JP4744280B2 - Electronic equipment with cooling mechanism - Google Patents

Electronic equipment with cooling mechanism Download PDF

Info

Publication number
JP4744280B2
JP4744280B2 JP2005341930A JP2005341930A JP4744280B2 JP 4744280 B2 JP4744280 B2 JP 4744280B2 JP 2005341930 A JP2005341930 A JP 2005341930A JP 2005341930 A JP2005341930 A JP 2005341930A JP 4744280 B2 JP4744280 B2 JP 4744280B2
Authority
JP
Japan
Prior art keywords
heat
fan
cooling
heat sink
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341930A
Other languages
Japanese (ja)
Other versions
JP2006148145A (en
Inventor
洋典 及川
武 樋園
克哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Advanced Digital Inc
Original Assignee
Hitachi Ltd
Hitachi Advanced Digital Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Advanced Digital Inc filed Critical Hitachi Ltd
Priority to JP2005341930A priority Critical patent/JP4744280B2/en
Publication of JP2006148145A publication Critical patent/JP2006148145A/en
Application granted granted Critical
Publication of JP4744280B2 publication Critical patent/JP4744280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、CPU等の発熱電子部品の冷却機構を有する電子機器に係わり、特にヒートパイプや液冷システム等の熱輸送放熱手段を用いた冷却構造に関するものである。   The present invention relates to an electronic apparatus having a cooling mechanism for a heat generating electronic component such as a CPU, and more particularly to a cooling structure using heat transport and heat radiation means such as a heat pipe or a liquid cooling system.

近年、パーソナルコンピュータやサーバ等に用いられるデバイスや集積回路、特にCPUは高速化しているが、それに伴い発熱量が増大している。現在、CPUの冷却は、CPUにヒートシンクを固定し、それにファンを取り付け、その冷却風をヒートシンクに吹き付ける直接空冷方式が主流である。しかし、装置の小型化、高密度化に伴いCPU周りのスペースには制限が生じ、ヒートシンクサイズが制限される為、おのずと冷却能力に限界が出てくる。   In recent years, devices and integrated circuits used in personal computers, servers, and the like, particularly CPUs, have been increased in speed, but the amount of heat generation has increased accordingly. Currently, the direct cooling method for cooling a CPU is a direct air cooling method in which a heat sink is fixed to the CPU, a fan is attached to the CPU, and the cooling air is blown onto the heat sink. However, as the size and density of the device are reduced, the space around the CPU is limited, and the size of the heat sink is limited, which naturally limits the cooling capacity.

これに対し、ヒートパイプや液冷システム等の熱輸送手段を用いた冷却方式では、放熱部を自由な位置に設けられ、その大きさの制約が少ないため、空冷方式に比べ冷却限界を高くすることができる。そのため、近年電子機器のCPU等の冷却にこれら熱輸送手段の適用が試みられてきている。   On the other hand, in the cooling method using heat transport means such as a heat pipe and a liquid cooling system, the heat radiation part can be provided at a free position, and its size is less restricted, so the cooling limit is higher than that of the air cooling method. be able to. Therefore, in recent years, attempts have been made to apply these heat transporting means to the cooling of CPUs of electronic devices.

これら熱輸送手段を用いた冷却方式の従来技術として、ヒートパイプを用いた例では特許文献1が挙げられる。この技術では、ヒートパイプによりCPUの熱を装置の開口部まで輸送し、そこでファンにより外部へ放出する構造としている為、CPUの発熱により他の部品の温度が上昇する恐れが無いとしている。   As a conventional cooling method using these heat transporting means, Patent Document 1 is cited as an example using a heat pipe. In this technique, the heat of the CPU is transported to the opening of the apparatus by a heat pipe and is then released to the outside by a fan. Therefore, there is no fear that the temperature of other components will rise due to heat generated by the CPU.

一方液冷システムを用いた従来技術としては特許文献2が挙げられる。この技術ではCPUやHDD等、装置内部に散在する発熱体の熱を一括して電源の近くまで輸送し、冷却管に多数のフィンを設けた放熱部に電源ファンの吸気風を通過させることで、高効率の冷却が実現できるとしている。   On the other hand, Patent Document 2 is given as a conventional technique using a liquid cooling system. In this technology, heat from the heating elements scattered inside the device, such as CPU and HDD, is collectively transported to the vicinity of the power supply, and the intake air of the power supply fan is passed through the heat radiating part provided with a number of fins in the cooling pipe. It is said that highly efficient cooling can be realized.

特開平10−50910号公報Japanese Patent Laid-Open No. 10-50910 特開平10−213370号公報Japanese Patent Laid-Open No. 10-213370

上述のように熱輸送手段を用いた冷却方式は、直接空冷方式に比べ冷却限界は高い。しかしながら先に挙げた特許文献1の様に放熱部を筐体内部に配置した場合、騒音を抑える為にファンの回転数を低下させた場合には放熱部の熱が筐体内部にこもるという問題がある。また放熱部の大型化は装置の大型化を招き、これにより設置面積が増大するという問題がある。   As described above, the cooling method using the heat transport means has a higher cooling limit than the direct air cooling method. However, when the heat dissipating part is arranged inside the case as in the above-mentioned Patent Document 1, the heat of the heat dissipating part is trapped inside the case when the fan speed is reduced to suppress noise. There is. Further, the increase in the size of the heat radiating part causes an increase in the size of the apparatus, which increases the installation area.

また特許文献2の技術では、電源ファンの風により放熱部を冷却する構造となっているが、小型の電源を用いた場合は電源ファンも小型になる為、放熱部を通過する風量が減少し、放熱部を十分冷却できなくなるという問題がある。   In the technique of Patent Document 2, the heat radiating part is cooled by the wind of the power fan. However, when a small power source is used, the power fan is also small, so the amount of air passing through the heat radiating part is reduced. There is a problem that the heat radiation part cannot be sufficiently cooled.

本発明の目的はこれらの問題を解決し、更に効率の良い冷却構造とすることにより、小型筐体への高発熱部品の搭載を可能とし、さらに静音化を図ることを目的とする。   An object of the present invention is to solve these problems, and to achieve a more efficient cooling structure, so that a highly heat-generating component can be mounted on a small casing and further to achieve noise reduction.

前記目的を達成するために、本発明の冷却機構を備えた電子機器においては、
筐体と、
前記筐体内に配置された発熱部品と、
前記発熱部品に取付けられ発生熱を熱伝達媒体に伝える受熱部材と、前記熱伝達媒体を介して前記発生熱を放熱する放熱部材と、前記受熱部材と前記放熱部材の間を接続して前記熱伝達媒体を移動させる熱輸送手段とを有する冷却機構と、
前記放熱部材を冷却するファンと、を有し、
前記放熱部材と前記ファンは一体に取付けられてヒートシンクを構成し、ヒートシンクは前記筐体の背面側上部に配置され、一部が前記筐体の中に存在し、他の部分は前記筐体背面に接続されるACケーブルが湾曲するに十分な位置まで外部に突出しており、この突出部分は前記筐体と一体成形されたカバーで覆われ、前記ヒートシンクの大きさは前記筐体の幅の範囲内で拡張できることを特徴とする。
In order to achieve the above object, in the electronic apparatus equipped with the cooling mechanism of the present invention,
A housing,
A heat generating component disposed in the housing;
A heat receiving member attached to the heat generating component for transmitting the generated heat to a heat transfer medium; a heat radiating member for radiating the generated heat through the heat transfer medium; and connecting the heat receiving member and the heat radiating member to form the heat. A cooling mechanism having a heat transport means for moving the transmission medium;
A fan for cooling the heat dissipation member,
The heat dissipating member and the fan are integrally attached to form a heat sink, the heat sink is arranged at the upper part on the back side of the housing, a part is present in the housing, and the other part is the back of the housing. The AC cable connected to the outside protrudes to a position sufficient to bend, and the protruding portion is covered with a cover formed integrally with the casing, and the size of the heat sink is in the range of the width of the casing It can be expanded within.

前記冷却機構を備えた電子機器は、さらに、前記ファンの吸気側に配置され、開口部と吸気口を有し、該吸気口側に電源を収納するケースと、前記ケースの前記開口部と前記ファンの吸気側とを接続するダクトとを有する。   The electronic device provided with the cooling mechanism is further disposed on the air intake side of the fan, and has an opening and an air intake, a case for storing a power source on the air intake side, the opening of the case, and the air And a duct connecting the intake side of the fan.

前記冷却機構を備えた電子機器は、さらに、開口部を有し開口部以外の面にファンを備えた電源が取付けられたケースであって、前記筐体背面の前記ヒートシンクが配置された位置に前記開口部が取付けられたケースを有する。   The electronic device provided with the cooling mechanism is a case in which a power supply having an opening and a fan is attached to a surface other than the opening, and the heat sink on the rear surface of the housing is disposed at the position. A case having the opening attached thereto;

本発明によれば、小型筐体への高発熱部品の搭載を可能とし、さらに静音化を図ることができる。   According to the present invention, it is possible to mount a highly heat-generating component on a small casing, and to achieve further noise reduction.

以下本発明の実施例を説明する。ここに示す例は電子機器であるデスクトップ型パーソナルコンピュータ(以下デスクトップPCという)に搭載したCPUの冷却に適用した例である。図1は本発明の第1の実施例を示すデスクトップPCの斜視図である。本実施例では熱輸送手段にヒートパイプを用いている。   Examples of the present invention will be described below. The example shown here is an example applied to cooling of a CPU mounted on a desktop personal computer (hereinafter referred to as a desktop PC) which is an electronic device. FIG. 1 is a perspective view of a desktop PC showing a first embodiment of the present invention. In this embodiment, a heat pipe is used as the heat transport means.

まず全体構成について説明する。筐体1の内部の底面付近にはマザーボード2があり、その上にはCPU3、チップセット4、メモリ5が搭載されている。この中でCPU3が高発熱部品である。また外部記憶装置として、HDD6、FDD7、CD-ROM8が搭載されている。CPU3には受熱部材としての受熱ヘッダ10が取付けられ、受熱ヘッダ10には熱輸送手段としてのヒートパイプ11の一端が取付けられている。ヒートパイプ11の構造を簡単に説明すると、銅製の中空管の内部に、極めて低い気圧で純水を封入し、この純水を熱を伝える作動流体としたものである。   First, the overall configuration will be described. A motherboard 2 is located near the bottom of the interior of the housing 1, and a CPU 3, a chip set 4, and a memory 5 are mounted thereon. Among these, the CPU 3 is a high heat generating component. As external storage devices, an HDD 6, an FDD 7, and a CD-ROM 8 are mounted. A heat receiving header 10 as a heat receiving member is attached to the CPU 3, and one end of a heat pipe 11 as a heat transport means is attached to the heat receiving header 10. The structure of the heat pipe 11 will be briefly described. Pure water is sealed inside a copper hollow tube at an extremely low pressure, and this pure water is used as a working fluid for transferring heat.

次に受熱ヘッダ10について説明する。受熱ヘッダ10は銅あるいはアルミといった伝熱性に優れた金属で出来ている。CPU3との接触面はサーマルコンパウンド、もしくは高熱伝導性シリコンゴムなどを挟んで圧着しており、CPU3で発生する熱が受熱ヘッダ10に効率よく伝わる構造になっている。また受熱ヘッダ10の内部にはヒートパイプ11の一端が埋め込まれており、受熱ヘッダ10の熱はヒートパイプ11に伝わる構造になっている。つまりCPU3の熱はヒートパイプ11に効率良く伝わる構造となっている。   Next, the heat receiving header 10 will be described. The heat receiving header 10 is made of a metal having excellent heat conductivity such as copper or aluminum. The contact surface with the CPU 3 is pressure-bonded with a thermal compound or high thermal conductive silicon rubber sandwiched therebetween, so that heat generated by the CPU 3 is efficiently transmitted to the heat receiving header 10. One end of the heat pipe 11 is embedded in the heat receiving header 10, and the heat of the heat receiving header 10 is transmitted to the heat pipe 11. That is, the heat of the CPU 3 is efficiently transmitted to the heat pipe 11.

筐体1の背面にはファン13が取付けられている。ファン13は軸流ファンであり筐体1の内部側が吸気側となっている。筐体背面の外部にはファン13に対向して放熱部であるヒートシンク12が取付けられている。ヒートシンク12の材質は銅あるいはアルミといった伝熱性に優れた金属で出来ており、ベース12aとフィン12bから成る。なおフィン12bの形状はピンがマトリクス状に並んだものであるが、千鳥状に並んだもの、あるいは平板体を並べた形状でも良い。またフィン12bは筐体背面側を向く様に配置されている。つまり、フィン12bにファン13の風が当たる様になっている。ベース12aには、ヒートパイプ11の一端が埋め込まれており、ヒートパイプ11に伝わったCPU3の熱が効率良く伝わる構造になっている。   A fan 13 is attached to the rear surface of the housing 1. The fan 13 is an axial fan, and the inside of the housing 1 is the intake side. A heat sink 12, which is a heat radiating portion, is attached to the outside of the rear surface of the housing so as to face the fan 13. The heat sink 12 is made of a metal having excellent heat conductivity such as copper or aluminum, and includes a base 12a and fins 12b. The fin 12b has a shape in which pins are arranged in a matrix, but may have a shape in which the pins are arranged in a staggered manner or a shape in which flat plates are arranged. The fins 12b are arranged so as to face the back side of the housing. That is, the wind of the fan 13 hits the fins 12b. One end of the heat pipe 11 is embedded in the base 12a, and the heat of the CPU 3 transmitted to the heat pipe 11 is efficiently transmitted.

ヒートパイプ11は、図2に示す様に受熱ヘッダ10からヒートシンク12の間は上方に傾斜をもたせており、ベース12a近傍で適宜に上方に折り曲げられ、ベース12aと繋がっている。つまり熱源であるCPU3は、放熱部であるヒートシンク12に対して低い位置、即ちボトムヒートの状態である為、ヒートパイプ11内部の作動流体は効率良く熱を運ぶことが出来る。作動液の動きについては後で詳しく説明する。ファン13の隣には電源9があり、この電源9にはACケーブル14が外部から接続されている。   As shown in FIG. 2, the heat pipe 11 is inclined upward from the heat receiving header 10 to the heat sink 12, and is appropriately bent upward in the vicinity of the base 12a and connected to the base 12a. That is, since the CPU 3 as the heat source is in a low position, that is, in a bottom heat state with respect to the heat sink 12 as the heat radiating portion, the working fluid inside the heat pipe 11 can efficiently carry heat. The movement of the hydraulic fluid will be described in detail later. Next to the fan 13, there is a power supply 9, and an AC cable 14 is connected to the power supply 9 from the outside.

本実施例では、ヒートシンク12を筐体外部に取付けたが、筐体の中に一部が存在し他の部分が背面より突出するように取付けても良い。   In this embodiment, the heat sink 12 is attached to the outside of the housing, but it may be attached so that a part of the housing is present and other portions protrude from the back surface.

次に本実施例の冷却構造について説明する。まずCPU3が発熱する事により、CPU3に取付けられた受熱ヘッダ10に熱が伝わる。この時、ヒートパイプ11の外周部が受熱ヘッダ10により覆われている為、ヒートパイプ11にCPU3の熱が効率良く伝達される。従って受熱ヘッダ10に接したヒートパイプ11の内部では、伝わった熱により内部の作動流体が蒸発する。即ちこの部分がヒートパイプ11の蒸発部となる。   Next, the cooling structure of the present embodiment will be described. First, when the CPU 3 generates heat, heat is transmitted to the heat receiving header 10 attached to the CPU 3. At this time, since the outer periphery of the heat pipe 11 is covered with the heat receiving header 10, the heat of the CPU 3 is efficiently transmitted to the heat pipe 11. Therefore, inside the heat pipe 11 in contact with the heat receiving header 10, the internal working fluid is evaporated by the transmitted heat. That is, this part becomes the evaporation part of the heat pipe 11.

蒸気となった作動流体は、温度が低く内部圧力が低いヒートシンク12に配置されたヒートパイプ11の端部に向かって流動し、ヒートシンク12に熱を奪われて凝縮する。従ってヒートパイプ11のヒートシンク12側の端部が凝縮部となる。前述の通り、ヒートパイプ11は勾配を持たせた状態に配置されているので、その動作状態はボトムヒート状態となり、作動流体の蒸発、凝縮のサイクルがスムーズに行われ、その結果、熱輸送能力が高くなる。なお凝縮して液相に戻った作動流体はヒートパイプ11内部を伝わって蒸発部まで帰還し、そこで再度過熱、蒸発する。ヒートパイプ11からヒートシンク12のベース12aに伝達されたCPU3の熱は、ベース12aのほぼ全域及びフィン12bに伝達される。   The working fluid that has become a vapor flows toward the end of the heat pipe 11 disposed in the heat sink 12 that has a low temperature and a low internal pressure, and is deprived of heat by the heat sink 12 to condense. Therefore, the end of the heat pipe 11 on the heat sink 12 side becomes a condensing part. As described above, since the heat pipe 11 is disposed in a state having a gradient, the operation state thereof is a bottom heat state, and the cycle of evaporation and condensation of the working fluid is smoothly performed. Becomes higher. The working fluid that has condensed and returned to the liquid phase travels through the inside of the heat pipe 11 and returns to the evaporation section, where it is overheated and evaporated again. The heat of the CPU 3 transmitted from the heat pipe 11 to the base 12a of the heat sink 12 is transmitted to almost the entire area of the base 12a and the fins 12b.

次にファン13を動作させると、筐体1内の空気が図3の矢印21の方向に流れる。そしてこの空気はヒートシンク12のフィン12bを通過してベース12aと衝突し、矢印22、23、24、25の方向に排出される。この空気流によりヒートシンク12のベース12aとフィン12bに伝達された熱は放出される。なお本実施例ではヒートパイプを1本としているが、複数本使用しても良い。また、ヒートシンク12に外部から直接手が触れない様に、カバーを設けても良い。このカバーは筐体1と一体成形となっていても良い。   Next, when the fan 13 is operated, the air in the housing 1 flows in the direction of the arrow 21 in FIG. The air passes through the fins 12b of the heat sink 12 and collides with the base 12a, and is discharged in the directions of arrows 22, 23, 24, and 25. The heat transmitted to the base 12a and the fins 12b of the heat sink 12 is released by this air flow. In this embodiment, one heat pipe is used, but a plurality of heat pipes may be used. Further, a cover may be provided so that the heat sink 12 is not directly touched by the hand from the outside. This cover may be integrally formed with the housing 1.

以上の第1の実施例によれば、CPU3を冷却するヒートシンク12は筐体1の外部に取付けられるため、発熱量の多いCPU3を使用する場合、あるいは当初予想しなかった発熱量のCPU3に対しては、筐体外部のヒートシンク12を大きくすれば良く、筐体1のサイズを変更する必要がない。また、CPU3を冷却するヒートシンク12の配置を考慮する必要がないので、筐体1(電子機器)のサイズを小型化できる。さらにヒートシンク12の配置を、外部からのケーブル、例えばACケーブル14等が接続される筐体背面としてあるために、ヒートシンク12の設置に必要な面積の拡大を抑えることができる。   According to the first embodiment described above, since the heat sink 12 for cooling the CPU 3 is attached to the outside of the housing 1, when the CPU 3 having a large heat generation amount is used, or for the CPU 3 having a heat generation amount that was not initially expected. Therefore, it is only necessary to increase the heat sink 12 outside the casing, and it is not necessary to change the size of the casing 1. Moreover, since it is not necessary to consider the arrangement of the heat sink 12 for cooling the CPU 3, the size of the housing 1 (electronic device) can be reduced. Furthermore, since the heat sink 12 is disposed on the rear surface of the housing to which an external cable such as the AC cable 14 is connected, the expansion of the area necessary for installing the heat sink 12 can be suppressed.

図7を用いて具体的に説明すると、図7は電子機器が設置されたときの上面図であるが、電子機器の筐体1と壁41との距離は、筐体背面のACケーブル14の湾曲部分42の分だけ必要となるが、この距離42よりもヒートシンク12の奥行き43が小さければ実質的な設置面積は増大しない。多少ヒートシンク12の奥行き43が大きくても、実質的な設置面積の増加は少ない。また、ヒートシンク12からの排気方向は壁41と平行であるため、ヒートシンク12が壁41と接しても排気が塞がれることはない。   More specifically, FIG. 7 is a top view when the electronic device is installed. The distance between the housing 1 of the electronic device and the wall 41 is the distance between the AC cable 14 on the rear surface of the housing. Although only the curved portion 42 is required, if the depth 43 of the heat sink 12 is smaller than the distance 42, the substantial installation area does not increase. Even if the depth 43 of the heat sink 12 is somewhat large, the substantial increase in the installation area is small. In addition, since the exhaust direction from the heat sink 12 is parallel to the wall 41, the exhaust is not blocked even if the heat sink 12 contacts the wall 41.

ヒートシンク12の冷却効率であるが、図3に示す様にヒートシンク12に当たる風の流れ、即ちファン13の風21は、ヒートシンク12の最も熱い部分であるベース12aに対して衝突しながら排出される。即ち衝突噴流となる為冷却効率が良い。   The cooling efficiency of the heat sink 12 is as follows. As shown in FIG. 3, the flow of wind striking the heat sink 12, that is, the wind 21 of the fan 13 is discharged while colliding with the base 12 a that is the hottest portion of the heat sink 12. That is, since it becomes a collision jet, cooling efficiency is good.

次に本実施例の静音化の効果について説明する。ファン13を停止させた場合、図3に示す様にファン13による矢印21、22、23、24、25の風の流れは停止するが、ヒートシンク12の温度は周囲温度よりも高い為、自然対流による矢印22の方向のゆっくりとした風の流れが生じる。矢印22の熱は筐体外部に放出される為、この熱により筐体内部の温度が上昇する事はない。このように、ファン13を停止した場合でも、ある程度の冷却効果が得られる。従ってCPU3が低負荷状態で発熱量が少ない場合にはファン13を停止してもCPU3を冷やす事が出来る。ファン13を停止させた場合、主たる騒音源は電源9のケースに内蔵されている電源ファンであるので、騒音の低減が可能となる。   Next, the noise reduction effect of this embodiment will be described. When the fan 13 is stopped, the air flow of the arrows 21, 22, 23, 24, and 25 by the fan 13 is stopped as shown in FIG. 3, but since the temperature of the heat sink 12 is higher than the ambient temperature, natural convection is performed. A slow wind flow in the direction of the arrow 22 is generated. Since the heat of the arrow 22 is released to the outside of the casing, the temperature inside the casing does not rise due to this heat. Thus, even when the fan 13 is stopped, a certain cooling effect can be obtained. Therefore, when the CPU 3 is in a low load state and the heat generation amount is small, the CPU 3 can be cooled even if the fan 13 is stopped. When the fan 13 is stopped, the main noise source is a power supply fan built in the case of the power supply 9, so that noise can be reduced.

次に本発明の第2の実施例として、熱輸送手段に冷却液をポンプにより強制的に循環させる液冷システムを用いたものについて図4を用いて説明する。なお液冷システム以外の構成については前記第1の実施例と同じ構成なので説明および図示を省略する。   Next, as a second embodiment of the present invention, a description will be given with reference to FIG. 4 using a liquid cooling system that forcibly circulates a cooling liquid to a heat transport means by a pump. Since the configuration other than the liquid cooling system is the same as that of the first embodiment, description and illustration are omitted.

CPU3に取付けられた受熱ヘッダ31は、CPU3との接触面は第1の実施例と同じであるが、内部には冷却液が流れており、熱が冷却液に伝わる構造になっている。図5は受熱ヘッダ31の内部構造を示す図であるが、伝熱性に優れた銅やアルミ等の金属板に蛇行状の溝を掘り、カバーにより密閉する構造である。これにより、蛇行状の流路が形成され、冷却液が入口から流入し、蛇行状の流路を通り、出口から流出する。   The heat receiving header 31 attached to the CPU 3 has the same contact surface with the CPU 3 as in the first embodiment, but has a structure in which the coolant flows inside and the heat is transmitted to the coolant. FIG. 5 is a view showing the internal structure of the heat receiving header 31. The heat receiving header 31 has a structure in which a meandering groove is dug in a metal plate such as copper or aluminum having excellent heat conductivity and sealed with a cover. Thereby, a meandering flow path is formed, and the coolant flows in from the inlet, passes through the serpentine flow path, and flows out from the outlet.

ポンプ32は冷却液を受熱ヘッダ31とヒートシンク35の間を循環駆動させるものである。なお本実施例ではポンプ32の位置を受熱ヘッダ31の上部としたが、他の場所に配置しても良い。チューブ33及び金属管34は受熱ヘッダ31とヒートシンク35を繋ぎ、内部に冷却液を流すことで受熱ヘッダ31とヒートシンク35の熱輸送路となっている。   The pump 32 drives the coolant to circulate between the heat receiving header 31 and the heat sink 35. In this embodiment, the position of the pump 32 is the upper part of the heat receiving header 31, but it may be arranged at another location. The tube 33 and the metal tube 34 connect the heat receiving header 31 and the heat sink 35, and serve as a heat transport path between the heat receiving header 31 and the heat sink 35 by flowing a coolant inside.

全体の配管についてであるが、金属管を主体としており、部分的にゴム性のチューブ33を用いている。このチューブ33は曲げる事が出来る為、CPU3の交換等のメンテナンスが容易になる。つまりファン13やヒートシンク35を外す事無く、受熱ヘッダ31をCPU3から外す事が可能である。またチューブ33以外の配管を金属管とする事で水分透過を抑制している。   As for the entire piping, a metal tube is mainly used, and a rubber tube 33 is partially used. Since the tube 33 can be bent, maintenance such as replacement of the CPU 3 is facilitated. That is, it is possible to remove the heat receiving header 31 from the CPU 3 without removing the fan 13 and the heat sink 35. Moreover, moisture permeation is suppressed by using pipes other than the tube 33 as metal pipes.

ヒートシンク35はベース35a及びフィン35bから成っている。ベース35aの内部には冷却液が流れており、冷却液の熱がベース35a全体に伝わる構造になっている。図6はベース35aの内部構造を示す図であるが、基本的には前記受熱ヘッダ31と同じ作りであり、伝熱性に優れた銅やアルミ等の金属板に蛇行状の溝を掘り、カバーにより密閉する構造である。これにより、蛇行状の流路が形成され、冷却液が入口から流入し、蛇行状の流路を通り、出口から流出する。図4に戻るが、ベース35aの背面には、前記第1の実施例と同様、伝熱性に優れた銅やアルミ等の金属のピンがマトリクス状に並べられている。またヒートシンク35の筐体1への配置についても前記第1の実施例と同様である。   The heat sink 35 includes a base 35a and fins 35b. The coolant flows inside the base 35a, and the heat of the coolant is transmitted to the entire base 35a. FIG. 6 is a diagram showing the internal structure of the base 35a, which is basically the same as the heat receiving header 31 and is formed by digging serpentine grooves in a metal plate such as copper or aluminum having excellent heat conductivity. It is the structure sealed by. Thereby, a meandering flow path is formed, and the coolant flows in from the inlet, passes through the serpentine flow path, and flows out from the outlet. Returning to FIG. 4, on the back surface of the base 35a, as in the first embodiment, metal pins such as copper and aluminum having excellent heat conductivity are arranged in a matrix. The arrangement of the heat sink 35 in the housing 1 is the same as that in the first embodiment.

金属管34に連通してリザーブタンク36が設けられている。リザーブタンク36は、基本的には冷却液を溜めておくものであるが、この目的以外にも次の2つの機能がある。1つは水分の蒸発による冷却液減少等で空気が混入した際には、タンク内に空気を溜めておく機能と、2つめは外部から液冷システム内部に冷却液を注入、排出する際のアクセス口の機能である。なお本実施例ではリザーブタンク36の位置をファン13の上部としたが、他の場所に配置しても良い。   A reserve tank 36 is provided in communication with the metal pipe 34. The reserve tank 36 basically stores a coolant, but has the following two functions in addition to this purpose. The first is the function of storing air in the tank when the coolant is reduced due to moisture evaporation, and the second is when the coolant is injected and discharged from the outside into the liquid cooling system. This is the function of the access port. In this embodiment, the position of the reserve tank 36 is the upper part of the fan 13, but it may be arranged at another location.

冷却液の流れる順路であるが、ポンプ32、受熱ヘッダ31の入口、受熱ヘッダ31の出口、ヒートシンク35のベース35aの入口、ベース35aの出口、リザーブタンク36、再びポンプ32という順路である。この様にポンプ32の冷却液を流す方向はヒートシンク35を通過後の冷却液を吸い込み、受熱ヘッダ31に排出する様にしている。これによりポンプ32には冷却後の冷却液が流れ、ポンプ32の加熱を防いでいる。   The flow of the coolant flows through the pump 32, the inlet of the heat receiving header 31, the outlet of the heat receiving header 31, the inlet of the base 35a of the heat sink 35, the outlet of the base 35a, the reserve tank 36, and the pump 32 again. In this way, the coolant flowing in the pump 32 is sucked in the coolant after passing through the heat sink 35 and discharged to the heat receiving header 31. As a result, the cooled coolant flows through the pump 32 to prevent the pump 32 from being heated.

次にヒートシンク35の他の構成例について図8、図9及び図10により説明する。図8の例は、伝熱性に優れた銅やアルミ等の金属の薄板に、伝熱性に優れた銅やアルミ等の金属からなる囲いを設け、この囲いの中に冷却液を流す蛇行状のパイプを配置し、囲いをカバーで密閉してベースを構成し、このベースの背面に伝熱性に優れた銅やアルミ等の金属からなるピンをマトリクス状に配列させた金属板を固定したものである。   Next, another configuration example of the heat sink 35 will be described with reference to FIGS. In the example of FIG. 8, a thin plate made of metal such as copper or aluminum having excellent heat conductivity is provided with an enclosure made of metal such as copper or aluminum having excellent heat conductivity, and a meandering shape in which a coolant flows through the enclosure. A pipe is arranged, the enclosure is sealed with a cover, and a base is configured. A metal plate in which pins made of metal such as copper and aluminum having excellent heat conductivity are arranged in a matrix on the back of the base is fixed. is there.

図9の例は、伝熱性に優れた銅やアルミ等の金属からなる収納箱に蛇行状のパイプを配置し、収納箱をカバーで密閉してベースを構成し、このベースの背面に伝熱性に優れた銅やアルミ等の金属からなる薄板(フィン)を平行に複数配置したものである。   In the example of FIG. 9, a serpentine pipe is arranged in a storage box made of metal such as copper or aluminum having excellent heat conductivity, and the storage box is sealed with a cover to form a base. A plurality of thin plates (fins) made of a metal such as copper or aluminum, which are superior to each other, are arranged in parallel.

図10の例は、前記第2の実施例のベース35aを中空にし、伝熱性に優れた銅やアルミ等の金属からなる薄板(フィン)を複数水平に、フィン同士に隙間ができるように配置し、カバーで密閉したものである。ベースに流入した冷却液は、上部からフィンの表面を伝って、フィンの間を通って下部に流れ落ちる。   In the example of FIG. 10, the base 35a of the second embodiment is made hollow, and a plurality of thin plates (fins) made of metal such as copper or aluminum having excellent heat conductivity are arranged horizontally so that gaps are formed between the fins. And sealed with a cover. The coolant that has flowed into the base flows along the surface of the fin from the upper part, and flows down to the lower part through the space between the fins.

これらの構造によれば、水分透過などにより循環経路中に空気が混入した場合でも、吐出口あるいは入口より出た空気はヒートシンクベース内部の上部に溜まることになる。即ち本構造のヒートシンクベースはタンクと同様に循環経路中の空気を溜めておくという機能を備えている。従って、冷却液を注入、排出する際のアクセス口をヒートシンクベースや他の場所に設ければタンクを不要とすることができる。   According to these structures, even when air is mixed into the circulation path due to moisture permeation or the like, the air discharged from the discharge port or the inlet is collected in the upper part inside the heat sink base. That is, the heat sink base of this structure has a function of storing the air in the circulation path, like the tank. Accordingly, if an access port for injecting and discharging the cooling liquid is provided in the heat sink base and other places, the tank can be dispensed with.

この第2の実施例も前記第1の実施例と同じ効果を有するが、第2の実施例の場合は受熱ヘッダ及びヒートシンクのベースの内部には蛇行状の流路が設けられているために、第1の実施例よりも冷却効果は大きい。   This second embodiment also has the same effect as the first embodiment, but in the case of the second embodiment, a meandering flow path is provided inside the base of the heat receiving header and the heat sink. The cooling effect is greater than in the first embodiment.

次に更なる静音効果を発揮する本発明の第3の実施例を図11、図12、図13及び図14を参照して説明する。第3の実施例はファン13と電源9の配置、接続構成以外は前記第1及び第2の実施例と同じ構成であるので、同じ構成についての図示及び説明は省略する。   Next, a third embodiment of the present invention that exhibits a further silent effect will be described with reference to FIG. 11, FIG. 12, FIG. 13 and FIG. Since the third embodiment has the same configuration as the first and second embodiments except for the arrangement and connection configuration of the fan 13 and the power source 9, illustration and description of the same configuration are omitted.

図11の構成は、電源9のケースの吸気口が形成されていない側面に開口部を形成し、この開口部とファン13の吸気側とをダクト51で接続し、吸気を電源9を介して行う構成である。筐体内の空気は矢印52方向に吸い寄せられ電源9のケースの吸気口からケース内に流入し、電源9を通ってダクト51に排出される。ファン13に吸い寄せられる排気流で電源9を冷却する事が出来るので電源ファンを省略することができる。したがって更なる静音化が図れる。   In the configuration of FIG. 11, an opening is formed on the side surface of the case of the power supply 9 where the intake port is not formed, and the opening and the intake side of the fan 13 are connected by a duct 51. It is the structure to perform. The air in the casing is sucked in the direction of the arrow 52, flows into the case from the intake port of the case of the power supply 9, passes through the power supply 9, and is discharged to the duct 51. Since the power supply 9 can be cooled by the exhaust flow sucked by the fan 13, the power supply fan can be omitted. Therefore, further noise reduction can be achieved.

図12の構成は、ファン13の吸気側に電源9を取付けたものである。電源9はケースに収容されており、ケースのファン13への取付面には開口あるいは排気口が形成されており、その反対側には吸気口が形成されている。ファン13の回転により矢印52の方向に筐体内の空気は流れ、電源9を通ってヒートシンク12あるいは35に排気される。この構成によっても排気流で電源9の冷却が出来るので電源ファンを省略することが出来る。したがって、前記第1及び第2の実施例よりもさらに静音化が可能となる。   In the configuration of FIG. 12, a power source 9 is attached to the intake side of the fan 13. The power source 9 is housed in a case, and an opening or an exhaust port is formed on the surface of the case attached to the fan 13, and an intake port is formed on the opposite side. The rotation of the fan 13 causes the air in the housing to flow in the direction of the arrow 52, passes through the power supply 9, and is exhausted to the heat sink 12 or 35. Also with this configuration, the power supply 9 can be cooled by the exhaust flow, so that the power supply fan can be omitted. Therefore, the noise can be further reduced than in the first and second embodiments.

図13の構成は図12に示されるファン13と電源9の配置を逆にしたものである。図14の構成は、図13の構成例において、ファン13を電源9のケースの側面に設けたものである。   The configuration of FIG. 13 is obtained by reversing the arrangement of the fan 13 and the power source 9 shown in FIG. The configuration of FIG. 14 is obtained by providing the fan 13 on the side surface of the case of the power source 9 in the configuration example of FIG.

以上の第3の実施例の静音化の効果は具体的には、空冷方式に較べて、騒音を約24dB低減することができる。   Specifically, the noise reduction effect of the third embodiment described above can reduce the noise by about 24 dB compared to the air cooling system.

本発明の第1の実施例を示す斜視図である。It is a perspective view which shows the 1st Example of this invention. 本発明の第1の実施例の冷却部の側面図である。It is a side view of the cooling unit of the first embodiment of the present invention. 本発明の第1、第2及び第3の実施例の冷却部の斜視図である。It is a perspective view of the cooling part of the 1st, 2nd and 3rd Example of this invention. 本発明の第2の実施例の冷却部の斜視図である。It is a perspective view of the cooling unit of the second embodiment of the present invention. 本発明の第2の実施例の受熱ヘッダの構成図である。It is a block diagram of the heat receiving header of 2nd Example of this invention. 本発明の第2の実施例のヒートシンクのベースの構成図である。It is a block diagram of the base of the heat sink of the 2nd Example of this invention. 本発明の第1、第2及び第3の実施例の冷却部の上面図である。It is a top view of the cooling part of the 1st, 2nd and 3rd Example of this invention. 本発明の第2の実施例のヒートシンクの他の構成例の構成図である。It is a block diagram of the other structural example of the heat sink of the 2nd Example of this invention. 本発明の第2の実施例のヒートシンクの他の構成例の構成図である。It is a block diagram of the other structural example of the heat sink of the 2nd Example of this invention. 本発明の第2の実施例のヒートシンクの他の構成例の構成図である。It is a block diagram of the other structural example of the heat sink of the 2nd Example of this invention. 本発明の第3の実施例の冷却部の斜視図である。It is a perspective view of the cooling unit of the 3rd example of the present invention. 本発明の第3の実施例の冷却部の他の構成例の斜視図である。It is a perspective view of the other structural example of the cooling unit of the 3rd Example of this invention. 本発明の第3の実施例の冷却部の他の構成例の斜視図である。It is a perspective view of the other structural example of the cooling unit of the 3rd Example of this invention. 本発明の第3の実施例の冷却部の他の構成例の斜視図である。It is a perspective view of the other structural example of the cooling unit of the 3rd Example of this invention.

符号の説明Explanation of symbols

1…電子機器の筐体、
3…CPU、
9…電源、
10…ヒートパイプ用受熱ヘッダ、
11…ヒートパイプ、
12…ヒートパイプ用ヒートシンク、
12a…ヒートシンクベース、
12b…フィン、
13…ファン、
14…ACケーブル、
21…ファンの吸気、
22〜25…排気、
31…液冷システム用受熱ヘッダ、
32…ポンプ、
33…ゴムチューブ、
34…金属管、
35…液冷システム用ヒートシンク、
36…タンク、
41…設置背面の壁、
51…ダクト。
1 ... Housing of electronic equipment,
3 ... CPU,
9 ... Power supply,
10 ... Heat receiving header for heat pipe,
11 ... Heat pipe,
12. Heat sink for heat pipe,
12a ... heat sink base,
12b ... Fins,
13 ... Fan,
14 ... AC cable,
21 ... Fan intake,
22-25 ... exhaust,
31 ... Heat receiving header for liquid cooling system,
32 ... pump,
33 ... Rubber tube,
34 ... Metal tube,
35 ... Heat sink for liquid cooling system,
36 ... Tank,
41 ... the wall on the back of the installation,
51. Duct.

Claims (2)

筐体と、
前記筐体内に配置された発熱部品と、
前記発熱部品に取付けられ発生熱を熱伝達媒体に伝える受熱部材と、前記熱伝達媒体を介して前記発生熱を放熱する放熱部材と、前記受熱部材と前記放熱部材の間を接続して前記熱伝達媒体を移動させる熱輸送手段とを有する冷却機構と、
前記放熱部材を冷却するファンと、を有し、
前記放熱部材は、前記筐体の背面側上部において、一部が前記筐体の中に存在し、他の部分が前記筐体の外部に突出するように取付けられ、前記突出部分は、前記筐体の背面に接続されるACケーブルの曲げによって形成される湾曲部の大きさより小さい奧行き範囲において突出しており、カバーで覆われていることを特徴とする冷却機構を備えた電子機器。
A housing,
A heat generating component disposed in the housing;
A heat receiving member attached to the heat generating component for transmitting the generated heat to a heat transfer medium; a heat radiating member for radiating the generated heat through the heat transfer medium; and connecting the heat receiving member and the heat radiating member to form the heat. A cooling mechanism having a heat transport means for moving the transmission medium;
A fan for cooling the heat dissipation member,
The heat dissipating member is attached so that a part of the heat dissipating member is present in the case and the other part protrudes to the outside of the case. An electronic device comprising a cooling mechanism, characterized in that it protrudes in a crushed range smaller than the size of a curved portion formed by bending of an AC cable connected to the back of the body and is covered with a cover.
請求項1記載の冷却機構を備えた電子機器において、
前記放熱部材は、ベースとフィンとから成り、
前記ベースは、密閉された内部空間に前記熱伝達媒体を通流する流入口と流出口と、熱伝達媒体の注入、排出を行うアクセス口とを有することを特徴とする冷却機構を備えた電子機器。
In the electronic device provided with the cooling mechanism according to claim 1,
The heat dissipation member is composed of a base and a fin,
The base has an inlet and an outlet through which the heat transfer medium flows in a sealed internal space, and an access port through which the heat transfer medium is injected and discharged. machine.
JP2005341930A 2005-11-28 2005-11-28 Electronic equipment with cooling mechanism Expired - Fee Related JP4744280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341930A JP4744280B2 (en) 2005-11-28 2005-11-28 Electronic equipment with cooling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341930A JP4744280B2 (en) 2005-11-28 2005-11-28 Electronic equipment with cooling mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002279570A Division JP3757200B2 (en) 2002-09-25 2002-09-25 Electronic equipment with cooling mechanism

Publications (2)

Publication Number Publication Date
JP2006148145A JP2006148145A (en) 2006-06-08
JP4744280B2 true JP4744280B2 (en) 2011-08-10

Family

ID=36627372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341930A Expired - Fee Related JP4744280B2 (en) 2005-11-28 2005-11-28 Electronic equipment with cooling mechanism

Country Status (1)

Country Link
JP (1) JP4744280B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310855A (en) * 2007-06-12 2008-12-25 Hitachi Ltd Electronic device
JP5851303B2 (en) * 2012-03-28 2016-02-03 三菱電機株式会社 Refrigeration cycle apparatus and outdoor heat source unit
WO2016053227A1 (en) * 2014-09-29 2016-04-07 Hewlett Packard Enterprise Development Lp Fan controlled ambient air cooling of equipment in a controlled airflow environment
JP6555081B2 (en) * 2015-10-30 2019-08-07 富士通株式会社 Sealed loop circulating liquid cooling device and electronic equipment
CN112821215A (en) * 2019-11-18 2021-05-18 浙江金业建设有限公司 Municipal power distribution cabinet with good heat dissipation effect and heat dissipation method thereof

Also Published As

Publication number Publication date
JP2006148145A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP3757200B2 (en) Electronic equipment with cooling mechanism
JP4551261B2 (en) Cooling jacket
US7958935B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP3594900B2 (en) Display integrated computer
JP4719079B2 (en) Electronics
US7466553B2 (en) Cooling system
JP4978401B2 (en) Cooling system
US20050217829A1 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
KR101005404B1 (en) Heat absorption member, cooling device, and electronic apparatus
JP2009169752A (en) Electronic equipment
JP4720688B2 (en) Electronic control unit cooling system
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
US6608751B2 (en) Electronic device
JP4744280B2 (en) Electronic equipment with cooling mechanism
JP5262473B2 (en) Electronic equipment and its components
JP3727647B2 (en) Electronic equipment cooling device
US7688590B2 (en) Thermal module and electronic apparatus using the same
JP2005210088A (en) Cooling device in closed cabinet
JP4969979B2 (en) heatsink
JP2005317033A (en) Display device integrated computer, and cooling module used therein
KR101180494B1 (en) Heat-dissipating device for graphic card
JP5252059B2 (en) Cooling system
JP5533458B2 (en) Heat receiver, liquid cooling unit and electronic equipment
JP2008211001A (en) Electronic device cooling apparatus
JP2004094961A (en) Display unit integrated computer system and cooling module used for it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090529

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees