沈降し、充分冷却された状態で再び受熱領域140に還流する。これにより、冷却が不充分な凝縮冷媒と、充分に冷却された凝縮冷媒を分離することができる。   Next, the operation of the flat plate cooling device 100 according to the present embodiment will be described with reference to FIG. In the figure, the interface between the gas phase and the liquid phase of the refrigerant 120 is indicated by a dotted line. That is, the vertical direction in the drawing is the vertical direction. The refrigerant present in the heat receiving area 140 takes the heat amount from the heating element 500 and vaporizes, and flows inside the flat container 110 toward the heat radiating area 150 along the flow path wall 130. The gas-phase refrigerant that has reached the heat radiation region 150 passes through the groove-like channel 162 having an open end formed between the plurality of channel plates 160, and is cooled and condensed in the groove-like channel 162. . The condensed refrigerant descends in the groove-like channel 162 due to gravity and flows into the liquid phase refrigerant. The condensed refrigerant (condensed refrigerant) is further cooled and settled in the heat radiating region 150, and is returned to the heat receiving region 140 again in a sufficiently cooled state. As a result, the condensed refrigerant that is insufficiently cooled and the condensed refrigerant that is sufficiently cooled can be separated.

ここで、放熱領域150における冷却性能は主として、冷媒が気相から液相に相変化する際の凝縮熱伝達により決定される。これは、相変化の際に生じる潜熱による熱移動量の方が、液相状態の冷媒の温度差により放熱する顕熱による熱移動量に比べて数倍大きいためである。したがって、放熱領域150の表面積を有効に使って気相状態の冷媒(気相冷媒)を凝縮させた方が、沸騰冷却方式を用いた平板型冷却装置(「平板型沸騰冷却装置」とも言う)の冷却性能を向上させることができる。   Here, the cooling performance in the heat radiation region 150 is mainly determined by condensation heat transfer when the refrigerant changes phase from the gas phase to the liquid phase. This is because the amount of heat transfer due to latent heat generated during the phase change is several times larger than the amount of heat transfer due to sensible heat that dissipates heat due to the temperature difference of the refrigerant in the liquid phase. Therefore, a plate-type cooling device using a boiling cooling system (also referred to as a “plate-type boiling cooling device”) is a method in which the surface area of the heat radiation region 150 is effectively used to condense a refrigerant in a gas phase state (gas phase refrigerant). The cooling performance can be improved.

上述したように、本実施形態による平板型冷却装置100には、放熱領域150に複数の流路板160によって冷媒の流路(溝状流路162)が構成されている。そのため、放熱領域150における気相冷媒に対する流通抵抗が増大するので、各溝状流路162に均一に気相冷媒を流入させることができる。さらに、気相冷媒を複数の溝状流路162に分岐することによって、各溝状流路162に流れる気相冷媒の流動速度を低下させることができる。それによって、冷媒120と放熱部600との熱交換効率を向上させることが可能となる。このように、本実施形態による平板型冷却装置100によれば、放熱領域150の表面積を有効に使って気相冷媒を凝縮させることができるので、平板型冷却装置の冷却性能を向上させることができる。   As described above, in the flat plate cooling device 100 according to the present embodiment, the flow path of the refrigerant (groove-shaped flow path 162) is configured by the plurality of flow path plates 160 in the heat dissipation area 150. For this reason, the flow resistance to the gas-phase refrigerant in the heat radiation region 150 increases, so that the gas-phase refrigerant can flow uniformly into each groove-like channel 162. Furthermore, the flow rate of the gas-phase refrigerant flowing in each groove-like channel 162 can be reduced by branching the gas-phase refrigerant into the plurality of groove-like channels 162. Accordingly, it is possible to improve the heat exchange efficiency between the refrigerant 120 and the heat radiating unit 600. As described above, according to the flat plate cooling device 100 according to the present embodiment, the gas phase refrigerant can be condensed by effectively using the surface area of the heat radiation region 150, so that the cooling performance of the flat plate cooling device can be improved. it can.

さらに本実施形態においては、流路壁130を設けることによって、平板状容器110を構成する第1の平板111および第2の平板112と平行な面内において、冷却が不充分な凝縮冷媒と、充分に冷却された凝縮冷媒を分離する構成としている。そのため、背景技術で説明した関連する沸騰冷却装置のように、外壁面と平行に積層した流路を構成する必要がないので、平板型冷却装置100の小型化、薄型化を図ることができる。   Furthermore, in the present embodiment, by providing the flow path wall 130, in the plane parallel to the first flat plate 111 and the second flat plate 112 constituting the flat plate container 110, a condensed refrigerant that is insufficiently cooled, It is set as the structure which isolate | separates the fully cooled condensed refrigerant | coolant. Therefore, unlike the related boiling cooling device described in the background art, it is not necessary to form a flow path laminated in parallel with the outer wall surface, so that the flat plate cooling device 100 can be reduced in size and thickness.

このように、本実施形態によれば、小型であって、冷却性能が向上した沸騰冷却方式の平板型冷却装置が得られる。   Thus, according to the present embodiment, a boil cooling type flat plate cooling device having a small size and improved cooling performance can be obtained.

次に、図3を用いて平板型冷却装置100の構成について、さらに詳細に説明する。図3は、本発明の第1の実施形態に係る平板型冷却装置100の構成を示す断面図であり、図2(b)と同じ断面を示す。   Next, the configuration of the flat plate cooling device 100 will be described in more detail with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the flat plate cooling device 100 according to the first embodiment of the present invention, and shows the same cross section as FIG.

図3に示すように、放熱領域150は流路板160の延伸方向の端部と枠体部113との間の領域である冷媒導入領域152を備える。ここで冷媒導入領域152は、各溝状流路162に対して、ヘッダまたはフッタとして機能する。そして、冷媒導入領域152の延伸方向に垂直な断面積が、流路板160で構成される各溝状流路162の延伸方向に垂直な断面積の合計よりも大きくなるように構成することができる。この場合、溝状流路162を流れる気相冷媒に対する流通抵抗を、冷媒導入領域152を流れる気相冷媒に対する流通抵抗よりもが増大させることができる。これにより、各溝状流路162に均一に気相冷媒を流入させ、各溝状流路162に流れる気相冷媒の流動速度を低下させる、という上述した効果を、より顕著に得ることができる。ここで、各溝状流路162の延伸方向に垂直な断面積の合計は、冷媒導入領域152の延伸方向に垂直な断面積の例えば30%以下とし、また、各溝状流路162の幅は約2mmから5mm程度とすることができる。   As shown in FIG. 3, the heat dissipation area 150 includes a refrigerant introduction area 152 that is an area between the end of the flow path plate 160 in the extending direction and the frame body section 113. Here, the refrigerant introduction region 152 functions as a header or a footer for each groove-like channel 162. The cross-sectional area perpendicular to the extending direction of the refrigerant introduction region 152 may be configured to be larger than the sum of the cross-sectional areas perpendicular to the extending direction of the groove-shaped flow paths 162 formed by the flow path plate 160. it can. In this case, the flow resistance with respect to the gas-phase refrigerant flowing through the groove-like channel 162 can be increased more than the flow resistance with respect to the gas-phase refrigerant flowing through the refrigerant introduction region 152. As a result, the above-described effect of allowing the gas-phase refrigerant to uniformly flow into each groove-like channel 162 and reducing the flow rate of the gas-phase refrigerant flowing to each groove-like channel 162 can be obtained more remarkably. . Here, the total cross-sectional area perpendicular to the extending direction of each groove-like channel 162 is, for example, 30% or less of the cross-sectional area perpendicular to the extending direction of the coolant introduction region 152, and the width of each groove-like channel 162 is Can be about 2 mm to 5 mm.

また、流路壁130は、受熱領域140と放熱領域150の間に配置することが望ましい。そして、第1の平板111(または第2の平板112)と平行な平面による断面形状が、受熱領域140と放熱領域150を結びかつ第1の平板111の一辺に平行な直線(図3中の直線DD)に対して傾斜して配置した傾斜壁部132を有する構成とすることができる。これにより、受熱領域140で発生した気相冷媒を放熱領域150に向けて円滑に流動させることができる(図3中の矢印A)。すなわち、平板型沸騰冷却装置における気相冷媒の循環系において、流路断面積の急激な変化があると流通抵抗が増大する。その結果、内圧が上昇するので液相冷媒の沸点が上昇し、冷却性能の低下を引き起こすことになる。それに対して、テーパ状の傾斜壁部132を備えた流路壁130とすることにより、気相冷媒の流路における流通面積の急激な変化は生じなくなるので、冷却性能の低下を回避することができる。   Further, the flow path wall 130 is desirably disposed between the heat receiving area 140 and the heat radiating area 150. A cross-sectional shape by a plane parallel to the first flat plate 111 (or the second flat plate 112) connects the heat receiving region 140 and the heat radiating region 150 and is a straight line parallel to one side of the first flat plate 111 (in FIG. 3). It can be set as the structure which has the inclination wall part 132 inclined and arrange | positioned with respect to the straight line DD). Thereby, the gaseous-phase refrigerant | coolant which generate | occur | produced in the heat receiving area | region 140 can be smoothly flowed toward the thermal radiation area | region 150 (arrow A in FIG. 3). That is, in the circulation system of the gas-phase refrigerant in the flat plate type cooling apparatus, the flow resistance increases when there is a sudden change in the cross-sectional area of the flow path. As a result, since the internal pressure increases, the boiling point of the liquid-phase refrigerant increases, causing a decrease in cooling performance. On the other hand, by using the flow path wall 130 having the tapered inclined wall portion 132, a rapid change in the flow area in the flow path of the gas-phase refrigerant does not occur, so that a decrease in cooling performance can be avoided. it can.

次に、本実施形態による平板型冷却装置100の使用方法について説明する。図4は、本実施形態による平板型冷却装置100の使用方法を説明するための平板型冷却装置100の模式的な断面図である。これまでの説明では図4(a)に示すように、受熱領域140と放熱領域150を結ぶ直線軸DDが、鉛直方向と垂直である配置状態(第1の配置状態)で平板型冷却装置100を使用する場合について示した。しかし、本実施形態の平板型冷却装置100では、図4(b)に示すように、受熱領域140と放熱領域150を結ぶ直線軸DDが、鉛直方向と平行である配置状態(第2の配置状態)においても使用することができる。すなわち、本実施形態の平板型冷却装置100は、第1の配置状態と第2の配置状態との間で切り換えて使用することが可能である。また、図4(c)に示すように、図4(a)に示した場合と180度回転した配置状態においても使用することができる。   Next, a method for using the flat plate cooling device 100 according to the present embodiment will be described. FIG. 4 is a schematic cross-sectional view of the flat plate cooling device 100 for explaining a method of using the flat plate cooling device 100 according to the present embodiment. In the description so far, as shown in FIG. 4A, the flat plate cooling device 100 in the arrangement state (first arrangement state) in which the linear axis DD connecting the heat receiving region 140 and the heat radiation region 150 is perpendicular to the vertical direction. Shown about using. However, in the flat plate cooling device 100 of the present embodiment, as shown in FIG. 4B, the linear axis DD connecting the heat receiving area 140 and the heat radiating area 150 is parallel to the vertical direction (second arrangement). (State). That is, the flat plate cooling device 100 of the present embodiment can be used by switching between the first arrangement state and the second arrangement state. Moreover, as shown in FIG.4 (c), it can use also in the arrangement | positioning state rotated 180 degree | times with the case shown to Fig.4 (a).

これは第2の配置状態(図4(b))および図4(c)の配置状態においても、流路壁130と流路板160が配置されることにより冷媒が循環する流路170が形成されるからである。すなわち、この場合においても受熱領域140には常に、凝縮後に充分冷却された冷媒が供給されるので、平板型冷却装置100の冷却性能を向上させることができる。   In the second arrangement state (FIG. 4B) and the arrangement state of FIG. 4C, the flow path 170 in which the refrigerant circulates is formed by the flow path wall 130 and the flow path plate 160 being disposed. Because it is done. That is, even in this case, the heat receiving region 140 is always supplied with the sufficiently cooled refrigerant after condensation, so that the cooling performance of the flat plate cooling device 100 can be improved.

このとき、流路板160は、受熱領域140と放熱領域150を結びかつ第1の平板111の一辺に平行な直線と垂直な方向に対して傾斜して配置されることが望ましい。また、流路壁130は、第1の平板111と平行な平面による断面形状が、受熱領域140と放熱領域150を結びかつ第1の平板111の一辺に平行な直線に対して非対称な構造を有することが望ましい。このような構成とすることにより、流路板160に沿って液相冷媒が降下し、流路壁130の長さの相違により冷媒の流通抵抗に差が生じるため、冷媒の循環を促進することができ、平板型冷却装置100の冷却性能をさらに向上させることができる。   At this time, it is desirable that the flow path plate 160 be disposed to be inclined with respect to a direction perpendicular to a straight line connecting the heat receiving region 140 and the heat radiating region 150 and parallel to one side of the first flat plate 111. The flow path wall 130 has a cross-sectional shape parallel to the first flat plate 111 and an asymmetric structure with respect to a straight line connecting the heat receiving region 140 and the heat radiating region 150 and parallel to one side of the first flat plate 111. It is desirable to have. By adopting such a configuration, the liquid-phase refrigerant descends along the flow path plate 160, and the difference in the flow resistance of the refrigerant is caused by the difference in the length of the flow path wall 130. Therefore, the circulation of the refrigerant is promoted. The cooling performance of the flat plate cooling device 100 can be further improved.

〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図5は、本発明の第2の実施形態に係る平板型冷却装置200の構成を示す断面図であり、図2(b)と同じ断面を示す。平板型冷却装置200は、第1の平板111と、第1の平板111に対向する第2の平板112と、第1の平板111と第2の平板112を接続する枠体部113とを備えた平板状容器110を有する。この平板状容器110には冷媒120が封入されている。そして、平板状容器110の内部に、第1の平板111と第2の平板112を接続し、平板状容器110内の冷媒120の流路を制御する流路壁130を備える。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing a configuration of a flat plate cooling device 200 according to the second embodiment of the present invention, and shows the same cross section as FIG. The flat plate cooling device 200 includes a first flat plate 111, a second flat plate 112 that faces the first flat plate 111, and a frame body portion 113 that connects the first flat plate 111 and the second flat plate 112. A flat plate container 110 is provided. A refrigerant 120 is sealed in the flat container 110. In addition, a flow path wall 130 that connects the first flat plate 111 and the second flat plate 112 and controls the flow path of the refrigerant 120 in the flat container 110 is provided inside the flat container 110.

平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される発熱体500と熱的に接続する受熱領域140を有する。また、平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される放熱部600と熱的に接続する放熱領域150を有する。そして、放熱領域150は、放熱領域150における冷媒120の流路である溝状流路162を構成する複数の流路板160を備えた構成とした。   The flat container 110 has a heat receiving region 140 that is thermally connected to the heating element 500 disposed on at least one of the first flat plate 111 and the second flat plate 112. In addition, the flat container 110 has a heat dissipation region 150 that is thermally connected to the heat dissipation portion 600 disposed on at least one of the first flat plate 111 and the second flat plate 112. The heat radiation area 150 includes a plurality of flow path plates 160 that constitute the groove-shaped flow paths 162 that are the flow paths of the refrigerant 120 in the heat radiation area 150.

これまでの構成は第1の実施形態による平板型冷却装置100と同じである。本実施形態の平板型冷却装置200は、受熱領域140または放熱領域150に凹凸構造を有する粗面領域240(250)を備える構成とした点が第1の実施形態による平板型冷却装置100と異なる。   The configuration so far is the same as the flat plate cooling device 100 according to the first embodiment. The flat plate cooling device 200 according to the present embodiment is different from the flat plate cooling device 100 according to the first embodiment in that the heat receiving region 140 or the heat radiating region 150 includes a rough surface region 240 (250) having an uneven structure. .

ここで粗面領域240(250)は、平板状容器110の内面に形成された凹凸構造を有し、この凹凸構造が受熱領域140では冷媒の気泡の発生核となり、放熱領域150においては気泡の凝縮核となる。そのため、冷媒の相変化が活発化し、冷却性能をさらに増大させることができる。   Here, the rough surface region 240 (250) has a concavo-convex structure formed on the inner surface of the plate-like container 110, and this concavo-convex structure serves as a bubble generation nucleus of the refrigerant in the heat receiving region 140, and in the heat radiating region 150, It becomes a condensation nucleus. Therefore, the phase change of the refrigerant is activated and the cooling performance can be further increased.

この凹凸構造の大きさは、冷媒の表面張力などの物性値と発熱体の発熱量によって最適な値が定められる。例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどを冷媒として用いる場合、最適な気泡核の大きさは中心線平均粗さでサブミクロンから約100μm程度の範囲になる。そのため、砥粒やサンドブラストなどを用いた機械加工や、めっきなどの化学処理を行うことにより同程度の大きさの凹凸構造を形成することができる。   The size of the concavo-convex structure is determined by an optimum value depending on physical properties such as the surface tension of the refrigerant and the amount of heat generated by the heating element. For example, when hydrofluorocarbon or hydrofluoroether, which is an insulative and inert material, is used as a refrigerant, the optimum bubble nucleus size is in the range of submicron to about 100 μm in centerline average roughness. . Therefore, an uneven structure having the same size can be formed by performing machining using abrasive grains or sand blasting, or chemical treatment such as plating.

図5では、受熱領域140およびその周辺領域および放熱領域150に粗面領域240(250)を備えた構成を示したが、少なくとも受熱領域140を含む領域に粗面領域240を形成することにより、冷却性能が増大する効果が得られる。なお、受熱領域140と放熱領域150の間の流路壁130が形成された領域には、粗面領域を形成しない構成とすることが望ましい。その理由は、流路壁130が形成された領域に粗面領域が存在すると、気相の冷媒が放熱領域150に到達する前に凝縮液化してしまう可能性が生じ、放熱領域150における効率的な放熱を妨げる恐れがあるからである。   In FIG. 5, the heat receiving region 140 and its peripheral region and the heat dissipation region 150 are provided with the rough surface region 240 (250). However, by forming the rough surface region 240 at least in the region including the heat receiving region 140, The effect of increasing the cooling performance is obtained. In addition, it is desirable that the region where the flow path wall 130 between the heat receiving region 140 and the heat radiation region 150 is formed does not form a rough surface region. The reason is that if a rough surface region exists in the region where the flow path wall 130 is formed, the gas-phase refrigerant may be condensed and liquefied before reaching the heat radiation region 150, and the heat radiation region 150 is efficiently used. This is because there is a risk of hindering heat dissipation.

〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図6は、本発明の第3の実施形態に係る平板型冷却装置300の構成を示す断面図であり、図2(b)と同じ断面を示す。平板型冷却装置300は、第1の平板111と、第1の平板111に対向する第2の平板112と、第1の平板111と第2の平板112を接続する枠体部113とを備えた平板状容器110を有する。この平板状容器110には冷媒120が封入されている。そして、平板状容器110の内部に、第1の平板111と第2の平板112を接続し、平板状容器110内の冷媒120の流路を制御する流路壁130を備える。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 6 is a cross-sectional view showing a configuration of a flat plate cooling device 300 according to the third embodiment of the present invention, and shows the same cross section as FIG. The flat plate cooling apparatus 300 includes a first flat plate 111, a second flat plate 112 that faces the first flat plate 111, and a frame body portion 113 that connects the first flat plate 111 and the second flat plate 112. A flat plate container 110 is provided. A refrigerant 120 is sealed in the flat container 110. In addition, a flow path wall 130 that connects the first flat plate 111 and the second flat plate 112 and controls the flow path of the refrigerant 120 in the flat container 110 is provided inside the flat container 110.

平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される発熱体500と熱的に接続する受熱領域140を有する。また、平板状容器110は第1の平板111および第2の平板112の少なくとも一方に配置される放熱部600と熱的に接続する放熱領域150を有する。そして、放熱領域150は、放熱領域150における冷媒120の流路である溝状流路162を構成する複数の流路板160を備えた構成とした。   The flat container 110 has a heat receiving region 140 that is thermally connected to the heating element 500 disposed on at least one of the first flat plate 111 and the second flat plate 112. In addition, the flat container 110 has a heat dissipation region 150 that is thermally connected to the heat dissipation portion 600 disposed on at least one of the first flat plate 111 and the second flat plate 112. The heat radiation area 150 is configured to include a plurality of flow path plates 160 that constitute the groove-shaped flow path 162 that is the flow path of the refrigerant 120 in the heat radiation area 150.

これまでの構成は第1の実施形態による平板型冷却装置100と同じである。本実施形態の平板型冷却装置300は、受熱領域140に、受熱領域140における冷媒120の循環を促進する複数の板状部340を備えた構成とした点が第1の実施形態による平板型冷却装置100と異なる。   The configuration so far is the same as the flat plate cooling device 100 according to the first embodiment. The flat plate cooling device 300 according to the present embodiment is configured such that the heat receiving area 140 includes a plurality of plate-like portions 340 that promote circulation of the refrigerant 120 in the heat receiving area 140. Different from the device 100.

板状部340は例えばフィン形状とすることができ、受熱領域140において発生した冷媒の気泡が浮力により放熱領域150に移動する際に、対流熱伝達を促進する効果を有する。さらに、板状部340により冷媒の気液二相流が発生しやすくなるため、体積あたりの熱輸送量を増加させることができる。ここで気液二相流とは、気相と液相の二相が混在した状態で流れることを言う。このように、本実施形態の平板型冷却装置300によれば、冷却性能をさらに向上させることができる。   The plate-like portion 340 can be formed in, for example, a fin shape, and has an effect of promoting convective heat transfer when the refrigerant bubbles generated in the heat receiving region 140 move to the heat radiating region 150 by buoyancy. Further, since the gas-liquid two-phase flow of the refrigerant is easily generated by the plate-like portion 340, the heat transport amount per volume can be increased. Here, the gas-liquid two-phase flow means that the gas phase and the liquid phase flow in a mixed state. Thus, according to the flat plate cooling device 300 of the present embodiment, the cooling performance can be further improved.

〔第4の実施形態〕
次に、本発明の第4の実施形態について説明する。図7は、本発明の第4の実施形態に係る平板型冷却装置400の構成を示す図であり、(a)は上面透視図、(b)は(a)中のB−B線断面図、(c)は(a)中のC−C線断面図である。平板型冷却装置400は、平板状容器110を構成する第1の平板111および第2の平板112の少なくとも一方に配置された放熱容器450をさらに有する構成とした点において、第1の実施形態による平板型冷却装置100と異なる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. 7A and 7B are diagrams showing a configuration of a flat plate cooling device 400 according to the fourth embodiment of the present invention, in which FIG. 7A is a top perspective view, and FIG. (C) is the CC sectional view taken on the line in (a). The flat plate cooling device 400 according to the first embodiment in that the flat plate cooling device 400 further includes a heat dissipation container 450 disposed on at least one of the first flat plate 111 and the second flat plate 112 constituting the flat plate container 110. Different from the flat plate cooling device 100.

放熱容器450は、冷媒の流路を構成する放熱部流路460と、放熱部流路460に冷媒を導入する放熱部導入領域452を備える。ここで放熱部導入領域452は、放熱部流路460に対して、ヘッダまたはフッタとして機能する。また、図7(c)に示すように、放熱部流路460の間に放熱フィン部462を配置することとしてもよい。放熱フィン部462により放熱部流路460を流動する冷媒の放熱をさらに促進することができる。   The heat radiating container 450 includes a heat radiating part flow path 460 that constitutes a flow path for the refrigerant, and a heat radiating part introduction region 452 for introducing the refrigerant into the heat radiating part flow path 460. Here, the heat radiating portion introduction region 452 functions as a header or a footer with respect to the heat radiating portion flow path 460. Moreover, as shown in FIG.7 (c), it is good also as arrange | positioning the thermal radiation fin part 462 between the thermal radiation part flow paths 460. As shown in FIG. The heat radiation of the refrigerant flowing through the heat radiation portion flow path 460 can be further promoted by the heat radiation fin portion 462.

平板型冷却装置400においては、放熱部導入領域452が平板状容器110ではなく放熱容器450に設けられている。そのため、平板状容器110の内容積を増加させることができる。その結果、平板状容器110内の飽和蒸気圧は減少するので、冷媒の沸点を下げることができ、平板型沸騰冷却装置の冷却性能をさらに向上させることができる。   In the flat plate cooling device 400, the heat radiating part introduction region 452 is provided not in the flat container 110 but in the heat radiating container 450. Therefore, the internal volume of the flat container 110 can be increased. As a result, since the saturated vapor pressure in the flat container 110 is reduced, the boiling point of the refrigerant can be lowered, and the cooling performance of the flat-type boiling cooling device can be further improved.

なお、ヘッダおよびフッタとして機能する二個の放熱部導入領域452を、図7(b)に示すように、受熱領域140と放熱領域150を結ぶ直線(図7(b)中の直線DD)に対して非対称となる位置にそれぞれ配置することとしてもよい。この場合は、放熱部導入領域452間の放熱部流路460と流路壁130とにより冷媒が循環する流路が形成される。その結果、受熱領域140と放熱領域150を結ぶ直線DDが、鉛直方向と垂直である配置状態(第1の配置状態)、鉛直方向と平行である配置状態(第2の配置状態)、および第1の配置状態と180度回転した配置状態においても使用することができる。   As shown in FIG. 7B, the two heat radiating portion introduction regions 452 functioning as a header and a footer are formed on a straight line connecting the heat receiving region 140 and the heat radiating region 150 (straight line DD in FIG. 7B). Alternatively, they may be arranged at positions that are asymmetric with respect to each other. In this case, a flow path through which the refrigerant circulates is formed by the heat radiation part flow path 460 and the flow path wall 130 between the heat radiation part introduction regions 452. As a result, the straight line DD connecting the heat receiving area 140 and the heat radiating area 150 is in an arrangement state that is perpendicular to the vertical direction (first arrangement state), in an arrangement state that is parallel to the vertical direction (second arrangement state), and It can also be used in an arrangement state of 1 and an arrangement state rotated by 180 degrees.

本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.

100、200、300、400 平板型冷却装置
110 平板状容器
111 第1の平板
112 第2の平板
113 枠体部
120 冷媒
130 流路壁
132 傾斜壁部
140 受熱領域
150 放熱領域
152 冷媒導入領域
160 流路板
162 溝状流路
170 流路
240、250 粗面領域
340 板状部
450 放熱容器
452 放熱部導入領域
460 放熱部流路
462 放熱フィン部
500 発熱体
600 放熱部
100, 200, 300, 400 Flat plate cooling device 110 Flat container 111 First flat plate 112 Second flat plate 113 Frame body portion 120 Refrigerant 130 Channel wall 132 Inclined wall portion 140 Heat receiving region 150 Heat radiation region 152 Refrigerant introduction region 160 Flow path plate 162 Grooved flow path 170 Flow path 240, 250 Rough surface area 340 Plate-shaped part 450 Radiation container 452 Heat radiation part introduction area 460 Heat radiation part flow path 462 Heat radiation fin part 500 Heating element 600 Heat radiation part

Claims (10)

第1の平板と、前記第1の平板に対向する第2の平板と、前記第1の平板と前記第2の平板を接続する枠体部とを備えた平板状容器と、
前記平板状容器に封入された冷媒と、
前記第1の平板と前記第2の平板を接続し、前記平板状容器内の前記冷媒の流路を制御する流路壁、とを有し、
前記平板状容器は、前記第1の平板および前記第2の平板の少なくとも一方に配置される発熱体と熱的に接続する受熱領域と、前記第1の平板および前記第2の平板の少なくとも一方に配置される放熱部と熱的に接続する放熱領域、とを備え、
前記放熱領域は、前記放熱領域における前記冷媒の流路を構成する複数の流路板を有する
平板型冷却装置。
A flat plate container comprising: a first flat plate; a second flat plate facing the first flat plate; and a frame body portion connecting the first flat plate and the second flat plate;
A refrigerant sealed in the flat container;
A flow path wall for connecting the first flat plate and the second flat plate and controlling the flow path of the refrigerant in the flat container,
The flat container includes a heat receiving region thermally connected to a heating element disposed on at least one of the first flat plate and the second flat plate, and at least one of the first flat plate and the second flat plate. A heat dissipating region that is thermally connected to the heat dissipating part disposed in the
The heat dissipation area has a plurality of flow path plates constituting flow paths of the refrigerant in the heat dissipation area.
前記放熱領域は、前記流路板の延伸方向の端部と前記枠体部との間の領域である冷媒導入領域を備え、
前記冷媒導入領域の延伸方向に垂直な断面積が、前記流路板で構成される各流路の延伸方向に垂直な断面積の合計よりも大きい
請求項1に記載した平板型冷却装置。
The heat dissipation area includes a refrigerant introduction area that is an area between an end portion in the extending direction of the flow path plate and the frame body portion,
The flat plate cooling device according to claim 1, wherein a cross-sectional area perpendicular to the extending direction of the refrigerant introduction region is larger than a sum of cross-sectional areas perpendicular to the extending direction of each flow path constituted by the flow path plates.
前記流路板は、前記受熱領域と前記放熱領域を結びかつ前記第1の平板の一辺に平行な直線と垂直な方向に対して傾斜して配置される
請求項1または2に記載した平板型冷却装置。
The flat plate type according to claim 1, wherein the flow path plate is disposed to be inclined with respect to a direction perpendicular to a straight line that connects the heat receiving region and the heat radiating region and is parallel to one side of the first flat plate. Cooling system.
前記流路壁は、前記受熱領域と前記放熱領域の間に配置され、
前記第1の平板と平行な平面による断面形状が、前記受熱領域と前記放熱領域を結びかつ前記第1の平板の一辺に平行な直線に対して傾斜して配置した傾斜壁部を有する
請求項1から3のいずれか一項に記載した平板型冷却装置。
The flow path wall is disposed between the heat receiving area and the heat radiating area,
The cross-sectional shape by a plane parallel to the first flat plate has an inclined wall portion that is arranged to be inclined with respect to a straight line that connects the heat receiving region and the heat dissipation region and is parallel to one side of the first flat plate. The flat plate cooling device according to any one of 1 to 3.
前記流路壁は、前記第1の平板と平行な平面による断面形状が、前記受熱領域と前記放熱領域を結びかつ前記第1の平板の一辺に平行な直線に対して非対称な構造を有する
請求項1から4のいずれか一項に記載した平板型冷却装置。
The flow path wall has a structure in which a cross-sectional shape by a plane parallel to the first flat plate is asymmetric with respect to a straight line connecting the heat receiving region and the heat radiating region and parallel to one side of the first flat plate. Item 5. The flat plate cooling device according to any one of items 1 to 4.
前記平板状容器は、前記受熱領域に、凹凸構造を有する粗面領域を備える
請求項1から5のいずれか一項に記載した平板型冷却装置。
The flat plate cooling device according to any one of claims 1 to 5, wherein the flat container includes a rough surface region having an uneven structure in the heat receiving region.
前記平板状容器は、前記放熱領域に、凹凸構造を有する粗面領域を備える
請求項1から6のいずれか一項に記載した平板型冷却装置。
The flat plate type cooling device according to any one of claims 1 to 6, wherein the flat container includes a rough surface region having an uneven structure in the heat dissipation region.
前記受熱領域は、前記受熱領域における前記冷媒の循環を促進する複数の板状部を有する
請求項1から7のいずれか一項に記載した平板型冷却装置。
The flat plate cooling device according to any one of claims 1 to 7, wherein the heat receiving region includes a plurality of plate-like portions that promote circulation of the refrigerant in the heat receiving region.
前記第1の平板および前記第2の平板の少なくとも一方に配置された放熱容器をさらに有し、
前記放熱容器は、前記冷媒の流路を構成する放熱部流路と、
前記放熱部流路に前記冷媒を導入する放熱部導入領域を備える
請求項1から8のいずれか一項に記載した平板型冷却装置。
A heat dissipation container disposed on at least one of the first flat plate and the second flat plate;
The heat dissipation container includes a heat dissipating part flow path constituting the flow path of the refrigerant,
The flat plate type cooling device according to any one of claims 1 to 8, further comprising a heat dissipating part introduction region that introduces the refrigerant into the heat dissipating part flow path.
請求項1から9に記載した平板型冷却装置を、
前記受熱領域と前記放熱領域を結ぶ直線軸が、鉛直方向と垂直である第1の配置状態と、
前記受熱領域と前記放熱領域を結ぶ直線軸が、鉛直方向と平行である第2の配置状態、との間で切り換えて使用する
平板型冷却装置の使用方法。
The flat plate cooling device according to claim 1,
A first arrangement state in which a linear axis connecting the heat receiving area and the heat radiating area is perpendicular to a vertical direction;
A method of using a flat plate type cooling apparatus, wherein the linear axis connecting the heat receiving area and the heat radiating area is switched between a second arrangement state parallel to the vertical direction.
JP2011205518A 2011-09-21 2011-09-21 Flat plate type cooling device and usage of the same Pending JP2013069740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205518A JP2013069740A (en) 2011-09-21 2011-09-21 Flat plate type cooling device and usage of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205518A JP2013069740A (en) 2011-09-21 2011-09-21 Flat plate type cooling device and usage of the same

Publications (1)

Publication Number Publication Date
JP2013069740A true JP2013069740A (en) 2013-04-18

Family

ID=48475130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205518A Pending JP2013069740A (en) 2011-09-21 2011-09-21 Flat plate type cooling device and usage of the same

Country Status (1)

Country Link
JP (1) JP2013069740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123454B2 (en) 2015-03-30 2018-11-06 Exascaler Inc. Electronic-device cooling system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236669A (en) * 1994-12-28 1996-09-13 Nippondenso Co Ltd Boiling cooler
JPH10154781A (en) * 1996-07-19 1998-06-09 Denso Corp Boiling and cooling device
JP2001196778A (en) * 1999-11-08 2001-07-19 Samsung Electronics Co Ltd Cooling device by cpl
JP2006526128A (en) * 2003-05-31 2006-11-16 アイキュリ ラボ ホールディングズ リミテッド Thin plate type cooling device that prevents dryout
JP2007115917A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Thermal dissipation plate
JP2009275945A (en) * 2008-05-13 2009-11-26 Denso Corp Ebullient cooling device
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2010007893A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Evaporative cooling device
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device
JP2010216676A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Cooling substrate
JP2010236792A (en) * 2009-03-31 2010-10-21 Toyota Industries Corp Ebullient cooling device
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler
JP2012237491A (en) * 2011-05-11 2012-12-06 Nec Corp Flat cooling device, method for manufacturing the same and method for using the same
JP2012247166A (en) * 2011-05-31 2012-12-13 Toyota Central R&D Labs Inc Heat pipe
JP2013007501A (en) * 2011-06-22 2013-01-10 Nec Corp Cooling device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236669A (en) * 1994-12-28 1996-09-13 Nippondenso Co Ltd Boiling cooler
JPH10154781A (en) * 1996-07-19 1998-06-09 Denso Corp Boiling and cooling device
JP2001196778A (en) * 1999-11-08 2001-07-19 Samsung Electronics Co Ltd Cooling device by cpl
JP2006526128A (en) * 2003-05-31 2006-11-16 アイキュリ ラボ ホールディングズ リミテッド Thin plate type cooling device that prevents dryout
JP2007115917A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Thermal dissipation plate
JP2009275945A (en) * 2008-05-13 2009-11-26 Denso Corp Ebullient cooling device
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2010007893A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Evaporative cooling device
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device
JP2010216676A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Cooling substrate
JP2010236792A (en) * 2009-03-31 2010-10-21 Toyota Industries Corp Ebullient cooling device
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler
JP2012237491A (en) * 2011-05-11 2012-12-06 Nec Corp Flat cooling device, method for manufacturing the same and method for using the same
JP2012247166A (en) * 2011-05-31 2012-12-13 Toyota Central R&D Labs Inc Heat pipe
JP2013007501A (en) * 2011-06-22 2013-01-10 Nec Corp Cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123454B2 (en) 2015-03-30 2018-11-06 Exascaler Inc. Electronic-device cooling system

Similar Documents

Publication Publication Date Title
JP5678662B2 (en) Boiling cooler
US10209009B2 (en) Heat exchanger including passageways
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US8833435B2 (en) Microscale cooling apparatus and method
US9032743B2 (en) Heat exchanger
US8490683B2 (en) Flat plate type micro heat transport device
US20140165638A1 (en) Cooling device and electronic device made therewith
EP2112689A2 (en) Heat exchange device
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JPWO2012115214A1 (en) Cooling device and manufacturing method thereof
JP4953075B2 (en) heatsink
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP2012237491A (en) Flat cooling device, method for manufacturing the same and method for using the same
JP6024665B2 (en) Flat plate cooling device and method of using the same
JP2013069740A (en) Flat plate type cooling device and usage of the same
JP5252059B2 (en) Cooling system
WO2014147838A1 (en) Heat exchanger, cooling system, and electronic equipment
US20200329584A1 (en) Heat exchanger with integrated two-phase heat spreader
JP2017112189A (en) Thermo-siphon cooling device
JP6197651B2 (en) Cooling system
WO2017082127A1 (en) Electronic equipment cooling device
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
JP2007115940A (en) Thermal dissipation plate
JP2022134971A (en) Boiling cooling device
JP2021188886A (en) Heat transfer member and cooling device having heat transfer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517