JP5252059B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5252059B2
JP5252059B2 JP2011223724A JP2011223724A JP5252059B2 JP 5252059 B2 JP5252059 B2 JP 5252059B2 JP 2011223724 A JP2011223724 A JP 2011223724A JP 2011223724 A JP2011223724 A JP 2011223724A JP 5252059 B2 JP5252059 B2 JP 5252059B2
Authority
JP
Japan
Prior art keywords
heat
wall
heat receiving
slit
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011223724A
Other languages
Japanese (ja)
Other versions
JP2012026721A (en
Inventor
郁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011223724A priority Critical patent/JP5252059B2/en
Publication of JP2012026721A publication Critical patent/JP2012026721A/en
Application granted granted Critical
Publication of JP5252059B2 publication Critical patent/JP5252059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、パーソナルコンピュータ等に使われるマイクロプロセッシングユニット(以下、MPUと略す)等の発熱する半導体、またはその他の発熱部を有する電子部品を冷却するのに用いられる冷却装置に関するものである。   The present invention relates to a cooling device used for cooling a heat-generating semiconductor such as a microprocessing unit (hereinafter abbreviated as MPU) used in a personal computer or the like, or an electronic component having another heat-generating portion.

近年、電子機器においては半導体等の電子部品の高集積化、動作クロックの高周波数化等に伴う発熱量の増大に対して、電子部品の正常動作の為に、それぞれの電子部品の接点温度を動作温度範囲内に如何に保つかが大きな問題となってきている。特に、MPUの高集積化、高周波数化はめざましく、動作の安定性、また動作寿命の確保などの点からも放熱対策が重要な問題となっている。   In recent years, in electronic devices, the contact temperature of each electronic component has been reduced for the normal operation of the electronic component against the increase in heat generation due to higher integration of electronic components such as semiconductors and higher operating clock frequencies. How to keep within the operating temperature range has become a major issue. In particular, high integration and high frequency of the MPU are remarkable, and heat radiation countermeasures are important problems from the viewpoints of operational stability and ensuring the operational life.

しかし、従来のようにヒートシンクとファンを組み合わせた空冷方式では高発熱量の電子部品に対しては能力不足の場合が多くなりつつある。そこで、例えば(特許文献1)に示すような作動流体を循環させる、より能力の高い高効率の冷却装置が提案されている。   However, the conventional air-cooling method combining a heat sink and a fan is increasingly lacking in capacity for electronic components with high heat generation. In view of this, for example, a highly efficient cooling device with higher capacity that circulates a working fluid as shown in (Patent Document 1) has been proposed.

一般に、MPU等の高発熱量の発熱体を冷却するには、受熱部で吸収した熱を広い面積を有する放熱部から空気へ放熱する方法が採られている。ここで(特許文献1)に示される従来の技術を図14を用いて説明する。   In general, in order to cool a heating element having a high calorific value such as an MPU, a method of radiating heat absorbed by the heat receiving portion from a heat radiating portion having a large area to the air is employed. Here, a conventional technique disclosed in (Patent Document 1) will be described with reference to FIG.

図14は従来の冷却装置の構成図と受熱部構造図である。通常、このような冷却装置は、図14(a)に示すように発熱体2から熱を除去する受熱ユニット1と受熱ユニット1で熱を受け取った作動流体を輸送する管路20と作動流体を動かすポンプ13および作動流体から熱を放熱する放熱部11から構成されている。その主な冷却原理は、同図のように発熱体2で発生した熱が、受熱ユニット1の内部へ伝わり内部に循環する作動流体と熱交換することにより作動流体の温度が上昇する。次に、その作動流体がポンプ13により管路20を通って放熱部11へ輸送され、放熱部11の温度を高める。次に高温となった放熱部11の表面へ放熱部搭載のファン10から空気が送られ熱交換されることで空気中へ放散される方法が採られている。   FIG. 14 is a block diagram of a conventional cooling device and a heat receiving part structure diagram. Normally, such a cooling device includes a heat receiving unit 1 that removes heat from the heating element 2, a pipe 20 that transports the working fluid that has received heat by the heat receiving unit 1, and the working fluid as shown in FIG. It comprises a pump 13 that moves and a heat radiating section 11 that radiates heat from the working fluid. The main cooling principle is that the temperature of the working fluid rises as the heat generated in the heating element 2 is transferred to the inside of the heat receiving unit 1 and exchanged with the working fluid circulating inside as shown in FIG. Next, the working fluid is transported by the pump 13 through the pipe line 20 to the heat radiating portion 11, and the temperature of the heat radiating portion 11 is increased. Next, a method is adopted in which air is sent from the fan 10 mounted on the heat radiating unit to the surface of the heat radiating unit 11 that has reached a high temperature and is heat-exchanged to be diffused into the air.

近年では、電子部品の小型化(製造プロセスの細線化)に伴い発熱体その物のサイズも小さくなる傾向にあり、単位面積当たりの熱密度は、増加の一途をたどっている。そのため、冷却装置の冷却性能は、受熱部と放熱部の両方の性能で決定されるが、特に受熱部の高性能化が大きな課題となっている。これは、例えば100Wの熱を発生する面積100平方mmの発熱体を仮に冷却できていた冷却装置でも、発熱面積が、電子部品製造プロセスの細線化によって50平方mmへ減少した場合には熱密度が2倍となるため吸熱性能の不足が発生し、同じ冷却装置では冷却できない場合が発生することになる。   In recent years, along with the miniaturization of electronic components (thinning of manufacturing processes), the size of the heating element itself tends to decrease, and the heat density per unit area is steadily increasing. For this reason, the cooling performance of the cooling device is determined by the performance of both the heat receiving unit and the heat radiating unit, and in particular, high performance of the heat receiving unit is a major issue. This is because, for example, even in a cooling device that has been able to cool a heating element with an area of 100 square mm that generates heat of 100 W, the heat density is reduced when the heating area is reduced to 50 square mm by thinning the electronic component manufacturing process. Is doubled, the endothermic performance is insufficient, and the same cooling device cannot be cooled.

また、前記した図14(a)の様な作動流体が循環する方式の受熱部では、図14(b)のような構造が採用されており、高い熱伝導率を有する金属(例えば、銅、アルミなど)の中を作動流体が循環する管路を設ける事で性能を高める工夫がされている。しかし、この場合でも熱が、受熱部内部で金属から作動流体へ熱交換される効率は、管路の内壁の面積に大きく依存するため、単純に管路を受熱部内部に配するだけでは、受熱面積が少なく十分な性能が得られない場合が多い。そして、今後の発熱体サイズの縮小で更に性能不足が顕著になると考えられる。   Moreover, in the heat receiving part of the system in which the working fluid circulates as shown in FIG. 14A, a structure as shown in FIG. 14B is adopted, and a metal having a high thermal conductivity (for example, copper, It has been devised to improve the performance by providing a conduit for the working fluid to circulate in the aluminum). However, even in this case, the efficiency with which heat is exchanged from the metal to the working fluid inside the heat receiving part greatly depends on the area of the inner wall of the pipe, so simply by arranging the pipe inside the heat receiving part, In many cases, the heat receiving area is small and sufficient performance cannot be obtained. And it is thought that performance shortage will become more remarkable by future reduction of the heating element size.

そこで、受熱部の吸熱性能を更に高める方法として、考案された他の従来の技術が、図15に示す様な円筒管の両端を封止し、内部に所望の作動流体を入れたヒートパイプを用いた冷却装置である。ヒートパイプを用いた冷却装置は、発熱体と対接した受熱部と放熱フィンを有する放熱部から構成されている。発熱体からの熱は、円筒壁に伝わり内壁で作動流体が相変化(蒸発)し気化潜熱を奪う。次に蒸気は円筒内を高速で移動し放熱部の内壁で凝縮することで凝縮熱が、内壁を介してフィンへ伝わり空気へ最終的に放熱される。次に凝縮した作動流体は管壁に設けられた毛管現象を発生させるウイックで元の受熱部へ移送される。この一連のサイクルを繰り返すことで冷却が継続されることになる。この場合の熱移動は、相変化を伴うであるため、図14に示した単純な冷媒循環方式よりも高い吸熱性能が得られる構成となっている。   Therefore, as a method for further improving the heat absorption performance of the heat receiving part, another conventional technique devised is to seal the both ends of a cylindrical tube as shown in FIG. 15 and to install a heat pipe with a desired working fluid inside. The cooling device used. A cooling device using a heat pipe includes a heat receiving portion in contact with a heating element and a heat radiating portion having heat radiating fins. The heat from the heating element is transferred to the cylindrical wall, and the working fluid undergoes a phase change (evaporation) on the inner wall to take away latent heat of vaporization. Next, the steam moves at high speed in the cylinder and condenses on the inner wall of the heat radiating portion, so that the heat of condensation is transmitted to the fins via the inner wall and finally radiated to the air. Next, the condensed working fluid is transferred to the original heat receiving part by a wick that generates capillary action provided on the tube wall. Cooling is continued by repeating this series of cycles. Since heat transfer in this case involves a phase change, the heat transfer performance is higher than that of the simple refrigerant circulation system shown in FIG.

特開平10−213370号公報Japanese Patent Laid-Open No. 10-213370

しかしながら、半導体等の電子部品では、更なる高性能化の進展等によって益々発熱が大きくなるか、または、熱密度が上昇するという傾向にある事は前記した通りである。図14に示すヒートパイプを用いた別の従来の冷却装置の場合でも、内部容積が小さいため封入できる作動流体が少なく、結果的にヒートパイプ単体の熱輸送能力が電子機器用では数10Wレベルの物が多用されることが多く、総熱輸送量を上げるには、複数本を並列に並べて使用することが普通となっている。また、総熱輸送能力としては数を増やせばある程度までは対応可能であるが、前記の通り熱密度の上昇に関してはやはり問題があり、対策としては、熱伝導性の高い受熱板にヒートパイプを並列に並べて可能な限り熱を広げて使用する方法が選択されている。しかし、この場合でも実際に機能するヒートパイプの本数には配置的な限界があり、十分な熱輸送能力と高熱密度対応という点を両立させるには困難な面が残っている。そして、更に、複数のヒートパイプへ熱を広げるために比較的厚めの受熱板を使用する場合などでは、発熱体中心から実際に作動流体が相変化(蒸発)する気化面までの距離がおのずと長くなるため、その間の熱抵抗が大きくなり、結果的に加熱開始から実際の相変化(蒸発)開始までの間に急激な温度上昇が発生し、電子部品の動作保証温度を超えてしまうという大きな問題があった。   However, as described above, electronic components such as semiconductors tend to generate more heat or increase in heat density due to further progress in performance. Even in the case of another conventional cooling device using the heat pipe shown in FIG. 14, since the internal volume is small, the working fluid that can be sealed is small, and as a result, the heat transport capability of the heat pipe alone is several tens of watts for electronic devices. Many things are often used, and in order to increase the total heat transport amount, it is common to use a plurality of them arranged in parallel. In addition, the total heat transport capacity can be accommodated to some extent by increasing the number, but as mentioned above, there is still a problem with increasing the heat density, and as a countermeasure, a heat pipe is attached to the heat receiving plate with high thermal conductivity. A method has been selected that uses heat spread as much as possible in parallel. However, even in this case, the number of heat pipes that actually function is limited in terms of arrangement, and it remains difficult to achieve both sufficient heat transport capability and high heat density. Furthermore, when using a relatively thick heat receiving plate to spread heat to a plurality of heat pipes, the distance from the center of the heating element to the vaporization surface where the working fluid actually undergoes phase change (evaporation) is naturally long. Therefore, the thermal resistance during that time increases, and as a result, a sudden temperature rise occurs between the start of heating and the actual start of phase change (evaporation), resulting in a large problem that the temperature exceeds the guaranteed operating temperature of the electronic component. was there.

そこで、本発明は上記課題に鑑みてなされたもので、高い受熱性能を維持しつつ加熱初期の急激な温度上昇とドライアウトを抑制し動作安定性が高い冷却性能に優れた冷却装置を提供する事を目的とする。   Therefore, the present invention has been made in view of the above problems, and provides a cooling device with excellent cooling performance that suppresses a rapid temperature rise and dryout at the initial stage of heating while maintaining high heat receiving performance and has high operational stability. For the purpose.

上記目的を達成するために本発明は、作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体が配置され、前記外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、前記受熱部に前記作動流体を注入する導入管と、前記受熱部に注入された前記作動流体が熱によって蒸気となり、前記蒸気を排出する導出管と、前記受熱部より上方に設けられ前記導出管を経由した前記蒸気の熱を放出する放熱器と、前記導入管の開口部側に設けた逆止弁とを備え、前記放熱器で液化した作動流体を前記逆止弁を介して前記受熱部に帰す構成にするとともに、前記作動流体の循環方向は逆止弁以降の出口側圧力上昇によって決定され、前記内壁において前記導入管開口部の外周で囲まれる面の内側から外側へスリットが設けられ、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出されることを特徴とする。 In order to achieve the above object, the present invention is a cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, wherein a heating element is disposed on one surface of the outer wall, and corresponds to one surface of the outer wall. A box-shaped heat receiving part for transferring heat to the inner wall, an introduction pipe for injecting the working fluid into the heat receiving part, and a lead-out pipe for discharging the steam by converting the working fluid injected into the heat receiving part into steam by heat. An operation that is provided above the heat receiving portion and that releases the heat of the steam via the outlet tube, and a check valve provided on the opening side of the introduction tube, and is liquefied by the radiator The fluid is returned to the heat receiving portion via the check valve, and the circulation direction of the working fluid is determined by an increase in pressure on the outlet side after the check valve, and on the outer periphery of the inlet pipe opening on the inner wall. Slip from the inside to the outside of the enclosed surface Is provided, that the pressure of the introduction pipe portion is raised, characterized in that the air bubbles and unevaporated working fluid is discharged to the outlet pipe side become multiphase flow.

以上のように本発明の冷却装置は、作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体が配置され、前記外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、前記受熱部に前記作動流体を注入する導入管と、前記受熱部に注入された前記作動流体が熱によって蒸気となり、前記蒸気を排出する導出管と、前記受熱部より上方に設けられ前記導出管を経由した前記蒸気の熱を放出する放熱器と、前記導入管の開口部側に設けた逆止弁とを備え、前記放熱器で液化した作動流体を前記逆止弁を介して前記受熱部に帰す構成にするとともに、前記作動流体の循環方向は逆止弁以降の出口側圧力上昇によって決定され、前記内壁において前記導入管開口部の外周で囲まれる面の内側から外側へスリットが設けられ、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出される構成としたものであるので、ポンプを使用することなく、十分な気化面積の確保と吸熱性能に優れた冷却装置となる。 As described above, the cooling device of the present invention is a cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, and a heating element is disposed on one surface of the outer wall, and corresponds to one surface of the outer wall. A box-shaped heat receiving part for transferring heat to the inner wall, an introduction pipe for injecting the working fluid into the heat receiving part, and a lead-out pipe for discharging the steam by converting the working fluid injected into the heat receiving part into steam by heat. An operation that is provided above the heat receiving portion and that releases the heat of the steam via the outlet tube, and a check valve provided on the opening side of the introduction tube, and is liquefied by the radiator The fluid is returned to the heat receiving portion via the check valve, and the circulation direction of the working fluid is determined by an increase in pressure on the outlet side after the check valve, and on the outer periphery of the inlet pipe opening on the inner wall. Slit from inside to outside of enclosed surface Use a pump because the pressure inside the introduction pipe is increased and bubbles and un-evaporated working fluid are mixed-phased and discharged to the outlet pipe side. Therefore, the cooling device has a sufficient vaporization area and excellent heat absorption performance.

また、スリットを設けることにより、内壁表面の表面積が大きくなるので内壁の伝熱性能を向上させることができる。  Moreover, since the surface area of the inner wall surface is increased by providing the slit, the heat transfer performance of the inner wall can be improved.

更に、内壁に導入管の開口部の外周で囲まれる面の内側から外側へスリットを設けることにより、スリット内の作動流体の蒸発に伴う圧力の上昇によって、スリットで発生した気泡がスリットに沿って開口部の外周で囲まれる面の内側から外側へ排出されるため、気泡の滞留により作動流体の蒸発が阻害されることが無くなり、受熱部の吸熱特性が高まることで冷却装置全体の性能を向上させることができる。  Furthermore, by providing a slit on the inner wall from the inside to the outside of the surface surrounded by the outer periphery of the opening of the introduction tube, the bubbles generated in the slit are moved along the slit due to an increase in pressure accompanying the evaporation of the working fluid in the slit. Since it is discharged from the inside to the outside of the surface surrounded by the outer periphery of the opening, the evaporation of the working fluid is not hindered by the retention of bubbles, and the heat absorption characteristics of the heat receiving part are enhanced, improving the performance of the entire cooling device Can be made.

そして、以上の構成により、高い受熱性能を維持しつつ加熱初期の急激な温度上昇とドライアウトを抑制し動作安定性が高い冷却性能に優れた冷却装置を提供する事が可能である。 With the above-described configuration, it is possible to provide a cooling device that maintains high heat receiving performance and suppresses rapid temperature rise and dry-out in the initial stage of heating and has high operational stability and excellent cooling performance.

(a)本発明の実施例1における冷却装置をPC筐体内に配置した場合の斜視図、(b)冷却装置の構造図(A) The perspective view at the time of arrange | positioning the cooling device in Example 1 of this invention in PC housing | casing, (b) Structural drawing of a cooling device (a)本発明の実施例1の受熱ユニットの中央垂直断面図、(b)図2(a)の受熱ユニットの断面斜視図、(c)図2(a)の受熱ユニットの水平断面図、(d)図2(a)で示されるA部断面詳細図(A) The central vertical sectional view of the heat receiving unit according to the first embodiment of the present invention, (b) the cross sectional perspective view of the heat receiving unit of FIG. 2 (a), (c) the horizontal cross sectional view of the heat receiving unit of FIG. (D) A cross-sectional detail view of part A shown in FIG. (a)本発明の実施例1における受熱ユニットの中央垂直断面図、(b)90度方向の中央垂直断面図、(c)受熱ユニットのスリット部のA部断面詳細図(A) Central vertical sectional view of the heat receiving unit in Example 1 of the present invention, (b) Central vertical sectional view in the direction of 90 degrees, (c) Detailed cross-sectional view of the A part of the slit portion of the heat receiving unit 発熱サイズを変化させた場合の規格化熱抵抗変化を表したグラフA graph showing changes in normalized thermal resistance when the heat generation size is changed 本発明の実施例1における受熱板の厚さ方向の温度分布からスリット形成により、発熱体温度を気化温度との関係を表した模式図The schematic diagram showing the relationship between the heating element temperature and the vaporization temperature by slit formation from the temperature distribution in the thickness direction of the heat receiving plate in Example 1 of the present invention. 本発明の実施例1における受熱部を用いて、加熱初期の温度変化を示したグラフThe graph which showed the temperature change of the heating initial stage using the heat receiving part in Example 1 of this invention. 本発明の実施例1における受熱板厚さとスリット部底厚の比と加熱初期の温度比の関係を示したグラフThe graph which showed the relationship between the ratio of the heat receiving plate thickness in the Example 1 of this invention, the slit part bottom thickness, and the temperature ratio of an initial stage of a heating. (a)本発明の実施例2における他の受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) Central vertical sectional view of another heat receiving unit in Embodiment 2 of the present invention, (b) Cross sectional perspective view of the heat receiving unit, (c) Horizontal sectional view of the heat receiving unit, (d) Detail of section A of slit part Figure (a)本発明の実施例3における受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) The central vertical sectional view of the heat receiving unit in Embodiment 3 of the present invention, (b) The cross sectional perspective view of the heat receiving unit, (c) The horizontal cross sectional view of the heat receiving unit, (d) The cross sectional detail view of the A section of the slit portion (a)本発明の実施例3における受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) The central vertical sectional view of the heat receiving unit in Embodiment 3 of the present invention, (b) The cross sectional perspective view of the heat receiving unit, (c) The horizontal cross sectional view of the heat receiving unit, (d) The cross sectional detail view of the A section of the slit portion (a)本発明の実施例4における受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) The central vertical sectional view of the heat receiving unit in Embodiment 4 of the present invention, (b) The cross sectional perspective view of the heat receiving unit, (c) The horizontal cross sectional view of the heat receiving unit, (d) The cross sectional detail view of the A section of the slit portion (a)本発明の実施例4における他の受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) Central vertical sectional view of another heat receiving unit in Embodiment 4 of the present invention, (b) Cross sectional perspective view of the heat receiving unit, (c) Horizontal sectional view of the heat receiving unit, (d) Detail of section A of slit part Figure (a)本発明の実施例5における他の受熱ユニットの中央垂直断面図、(b)受熱ユニットの断面斜視図、(c)受熱ユニットの水平断面図、(d)スリット部のA部断面詳細図(A) Central vertical sectional view of another heat receiving unit in Example 5 of the present invention, (b) A sectional perspective view of the heat receiving unit, (c) A horizontal sectional view of the heat receiving unit, (d) A section detail of the slit part A Figure (a)従来の冷却装置の構成図、(b)従来の冷却装置の受熱部構造を示す図(A) The block diagram of the conventional cooling device, (b) The figure which shows the heat-receiving part structure of the conventional cooling device ヒートパイプを用いた従来の他の冷却装置の構成図Configuration diagram of another conventional cooling device using a heat pipe

請求項1に記載の発明によれば、作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体が配置され、前記外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、前記受熱部に前記作動流体を注入する導入管と、前記受熱部に注入された前記作動流体が熱によって蒸気となり、前記蒸気を排出する導出管と、前記受熱部より上方に設けられ前記導出管を経由した前記蒸気の熱を放出する放熱器と、前記導入管の開口部側に設けた逆止弁とを備え、前記放熱器で液化した作動流体を前記逆止弁を介して前記受熱部に帰す構成にするとともに、前記作動流体の循環方向は逆止弁以降の出口側圧力上昇によって決定され、前記内壁において前記導入管開口部の外周で囲まれる面の内側から外側へスリットが設けられ、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出されることを特徴とする。 According to invention of Claim 1, it is a cooling device which circulates a working fluid and cools by the phase change of a liquid phase and a gaseous phase, Comprising: A heat generating body is arrange | positioned on one surface of an outer wall, and it respond | corresponds to one surface of the said outer wall. A box-shaped heat receiving part for transferring heat to the inner wall, an introduction pipe for injecting the working fluid into the heat receiving part, and a lead-out pipe for discharging the steam by converting the working fluid injected into the heat receiving part into steam by heat. An operation that is provided above the heat receiving portion and that releases the heat of the steam via the outlet tube, and a check valve provided on the opening side of the introduction tube, and is liquefied by the radiator The fluid is returned to the heat receiving portion via the check valve, and the circulation direction of the working fluid is determined by an increase in pressure on the outlet side after the check valve, and on the outer periphery of the inlet pipe opening on the inner wall. A slit from the inside to the outside of the enclosed surface Vignetting, by pressure of the introduction pipe portion is raised, characterized in that the air bubbles and unevaporated working fluid is discharged to the outlet pipe side become multiphase flow.

これにより、内壁において導入管の開口部の外周で囲まれる面の内側から外側へスリットを設けることにより、スリット底部の内壁の厚さを薄くすることで熱抵抗が小さくなり、作動流体の相変化温度と発熱体との温度差を少なくすることができる。その結果、加熱初期状態における発熱体の温度上昇を抑制することが可能となる。   Thus, by providing a slit from the inside to the outside of the surface surrounded by the outer periphery of the opening of the introduction pipe on the inner wall, the thermal resistance is reduced by reducing the thickness of the inner wall at the bottom of the slit, and the phase change of the working fluid The temperature difference between the temperature and the heating element can be reduced. As a result, it is possible to suppress the temperature rise of the heating element in the initial heating state.

また、内壁にスリットを設けることより、内壁表面の表面積が大きくなるので、内壁の伝熱性能を向上させることができる。   Moreover, since the surface area of the inner wall surface is increased by providing the slit on the inner wall, the heat transfer performance of the inner wall can be improved.

更に、内壁に導入管の開口部の外周で囲まれる面の内側から外側へスリットを設けることにより、スリット内の作動流体の蒸発に伴う圧力の上昇によって、スリットで発生した気泡がスリットに沿って開口部の外周で囲まれる面の内側から外側へ排出されるため、気泡の滞留により作動流体の蒸発が阻害されることが無くなり、受熱部の吸熱特性が高まることで冷却装置全体の性能を向上させることができる。   Furthermore, by providing a slit on the inner wall from the inside to the outside of the surface surrounded by the outer periphery of the opening of the introduction tube, the bubbles generated in the slit are moved along the slit due to an increase in pressure accompanying the evaporation of the working fluid in the slit. Since it is discharged from the inside to the outside of the surface surrounded by the outer periphery of the opening, the evaporation of the working fluid is not hindered by the retention of bubbles, and the heat absorption characteristics of the heat receiving part are enhanced, improving the performance of the entire cooling device Can be made.

請求項2記載の発明によれば、請求項1記載の冷却装置であって、発熱体の熱源は、発熱体が配置された外壁において導入管開口部の外周の内側に配置されていることにより、作動流体が導入される場所に発熱体からの熱を効率的に伝えることが可能となり熱初期状態において発熱体の温度上昇を抑制し、安定した動作を実現することができる。   According to invention of Claim 2, it is a cooling device of Claim 1, Comprising: By the heat source of a heat generating body being arrange | positioned inside the outer periphery of an inlet pipe opening part in the outer wall in which a heat generating body is arrange | positioned, The heat from the heating element can be efficiently transmitted to the place where the working fluid is introduced, and the temperature rise of the heating element can be suppressed in the initial heat state, and stable operation can be realized.

請求項3記載の発明によれば、請求項1記載の冷却装置であって、導入管開口部は内壁に接していることにより、導入管開口部に蒸発時の気泡排除に寄与する圧力の上昇を更に発生させることができる。   According to a third aspect of the present invention, in the cooling device according to the first aspect, since the introduction pipe opening is in contact with the inner wall, an increase in pressure that contributes to bubble elimination during evaporation at the introduction pipe opening. Can be further generated.

請求項4記載の発明によれば、請求項1記載の冷却装置であって、スリットは、平行に複数形成することにより、内壁表面の表面積がより大きくなるので、内壁の伝熱特性を一層向上させることができる。   According to a fourth aspect of the present invention, in the cooling device according to the first aspect, by forming a plurality of slits in parallel, the surface area of the inner wall surface becomes larger, so the heat transfer characteristics of the inner wall are further improved. Can be made.

請求項5記載の発明によれば、請求項1記載の冷却装置であって、スリットは、導入管の中心から放射状に形成されていることにより、内壁表面の表面積がより大きくなるので、内壁の伝熱特性を一層向上させることができる。   According to the fifth aspect of the present invention, in the cooling device according to the first aspect, since the slits are formed radially from the center of the introduction pipe, the surface area of the inner wall surface becomes larger, so The heat transfer characteristics can be further improved.

請求項6記載の発明によれば、請求項1記載の冷却装置であって、開口部の外周で囲まれた内壁の中心部にスリットが設けられていることにより、内壁の厚さによる熱抵抗を小さくし作動流体の蒸発を促進するので、内壁の伝熱特性を一層向上させることができる。   According to invention of Claim 6, it is a cooling device of Claim 1, Comprising: By providing the slit in the center part of the inner wall enclosed by the outer periphery of an opening part, the thermal resistance by the thickness of an inner wall is provided. Is reduced and the evaporation of the working fluid is promoted, so that the heat transfer characteristics of the inner wall can be further improved.

請求項7記載の発明によれば、請求項1記載の冷却装置であって、導入管の中心から遠ざかるにつれスリットの幅を大きくすることにより、作動流体の蒸気する際の圧力が導入管の中心から遠ざかる方向の力として働くため、スリットで発生した気泡の排出を促進し、作動流体の蒸発を阻害する気泡の滞留が防止され、受熱部の吸熱特性を高め、冷却装置の性能を一層向上させることができる。   According to a seventh aspect of the present invention, in the cooling device according to the first aspect, by increasing the width of the slit as the distance from the center of the introduction pipe increases, the pressure when the working fluid is vaporized is reduced to the center of the introduction pipe. Since it acts as a force in the direction away from the air, it promotes the discharge of bubbles generated in the slit, prevents bubbles from staying in the way that hinders evaporation of the working fluid, improves the heat absorption characteristics of the heat receiving part, and further improves the performance of the cooling device be able to.

請求項8記載の発明によれば、請求項1記載の冷却装置であって、スリットを設けていない内壁から外壁の一面までの厚さHに対するスリットの底部から外壁の一面までの厚さhの比(h/H)が、0.1〜0.3であることにより、内壁の熱抵抗を小さくするので、受熱部の機械的強度を維持しつつ、受熱部の吸熱特性を向上させることができる。   According to invention of Claim 8, it is a cooling device of Claim 1, Comprising: Thickness h from the bottom part of a slit to one surface of an outer wall with respect to thickness H from the inner wall which does not provide a slit to one surface of an outer wall When the ratio (h / H) is 0.1 to 0.3, the thermal resistance of the inner wall is reduced, so that the heat absorption characteristics of the heat receiving portion can be improved while maintaining the mechanical strength of the heat receiving portion. it can.

請求項9記載の発明によれば、請求項1記載の冷却装置であって、導入管開口部と内壁との隙間を0.2mm以下とすることにより、作動流体の流れによって気泡が作動流体とともに排出されるので、気泡の滞留によって内壁表面の作動流体の蒸発が阻害されることがなく、受熱部の吸熱特性を高め、冷却装置の性能を向上させることができる。   According to invention of Claim 9, it is a cooling device of Claim 1, Comprising: By making the clearance gap between an inlet-tube opening part and an inner wall into 0.2 mm or less, a bubble is made into a working fluid with the flow of a working fluid. Since it is discharged, the evaporation of the working fluid on the inner wall surface is not hindered by the retention of bubbles, the heat absorption characteristics of the heat receiving part can be improved, and the performance of the cooling device can be improved.

請求項10記載の発明によれば、請求項1記載の冷却装置であって、スリットに交差する溝を設け、導入管開口部を溝に挿入することにより、スリット以外を通過して流れる作動流体をなくし、重力方向にかかわらず内壁に供給される作動流体の量を確保できるため、受熱部の横に発熱体を配置することができる。   According to a tenth aspect of the invention, in the cooling device according to the first aspect, the working fluid that flows through other than the slit by providing a groove that intersects the slit and inserting the inlet pipe opening into the groove. Since the amount of the working fluid supplied to the inner wall can be ensured regardless of the direction of gravity, the heating element can be disposed beside the heat receiving portion.

請求項11記載の発明によれば、作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体を配置し、外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、受熱部に作動流体を注入する導入管と、内壁の熱によって注入された作動流体が蒸気となり蒸気を排出する導出管と、受熱部より上方に設けられ導出管を経由した蒸気の熱を放出する放熱器を備え、発熱体が配置された外壁において導入管開口部の外周の内側に配置され、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出される構成とし、発熱体が配置された部分に対応する内壁の厚さを周囲の内壁の厚さより薄くすることを特徴とする。 According to invention of Claim 11, it is a cooling device which circulates a working fluid and cools by the phase change of a liquid phase and a gaseous phase, Comprising: A heat generating body is arrange | positioned on one surface of an outer wall, and the inner wall corresponding to one surface of an outer wall is provided. A box-shaped heat receiving part that transfers heat, an introduction pipe that injects working fluid into the heat receiving part, a lead-out pipe that discharges steam by the working fluid injected by the heat of the inner wall, and a derivation that is provided above the heat receiving part includes a radiator for releasing heat of the steam passing through the tube, the heating element is placed inside the outer periphery of the inlet tube opening in arranged outer wall, that the pressure of the inlet tube portion is raised, non-a bubble The evaporating working fluid is mixed and discharged to the outlet pipe side, and the thickness of the inner wall corresponding to the portion where the heating element is disposed is made thinner than the thickness of the surrounding inner wall. .

これにより、発熱体の熱源は、発熱体が配置された外壁において導入管開口部の外周の内側に配置され、発熱体が配置された部分に対応する内壁の厚さを周囲の内壁の厚さより薄くすることにより、発熱体が配置された部分に対応する内壁の熱抵抗が小さくなり、発熱体の温度と発熱体が配置された部分に対応する内壁の温度との温度差を小さくするので、その結果、加熱初期状態における発熱体の温度上昇を抑制することが可能となる。その結果発熱体の熱を発熱体の温度が比較的低い状態から作動流体の蒸発によって熱を奪うので、発熱体が発熱し始めた場合の温度上昇を抑制することができる。   As a result, the heat source of the heating element is arranged inside the outer periphery of the introduction tube opening in the outer wall where the heating element is arranged, and the thickness of the inner wall corresponding to the portion where the heating element is arranged is determined from the thickness of the surrounding inner walls. By reducing the thickness, the thermal resistance of the inner wall corresponding to the portion where the heating element is disposed is reduced, and the temperature difference between the temperature of the heating element and the temperature of the inner wall corresponding to the portion where the heating element is disposed is reduced. As a result, it is possible to suppress the temperature rise of the heating element in the initial heating state. As a result, since the heat of the heating element is removed by evaporation of the working fluid from a state where the temperature of the heating element is relatively low, an increase in temperature when the heating element starts to generate heat can be suppressed.

請求項12記載の発明によれば、請求項11記載の冷却装置であって、内壁にスリットを設けて内壁の厚さを薄くしたことにより、内壁でスリットより厚い周りの部分がスリットを設けた薄い部分を補強するので、内壁の強度を維持しつつ、発熱体が発熱し始めた場合の温度上昇を抑制することができる。   According to invention of Claim 12, it is a cooling device of Claim 11, Comprising: By providing the slit in the inner wall and making the thickness of the inner wall thin, the surrounding part thicker than the slit provided the slit in the inner wall Since the thin portion is reinforced, it is possible to suppress an increase in temperature when the heating element starts to generate heat while maintaining the strength of the inner wall.

以下、本発明の実施例について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1は、本発明の実施例1における冷却装置をパーソナルコンピュータ(以下、PC)筐体内に配置した場合の斜視図および本発明の冷却装置の構造図である。図1(a)において、16は、PC筐体であり、その中に電源ユニット15、マザーボード18などのPC部品と共に本発明の冷却装置が配置されている。そしてその冷却装置は、発熱体ソケット17と接続する箱型の受熱ユニット1と放熱部11、および放熱部11を冷却するファン10により構成されている。
Example 1
FIG. 1 is a perspective view of the cooling device according to the first embodiment of the present invention arranged in a personal computer (hereinafter referred to as PC) housing and a structural diagram of the cooling device of the present invention. In FIG. 1A, reference numeral 16 denotes a PC housing, in which a cooling device of the present invention is arranged together with PC components such as a power supply unit 15 and a mother board 18. The cooling device includes a box-type heat receiving unit 1 connected to the heating element socket 17, a heat radiating unit 11, and a fan 10 that cools the heat radiating unit 11.

本発明の冷却装置を更に説明すると、図1(b)に示すように、受熱板3を含む箱型の受熱ユニット1と放熱部11、および作動流体の循環方向を決定する逆止弁7の3つの主要部品と逆止弁7と受熱ユニット1とを接続する導入管5、受熱ユニット1から作動流体を排出する導出管6、導出管6と放熱部11とを接続する管路8、および逆止弁7と放熱部11とを接続する管路9の循環系から構成されている。   The cooling device of the present invention will be further described. As shown in FIG. 1B, a box-type heat receiving unit 1 including a heat receiving plate 3, a heat radiating unit 11, and a check valve 7 that determines the circulation direction of the working fluid. An introduction pipe 5 for connecting the three main components, the check valve 7 and the heat receiving unit 1, a lead-out pipe 6 for discharging the working fluid from the heat-receiving unit 1, a pipe line 8 for connecting the lead-out pipe 6 and the heat radiating portion 11, and It is comprised from the circulation system of the pipe line 9 which connects the check valve 7 and the heat radiating part 11.

次に、受熱ユニット1の詳細な構造を図2を用いて説明する。図2(a)は、本発明の実施例1の受熱ユニットの中央垂直断面図、図2(b)は、図2(a)の受熱ユニットの断面斜視図、および図2(c)は、図2(a)の受熱ユニットの水平断面図、図2(d)は、図2(a)で示されるA部断面詳細図である。図2(a)において、1は、受熱ユニットの全体を表している。2は、発熱体であり、3は、発熱体2と接触し熱を吸収する受熱板で、熱抵抗の少ない例えば、銅、アルミニュウム等の材料が用いられる。図2(a)より、発熱体直上近傍の受熱ユニット1の受熱板3の内側には、略平行にスリット4が形成されており、それを覆うように導入管5が、受熱板3に接触または僅かな隙間で配されている。つまり、図2(c)より、スリット4の長さW1は、導入管5の管径D1よりも大きく、発熱体直上近傍のスリット4中央部を導入管5が覆う状態となっている。   Next, the detailed structure of the heat receiving unit 1 will be described with reference to FIG. 2A is a central vertical sectional view of the heat receiving unit according to the first embodiment of the present invention, FIG. 2B is a cross-sectional perspective view of the heat receiving unit of FIG. 2A, and FIG. 2A is a horizontal cross-sectional view of the heat receiving unit, and FIG. 2D is a detailed cross-sectional view of a portion A shown in FIG. In FIG. 2A, 1 represents the whole heat receiving unit. Reference numeral 2 denotes a heating element, and 3 denotes a heat receiving plate that contacts the heating element 2 and absorbs heat. For example, a material having a low thermal resistance, such as copper or aluminum, is used. As shown in FIG. 2A, a slit 4 is formed substantially in parallel inside the heat receiving plate 3 of the heat receiving unit 1 in the vicinity immediately above the heating element, and the introduction pipe 5 contacts the heat receiving plate 3 so as to cover it. Or it is arranged with a slight gap. That is, from FIG. 2C, the length W1 of the slit 4 is larger than the tube diameter D1 of the introduction tube 5, and the introduction tube 5 covers the central portion of the slit 4 near the heating element.

以下、以上のように構成された本発明の冷却装置について動作を説明する。発熱体2が発熱すると受熱ユニット1内の作動流体14が、発熱体2から受熱板3へ伝熱した熱によって、受熱ユニット1内側の受熱板3表面(以下、気化面)で相変化(蒸発)し、気化潜熱として蒸気が熱を受け取り、発熱体2を冷却する。その蒸発した蒸気は、導出管6から矢印の方向に管路8を通って放熱部11へ流入し放熱部11内で冷却された蒸気は凝縮し液化する。この時、液化による凝縮熱が、放出され放熱部の温度を高める。そして、放熱部搭載のファン10からの空気が高温となった放熱部11の表面へ送られ熱交換されることで最終的に空気中へ熱が放散される。そして液化した作動流体14は、管路9を通り受熱ユニット1直前の逆止弁7を経由して導入管5から再び受熱ユニット1内へ帰ってくる。この一連のサイクルを繰り返すことで冷却が継続される。   Hereinafter, the operation of the cooling device of the present invention configured as described above will be described. When the heating element 2 generates heat, the working fluid 14 in the heat receiving unit 1 undergoes a phase change (evaporation) on the surface of the heat receiving plate 3 (hereinafter referred to as a vaporization surface) inside the heat receiving unit 1 due to heat transferred from the heating element 2 to the heat receiving plate 3. The steam receives heat as the latent heat of vaporization and cools the heating element 2. The evaporated steam flows from the outlet pipe 6 in the direction of the arrow through the pipe line 8 to the heat radiating section 11, and the steam cooled in the heat radiating section 11 is condensed and liquefied. At this time, the heat of condensation due to liquefaction is released to raise the temperature of the heat radiating section. Then, the air from the fan 10 mounted on the heat radiating unit is sent to the surface of the heat radiating unit 11 at a high temperature and heat exchange is performed, so that heat is finally dissipated into the air. The liquefied working fluid 14 returns to the heat receiving unit 1 again from the introduction pipe 5 through the conduit 9 and the check valve 7 immediately before the heat receiving unit 1. Cooling is continued by repeating this series of cycles.

ここで、上記受熱板3近傍の動作を図3を用いて更に説明する。図3(a)は、図2(a)と同じ受熱ユニットの中央垂直断面図と図3(b)は、更に切断方向を90度変えた中央垂直断面図であり、図3(c)は、スリット部のA部断面詳細図である。図3(c)に示すように導入管5からスリット4内へ流入した作動流体14は、スリット4内を通過する時に発熱体に最も近い受熱面と接触し、発熱量に応じた量の作動流体が相変化(蒸発)する。この時、受熱面では気化潜熱が奪われると同時に相変化に伴う体積膨張によって気泡が成長し、導入管5内部の圧力が上昇することで、気泡と未蒸発の作動流体14が混相流となって導出管6側へ排出される。導入管5には逆止弁7が搭載されており、ここでの圧力上昇は、この逆止弁7以降の出口側で発生し、作動流体14の循環方向を決定している。また、スリット部の底厚hは、受熱板厚Hに比べてかなり薄くなっている。   Here, the operation in the vicinity of the heat receiving plate 3 will be further described with reference to FIG. 3A is a central vertical sectional view of the same heat receiving unit as FIG. 2A, and FIG. 3B is a central vertical sectional view in which the cutting direction is further changed by 90 degrees, and FIG. FIG. 2 is a detailed cross-sectional view of an A part of a slit part. As shown in FIG. 3 (c), the working fluid 14 that has flowed into the slit 4 from the introduction pipe 5 comes into contact with the heat receiving surface closest to the heating element when passing through the slit 4, and operates according to the amount of heat generated. The fluid undergoes a phase change (evaporation). At this time, the latent heat of vaporization is deprived on the heat receiving surface, and at the same time, bubbles grow due to volume expansion accompanying the phase change, and the pressure inside the introduction pipe 5 increases, so that the bubbles and the non-evaporated working fluid 14 become a multiphase flow. And discharged to the outlet pipe 6 side. A check valve 7 is mounted on the introduction pipe 5, and the pressure rise here occurs on the outlet side after the check valve 7, and determines the circulation direction of the working fluid 14. Further, the bottom thickness h of the slit portion is considerably thinner than the heat receiving plate thickness H.

このようにスリット底厚hを薄くすると、厚さによる熱抵抗を小さくすることができ、同じ発熱量でも比較的短時間で蒸発温度に達し、気化が始まるため、加熱初期の受熱面の温度上昇を抑制する事ができる。また、スリット4の形成により、十分な気化面積も同時に確保することができ吸熱性能の向上もできる。   By reducing the slit bottom thickness h in this way, the thermal resistance due to the thickness can be reduced, and even at the same calorific value, the evaporation temperature is reached in a relatively short time, and vaporization starts. Can be suppressed. Moreover, by forming the slit 4, a sufficient vaporization area can be secured at the same time, and the heat absorption performance can be improved.

なお、上記圧力上昇によってスリット4の気泡は、未蒸発の作動流体14と共に排出させるためには、受熱板3と導入管5との隙間の流路抵抗をスリット4の流路抵抗より大きくする必要がある。   In order to discharge the bubbles in the slit 4 together with the non-evaporated working fluid 14 due to the pressure increase, the flow path resistance of the gap between the heat receiving plate 3 and the introduction pipe 5 needs to be larger than the flow path resistance of the slit 4. There is.

つまり、スリット4を設けていない部分の受熱板3と導入管5との隙間をゼロにした場合、スリット4を設けていない部分の受熱板3と導入管5との隙間から作動流体14は排出されず、スリット4のみから作動流体は排出され、作動流体14の流れによってスリット4に発生した気泡を効果的に排出できる。   In other words, when the gap between the heat receiving plate 3 and the introduction pipe 5 where the slit 4 is not provided is zero, the working fluid 14 is discharged from the gap between the heat receiving plate 3 and the introduction pipe 5 where the slit 4 is not provided. Instead, the working fluid is discharged only from the slit 4, and bubbles generated in the slit 4 by the flow of the working fluid 14 can be effectively discharged.

また、受熱板3と導入管5の隙間がある場合でも、スリット4の流路抵抗が、スリット4を設けていない部分の隙間の流路抵抗より小さくなる様に、スリット4の深さや、幅を選択することで、作動流体14はスリット4内を流れ易くなる。   Further, even when there is a gap between the heat receiving plate 3 and the introduction pipe 5, the depth and width of the slit 4 so that the flow resistance of the slit 4 is smaller than the flow resistance of the gap where the slit 4 is not provided. Is selected, the working fluid 14 can easily flow in the slit 4.

ここで、一般に、電子部品の冷却では、前述した通り、発熱体2に対接した受熱ユニット1で熱が、発熱体2と受熱板3の接触面(以下、受熱面)から吸熱されフィンに伝わり、フィン間を流れる作動流体との熱交換で熱が奪われることで発熱体2の冷却を行う。しかし、発熱体2のサイズは、近年の小型化、低コスト化に伴って縮小の一途をたどっており、仮に発熱量自体がほとんど変化しなくとも、発熱体2からの熱密度(単位面積当たりの発熱量)は、サイズとは逆に急激に増加する事になる。この点は、前述した通りで同一冷却装置では大幅な吸熱性能の低下につながる事を意味しており、その理由を示したのが、図4である。このグラフは、同じ冷却装置を使用し、発熱量を固定して発熱サイズを変化させた場合の熱抵抗の変化を実験的に求めて表したグラブである。横軸は、発熱体2のサイズ(面積S:mm2)を表し、縦軸は、発熱体サイズを100mm2とした場合の冷却装置の熱抵抗R0とサイズが縮小した場合の熱抵抗R1の比をとった規格化熱抵抗比(R1/R0)を表している。また、上部横軸には各サイズを将来実現するために必要な半導体プロセスの最小線幅の世代例も付記している。同グラフより、発熱サイズが縮小すると熱抵抗も急激に悪化してくることがわかる。これは、前述した通り発熱サイズの縮小に伴う熱密度の増加が原因であり、実質的な冷却装置の吸熱性能の低下を意味している。更に、ここで示した最小線幅の世代交代は、通常2年〜3年で行われており、その間の半導体素子数の増加を考慮しても、一世代で約70%までサイズが縮小すると言われている。そして、この世代交代による熱密度の増加に対応するだけの吸熱性能を現実的に確保する事が困難に成りつつあるという事が大きく顕在化して来ている。   Here, in general, in the cooling of electronic components, as described above, heat is absorbed by the heat receiving unit 1 in contact with the heat generating element 2 from the contact surface (hereinafter referred to as the heat receiving surface) between the heat generating element 2 and the heat receiving plate 3 and becomes fins. The heat generating body 2 is cooled by heat being transferred through heat exchange with the working fluid flowing between the fins. However, the size of the heating element 2 is steadily decreasing with the recent reduction in size and cost, and even if the calorific value itself hardly changes, the heat density from the heating element 2 (per unit area) The calorific value) increases rapidly, contrary to the size. As described above, this point means that the same cooling device leads to a significant decrease in endothermic performance, and the reason is shown in FIG. This graph is a grab obtained by experimentally determining the change in thermal resistance when the same cooling device is used and the heat generation size is changed while the heat generation amount is fixed. The horizontal axis represents the size (area S: mm2) of the heating element 2, and the vertical axis represents the ratio between the thermal resistance R0 of the cooling device when the heating element size is 100 mm2 and the thermal resistance R1 when the size is reduced. The normalized thermal resistance ratio (R1 / R0) is shown. The upper horizontal axis also shows an example of generation of the minimum line width of the semiconductor process necessary for realizing each size in the future. From the graph, it can be seen that as the heat generation size decreases, the thermal resistance also deteriorates rapidly. This is due to the increase in the heat density accompanying the reduction in the heat generation size as described above, which means a substantial decrease in the heat absorption performance of the cooling device. Furthermore, the generation change of the minimum line width shown here is usually performed in 2 to 3 years, and even if the increase in the number of semiconductor elements in the meantime is taken into account, the size is reduced to about 70% in one generation. It is said. The fact that it is becoming difficult to actually secure endothermic performance sufficient to cope with the increase in heat density due to this generational change has become increasingly apparent.

従って、この問題に対して受熱部の高性能化が急務であることは言うまでもないが、そのためには、吸熱性能を高める前述した蒸発などの相変化による気化潜熱を利用したものが有効となる。しかし、実際の相変化でもある程度の蒸発を行う気化面積が必要である。特に発熱体である素子サイズが小さくなるほど素子直上の熱交換面積となる作動流体の気化面積の確保は困難となって来る。そこでこの気化面積を広げる方法として2つの方法がある。第1の方法は、発熱体直上にできるだけ密にフィンを配置する方法であり、第2の方法は、受熱板3の厚さを厚くし発熱体2からの距離を大きくとることで、熱の拡散範囲を広げて気化面積を確保する方法である。第1のフィンを密に配置する方法は、従来からよく行われており、マイクロチャネルなどがその代表と言える。しかし、この方法は、フィン密度の増加に従い気化面積を増やすことは可能であるが、フィン密度が高くなるほどコストを含めて工法的に困難な面が非常に大きくなる欠点がある。   Accordingly, it goes without saying that there is an urgent need to improve the performance of the heat receiving part with respect to this problem, but for this purpose, it is effective to use the latent heat of vaporization due to the phase change such as evaporation described above to improve the heat absorption performance. However, a vaporization area is required to perform evaporation to some extent even in actual phase change. In particular, as the element size of the heating element becomes smaller, it becomes more difficult to secure the vaporization area of the working fluid that becomes the heat exchange area immediately above the element. Therefore, there are two methods for expanding the vaporization area. The first method is a method of arranging fins as densely as possible directly above the heating element, and the second method is to increase the thickness of the heat receiving plate 3 and increase the distance from the heating element 2, thereby This is a method of expanding the diffusion range and securing a vaporization area. A method of densely arranging the first fins has been conventionally performed, and a microchannel or the like can be said to be a representative example. However, this method can increase the vaporization area as the fin density increases, but there is a drawback that the more difficult the method, including the cost, becomes larger as the fin density increases.

また、従来のマイクロチャネル型フィンはミクロンオーダーでフィンを密に配置しているが、この構造ではフィンの間に作動流体を流すためにポンプが必要となる。   Further, the conventional microchannel type fins are closely arranged on the order of microns, but in this structure, a pump is required for flowing a working fluid between the fins.

第2の受熱板を厚くする方法は、コストおよび工法的にも容易である。しかし、この方法でも十分な気化面積を確保するにはかなり厚みが必要となり、厚さによる熱抵抗の増加と重量増加という問題が出てくる。特に熱抵抗の増加は、相変化が始まる加熱初期の急激な温度上昇を招く可能性が高く、これらの問題に適切に対応可能な構造が必要と言える。   The method of increasing the thickness of the second heat receiving plate is easy in terms of cost and construction method. However, even with this method, a considerable thickness is required to secure a sufficient vaporization area, and problems such as an increase in thermal resistance and an increase in weight due to the thickness arise. In particular, an increase in thermal resistance is likely to cause a rapid temperature increase at the beginning of heating when phase change begins, and it can be said that a structure that can appropriately cope with these problems is required.

そこで、本発明は、導入管に近接した受熱板にミリオーダーで複数のスリットを形成した構造を採用する事によって、ポンプを使用することなく、十分な気化面積の確保と加熱初期の温度上昇を抑制した吸熱性能に優れた冷却装置を実現している。   Therefore, the present invention employs a structure in which a plurality of slits are formed on the heat receiving plate close to the introduction pipe on the order of millimeters, thereby ensuring a sufficient vaporization area and increasing the temperature at the initial stage of heating without using a pump. A cooling device with excellent heat absorption performance is realized.

上記発熱体2の加熱初期の温度上昇を抑える効果について図5、および図6を用いて説明する。図5は、受熱板3にスリット4が形成された状態での温度分布Fを示す略図である。受熱面の温度分布Fは、発熱体2の温度をTcとし、スリット4の底部(板厚h)の温度差ΔTh、受熱板3(板厚H)の温度差ΔTH(>ΔTh)となっている。この様に、板厚が厚いほど温度差が大きくなることがわかる。つまり、発熱体2の温度がTcである場合、スリット4の底部の温度はTc−ΔThであり、受熱板3表面の温度はTc−ΔTHとなる。そのため、発熱体2から距離が近い、つまり受熱板の厚さが薄いほど、発熱体2との温度差が小さくなり、スリット4を設けていない受熱板3で気化する際に発熱体2が必要な温度よりスリット4で気化する際の発熱体2の温度を低くすることができる。   The effect of suppressing the temperature rise at the initial heating stage of the heating element 2 will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic diagram showing the temperature distribution F in a state where the slit 4 is formed in the heat receiving plate 3. The temperature distribution F on the heat receiving surface is such that the temperature of the heating element 2 is Tc, the temperature difference ΔTh at the bottom (plate thickness h) of the slit 4 and the temperature difference ΔTH (> ΔTh) of the heat receiving plate 3 (plate thickness H). Yes. Thus, it can be seen that the temperature difference increases as the plate thickness increases. That is, when the temperature of the heating element 2 is Tc, the temperature of the bottom of the slit 4 is Tc−ΔTh, and the temperature of the surface of the heat receiving plate 3 is Tc−ΔTH. Therefore, the shorter the distance from the heating element 2, that is, the thinner the heat receiving plate, the smaller the temperature difference from the heating element 2, and the heating element 2 is required when vaporizing with the heat receiving plate 3 without the slit 4 provided. The temperature of the heating element 2 when vaporizing at the slit 4 can be lowered from a certain temperature.

図6は、この受熱板3へスリット4を形成した場合としない場合での時間と受熱面の温度変化を示したグラフである。横軸に加熱開始からの時間(min)、縦軸に発熱体2と受熱板3との対接面である受熱面の温度Tcを取り、スリットの有無による加熱初期の温度変化と安定状態までの推移を表している。同グラフより、従来のスリット無しの場合は、加熱開始直後に急激な温度上昇が現れ、最高温度Tc−pは電子部品の安定動作温度(CPUの場合75℃前後)を越えており、この状態では、電源投入初期に熱暴走する可能性が高い。これに対して、本発明であるスリットを有りの方は、加熱開始直後に僅かに上昇をみせるが、すぐに安定状態に移り最高温度Tc−pも安定動作温度以下に抑制することができる。また、スリットを形成する事によって気化面積が増加するため、安定状態での温度Tc−stも低下し、吸熱性能を向上させることができる。   FIG. 6 is a graph showing time and temperature change of the heat receiving surface when the slit 4 is formed on the heat receiving plate 3 and when the slit 4 is not formed. The horizontal axis represents the time from the start of heating (min), and the vertical axis represents the temperature Tc of the heat receiving surface, which is the contact surface between the heat generating element 2 and the heat receiving plate 3, until the initial temperature change due to the presence or absence of slits and the stable state. This represents the transition of From the graph, when there is no conventional slit, a rapid temperature rise appears immediately after the start of heating, and the maximum temperature Tc-p exceeds the stable operating temperature of the electronic component (around 75 ° C. in the case of CPU). Then, there is a high possibility of thermal runaway at the beginning of power-on. On the other hand, the one having the slit according to the present invention shows a slight increase immediately after the start of heating, but immediately shifts to a stable state and can suppress the maximum temperature Tc-p to be equal to or lower than the stable operating temperature. Further, since the evaporation area is increased by forming the slit, the temperature Tc-st in the stable state is also lowered, and the heat absorption performance can be improved.

スリット4の底厚について図7を用いて説明する。図7は、受熱板3の厚さHを4mmとした場合を例として、横軸に受熱板厚さHとスリット部底厚hの厚さ比率(h/H)を取り、縦軸に加熱初期の受熱面の最大温度Tc−pと安定状態温度Tc−stの温度比率(Tc−p/Tc−st)の関係を示したグラフである。同グラフより、厚さ比率が0.3以下で有れば温度比率が1.3程以下となり、安定状態温度Tc−stより30%程度の温度上昇レベルに抑制されていることがわかる。   The bottom thickness of the slit 4 will be described with reference to FIG. FIG. 7 shows an example in which the thickness H of the heat receiving plate 3 is 4 mm. The horizontal axis represents the thickness ratio (h / H) of the heat receiving plate thickness H and the slit bottom thickness h, and the vertical axis represents heating. It is the graph which showed the relationship of the temperature ratio (Tc-p / Tc-st) of the maximum temperature Tc-p of an initial heat receiving surface, and the stable state temperature Tc-st. From the graph, it can be seen that if the thickness ratio is 0.3 or less, the temperature ratio is about 1.3 or less, which is suppressed to a temperature increase level of about 30% from the steady state temperature Tc-st.

ただし、実際の受熱板3ではスリット底厚hを薄くすればするほど良いということではない。スリット底厚hがあるレベルよりも薄くなると、温度比率の減少が無くなる点と、極端に薄くした場合には機械的強度も低下するため、それらの点を考慮して、スリット底厚hやスリットの幅、数、配置間隔などを考慮する必要がある。   However, the actual heat receiving plate 3 does not mean that the thinner the slit bottom thickness h, the better. If the slit bottom thickness h becomes thinner than a certain level, the temperature ratio will not decrease, and if it is made extremely thin, the mechanical strength will also decrease. It is necessary to consider the width, number, arrangement interval, etc.

これにより、本発明の冷却装置は、受熱部の内壁にスリットを設けることで、薄いスリット底厚により熱抵抗を小さくすることができ、同じ発熱量でも比較的短時間で蒸発温度に達し、気化が始まるため、加熱初期の受熱面の温度上昇を抑制する事ができる。   As a result, the cooling device of the present invention can reduce the thermal resistance due to the thin slit bottom thickness by providing a slit on the inner wall of the heat receiving part, and can reach the evaporation temperature in a relatively short time even with the same calorific value. Therefore, the temperature rise of the heat receiving surface at the initial stage of heating can be suppressed.

また、内壁にスリットを設けることより、内壁表面の表面積が大きくなるので、内壁の伝熱性能を向上させることができる。   Moreover, since the surface area of the inner wall surface is increased by providing the slit on the inner wall, the heat transfer performance of the inner wall can be improved.

更に、内壁に導入管の開口部の外周で囲まれる面の内側から外側へスリットを設けることにより、スリット内では、作動流体の蒸発に伴う圧力の上昇によって、スリット内で発生した気泡がスリットに沿って開口部の外周で囲まれる面の内側から外側へ排出されるため、気泡滞留による作動流体の蒸発が阻害されることなくなり、受熱部の吸熱特性を高め、冷却装置の性能を向上させることができる。   Furthermore, by providing a slit on the inner wall from the inside to the outside of the surface surrounded by the outer periphery of the opening of the introduction pipe, bubbles generated in the slit are caused in the slit due to an increase in pressure caused by evaporation of the working fluid. Along the surface surrounded by the outer periphery of the opening, it is discharged from the inside to the outside, so that the evaporation of the working fluid due to bubble retention is not hindered, the heat absorption characteristics of the heat receiving part are improved, and the performance of the cooling device is improved. Can do.

なお、受熱板3と導入管5との隙間を0.2mm以下とすることで、スリット4に生じた気泡を作動流体14の流れによって離脱させ、スリット4に滞留する気泡を少なくすることができる。その結果、スリット4を設けた受熱板3の表面における作動流体14の相変化すなわち蒸発を促進し、受熱ユニット1の全体の吸熱性能を向上させることができる。   In addition, by setting the gap between the heat receiving plate 3 and the introduction pipe 5 to be 0.2 mm or less, bubbles generated in the slit 4 can be separated by the flow of the working fluid 14, and bubbles remaining in the slit 4 can be reduced. . As a result, the phase change, that is, evaporation of the working fluid 14 on the surface of the heat receiving plate 3 provided with the slits 4 can be promoted, and the overall heat absorption performance of the heat receiving unit 1 can be improved.

また、スリット4を傾斜または、曲率を持って形成することにより、発生した気泡が作動流体14の流れによって上方の空間に排出しやすくなり、その結果スリット4に気泡が滞留すること軽減することができる。   Further, by forming the slit 4 with an inclination or a curvature, the generated bubbles can be easily discharged into the upper space by the flow of the working fluid 14, and as a result, it is possible to reduce the retention of the bubbles in the slit 4. it can.

(実施例2)
実施例2は、実施例1のスリットを放射状に配置したものである。なお、実施例1と同一構成部分については便宜上同一符号を付し、その具体的説明は実施例1のものを援用する。
(Example 2)
In Example 2, the slits of Example 1 are arranged radially. In addition, the same code | symbol is attached | subjected about the same component as Example 1, and the thing of Example 1 is used for the specific description.

本発明の実施例2における冷却装置について図8を用いて説明する。図8(a)は、本発明の実施例2の他の受熱ユニットの中央垂直断面図、図8(b)は、図8(a)の受熱ユニットの断面斜視図、図8(c)は、図8(a)の受熱ユニットの水平断面図、図8(d)は、図8(a)で示されるA部断面詳細図である。図8(a)に示すように、発熱体直上の受熱ユニット1の受熱板3に形成されているスリット4の形状は、発熱体中心軸を起点に放射状に形成されている。このスリット構造を採用する事で発熱体直上近傍の受熱板厚さは、同一スリット幅であれば熱抵抗の低い気化面として動作させることが可能なスリット底厚hとなっており、この薄い底厚hの範囲は、図2のタイプに比べて比較的広く確保できる構造となっている。従って、この構造を採用することによって、図2の場合と同様に高い吸熱性能を実現することができる。   A cooling device in Embodiment 2 of the present invention will be described with reference to FIG. 8A is a central vertical sectional view of another heat receiving unit according to the second embodiment of the present invention, FIG. 8B is a cross-sectional perspective view of the heat receiving unit of FIG. 8A, and FIG. FIG. 8A is a horizontal sectional view of the heat receiving unit, and FIG. 8D is a detailed cross-sectional view of a portion A shown in FIG. 8A. As shown in FIG. 8A, the shape of the slit 4 formed in the heat receiving plate 3 of the heat receiving unit 1 directly above the heat generating element is formed radially from the central axis of the heat generating element. By adopting this slit structure, the thickness of the heat receiving plate immediately above the heating element is a slit bottom thickness h that can be operated as a vaporized surface with low thermal resistance if the slit width is the same, and this thin bottom The range of the thickness h is a structure that can be secured relatively wide compared to the type of FIG. Therefore, by adopting this structure, high endothermic performance can be realized as in the case of FIG.

(実施例3)
実施例3は、発熱体2が接している受熱板3の中心にスリットを設けないものである。なお、実施例1、2と同一構成部分については便宜上同一符号を付し、その具体的説明は実施例1、2のものを援用する。
(Example 3)
In the third embodiment, no slit is provided at the center of the heat receiving plate 3 with which the heating element 2 is in contact. In addition, about the same component as Example 1, 2, the same code | symbol is attached | subjected for convenience, and the thing of Example 1, 2 is used for the specific description.

まず、スリット4を平行に配置した場合について図9を用いて説明する。図9(a)は、本発明の実施例3の受熱ユニット1の中央垂直断面図、図9(b)は、図9(a)受熱ユニットの断面斜視図、図9(c)は、図9(a)の受熱ユニットの水平断面図、図9(d)は、図9(a)で示されるA部断面詳細図である。図9(a)に示すように、発熱体直上の受熱ユニット1の受熱板3に形成されている略平行のスリット4の配置が、発熱体2の直上の一部を避けて配されている。つまり、発熱体2の直上には、受熱板本来の厚さHの部分が残っており発熱体周辺の受熱板厚さHの部分と直接つながった領域となっている。図2または図8の実施例2の場合では、スリットの密度によっては、前述した通り機械的強度が不足することが考えられたため、本実施例では、図9の様な構造を採用することで必要な機械的強度を維持している。そして、適度なスリット密度の選択により、十分な気化面積の確保と加熱初期の温度上昇を抑制した吸熱性能に優れた冷却装置を実現することができる。   First, the case where the slits 4 are arranged in parallel will be described with reference to FIG. 9A is a central vertical sectional view of the heat receiving unit 1 according to the third embodiment of the present invention, FIG. 9B is a cross-sectional perspective view of FIG. 9A, and FIG. 9C is a diagram. 9A is a horizontal cross-sectional view of the heat receiving unit, and FIG. 9D is a detailed cross-sectional view of the A portion shown in FIG. 9A. As shown in FIG. 9A, the arrangement of the substantially parallel slits 4 formed in the heat receiving plate 3 of the heat receiving unit 1 immediately above the heat generator is arranged avoiding a part directly above the heat generator 2. . In other words, a portion with the original thickness H of the heat receiving plate remains immediately above the heat generating member 2, which is an area directly connected to the portion with the heat receiving plate thickness H around the heat generating member. In the case of Example 2 in FIG. 2 or FIG. 8, it is considered that the mechanical strength is insufficient as described above depending on the density of the slits. Therefore, in this example, by adopting the structure as shown in FIG. The required mechanical strength is maintained. Then, by selecting an appropriate slit density, it is possible to realize a cooling device excellent in endothermic performance that secures a sufficient vaporization area and suppresses a temperature increase in the initial stage of heating.

次に、スリット4を放射状に配置した場合について図10を用いて説明する。図10(a)は、本発明の実施例3の受熱ユニット1の中央垂直断面図、図10(b)は、図10(a)受熱ユニットの断面斜視図、図10(c)は、図10(a)の受熱ユニットの水平断面図、図10(d)は、図10(a)で示されるスリット部のA部断面詳細図である。図10(a)に示すように、基本的な構成は、図8の場合と同じで、受熱板3に形成されたスリット4も発熱体中心から放射状に形成されている。ただし、発熱体直上の受熱ユニット1の受熱板3に形成されているスリット4の配置が、図9の場合と同様に発熱体2の直上の一部を避けて放射状に配されている。つまり、この場合も発熱体2の直上には、受熱板本来の厚さHの部分が残っており発熱体周辺の受熱板厚さHの部分と直接つながった領域となっている。従って、図9の場合と同様に、この構造を採用することで必要な機械的強度が維持され、適度なスリット密度の選択により、十分な気化面積と加熱初期の温度上昇を抑制した吸熱性能に優れた冷却装置を実現することができる。   Next, the case where the slits 4 are arranged radially will be described with reference to FIG. 10A is a central vertical sectional view of the heat receiving unit 1 according to the third embodiment of the present invention, FIG. 10B is a cross-sectional perspective view of FIG. 10A, and FIG. 10C is a diagram. 10 (a) is a horizontal cross-sectional view of the heat receiving unit, and FIG. 10 (d) is a detailed cross-sectional view of the A portion of the slit portion shown in FIG. 10 (a). As shown in FIG. 10A, the basic configuration is the same as in FIG. 8, and the slits 4 formed in the heat receiving plate 3 are also formed radially from the center of the heating element. However, the arrangement of the slits 4 formed in the heat receiving plate 3 of the heat receiving unit 1 immediately above the heat generating element is arranged radially avoiding a part directly above the heat generating element 2 as in the case of FIG. That is, in this case as well, a portion with the original thickness H of the heat receiving plate remains immediately above the heat generating member 2 and is an area directly connected to the portion with the heat receiving plate thickness H around the heat generating member. Therefore, as in the case of FIG. 9, the necessary mechanical strength is maintained by adopting this structure, and by selecting an appropriate slit density, a sufficient vaporization area and endothermic performance with suppressed temperature rise at the beginning of heating are achieved. An excellent cooling device can be realized.

(実施例4)
実施例4は、更なる吸熱性能の向上のためにスリット4の幅を発熱体2から遠ざかるに従って徐々に大きくしたものである。なお、実施例1〜3と同一構成部分については便宜上同一符号を付し、その具体的説明は実施例1〜3のものを援用する。
Example 4
In Example 4, the width of the slit 4 is gradually increased as the distance from the heating element 2 increases in order to further improve the heat absorption performance. In addition, the same code | symbol is attached | subjected about the same component as Examples 1-3, and the thing of Examples 1-3 is used for the specific description.

まず、スリット4を平行に配置した場合について図11を用いて説明する。図11(a)は、本発明の実施例4の受熱ユニット1の中央垂直断面図、図11(b)は、図11(a)の受熱ユニットの断面斜視図、図11(c)は、図11(a)の受熱ユニットの水平断面図、図11(d)は、図11(a)で示されるスリット部のA部断面詳細図である。図11(a)に示すように、発熱体直上の受熱ユニット1の受熱板3に形成されているスリット4の配置が、図9の場合と同様に発熱体2の直上の一部を避けて、かつ導入管5直下の作動流体14が流入するスリット4の幅が、発熱体2中央から遠ざかるに従って徐々に大きくなっている。この構造を採用することで、スリット4内で気化し気泡となってスリット4の他端から排出される蒸気の気泡離脱性が高まり、作動流体の安定した循環を促進することが可能となる。特に表面張力の高い作動流体を用いる場合などでは、スリット4内で発生する気泡が物理的に保持(トラップ)され易くなり、作動流体の循環が阻害されることで吸熱性能の急激な低下を招く恐れがある。そのため、この気泡離脱性は、相変化を用いる装置では安定動作を確保する上での重要なパラメータである。なお、この実施例4でも、図9の場合と同様に必要な機械的強度を維持しつつ、適度なスリット密度の選択により、十分な気化面積の確保と加熱初期の温度上昇を抑制した吸熱性能に優れた冷却装置を実現することが可能であることは同じである。   First, the case where the slits 4 are arranged in parallel will be described with reference to FIG. 11A is a central vertical sectional view of the heat receiving unit 1 according to the fourth embodiment of the present invention, FIG. 11B is a cross-sectional perspective view of the heat receiving unit of FIG. 11A, and FIG. 11A is a horizontal cross-sectional view of the heat receiving unit, and FIG. 11D is a detailed cross-sectional view of the A portion of the slit portion shown in FIG. As shown in FIG. 11 (a), the arrangement of the slits 4 formed in the heat receiving plate 3 of the heat receiving unit 1 immediately above the heat generating element avoids a part directly above the heat generating element 2 as in the case of FIG. In addition, the width of the slit 4 into which the working fluid 14 directly under the introduction pipe 5 flows is gradually increased as the distance from the center of the heating element 2 increases. By adopting this structure, it becomes possible to promote the stable circulation of the working fluid by increasing the bubble detachability of the vapor which is vaporized in the slit 4 and becomes a bubble and is discharged from the other end of the slit 4. Particularly when a working fluid having a high surface tension is used, the bubbles generated in the slit 4 are easily held (trapped), and the circulation of the working fluid is hindered, resulting in a rapid decrease in heat absorption performance. There is a fear. Therefore, this bubble detachability is an important parameter for ensuring stable operation in an apparatus using phase change. In Example 4, as well as in the case of FIG. 9, while maintaining the necessary mechanical strength, by selecting an appropriate slit density, the heat absorption performance that secures a sufficient vaporization area and suppresses the temperature rise in the initial stage of heating. It is the same that an excellent cooling device can be realized.

次に、スリット4を放射状に配置した場合について図12を用いて説明する。図12(a)は、本発明の実施例4の他の受熱ユニット1の中央垂直断面図、図12(b)は、図12(a)の受熱ユニットの断面斜視図、図12(c)は、図12(a)の受熱ユニットの水平断面図、図12(d)は、図12(a)で示されるスリット部のA部断面詳細図である。図12(a)に示すように、発熱体2直上の受熱ユニット1の受熱板3に形成されているスリット4の配置が、図10の場合と同様に発熱体2の直上の一部を避けてスリットが放射状に配され、図11の場合と同様に導入管5直下の作動流体14が流入するスリット4の幅が、発熱体中央から遠ざかるに従って徐々に大きくなっている。また、この構造を採用することによる効果としても図11の場合と同様に、前述した気泡離脱性の向上だけでなく、必要な機械的強度を維持しつつ、適度なスリット密度の選択により、十分な気化面積と加熱初期の温度上昇を抑制した吸熱性能に優れた冷却装置を実現することができる。   Next, the case where the slits 4 are arranged radially will be described with reference to FIG. 12 (a) is a central vertical sectional view of another heat receiving unit 1 according to the fourth embodiment of the present invention, FIG. 12 (b) is a sectional perspective view of the heat receiving unit of FIG. 12 (a), and FIG. 12 (c). FIG. 12A is a horizontal sectional view of the heat receiving unit in FIG. 12A, and FIG. 12D is a detailed sectional view of the A portion of the slit portion shown in FIG. As shown in FIG. 12A, the arrangement of the slits 4 formed in the heat receiving plate 3 of the heat receiving unit 1 directly above the heat generating element 2 avoids a part directly above the heat generating element 2 as in the case of FIG. In the same manner as in the case of FIG. 11, the width of the slit 4 into which the working fluid 14 directly under the introduction pipe 5 flows is gradually increased as the distance from the center of the heating element increases. In addition, as in the case of FIG. 11, the effect of adopting this structure is not only the improvement of the bubble detachability described above, but also the sufficient slit strength can be selected while maintaining the necessary mechanical strength. Therefore, it is possible to realize a cooling device excellent in endothermic performance with suppressed vaporization area and temperature increase in the initial stage of heating.

また、スリット4を平行に配置した場合と比較して、放射状に配置した場合、より多くのスリットを設けることができ、受熱面積を増加させ、冷却装置の性能を一層向上させることができる。   Moreover, when it arrange | positions radially compared with the case where the slit 4 is arrange | positioned in parallel, more slits can be provided, a heat receiving area can be increased, and the performance of a cooling device can be improved further.

なお、本実施例では発熱体2が接している受熱板3の中心にスリット4を設けていないが、スリット4を設けることも可能である。   In this embodiment, the slit 4 is not provided at the center of the heat receiving plate 3 with which the heating element 2 is in contact, but the slit 4 may be provided.

(実施例5)
実施例5は、受熱板3を立てて使う場合に、受熱板3にスリット4に交差するように導入管5の開口部の外周と同じ大きさの溝を設け、導入口5の開口部を受熱板3に挿入したものである。なお、実施例1〜4と同一構成部分については便宜上同一符号を付し、その具体的説明は実施例1〜4のものを援用する。
(Example 5)
In Example 5, when the heat receiving plate 3 is used upright, a groove having the same size as the outer periphery of the opening of the introduction pipe 5 is provided in the heat receiving plate 3 so as to intersect the slit 4, and the opening of the introduction port 5 is provided. It is inserted into the heat receiving plate 3. In addition, about the same component as Examples 1-4, the same code | symbol is attached | subjected for convenience, The thing of Examples 1-4 is used for the specific description.

図13(a)は、本発明の実施例5の受熱ユニットの中央垂直断面図、図13(b)は、図13(a)受熱ユニットの断面斜視図、および図13(c)は、図13(a)受熱ユニットの水平断面図、図13(d)は、図13(a)で示されるスリット部のA部断面詳細図である。図13(a)において、1は、受熱ユニットの全体を表している。   FIG. 13 (a) is a central vertical sectional view of a heat receiving unit according to the fifth embodiment of the present invention, FIG. 13 (b) is a sectional perspective view of FIG. 13 (a) the heat receiving unit, and FIG. 13 (a) is a horizontal sectional view of the heat receiving unit, and FIG. 13 (d) is a detailed sectional view of the A portion of the slit portion shown in FIG. 13 (a). In FIG. 13A, 1 represents the whole heat receiving unit.

ここで、図13(d)に示すように、導入管5の先端が、受熱板3の内部に僅かに入り込む状態となっていることである。この様な構造とすることで、実際の受熱ユニット1が図13(a)の断面斜視図のように配置された場合でも、導入管5から供給された作動流体が、重力方向へ漏れ出すことがなくなり確実にスリット4へ導入することができる。これにより、受熱ユニット1の配置方向の自由度が水平から垂直まで広がり、様々な用途への展開の可能性を高めた電子部品の冷却装置を実現する事ができる。   Here, as shown in FIG. 13 (d), the leading end of the introduction pipe 5 is in a state of slightly entering the inside of the heat receiving plate 3. By adopting such a structure, even when the actual heat receiving unit 1 is arranged as shown in the sectional perspective view of FIG. 13A, the working fluid supplied from the introduction pipe 5 leaks in the direction of gravity. Can be reliably introduced into the slit 4. Thereby, the freedom degree of the arrangement | positioning direction of the heat receiving unit 1 spreads from horizontal to vertical, and the cooling device of the electronic component which raised the possibility of expansion | deployment to various uses is realizable.

なお、上記実施例1〜4においても受熱ユニット1を垂直配置することで動作するが、受熱ユニット1を垂直配置する場合には、上述のように導入管5を受熱板3の内部に入り込むように形成するのが望ましい。   In the first to fourth embodiments, the heat receiving unit 1 operates by being arranged vertically. However, when the heat receiving unit 1 is arranged vertically, the introduction pipe 5 is inserted into the heat receiving plate 3 as described above. It is desirable to form.

本発明の冷却装置によれば、高い吸熱特性を有するので、特にMPU等の高集積化、高周波数化に伴う高発熱量の電子部品の冷却に好適である。   According to the cooling device of the present invention, since it has high endothermic characteristics, it is particularly suitable for cooling electronic parts having a high calorific value due to high integration and high frequency such as MPU.

1 受熱ユニット
2 発熱体
3 受熱板
4 スリット
5 導入管
6 導出管
7 逆止弁
8、9 管路
10 ファン
11 放熱部
12 ウイック
13 ポンプ
14 作動流体
15 電源ユニット
16 PC筐体
17 発熱体ソケット
18 マザーボード
DESCRIPTION OF SYMBOLS 1 Heat receiving unit 2 Heat generating body 3 Heat receiving plate 4 Slit 5 Introducing pipe 6 Outlet pipe 7 Check valve 8, 9 Pipe line 10 Fan 11 Radiating part 12 Wick 13 Pump 14 Working fluid 15 Power supply unit 16 PC housing 17 Heating element socket 18 Motherboard

Claims (12)

作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体が配置され、前記外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、前記受熱部に前記作動流体を注入する導入管と、前記受熱部に注入された前記作動流体が熱によって蒸気となり、前記蒸気を排出する導出管と、前記受熱部より上方に設けられ前記導出管を経由した前記蒸気の熱を放出する放熱器と、前記導入管の開口部側に設けた逆止弁とを備え、前記放熱器で液化した作動流体を前記逆止弁を介して前記受熱部に帰す構成にするとともに、前記作動流体の循環方向は逆止弁以降の出口側圧力上昇によって決定され、前記内壁において前記導入管開口部の外周で囲まれる面の内側から外側へスリットが設けられ、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出されることを特徴とする冷却装置。 A cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, wherein a heating element is disposed on one surface of the outer wall, and a box-shaped heat receiving unit that transfers heat to the inner wall corresponding to the one surface of the outer wall; , An introduction pipe for injecting the working fluid into the heat receiving part, a working pipe injected into the heat receiving part into steam by heat, a lead-out pipe for discharging the steam, and a lead-out pipe provided above the heat receiving part. A radiator for releasing the heat of the steam via a pipe, and a check valve provided on the opening side of the introduction pipe, and the working fluid liquefied by the radiator is received through the check valve for the heat reception The circulation direction of the working fluid is determined by the pressure increase on the outlet side after the check valve, and a slit is provided from the inner side to the outer side of the inner wall surrounded by the outer periphery of the inlet pipe opening. It is the pressure of the introduction pipe portion By increasing the cooling apparatus characterized by bubbles and unevaporated working fluid is discharged to the outlet pipe side become multiphase flow. 前記発熱体が配置された外壁において、前記発熱体の熱源中心が、壁を隔てて対称に位置する前記導入管開口部の外周の内側に配置されていることを特徴とする請求項1記載の冷却装置。 2. The outer wall on which the heating element is arranged, wherein the heat source center of the heating element is arranged inside the outer periphery of the inlet pipe opening located symmetrically across the wall. Cooling system. 前記導入管開口部は前記内壁に接していることを特徴とする請求項1記載の冷却装置。 The cooling apparatus according to claim 1, wherein the introduction pipe opening is in contact with the inner wall. 前記スリットが、平行に複数形成されていることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein a plurality of the slits are formed in parallel. 前記スリットが、前記導入管開口部中心から放射状に形成されていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the slits are formed radially from the center of the inlet tube opening. 前記スリットが、前記導入管開口部の外周で囲まれた前記内壁の中心部に設けられていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the slit is provided in a central portion of the inner wall surrounded by an outer periphery of the introduction pipe opening. 前記スリットの幅が、前記導入管開口部の中心から遠ざかるにつれて大きくなっていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the width of the slit increases as the distance from the center of the inlet tube opening increases. 前記スリットを設けていない前記内壁から前記外壁の一面までの厚さHに対する前記スリットの底部から前記外壁までの一面の厚さhの比(h/H)が、0.1〜0.3であることを特徴とする請求項1記載の冷却装置。 The ratio (h / H) of the thickness h of one surface from the bottom of the slit to the outer wall to the thickness H from the inner wall to the outer surface where the slit is not provided is 0.1 to 0.3. The cooling device according to claim 1, wherein the cooling device is provided. 前記導入管開口部と前記内壁との隙間を0.2mm以下とすることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein a gap between the introduction pipe opening and the inner wall is 0.2 mm or less. 前記スリットに交差する溝を設け、前記導入管開口部を前記溝に挿入することを特徴とする請求項1記載の冷却装置。 The cooling apparatus according to claim 1, wherein a groove that intersects the slit is provided, and the introduction pipe opening is inserted into the groove. 作動流体を循環し液相と気相の相変化によって冷却する冷却装置であって、外壁の一面に発熱体を配置し、前記外壁の一面に対応する内壁に熱を伝える箱型の受熱部と、前記受熱部に前記作動流体を注入する導入管と、前記内壁の熱によって注入された前記作動流体が蒸気となり前記蒸気を排出する導出管と、前記受熱部より上方に設けられ前記導出管を経由した前記蒸気の熱を放出する放熱器を備え、前記発熱体が配置された外壁において前記導入管開口部の外周の内側に配置され、前記導入管内部の圧力が上昇することで、気泡と未蒸発の作動流体が混相流となって前記導出管側へと排出される構成とし、前記発熱体が配置された部分に対応する前記内壁の厚さを周囲の内壁の厚さより薄くすることを特徴とする冷却装置。 A cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, wherein a heating element is disposed on one surface of the outer wall, and a box-shaped heat receiving unit that transfers heat to the inner wall corresponding to one surface of the outer wall; An introduction pipe for injecting the working fluid into the heat receiving part, a deriving pipe from which the working fluid injected by the heat of the inner wall becomes steam to discharge the steam, and an outlet pipe provided above the heat receiving part. A heat radiator that releases the heat of the vapor that has passed therethrough, disposed inside the outer periphery of the inlet pipe opening on the outer wall on which the heating element is arranged, and the pressure inside the inlet pipe rises, The structure is such that the non-evaporated working fluid is discharged into the outlet pipe side as a multiphase flow, and the thickness of the inner wall corresponding to the portion where the heating element is disposed is made thinner than the thickness of the surrounding inner wall. A cooling device characterized. 前記内壁にスリットを設けて前記内壁の厚さを薄くしたことを特徴とする請求項11記載の冷却装置。 The cooling device according to claim 11, wherein a slit is provided in the inner wall to reduce the thickness of the inner wall.
JP2011223724A 2011-10-11 2011-10-11 Cooling system Active JP5252059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223724A JP5252059B2 (en) 2011-10-11 2011-10-11 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223724A JP5252059B2 (en) 2011-10-11 2011-10-11 Cooling system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007254044A Division JP4978401B2 (en) 2007-09-28 2007-09-28 Cooling system

Publications (2)

Publication Number Publication Date
JP2012026721A JP2012026721A (en) 2012-02-09
JP5252059B2 true JP5252059B2 (en) 2013-07-31

Family

ID=45779857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223724A Active JP5252059B2 (en) 2011-10-11 2011-10-11 Cooling system

Country Status (1)

Country Link
JP (1) JP5252059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603895B2 (en) 2016-05-23 2019-11-13 パナソニックIpマネジメント株式会社 COOLING DEVICE, PROJECTOR, AND HEAT RECEIVING UNIT
JP7190654B2 (en) 2018-09-21 2022-12-16 パナソニックIpマネジメント株式会社 Coolers, projectors and heat receiving units
CN113310204A (en) * 2021-05-25 2021-08-27 珠海格力电器股份有限公司 Radiator and electrical apparatus box

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142384A (en) * 1983-02-03 1984-08-15 Akutoronikusu Kk Heat pipe container
JPS60136349A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Cooling device for semiconductor chip
JPS6131884A (en) * 1984-07-24 1986-02-14 Kenji Okayasu Heat transfer device
JPS61259032A (en) * 1985-05-14 1986-11-17 Matsushita Electric Ind Co Ltd Thermal feeder
US4838041A (en) * 1987-02-05 1989-06-13 Gte Laboratories Incorporated Expansion/evaporation cooling system for microelectronic devices
US5070936A (en) * 1991-02-15 1991-12-10 United States Of America As Represented By The Secretary Of The Air Force High intensity heat exchanger system
JP3964580B2 (en) * 1999-09-03 2007-08-22 富士通株式会社 Cooling unit
JP2006147704A (en) * 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd Cooling device of semiconductor element
JP4464914B2 (en) * 2004-12-22 2010-05-19 学校法人東京理科大学 Boiling cooling method, boiling cooling device, flow channel structure, and application product thereof

Also Published As

Publication number Publication date
JP2012026721A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4978401B2 (en) Cooling system
WO2014157147A1 (en) Cooling apparatus
JP5117101B2 (en) Evaporator and circulating cooling device using the same
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
TWI778292B (en) Cooling device and cooling system using cooling device
WO2011122332A1 (en) Phase change cooler and electronic equipment provided with same
JP4551261B2 (en) Cooling jacket
WO2012059975A1 (en) Loop-shaped heat pipe and electronic device equipped with same
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP4899997B2 (en) Thermal siphon boiling cooler
CN117546616A (en) System and method for immersion cooled computer
JP5252059B2 (en) Cooling system
JP2010079401A (en) Cooling system and electronic equipment using the same
JP5874935B2 (en) Flat plate cooling device and method of using the same
CN216385225U (en) Loop heat pipe
JP2010080507A (en) Electronic apparatus
JP4744280B2 (en) Electronic equipment with cooling mechanism
JP2015055380A (en) Cooling device
JP6825615B2 (en) Cooling system and cooler and cooling method
Mohammed et al. Performance improvements of air-cooled thermal tool with advanced technologies
EP2801781B1 (en) Cooling device
JP5860728B2 (en) Electronic equipment cooling system
TWI375507B (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5252059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3