JP2006526128A - Thin plate type cooling device that prevents dryout - Google Patents

Thin plate type cooling device that prevents dryout Download PDF

Info

Publication number
JP2006526128A
JP2006526128A JP2005500269A JP2005500269A JP2006526128A JP 2006526128 A JP2006526128 A JP 2006526128A JP 2005500269 A JP2005500269 A JP 2005500269A JP 2005500269 A JP2005500269 A JP 2005500269A JP 2006526128 A JP2006526128 A JP 2006526128A
Authority
JP
Japan
Prior art keywords
phase refrigerant
cooling device
thin plate
liquid
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005500269A
Other languages
Japanese (ja)
Inventor
チューン チェ,チュ
パク,チファン
ヒュン イ,チョン
ホー イ,チャン
Original Assignee
アイキュリ ラボ ホールディングズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイキュリ ラボ ホールディングズ リミテッド filed Critical アイキュリ ラボ ホールディングズ リミテッド
Publication of JP2006526128A publication Critical patent/JP2006526128A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

本発明は、冷媒のドライアウト現象を除去するために、冷媒循環ループの内壁に形成された少なくとも一つのキャビティを備える薄板型冷却装置を提供する。The present invention provides a thin plate type cooling device including at least one cavity formed in an inner wall of a refrigerant circulation loop in order to remove a dry-out phenomenon of the refrigerant.

Description

本発明は、半導体集積回路装置などの熱を冷却するための薄板型冷却装置に係り、特に、作動流体の相変化による冷却方式を利用した冷却装置であって、冷媒のドライアウト現象を防止できる薄板型冷却装置に関する。   The present invention relates to a thin plate type cooling device for cooling heat such as a semiconductor integrated circuit device, and more particularly, to a cooling device using a cooling method by phase change of a working fluid, and can prevent a dry-out phenomenon of a refrigerant. The present invention relates to a thin plate type cooling device.

半導体素子の高集積化の趨勢によってデザインルールが減少し、それにより半導体素子を構成する電子回路の線幅が小さくなるにつれて、単位面積当たりのトランジスタ数が増加して電子装備の小型化、高性能化を達成したが、それに伴って半導体素子の単位面積当たりの熱発散率がさらに高くなった。このような熱発散率の上昇は、半導体素子の性能を低下させて寿命を短縮させ、結局、半導体素子を採用したシステムの信頼度を低下させる。特に、半導体素子においては、その動作温度によって各種パラメータ値が鋭敏に変化して集積回路の特性をさらに劣化させる。   As the design rules decrease due to the trend toward higher integration of semiconductor elements, the number of transistors per unit area increases as the line width of the electronic circuits constituting the semiconductor elements decreases, resulting in smaller electronic equipment and higher performance. As a result, the heat dissipation rate per unit area of the semiconductor element further increased. Such an increase in the heat dissipation rate decreases the performance of the semiconductor element and shortens the lifetime, and eventually reduces the reliability of the system employing the semiconductor element. In particular, in a semiconductor element, various parameter values change sharply depending on the operating temperature, further degrading the characteristics of the integrated circuit.

このような熱発散率の上昇に対応して、これを冷却するための冷却技術も発展してきたが、既知の通常的な冷却技術としては、フィンファン(fin−fan)冷却方式、熱電素子(Peltier)冷却方式、液体噴射(water−jet)冷却方式、潜水(immersion)冷却方式、ヒートパイプ(heat pipe)冷却方式などがある。   In response to such an increase in the heat dissipation rate, a cooling technique for cooling this has also been developed. However, as a known normal cooling technique, a fin-fan cooling method, a thermoelectric element ( There are a Peltier cooling method, a liquid-jet cooling method, an immersion cooling method, a heat pipe cooling method, and the like.

前記フィンファン冷却方式は、フィン及び/またはファンを利用して強制冷却させる方法であって、数十年間多く利用されてきたが、ノイズ、振動及び大きい体積に比べて冷却効率が低いという問題点がある。また、前記熱電素子冷却方式はノイズ、振動はないが、効率が低いので、大きい作動電源が要求され、高熱側に必要以上の過多の熱消散装置が要求されるという問題点がある。   The fin fan cooling method is a method of forced cooling using fins and / or fans, and has been used for many decades. However, the cooling efficiency is low compared to noise, vibration and large volume. There is. In addition, the thermoelectric element cooling method has no noise and vibration, but has low efficiency. Therefore, there is a problem that a large operating power source is required and an excessively large heat dissipation device is required on the high heat side.

前記液体噴射冷却方式は、その効率性が優秀で冷却器研究の主流をなしているが、外部電源を利用する薄膜ポンプなどを使用してその構造が複雑であり、重力の影響を多く受けるために適用限界があり、特に個人携帯電子装備に適用する場合にロバスト性設計が困難であるという問題がある。   The liquid jet cooling method is excellent in efficiency and has become the mainstream of cooler research, but its structure is complicated by using a thin film pump that uses an external power supply, and it is highly influenced by gravity. However, there is a problem that robust design is difficult when applied to personal portable electronic equipment.

また、ヒートパイプを使用する冷却装置では、管内気体と液体との流動方向が互いに相反するために、蒸発部から凝縮部へ行く気体の流動が、凝縮部で凝縮されて蒸発部に帰還する流体に流動抵抗として作用する。したがって、もし高い熱量がヒートパイプに印加される場合、速い速度の気体が帰還する液体が蒸発部まで帰還できなくなって、蒸発部では液相冷媒が枯渇してしまうドライアウト現象が発生する。また、パイプ内部で気化された冷媒は浮力及び圧力差に依存して移動し、ヒートパイプ内部では、液化された冷媒が帰還部媒質の構造及び大きさによって重力に依存するために、設置できる位置に多くの制限が伴うという問題点がある。   Further, in the cooling device using a heat pipe, the flow direction of the gas in the pipe and the liquid are opposite to each other, so that the gas flow from the evaporation section to the condensation section is condensed in the condensation section and returned to the evaporation section. It acts as a flow resistance. Therefore, if a high amount of heat is applied to the heat pipe, the liquid to which the high-speed gas returns cannot return to the evaporation section, and a dry-out phenomenon occurs in which the liquid phase refrigerant is depleted in the evaporation section. Also, the refrigerant vaporized inside the pipe moves depending on the buoyancy and pressure difference, and inside the heat pipe, the liquefied refrigerant depends on the gravity depending on the structure and size of the feedback part medium, so the position where it can be installed Has the problem of many limitations.

このような問題点を解決するためのものとして、本発明の出願人は、特許文献1で、冷却性能が重力の影響をほとんど受けずに外部電源の供給なしに冷媒が自然循環する小型の薄板型冷却装置を開示したことがある。開示された薄板型冷却装置は、内部に流体の循環ループが内蔵されている薄板状のハウジングと、前記ハウジング内の循環ループを循環しつつ相変化する冷媒を含むが、前記ハウジング内の循環ループは、前記ハウジング内部の一端に形成され、液相の冷媒を保存することができる冷媒保存部と、前記冷媒保存部の一端に連結される少なくとも一つの第1微細チャンネルを備え、前記第1微細チャンネル内で前記液相の冷媒が、前記第1微細チャンネルの内壁との表面張力により前記冷媒保存部から前記第1微細チャンネルの所定部位まで部分的に充填され、前記第1微細チャンネル内での表面張力が重力より大きく設定されており、熱源から吸収された熱により前記第1微細チャンネルに充填された前記液相の冷媒を気化させることができる蒸発部と、前記蒸発部の第1微細チャンネルから長手方向に同一平面上で所定距離ほど離隔されており、前記第1微細チャンネルで気化されて移動した気相の冷媒を凝縮させることができる少なくとも一つの第2微細チャンネルを備え、前記第2微細チャンネルの内壁と前記凝縮された冷媒との表面張力が重力より大きく設定された凝縮部と、前記蒸発部の第1微細チャンネルと前記凝縮部の第2微細チャンネルとの間に位置する気相冷媒移動部と、前記凝縮部で凝縮された液相の冷媒を前記冷媒保存部に移送させ、前記気相冷媒移動部と分離された液相冷媒移動部と、を備える。   In order to solve such problems, the applicant of the present invention disclosed in Patent Document 1 is a small thin plate in which the cooling performance is hardly affected by gravity and the refrigerant circulates naturally without supplying external power. A mold cooling apparatus has been disclosed. The disclosed thin plate type cooling device includes a thin plate-like housing in which a fluid circulation loop is incorporated, and a refrigerant that changes phase while circulating through the circulation loop in the housing. Comprises a refrigerant storage part that is formed at one end inside the housing and can store a liquid-phase refrigerant, and at least one first fine channel connected to one end of the refrigerant storage part, In the channel, the liquid phase refrigerant is partially filled from the refrigerant storage part to a predetermined part of the first fine channel by surface tension with the inner wall of the first fine channel, and in the first fine channel, The surface tension is set larger than the gravity, and the liquid phase refrigerant filled in the first fine channel can be vaporized by the heat absorbed from the heat source. The vaporization section and the first fine channel of the evaporation section are separated from each other by a predetermined distance on the same plane in the longitudinal direction, and at least the vapor phase refrigerant evaporated and moved in the first fine channel can be condensed. A condensing part that includes one second fine channel, the surface tension of the inner wall of the second fine channel and the condensed refrigerant being set to be greater than gravity, the first fine channel of the evaporation part, and the condensation part A liquid-phase refrigerant separated from the gas-phase refrigerant moving unit by transferring the liquid-phase refrigerant condensed in the condensing unit to the refrigerant storage unit and being separated from the gas-phase refrigerant moving unit. A moving unit.

前記開示された薄板型冷却装置によれば、ハウジング内部の循環ループを循環する冷媒が、液相と気相との相変化を起こすことによって、その相変化時の潜熱を利用して前記冷却装置と接触する外部熱源の熱を冷却させる。   According to the disclosed thin plate type cooling device, the refrigerant circulating in the circulation loop inside the housing causes a phase change between the liquid phase and the gas phase, and uses the latent heat at the time of the phase change, thereby cooling the cooling device. Cool the heat of the external heat source that comes into contact with.

しかし、前記開示された薄板型冷却装置によれば、気相の冷媒が凝縮部で完全に凝縮されずに凝縮された冷媒中にバブル形態に含まれて、液相冷媒移動部及び/または冷媒保存部を経て蒸発部に到達する場合がありうる。このように、液相の冷媒中にバブルが含まれて蒸発部に到達すれば、蒸発部では液相の冷媒が枯渇してしまうドライアウト現象が発生する恐れがある。   However, according to the disclosed thin plate type cooling device, the gas-phase refrigerant is included in the bubble form in the refrigerant condensed without being completely condensed in the condensing unit, and the liquid-phase refrigerant moving unit and / or the refrigerant There may be a case where the evaporation part is reached through the storage part. Thus, if bubbles are included in the liquid-phase refrigerant and reach the evaporation section, there is a possibility that a dry-out phenomenon occurs in which the liquid-phase refrigerant is depleted in the evaporation section.

大韓民国特許出願第2001−52584号“薄板型冷却装置”Korean Patent Application No. 2001-52584 “Thin Plate Cooling Device”

本発明の目的は、前記した問題点を改善するためのものであり、本発明の目的は、蒸発部でのドライアウト現象を防止できる薄板型冷却装置を提供することである。   An object of the present invention is to improve the above-mentioned problems, and an object of the present invention is to provide a thin plate type cooling device that can prevent a dry-out phenomenon in an evaporation section.

また、本発明の目的は、冷媒のフローを向上させて冷却効率が上昇した薄板型冷却装置を提供することである。   Another object of the present invention is to provide a thin plate type cooling device that improves the cooling efficiency by improving the flow of the refrigerant.

前記目的を達成するために、本発明は、内部に流体の循環ループが内蔵されている薄板状のハウジングと、相変化を起こすことができ、前記ハウジング内の循環ループ内を循環する冷媒と、を含み、前記ハウジング内の循環ループは、その内部の一端に形成されるが、前記液相の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液相の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部分に向かって移動する通路となり、凝縮されていない気相の冷媒が収容される少なくとも一つの第1キャビティを備える気相冷媒移動部と、前記気相冷媒移動部と隣接した領域に形成されるが、前記気相の冷媒が液相に凝縮される凝縮部と、前記分岐部分の少なくとも一部の領域であって前記凝縮部に隣接した領域に形成されるが、前記蒸発部と断熱され、液相に凝縮された冷媒が前記蒸発部に向かって移動する液相冷媒移動部と、前記蒸発部と前記液相冷媒移動部の少なくとも一部とを断熱させる断熱部と、を備える薄板型冷却装置を提供する。   To achieve the above object, the present invention provides a thin plate-like housing in which a fluid circulation loop is incorporated, a refrigerant capable of causing a phase change, and circulating in the circulation loop in the housing, A circulation loop in the housing is formed at one end of the inside of the housing, but the liquid phase refrigerant is at least partially filled by capillary action, and the filled liquid phase refrigerant is transmitted from an external heat source. An evaporation section that is vaporized by the generated heat, and a passage that is formed adjacent to the evaporation section, and in which the vaporized refrigerant moves toward the branch portion, and contains a gas phase refrigerant that is not condensed. A gas phase refrigerant moving part comprising at least one first cavity, a condensing part formed in a region adjacent to the gas phase refrigerant moving part, wherein the gas phase refrigerant is condensed into a liquid phase, and the branch Partial A liquid-phase refrigerant moving unit that is formed in a region that is at least a part of the region and is adjacent to the condensing unit, but is thermally insulated from the evaporating unit and condensed in a liquid phase toward the evaporating unit. And a heat insulating part that insulates the evaporating part and at least a part of the liquid-phase refrigerant moving part.

以下、本発明の望ましい実施形態を添付した図面を参照して詳細に説明する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1Aを参照すれば、図1Aは、本発明の第1実施形態による薄板型冷却装置100の外形を概略的に図示した斜視図である。本発明の薄板型冷却装置100は、ほぼ直六面体で構成された外形を持つことが望ましく、それぞれ内部の構成要素が形成された基板100a及び上板100bを接着させて形成されることが望ましい。   First, referring to FIG. 1A, FIG. 1A is a perspective view schematically illustrating an outer shape of a thin plate cooling device 100 according to a first embodiment of the present invention. The thin plate type cooling device 100 of the present invention preferably has an outer shape formed of a substantially rectangular parallelepiped, and is preferably formed by bonding a substrate 100a and an upper plate 100b on which internal components are formed.

理解及び説明の便宜のために、図1Aに示すように、本発明の薄板型冷却装置100の長手方向(図面の左側から右側に向かう方向)を“X軸方向”と定義し、前記薄板型冷却装置100の幅方向(図面に向かって進入する方向)を“Y軸方向”と定義し、前記薄板型冷却装置100の高さ方向(図面の下側から上側に向かう方向)を“Z軸方向”と定義する。また、負のZ軸方向(すなわち、図面の下側から上側に向かう方向)から見た断面を“‘第1’方向から見た断面”とし、正のZ軸方向(すなわち、図面の上側から下側に向かう方向)から見た断面を“‘第2’方向から見た断面”という。   For the convenience of understanding and explanation, as shown in FIG. 1A, the longitudinal direction (direction from the left side to the right side of the drawing) of the thin plate cooling device 100 of the present invention is defined as the “X-axis direction”. The width direction of the cooling device 100 (the direction toward the drawing) is defined as the “Y-axis direction”, and the height direction of the thin plate cooling device 100 (the direction from the bottom to the top of the drawing) is defined as the “Z-axis”. It is defined as “direction”. Further, a cross section viewed from the negative Z-axis direction (that is, a direction from the lower side to the upper side of the drawing) is referred to as a “cross section viewed from the 'first' direction”, and a positive Z-axis direction (that is, from the upper side of the drawing) A cross section viewed from the lower side) is referred to as “a cross section viewed from the second direction”.

図1Bを参照すれば、図1Bは、本発明の第1実施形態による薄板型冷却装置100のXY平面での断面を‘第2’方向から見た概略的断面図である。図示されたように、前記薄板型冷却装置100の基板100aは、ほぼ方形のハウジング112の内部に、前記上板100bと結合されることによって冷媒の循環ループが形成されるように構成される。冷媒は矢印方向に循環され、液相と気相間の相変化時の潜熱を利用して前記冷却装置100と接触する外部熱源の熱を冷却させる。   Referring to FIG. 1B, FIG. 1B is a schematic cross-sectional view of the thin plate type cooling device 100 according to the first embodiment of the present invention, viewed from the ‘second’ direction in the XY plane. As shown in the drawing, the substrate 100a of the thin plate type cooling device 100 is configured so that a refrigerant circulation loop is formed in the substantially rectangular housing 112 by being coupled to the upper plate 100b. The refrigerant is circulated in the direction of the arrow, and cools the heat of the external heat source in contact with the cooling device 100 using latent heat at the time of phase change between the liquid phase and the gas phase.

前記ハウジング112は、シリコンやガリウムのような半導体物質、自体結集断層膜(Self Assembled Mono layer;SAM)のような新素材積層物質、熱伝導率の優秀な銅またはアルミニウムのような金属物質及び/またはこれらの合金物質、セラミック物質、プラスチックのような高分子物質やダイアモンドのような結晶質材料などの多様な素材で製造できる。特に、外部熱源が半導体チップである場合、外部熱源の表面物質と同じ物質で形成して熱衝撃を最小化できる。また、前記薄板型冷却装置100が半導体物質で製造される場合には、半導体チップの製造工程で、前記外部熱源の表面物質と一体になるように形成して接触熱抵抗を最小化することもできる。   The housing 112 includes a semiconductor material such as silicon or gallium, a new material stack material such as Self Assembled Monolayer (SAM), a metal material such as copper or aluminum having excellent thermal conductivity, and / or Alternatively, these materials can be manufactured from various materials such as alloy materials, ceramic materials, polymer materials such as plastic, and crystalline materials such as diamond. In particular, when the external heat source is a semiconductor chip, it can be formed of the same material as the surface material of the external heat source to minimize thermal shock. Further, when the thin plate cooling device 100 is manufactured from a semiconductor material, it may be formed so as to be integrated with the surface material of the external heat source in the manufacturing process of the semiconductor chip to minimize the contact thermal resistance. it can.

次いで、前記薄板型冷却装置100内に注入される冷媒は、外部の熱により液相及び気相間の相変化を起こすことができるものから選択されうる。本実施形態によれば、前記冷媒として、潜熱及び表面張力の大きい水を使用することが望ましいが、これは環境汚染を考慮してフレオン(CFC)系列の冷媒を使用しないことが望ましいためである。   Next, the refrigerant injected into the thin plate type cooling device 100 may be selected from those capable of causing a phase change between the liquid phase and the gas phase by external heat. According to the present embodiment, it is desirable to use water having a large latent heat and surface tension as the refrigerant. This is because it is desirable not to use a Freon (CFC) series refrigerant in consideration of environmental pollution. .

また、前記薄板型冷却装置100の材質によってその内壁と冷媒間の表面張力の大きさが変わるので、本発明の実施においては、それに適した冷媒を選択せねばならない。例えば、水以外にも、メタノールまたはエタノールなどのアルコール系冷媒を使用してもよい。前記のような水やアルコール系冷媒の場合熱容量が大きく、半導体物質の内壁との表面張力による接触角が小さくて、冷媒の流速が速くなって多くの熱量を伝達するのに有利な長所を持つ。また、水やアルコール系冷媒の場合には、フレオン系冷媒と違って、いずれかの理由によって前記薄板型冷却装置100から漏れても環境汚染の問題が発生しない。   Further, since the magnitude of the surface tension between the inner wall and the refrigerant varies depending on the material of the thin plate type cooling device 100, in the practice of the present invention, a suitable refrigerant must be selected. For example, in addition to water, an alcohol-based refrigerant such as methanol or ethanol may be used. In the case of the water or alcohol-based refrigerant as described above, the heat capacity is large, the contact angle due to the surface tension with the inner wall of the semiconductor material is small, and the flow rate of the refrigerant is increased, so that it has an advantage that it transfers a large amount of heat. . Also, in the case of water or alcohol-based refrigerants, unlike Freon-type refrigerants, environmental pollution problems do not occur even if they leak from the thin plate cooling device 100 for any reason.

このような冷媒の選択は、本発明の実施のための単純な設計的選択事項に過ぎないので、本発明の技術的範囲を限定するものではない。   The selection of such a refrigerant is merely a simple design choice for the implementation of the present invention and does not limit the technical scope of the present invention.

図示されたように、前記薄板型冷却装置100は、その内部の一端に形成されるが、前記液相の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液相の冷媒が外部の熱源(図示せず)から伝えられた熱によって気化される蒸発部104と、前記蒸発部104と隣接して形成されるが、気化された冷媒がその圧力差によって所定方向に移動する気相冷媒移動部106と、前記気相冷媒移動部106と隣接して形成されるが、前記気相の冷媒が液相に凝縮される凝縮部108と、前記凝縮部108に隣接して形成されるが、前記蒸発部104と断熱され、液相に凝縮された冷媒が前記蒸発部104に向かって移動する液相冷媒移動部102及び110とを備える。   As shown in the drawing, the thin plate type cooling device 100 is formed at one end of the thin plate type cooling device 100, but the liquid phase refrigerant is at least partially filled by capillary action, and the filled liquid phase refrigerant is externally charged. An evaporation unit 104 that is vaporized by heat transferred from a heat source (not shown), and a vapor phase refrigerant that is formed adjacent to the evaporation unit 104, and in which the vaporized refrigerant moves in a predetermined direction due to the pressure difference. It is formed adjacent to the moving unit 106 and the gas-phase refrigerant moving unit 106, but is formed adjacent to the condensing unit 108 where the gas-phase refrigerant is condensed into a liquid phase, and the condensing unit 108. The liquid phase refrigerant moving units 102 and 110 that are insulated from the evaporation unit 104 and condensed into a liquid phase move toward the evaporation unit 104.

前記蒸発部104、気相冷媒移動部106、凝縮部108並びに液相冷媒移動部102及び110は、前記薄板型冷却装置100の基板100aのみに形成されてもよい。また、前記薄板型冷却装置100の上板100bは、所定の領域に形成されたキャビティのみを備えてもよい。前記上板100bの構成については、図2ないし図5を参照して後述する。   The evaporation unit 104, the gas-phase refrigerant moving unit 106, the condensing unit 108, and the liquid-phase refrigerant moving units 102 and 110 may be formed only on the substrate 100 a of the thin plate cooling device 100. In addition, the upper plate 100b of the thin plate type cooling device 100 may include only a cavity formed in a predetermined region. The configuration of the upper plate 100b will be described later with reference to FIGS.

前記薄板型冷却装置100内で前記冷媒は、図面の矢印方向に沿って循環ループを形成する。すなわち、前記蒸発部104、前記気相冷媒移動部106、前記凝縮部108、前記凝縮部側の液相冷媒移動部110、及び前記蒸発部側の液相冷媒移動部102を順に経て循環されるように構成されている。   In the thin plate cooling device 100, the refrigerant forms a circulation loop along the arrow direction in the drawing. That is, the refrigerant is circulated through the evaporating unit 104, the vapor-phase refrigerant moving unit 106, the condensing unit 108, the liquid phase refrigerant moving unit 110 on the condensing unit side, and the liquid phase refrigerant moving unit 102 on the evaporating unit side in this order. It is configured as follows.

本発明の実施形態によっては、前記液相冷媒移動部102及び110の所定領域に一定量の液相の冷媒が保存されるように、適当な体積を持つ冷媒保存部(図示せず)をさらに備えることができる。例えば、前記蒸発部側の液相冷媒移動部102の領域が冷媒保存部として形成されて使われうる。また、前記冷媒保存部は複数個が形成されてもよい。   In some embodiments of the present invention, a refrigerant storage unit (not shown) having an appropriate volume is further provided so that a predetermined amount of liquid phase refrigerant is stored in a predetermined region of the liquid phase refrigerant moving units 102 and 110. Can be provided. For example, the region of the liquid phase refrigerant moving unit 102 on the evaporation unit side may be used as a refrigerant storage unit. In addition, a plurality of the refrigerant storage units may be formed.

前記蒸発部側の液相冷媒移動部102の一端(“出口側”)には前記蒸発部104が隣接して形成され、前記蒸発部104には複数個の微細チャンネルが形成されて、毛細管現象によって前記微細チャンネルの少なくとも一部または全部に、前記蒸発部側の液相冷媒移動部102に保存された冷媒が充填される。また、前記蒸発部104は、外部の熱源(図示せず)に隣接して設置されるが、それにより、前記熱源から伝えられた熱によって、前記微細チャンネルに充填された液相の冷媒が気化されて、気相の冷媒に相変化を起こす。したがって、前記熱源からの熱は、前記冷媒の相変化による潜熱ほど前記冷媒に吸収され、後述するように気相の冷媒が凝縮部108で再び凝縮しつつ熱を発散させることによって、前記熱源の熱を除去する。   The evaporation unit 104 is formed adjacent to one end (“exit side”) of the liquid-phase refrigerant moving unit 102 on the evaporation unit side, and a plurality of fine channels are formed in the evaporation unit 104 to form a capillary phenomenon. Thus, at least a part or all of the fine channel is filled with the refrigerant stored in the liquid-phase refrigerant moving unit 102 on the evaporation unit side. In addition, the evaporation unit 104 is installed adjacent to an external heat source (not shown), whereby the liquid phase refrigerant filled in the fine channel is vaporized by the heat transmitted from the heat source. This causes a phase change in the gas phase refrigerant. Therefore, the heat from the heat source is absorbed by the refrigerant as the latent heat due to the phase change of the refrigerant, and the gas phase refrigerant again condenses in the condensing unit 108 to dissipate heat as will be described later. Remove heat.

前記微細チャンネル内での表面張力は重力より大きく形成されることが望ましい。前記微細チャンネルに充填された液相の冷媒のメニスカスの接触角は小さいほど望ましいが、そのためには、前記微細チャンネルの内壁を親水性物質で形成するか、微細チャンネルの表面に親水性処理を施すことが望ましい。このような親水性処理の例には、メッキ処理、塗装処理、コーティング処理、着色処理、陽極化処理、プラズマ処理、レーザー処理などがある。また、その熱伝達率を向上させるように前記微細チャンネルの内壁の表面粗度を調節できる。   It is desirable that the surface tension in the fine channel is formed to be greater than gravity. The smaller the contact angle of the meniscus of the liquid-phase refrigerant filled in the fine channel, the better. For this purpose, the inner wall of the fine channel is formed of a hydrophilic substance or the surface of the fine channel is subjected to hydrophilic treatment. It is desirable. Examples of such hydrophilic treatment include plating treatment, painting treatment, coating treatment, coloring treatment, anodizing treatment, plasma treatment, and laser treatment. In addition, the surface roughness of the inner wall of the fine channel can be adjusted so as to improve the heat transfer coefficient.

一方、蒸発部104の微細チャンネルだけでなく、液相冷媒移動部110及び102と蒸発部104はその表面が親水性処理され、気相冷媒移動部106及び凝縮部108の表面は疎水性処理されることによって、冷媒のフローを向上させて冷却効率を高めることが望ましい。   On the other hand, not only the fine channels of the evaporating unit 104 but also the liquid phase refrigerant moving units 110 and 102 and the evaporating unit 104 are subjected to hydrophilic treatment, and the surfaces of the gas phase refrigerant moving unit 106 and the condensing unit 108 are subjected to hydrophobic treatment. Therefore, it is desirable to improve the cooling efficiency by improving the flow of the refrigerant.

さらに、前記微細チャンネルの断面は方形以外にも、円形、楕円形、長方形、正方形、多角形など多様な形態を持つように形成することもできる。特に、前記微細チャンネルの長手方向(すなわち、X軸方向)に沿って断面積を増加または減少させることによって冷媒との表面張力の大きさを制御でき、その内壁に複数のグルーブまたはノードを設置して冷媒の移動方向を決定するか、または冷媒の移動速度を制御することもできる。   Further, the cross section of the fine channel may be formed to have various shapes such as a circle, an ellipse, a rectangle, a square, and a polygon other than a square. In particular, the surface tension with the refrigerant can be controlled by increasing or decreasing the cross-sectional area along the longitudinal direction of the fine channel (that is, the X-axis direction), and a plurality of grooves or nodes are installed on the inner wall. Thus, the moving direction of the refrigerant can be determined, or the moving speed of the refrigerant can be controlled.

次いで、前記蒸発部104で気化された冷媒は、前記蒸発部側の液相冷媒移動部102の逆方向に移動するが、このように気相の冷媒が移動できる通路の役割を行う気相冷媒移動部106が前記蒸発部104に隣接して形成される。図示されたように、前記気相冷媒移動部106は、気化された冷媒が所定の方向(すなわち、前記冷媒保存部102の逆方向)に移動できるように、複数のガイド118を備えることができる。前記ガイド118は、前記薄板型冷却装置100の機械的な強度を高める機能も持つ。したがって、機械的な強度に問題がない場合には、前記ガイド118は備えないこともある。   Next, the refrigerant evaporated in the evaporation unit 104 moves in the opposite direction of the liquid-phase refrigerant moving unit 102 on the evaporation unit side, and thus the gas-phase refrigerant that functions as a passage through which the gas-phase refrigerant can move. A moving part 106 is formed adjacent to the evaporation part 104. As shown in the drawing, the gas-phase refrigerant moving unit 106 may include a plurality of guides 118 so that the vaporized refrigerant can move in a predetermined direction (that is, the reverse direction of the refrigerant storage unit 102). . The guide 118 also has a function of increasing the mechanical strength of the thin plate cooling device 100. Therefore, when there is no problem in mechanical strength, the guide 118 may not be provided.

次いで、前記凝縮部108は、前記気相冷媒移動部106を通じて移動してきた気相の冷媒が再び凝縮されて液化される領域である。本実施形態によれば、前記凝縮部108は、前記蒸発部104と同じ平面上で所定距離ほど離隔した位置に形成されている。   Next, the condensing unit 108 is an area where the gas-phase refrigerant that has moved through the gas-phase refrigerant moving unit 106 is condensed again and liquefied. According to this embodiment, the condensing unit 108 is formed at a position separated by a predetermined distance on the same plane as the evaporation unit 104.

一方、前記凝縮部108は、前記蒸発部104に形成された微細チャンネルと類似した複数個の微細チャンネル(図示せず)を備えることができる。このような凝縮部108の微細チャンネルは、後述するように、前記液相冷媒移動部110にも延びて形成され、さらに、前記蒸発部側の液相冷媒移動部102にも延びて形成できる。このような凝縮部108の微細チャンネルは、気相冷媒の凝縮をさらに容易にし、凝縮された液相の冷媒を前記蒸発部側の液相冷媒移動部102の方向に移動させる表面張力を提供することによって、冷媒循環ループの完成を促す。   Meanwhile, the condensing unit 108 may include a plurality of fine channels (not shown) similar to the fine channels formed in the evaporation unit 104. As will be described later, the fine channel of the condensing unit 108 is formed to extend to the liquid-phase refrigerant moving unit 110 and further to the liquid-phase refrigerant moving unit 102 on the evaporation unit side. Such a fine channel of the condensing unit 108 further facilitates the condensation of the gas-phase refrigerant and provides a surface tension that moves the condensed liquid-phase refrigerant in the direction of the liquid-phase refrigerant moving unit 102 on the evaporation unit side. This facilitates completion of the refrigerant circulation loop.

前記凝縮部108の微細チャンネルの深さは、前記蒸発部104の微細チャンネルの深さより深く形成されることが望ましいが、これに限定されるものではない。その外にも、断面の形状や断面積の変化、グルーブやノードの形成に関して、前記蒸発部104の微細チャンネルに関するあらゆる事項が前記凝縮部108の微細チャンネルにも同一に適用できるので、その詳細を省略する。   The depth of the fine channel of the condensing unit 108 is preferably deeper than the depth of the fine channel of the evaporation unit 104, but is not limited thereto. In addition, regarding the change in cross-sectional shape, cross-sectional area, and formation of grooves and nodes, all matters relating to the fine channel of the evaporation unit 104 can be applied to the fine channel of the condensing unit 108. Omitted.

また、熱放出の効果をさらに向上させるために、前記凝縮部108の外部の薄板型冷却装置100に複数のフィンを形成してもよい。前記フィンは、前記凝縮部108の外部に放射状に形成されるか、その他の所定の形状に形成される。このようなフィン間に周囲の空気が接触することによって放熱効果を極大化できる。   In order to further improve the effect of heat release, a plurality of fins may be formed in the thin plate cooling device 100 outside the condensing unit 108. The fins are formed radially outside the condensing unit 108 or in other predetermined shapes. The heat dissipation effect can be maximized when ambient air contacts between the fins.

さらに、前記フィンがマイクロアクチュエータを備えるように形成される場合には、前記凝縮部108から外部に放出される熱をリサイクルして、周囲の空気を循環させるように駆動させてもよい。また、前記フィンが熱電素子を含む微細構造で形成された場合には、前記凝縮部108から放出される熱を電気的エネルギーに変換させて微細駆動のためのエネルギーとして使用してもよい。   Further, when the fin is formed to include a microactuator, the heat released to the outside from the condensing unit 108 may be recycled to drive the surrounding air to circulate. In addition, when the fin is formed with a fine structure including a thermoelectric element, the heat emitted from the condensing unit 108 may be converted into electric energy and used as energy for fine driving.

また、前記凝縮部108の体積を前記蒸発部104の体積より大きく形成することによって、周囲空気の対流だけでも凝縮部108内で気相の冷媒を容易に凝縮させることができる。   Further, by forming the volume of the condensing unit 108 to be larger than the volume of the evaporating unit 104, the gas phase refrigerant can be easily condensed in the condensing unit 108 only by convection of ambient air.

次いで、前記液相冷媒移動部110は、前記凝縮部108で凝縮された液相の冷媒が前記蒸発部側の液相冷媒移動部102に移動する通路を形成する。図示されたように、前記液相冷媒移動部110は、前記断熱部116によって前記気相冷媒移動部106、前記凝縮部108及び蒸発部104から断熱される。   Next, the liquid-phase refrigerant moving unit 110 forms a passage through which the liquid-phase refrigerant condensed by the condensing unit 108 moves to the liquid-phase refrigerant moving unit 102 on the evaporation unit side. As illustrated, the liquid-phase refrigerant moving unit 110 is thermally insulated from the gas-phase refrigerant moving unit 106, the condensing unit 108, and the evaporating unit 104 by the heat insulating unit 116.

前記断熱部116は、前記薄板型冷却装置100内の所定位置に形成された内部仕切りの形態で構成するか、前記薄板型冷却装置100内の所定位置に密封された別途の内部空間の形態または前記薄板型冷却装置100の上下を貫通するように開放されている形態で構成できる。前記薄板型冷却装置100内に密封された内部空間の形態で形成される場合、前記断熱部116は真空状態を保持するか、空気などの断熱物質で充填されることもある。   The heat insulating part 116 may be configured in the form of an internal partition formed at a predetermined position in the thin plate type cooling device 100, or may be in the form of a separate internal space sealed at a predetermined position in the thin plate type cooling device 100 or The thin plate type cooling device 100 may be configured to be open so as to penetrate the top and bottom of the thin plate type cooling device 100. When the thin plate cooling device 100 is formed in the form of a sealed internal space, the heat insulating part 116 may be kept in a vacuum state or may be filled with a heat insulating material such as air.

図示されたように、前記液相冷媒移動部110は、前記薄板型冷却装置100の両側面に沿って対称となるように形成することが望ましい。このような薄板型冷却装置100の外周に沿って対称的に形成される冷媒循環ループは、薄板の形態、すなわち、断面の縦横比が大きい場合に周囲への熱放出に非常に有利な構造であって、熱源から伝えられた熱を放射方向に拡散させることによって、広い面積を活用して周囲に放出できる。   As shown in the drawing, the liquid-phase refrigerant moving unit 110 is preferably formed to be symmetric along both side surfaces of the thin plate type cooling device 100. The refrigerant circulation loop formed symmetrically along the outer periphery of the thin plate type cooling device 100 has a structure that is very advantageous for releasing heat to the surroundings in the form of a thin plate, that is, when the aspect ratio of the cross section is large. Therefore, by diffusing the heat transmitted from the heat source in the radial direction, a large area can be utilized and released to the surroundings.

また、このような両方向の冷媒循環ループは、前記冷却装置100の設置位置によって重力の影響を受けて、いずれか一側の液相冷媒移動部110での冷媒循環が円滑でない場合にも、他の方向液相冷媒移動部110を通じて冷媒を循環させることができるという長所を持つ。   In addition, such a bi-directional refrigerant circulation loop is affected by gravity depending on the installation position of the cooling device 100, and the refrigerant circulation in the liquid-phase refrigerant moving unit 110 on either side is not smooth. It has the advantage that the refrigerant can be circulated through the liquid-phase refrigerant moving part 110.

もちろん、前記したように、前記液相冷媒移動部110もまた、重力の影響をほとんど受けないようにするための微細チャンネルを備えることができ、その微細チャンネル内には、前記冷媒保存部102に向かう方向に複数個のグルーブ(図示せず)を形成する等の方法を採用できる。さらに、前記蒸発部104または液相冷媒移動部110及び102に形成された微細チャンネルの断面積は、前記凝縮部108と接する液相冷媒移動部110から気相冷媒移動部106と接する蒸発部104に至るまで順次に減少することが望ましい。   Of course, as described above, the liquid-phase refrigerant moving unit 110 can also be provided with a fine channel that is hardly affected by gravity, and the refrigerant storage unit 102 is included in the fine channel. A method such as forming a plurality of grooves (not shown) in the direction of heading can be employed. Further, the cross-sectional area of the fine channel formed in the evaporating unit 104 or the liquid phase refrigerant moving units 110 and 102 is from the liquid phase refrigerant moving unit 110 in contact with the condensing unit 108 to the evaporating unit 104 in contact with the gas phase refrigerant moving unit 106. It is desirable to decrease sequentially until it reaches.

一方、前記蒸発部側の液相冷媒移動部102と前記液相冷媒移動部110との境界部分、及び前記凝縮部108と前記液相冷媒移動部110との境界部分に、液相冷媒の移動方向を規定するための複数個のガイド(図示せず)を形成して、冷媒の流路が急激に旋回することによって発生する冷媒循環の抵抗を減少させることもできる。   On the other hand, the liquid phase refrigerant moves to the boundary part between the liquid phase refrigerant moving part 102 and the liquid phase refrigerant moving part 110 on the evaporation part side and to the boundary part between the condensing part 108 and the liquid phase refrigerant moving part 110. A plurality of guides (not shown) for defining the direction can be formed to reduce the resistance of the refrigerant circulation generated by the rapid turning of the refrigerant flow path.

一方、接触熱抵抗を減少させるために中間に熱伝導体を介せずに前記蒸発部104に隣接して、前記蒸発部104を熱源(図示せず)に直接密着して固定させることが望ましく、このために、本実施形態では、前記蒸発部104に隣接して前記冷却装置100を外部熱源に固定させることができる固定手段114を設置し、ボルトまたはリベットで締結可能にした。もちろん、前記固定手段114は冷媒の循環と関係ないので、それを備えなくても構わない。   On the other hand, in order to reduce the contact thermal resistance, it is desirable to fix the evaporator 104 in direct contact with a heat source (not shown) adjacent to the evaporator 104 without a heat conductor in the middle. For this reason, in the present embodiment, a fixing means 114 that can fix the cooling device 100 to an external heat source is provided adjacent to the evaporation section 104 and can be fastened with bolts or rivets. Of course, since the fixing means 114 is not related to the circulation of the refrigerant, it may not be provided.

次いで、図2Aないし図2Cを参照して、本発明の第1実施形態による薄板型冷却装置100の上板100bについて詳細に説明する。図2Aは、本発明の第1実施形態による薄板型冷却装置100のXY平面での断面を、‘第1’方向から見た概略的断面図であり、図2Bは、本発明の第1実施形態による薄板型冷却装置100のYZ平面での断面を、図2AのAA’線に沿って見た概略的断面図であり、図2Cは、本発明の第1実施形態による薄板型冷却装置100のYZ平面での断面を、図2AのBB’線に沿って見た概略的断面図である。本実施形態によれば、図2Aに図示された‘第1’方向から見た断面図は、前記薄板型冷却装置100の上板100bの底面図である。   2A to 2C, the upper plate 100b of the thin plate type cooling device 100 according to the first embodiment of the present invention will be described in detail. FIG. 2A is a schematic cross-sectional view of the thin plate cooling device 100 according to the first embodiment of the present invention, taken along the XY plane, viewed from the “first” direction, and FIG. 2B is a first embodiment of the present invention. FIG. 2C is a schematic cross-sectional view of the thin plate cooling device 100 according to the embodiment taken along the line AA ′ of FIG. 2A, and FIG. 2C is a thin plate cooling device 100 according to the first embodiment of the present invention. It is the schematic sectional drawing which looked at the cross section in YZ plane of FIG. 2A along the BB 'line | wire of FIG. 2A. 2A is a bottom view of the upper plate 100b of the thin plate cooling device 100, as viewed from the ‘first’ direction shown in FIG. 2A.

図示されたように、本実施形態によれば、前記薄板型冷却装置100の上板100bは、前記基板100aの前記気相冷媒移動部106に対応する領域に、凝縮されていない気相の冷媒が収容される余裕空間を提供するための第1キャビティ124を備える。また、前記上板100bは、前記基板100aの断熱部116に対応する断熱部116を備えることができる。前記上板100bは、前記基板100aのハウジング112と同じ材料で形成できる。または、ガラスのような材料を使用して前記上板100bを形成してもよい。   As shown in the drawing, according to the present embodiment, the upper plate 100b of the thin plate type cooling device 100 is not condensed in a region corresponding to the gas-phase refrigerant moving part 106 of the substrate 100a. Is provided with a first cavity 124 for providing a marginal space in which the space is accommodated. Further, the upper plate 100b may include a heat insulating portion 116 corresponding to the heat insulating portion 116 of the substrate 100a. The upper plate 100b may be formed of the same material as the housing 112 of the substrate 100a. Alternatively, the upper plate 100b may be formed using a material such as glass.

図2Cを参照すれば、前記第1キャビティ124は、YZ平面上でY軸と平行した方向に半楕円形状の断面を持つように形成される。前記第1キャビティ124は、気相の冷媒が収容される余裕空間を提供することによって、前記凝縮部108で凝縮されていない気相の冷媒が凝縮された液相冷媒中に含まれてバブルになることを防止する。   Referring to FIG. 2C, the first cavity 124 is formed to have a semi-elliptical cross section in a direction parallel to the Y axis on the YZ plane. The first cavity 124 provides a marginal space in which the gas-phase refrigerant is accommodated, so that the gas-phase refrigerant that is not condensed in the condensing unit 108 is contained in the condensed liquid-phase refrigerant and becomes a bubble. To prevent becoming.

次いで、図3Aないし図3Cを参照して、本発明の第2実施形態による薄板型冷却装置100の上板100bについて詳細に説明する。図3Aは、本発明の第2実施形態による薄板型冷却装置100のXY平面での断面を、‘第1’方向から見た概略的断面図であり、図3Bは、本発明の第2実施形態による薄板型冷却装置100のYZ平面での断面を、図3AのAA’線に沿って見た概略的断面図であり、図3Cは、本発明の第2実施形態による薄板型冷却装置100のYZ平面での断面を、図3AのBB’線に沿って見た概略的断面図である。本実施形態によれば、図3Aに図示された‘第1’方向から見た断面図は、前記薄板型冷却装置100の上板100bの底面図である。   Next, the upper plate 100b of the thin plate cooling device 100 according to the second embodiment of the present invention will be described in detail with reference to FIGS. 3A to 3C. FIG. 3A is a schematic cross-sectional view of the thin plate type cooling device 100 according to the second embodiment of the present invention in the XY plane as viewed from the 'first' direction, and FIG. 3B is a second embodiment of the present invention. FIG. 3C is a schematic cross-sectional view of the thin plate cooling device 100 according to the embodiment, taken along the line AA ′ of FIG. 3A, and FIG. 3C is a thin plate cooling device 100 according to the second embodiment of the present invention. It is the schematic sectional drawing which looked at the cross section in YZ plane of FIG. 3 along the BB 'line | wire of FIG. 3A. 3A is a bottom view of the upper plate 100b of the thin plate type cooling device 100, as viewed from the ‘first’ direction illustrated in FIG. 3A.

図示されたように、本実施形態によれば、前記気相冷媒移動部106に対応する領域の上板100bには、前記気相冷媒移動部106の第2ガイド118により形成された複数個の気相冷媒の移動経路それぞれに対応して、YZ平面上でそれぞれ半楕円形の断面を持つ複数個の第1キャビティ124を備える。第2実施形態の第1キャビティ124は、前記した第1実施形態の第1キャビティ124と比較して、前記基板100aの第2ガイド118に対応するように分離されているという点のみ違って、その機能や形状などは第1実施形態の場合と同一である。   As illustrated, according to the present embodiment, a plurality of upper plates 100b corresponding to the gas-phase refrigerant moving unit 106 are formed on the upper plate 100b by the second guides 118 of the gas-phase refrigerant moving unit 106. A plurality of first cavities 124 each having a semi-elliptical cross section on the YZ plane are provided corresponding to the moving paths of the gas-phase refrigerant. The first cavity 124 of the second embodiment differs from the first cavity 124 of the first embodiment described above only in that it is separated so as to correspond to the second guide 118 of the substrate 100a. Its function and shape are the same as in the first embodiment.

次いで、図4Aないし図4Cを参照して、本発明の第3実施形態による薄板型冷却装置100の上板100bについて詳細に説明する。図4Aは、本発明の第3実施形態による薄板型冷却装置100のXY平面での断面を、‘第1’方向から見た概略的断面図で、図4Bは、本発明の第3実施形態による薄板型冷却装置100のYZ平面での断面を、図4AのAA’線に沿って見た概略的断面図であり、図4Cは、本発明の第3実施形態による薄板型冷却装置100のYZ平面での断面を、図4AのBB’線に沿って見た概略的断面図である。本実施形態によれば、図4Aに図示された‘第1’方向から見た断面図は、前記薄板型冷却装置100の上板100bの底面図である。   4A to 4C, the upper plate 100b of the thin plate type cooling device 100 according to the third embodiment of the present invention will be described in detail. FIG. 4A is a schematic cross-sectional view of the thin plate cooling device 100 according to the third embodiment of the present invention in the XY plane as seen from the “first” direction, and FIG. 4B is a third embodiment of the present invention. 4C is a schematic cross-sectional view of the thin plate cooling device 100 taken along the line AA ′ of FIG. 4A, and FIG. 4C is a cross-sectional view of the thin plate cooling device 100 according to the third embodiment of the present invention. It is the schematic sectional drawing which looked at the cross section in YZ plane along the BB 'line | wire of FIG. 4A. 4A is a bottom view of the upper plate 100b of the thin plate cooling device 100, as viewed from the 'first' direction shown in FIG. 4A.

図示されたように、本発明の第3実施形態による薄板型冷却装置100は、前記基板100aの凝縮部108に対応する領域に形成された複数個の第2キャビティ126をさらに備える。すなわち、前記上板100bは、前記基板100aの前記気相冷媒移動部106に対応する領域に形成された複数個の第1キャビティ124と、前記基板100aの凝縮部108に対応する領域に形成された複数個の第2キャビティ126とを備えるが、前記第1及び第2キャビティ124及び126それぞれは相互間に連結されるように形成される。   As illustrated, the thin plate type cooling apparatus 100 according to the third embodiment of the present invention further includes a plurality of second cavities 126 formed in a region corresponding to the condensing unit 108 of the substrate 100a. That is, the upper plate 100b is formed in a plurality of first cavities 124 formed in a region corresponding to the gas-phase refrigerant moving part 106 of the substrate 100a and a region corresponding to the condensing part 108 of the substrate 100a. The first and second cavities 124 and 126 are formed to be connected to each other.

また、図示されたように、前記第2キャビティ126のそれぞれは、前記液相冷媒移動部110に対応する領域へ行くほどその幅が狭くなるように形成されることが望ましい。このようにすることで、前記基板100aと上板100bとが結合された時、前記液相冷媒移動部110へ行くほど前記第2キャビティ126の断面積が順次小さくなり、したがって、凝縮された冷媒に対する表面張力は順次増加するので、前記凝縮部108でまだ凝縮されていない気相の冷媒が、前記気相冷媒移動部106に対応する領域の第1キャビティ124に復帰する。したがって、凝縮されていない気相の冷媒がバブル形態で液相の冷媒中に含まれて前記蒸発部104まで到達することをさらに効果的に防止できる。   In addition, as shown in the drawing, each of the second cavities 126 is preferably formed such that the width thereof becomes narrower toward the region corresponding to the liquid-phase refrigerant moving unit 110. In this way, when the substrate 100a and the upper plate 100b are coupled, the cross-sectional area of the second cavity 126 decreases sequentially toward the liquid-phase refrigerant moving unit 110, and thus the condensed refrigerant Therefore, the gas phase refrigerant that has not been condensed by the condensing unit 108 returns to the first cavity 124 in the region corresponding to the gas phase refrigerant moving unit 106. Therefore, it is possible to more effectively prevent the uncondensed gas-phase refrigerant from being included in the liquid-phase refrigerant in the form of bubbles and reaching the evaporator 104.

次いで、図5Aないし図5Dを参照して、本発明の第4実施形態による薄板型冷却装置100の上板100bについて詳細に説明する。図5Aは、本発明の第4実施形態による薄板型冷却装置100のXY平面での断面を、‘第1’方向から見た概略的断面図であり、図5Bは、本発明の第4実施形態による薄板型冷却装置100のYZ平面での断面を、図5AのAA’線に沿って見た概略的断面図であり、図5Cは、本発明の第4実施形態による薄板型冷却装置100のYZ平面での断面を、図5AのBB’線に沿って見た概略的断面図であり、図5Dは、本発明の第4実施形態による薄板型冷却装置100のYZ平面での断面を、図5aのCC’線に沿って見た概略的断面図である。本実施形態によれば、図5Aに図示された‘第1’方向から見た断面図は、前記薄板型冷却装置100の上板100bの底面図である。   5A to 5D, the upper plate 100b of the thin plate cooling device 100 according to the fourth embodiment of the present invention will be described in detail. FIG. 5A is a schematic cross-sectional view of the thin plate cooling device 100 according to the fourth embodiment of the present invention, taken along the XY plane, as viewed from the “first” direction, and FIG. 5B is a fourth embodiment of the present invention. FIG. 5C is a schematic cross-sectional view of the thin plate cooling device 100 according to the embodiment, taken along the line AA ′ in FIG. 5A, and FIG. 5C is a thin plate cooling device 100 according to the fourth embodiment of the present invention. FIG. 5D is a schematic cross-sectional view taken along the line BB ′ of FIG. 5A, and FIG. 5D is a cross-sectional view of the thin plate cooling device 100 according to the fourth embodiment of the present invention on the YZ plane. FIG. 5b is a schematic cross-sectional view taken along line CC ′ of FIG. 5a. 5A is a bottom view of the upper plate 100b of the thin plate type cooling device 100. FIG.

図示されたように、本実施形態によれば、前記上板100bは、前記基板100aの液相冷媒移動部110に対応する領域に形成された複数個の第3キャビティ128をさらに備える。前記第3キャビティ128のそれぞれは、半球形に形成されることが望ましい。また、前記複数個の第3キャビティ128は、前記液相冷媒移動部110に沿って複数個の列をなすように形成されてもよい。   As illustrated, according to the present embodiment, the upper plate 100b further includes a plurality of third cavities 128 formed in a region corresponding to the liquid-phase refrigerant moving part 110 of the substrate 100a. Each of the third cavities 128 is preferably formed in a hemispherical shape. The plurality of third cavities 128 may be formed in a plurality of rows along the liquid-phase refrigerant moving unit 110.

本実施形態によれば、前記凝縮部108でまだ凝縮されていない気相の冷媒がバブルの形態で液相の冷媒に含まれたまま、前記液相冷媒移動部110まで移動した場合に、前記複数個の第3キャビティ128によりバブル形態の気相の冷媒が捕獲される。したがって、凝縮されていない気相の冷媒がバブル形態で液相の冷媒中に含まれて前記蒸発部104まで到達することをさらに効果的に防止できる。   According to the present embodiment, when the gas-phase refrigerant that has not been condensed in the condensing unit 108 moves to the liquid-phase refrigerant moving unit 110 while being included in the liquid-phase refrigerant in the form of bubbles, The plurality of third cavities 128 capture bubble-shaped gas-phase refrigerant. Therefore, it is possible to more effectively prevent the uncondensed gas-phase refrigerant from being included in the liquid-phase refrigerant in the form of bubbles and reaching the evaporator 104.

以上で説明した本発明の各実施形態の冷却装置100は、現在公知のいろいろな方法により製作でき、例えば、半導体素子製造工程を応用したMEMS(Micro Electro Mechanical System)方法や、SAM(Self Assembled Monolayer)方法を応用して製造できる。図1B及び図2Aを参照して、その製造方法を簡単に説明する。   The cooling device 100 according to each embodiment of the present invention described above can be manufactured by various currently known methods. For example, a MEMS (Micro Electro Mechanical System) method using a semiconductor element manufacturing process, a SAM (Self Assembled Monolayer), or the like. ) Can be manufactured by applying the method. The manufacturing method will be briefly described with reference to FIGS. 1B and 2A.

すなわち、まず前記冷却装置100の基板100aの表面をエッチングして冷媒保存部102、蒸発部104の第1微細チャンネル120、凝縮部108の第1ガイド122、気相冷媒移動部106の第2ガイド118及び液相冷媒移動部110などを形成する。   That is, first, the surface of the substrate 100 a of the cooling device 100 is etched to form the refrigerant storage unit 102, the first fine channel 120 of the evaporation unit 104, the first guide 122 of the condensing unit 108, and the second guide of the gas-phase refrigerant moving unit 106. 118 and the liquid-phase refrigerant moving part 110 are formed.

次いで、前記した実施形態について説明したように、上板100bの表面をエッチングしてキャビティ124、126及び/または128及び/または断熱部116を形成する。   Next, as described in the above embodiment, the surface of the upper plate 100b is etched to form the cavities 124, 126 and / or 128 and / or the heat insulating portion 116.

前記のような構造が形成された基板100a及び上板100bを互いに接触させた後、これらに電圧を印加することによって、陽極ボンディングを行ってハウジング112を一体化させ、別途に冷媒保存部102と連結されるように形成した冷媒注入ホール(図示せず)を通じて、循環ループを実質的に真空になるように減圧した後、冷媒を注入し、前記冷媒注入ホールを密封する。   After the substrate 100a and the upper plate 100b having the above-described structure are brought into contact with each other, a voltage is applied to the substrate 100a to perform anode bonding to integrate the housing 112, and separately from the refrigerant storage unit 102 and A refrigerant injection hole (not shown) formed so as to be connected is depressurized so that the circulation loop is substantially vacuum, and then a refrigerant is injected to seal the refrigerant injection hole.

本発明は、以上の実施形態について詳細に説明したが、これに限定されるものではなく、当業者により多様に変形実施できるということは言うまでもない。例えば、前記第1実施形態の構成において、凝縮部108に対応するキャビティを前記第3実施例に関して前記した形状に変形するか、または液相冷媒移動部110に対応するキャビティを、前記第4実施形態に関して前記した形状に変形して実施できる。また、実施形態によっては、前記上板100bのキャビティが形成された領域以外の領域に前記基板100aと同じ構造を形成できるということは言うまでもない。   Although the present invention has been described in detail with respect to the above-described embodiment, it is needless to say that the present invention is not limited thereto and can be variously modified by those skilled in the art. For example, in the configuration of the first embodiment, the cavity corresponding to the condensing unit 108 is deformed to the shape described above with respect to the third example, or the cavity corresponding to the liquid-phase refrigerant moving unit 110 is changed to the fourth embodiment. The present invention can be carried out by modifying the shape into the shape described above. In addition, it goes without saying that the same structure as that of the substrate 100a can be formed in a region other than the region where the cavity of the upper plate 100b is formed in some embodiments.

本発明によれば、薄板型冷却装置において、気相冷媒移動部、凝縮部または/及び液相冷媒移動部の上側に所定形状のキャビティを形成することによって、凝縮部で凝縮されていない気相の冷媒を収容または捕獲させて、凝縮されていない気相の冷媒が蒸発部に通じるチャンネルに常駐して、十分に冷却されて液相に凝縮された冷媒が蒸発部に十分に供給されずに生じるドライアウト現象を防止できる。   According to the present invention, in the thin plate type cooling device, the gas phase that is not condensed in the condensing unit is formed by forming a cavity having a predetermined shape above the gas phase refrigerant moving unit, the condensing unit, and / or the liquid phase refrigerant moving unit. The refrigerant in the gas phase that is not condensed is resident in the channel that leads to the evaporation section, and the refrigerant that has been sufficiently cooled and condensed in the liquid phase is not sufficiently supplied to the evaporation section. The dryout phenomenon that occurs can be prevented.

また、本発明によれば、下側のチャンネルの深さ及び幅、または形状を変形させることによって液相の冷媒の表面張力を調節することによって、液相の冷媒を無動力で蒸発部に集めて蒸発部にドライアウト現象が起きず、常に前記の蒸発部に液相の冷媒を十分に供給できる。   Further, according to the present invention, the liquid phase refrigerant is collected in the evaporation section without power by adjusting the surface tension of the liquid phase refrigerant by changing the depth, width or shape of the lower channel. Thus, the dry-out phenomenon does not occur in the evaporation section, and the liquid phase refrigerant can always be sufficiently supplied to the evaporation section.

また、本発明によれば、上・下チャンネルに部分的に表面処理を施して冷媒のフローを向上させ、冷却効率を高める。   In addition, according to the present invention, the upper and lower channels are partially subjected to surface treatment to improve the refrigerant flow and increase the cooling efficiency.

本発明の第1実施形態による薄板型冷却装置の外形を概略的に図示した斜視図である。1 is a perspective view schematically illustrating an outer shape of a thin plate type cooling device according to a first embodiment of the present invention. 本発明の第1実施形態による薄板型冷却装置のXY平面での断面を‘第2’方向から見た概略的断面図である。FIG. 3 is a schematic cross-sectional view of a thin plate type cooling device according to the first embodiment of the present invention, as viewed from the ‘second’ direction in a cross section on the XY plane. 本発明の第1実施形態による薄板型冷却装置のXY平面での断面を‘第2’方向から見た概略的断面図である。FIG. 3 is a schematic cross-sectional view of a thin plate type cooling device according to the first embodiment of the present invention, as viewed from the ‘second’ direction in a cross section on the XY plane. 本発明の第1実施形態による薄板型冷却装置のYZ平面での断面を図2AのAA’線に沿って見た概略的断面図である。2B is a schematic cross-sectional view of the thin plate cooling device according to the first embodiment of the present invention, taken along the line AA ′ in FIG. 2A, in the YZ plane. FIG. 本発明の第1実施形態による薄板型冷却装置のYZ平面での断面を図2AのBB’線に沿って見た概略的断面図である。2B is a schematic cross-sectional view of the thin plate cooling device according to the first embodiment of the present invention taken along the line BB ′ of FIG. 2A in the YZ plane. FIG. 本発明の第2実施形態による薄板型冷却装置のXY平面での断面を‘第1’方向から見た概略的断面図である。FIG. 6 is a schematic cross-sectional view of a thin plate type cooling device according to a second embodiment of the present invention as viewed from the ‘first’ direction in a cross section on an XY plane. 本発明の第2実施形態による薄板型冷却装置のYZ平面での断面を図3AのAA’線に沿って見た概略的断面図である。FIG. 3B is a schematic cross-sectional view of the thin plate type cooling device according to the second embodiment of the present invention taken along the line AA ′ of FIG. 3A in the YZ plane. 本発明の第2実施形態による薄板型冷却装置のYZ平面での断面を図3AのBB’線に沿って見た概略的断面図である。FIG. 3B is a schematic cross-sectional view of the thin plate type cooling device according to the second embodiment of the present invention taken along the line BB ′ of FIG. 3A in the YZ plane. 本発明の第3実施形態による薄板型冷却装置のXY平面での断面を‘第1’方向から見た概略的断面図である。It is the schematic sectional drawing which looked at the cross section in XY plane of the thin plate type cooling device by 3rd Embodiment of this invention from the '1st' direction. 本発明の第3実施形態による薄板型冷却装置のYZ平面での断面を図4AのAA’線に沿って見た概略的断面図である。FIG. 4B is a schematic cross-sectional view of the thin plate type cooling device according to the third embodiment of the present invention taken along the line AA ′ of FIG. 4A in the YZ plane. 本発明の第3実施形態による薄板型冷却装置のYZ平面での断面を図4AのBB’線に沿って見た概略的断面図である。It is the schematic sectional drawing which looked at the cross section in the YZ plane of the thin plate type cooling device by 3rd Embodiment of this invention along the BB 'line | wire of FIG. 4A. 本発明の第4実施形態による薄板型冷却装置のXY平面での断面を‘第1’方向から見た概略的断面図である。FIG. 6 is a schematic cross-sectional view of a thin plate type cooling device according to a fourth embodiment of the present invention as viewed from a ‘first’ direction in a cross section on an XY plane. 本発明の第4実施形態による薄板型冷却装置のYZ平面での断面を図5AのAA’線に沿って見た概略的断面図である。FIG. 5B is a schematic cross-sectional view of the thin plate type cooling device according to the fourth embodiment of the present invention taken along the line AA ′ of FIG. 5A in the YZ plane. 本発明の第4実施形態による薄板型冷却装置のYZ平面での断面を図5AのBB’線に沿って見た概略的断面図である。FIG. 5B is a schematic cross-sectional view of the thin plate type cooling device according to the fourth embodiment of the present invention taken along the line BB ′ of FIG. 5A in the YZ plane. 本発明の第4実施形態による薄板型冷却装置のYZ平面での断面を図5AのCC’線に沿って見た概略的断面図である。FIG. 5B is a schematic cross-sectional view of the thin plate type cooling device according to the fourth embodiment of the present invention, taken along the line CC ′ of FIG.

Claims (8)

内部に流体の循環ループが内蔵されている薄板状のハウジングと、
相変化を起こすことができ、前記ハウジング内の循環ループ内を循環する冷媒と、を含み、
前記ハウジング内の循環ループは、
その内部の一端に形成されるが、前記液相の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液相の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部分に向かって移動する通路となり、凝縮されていない気相の冷媒が収容される少なくとも一つの第1キャビティを備える気相冷媒移動部と、
前記気相冷媒移動部と隣接した領域に形成されるが、前記気相の冷媒が液相に凝縮される凝縮部と、
前記分岐部分の少なくとも一部の領域であって前記凝縮部に隣接した領域に形成されるが、前記蒸発部と断熱され、液相に凝縮された冷媒が前記蒸発部に向かって移動する液相冷媒移動部と、
前記蒸発部と前記液相冷媒移動部の少なくとも一部とを断熱させる断熱部と、を備える薄板型冷却装置。
A thin plate-like housing containing a fluid circulation loop inside;
A refrigerant capable of causing a phase change and circulating in a circulation loop in the housing,
The circulation loop in the housing is
An evaporation unit that is formed at one end of the inside, the liquid phase refrigerant is at least partially filled by capillary action, and the filled liquid phase refrigerant is vaporized by heat transferred from an external heat source;
A gas phase comprising at least one first cavity formed adjacent to the evaporating section but serving as a passage for the vaporized refrigerant to move toward the branching portion and containing a non-condensed gas phase refrigerant. A refrigerant moving part;
Formed in a region adjacent to the gas-phase refrigerant moving unit, the condensing unit in which the gas-phase refrigerant is condensed into a liquid phase;
A liquid phase that is formed in a region that is at least a part of the branch portion and that is adjacent to the condensing unit, and that is thermally insulated from the evaporating unit and that is condensed in a liquid phase moves toward the evaporating unit. A refrigerant moving part;
A thin plate type cooling device comprising: a heat insulating portion that insulates the evaporation portion and at least a part of the liquid phase refrigerant moving portion.
前記液相冷媒移動部の少なくとも一部分は、前記液相の冷媒が保存される液相冷媒保存部を備える請求項1に記載の薄板型冷却装置。   The thin plate type cooling device according to claim 1, wherein at least a part of the liquid-phase refrigerant moving unit includes a liquid-phase refrigerant storage unit in which the liquid-phase refrigerant is stored. 前記液相冷媒保存部は複数である請求項2に記載の薄板型冷却装置。   The thin plate type cooling device according to claim 2, wherein there are a plurality of liquid phase refrigerant storage units. 前記液相冷媒保存部は、表面張力が重力より大きく設定された微細チャンネルを備える請求項2に記載の薄板型冷却装置。   The thin-plate cooling device according to claim 2, wherein the liquid-phase refrigerant storage unit includes a fine channel whose surface tension is set to be greater than gravity. 前記蒸発部または/及び前記液相冷媒移動部の微細チャンネルの断面積は、前記凝縮部と接する前記冷媒移動部から前記気相冷媒移動部と接する蒸発部へ行くほど順次に減少する請求項1に記載の薄板型冷却装置。   The cross-sectional area of the fine channel of the evaporating part or / and the liquid phase refrigerant moving part decreases sequentially from the refrigerant moving part in contact with the condensing part to the evaporating part in contact with the gas phase refrigerant moving part. The thin plate type cooling device according to 1. 前記凝縮部は、少なくとも一つの第2キャビティを備える請求項1に記載の薄板型冷却装置。   The thin plate type cooling device according to claim 1, wherein the condensing unit includes at least one second cavity. 前記液相冷媒移動部は、少なくとも一つの第3キャビティを備える請求項1に記載の薄板型冷却装置。   The thin plate type cooling device according to claim 1, wherein the liquid-phase refrigerant moving unit includes at least one third cavity. 前記液相冷媒移動部及び前記蒸発部は、表面が親水性処理され、前記気相冷媒移動部及び前記凝縮部は、表面が疎水性処理された請求項1に記載の薄板型冷却装置。   2. The thin plate type cooling device according to claim 1, wherein surfaces of the liquid-phase refrigerant moving unit and the evaporation unit are subjected to hydrophilic treatment, and surfaces of the gas-phase refrigerant moving unit and the condensing unit are subjected to hydrophobic treatment.
JP2005500269A 2003-05-31 2003-10-28 Thin plate type cooling device that prevents dryout Pending JP2006526128A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0035078A KR100505279B1 (en) 2003-05-31 2003-05-31 Cooling device of thin plate type for preventing dry-out
PCT/KR2003/002281 WO2004106822A1 (en) 2003-05-31 2003-10-28 Cooling device of thin plate type for preventing dry-out

Publications (1)

Publication Number Publication Date
JP2006526128A true JP2006526128A (en) 2006-11-16

Family

ID=36659730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005500269A Pending JP2006526128A (en) 2003-05-31 2003-10-28 Thin plate type cooling device that prevents dryout

Country Status (9)

Country Link
US (1) US20060157227A1 (en)
EP (1) EP1639301A1 (en)
JP (1) JP2006526128A (en)
KR (1) KR100505279B1 (en)
CN (1) CN100447991C (en)
AU (1) AU2003273115A1 (en)
BR (1) BR0318323A (en)
RU (1) RU2005137166A (en)
WO (1) WO2004106822A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163751A (en) * 2010-02-12 2011-08-25 Micro Base Technology Corp Cooling device, and cooling-radiating system having the same
JP2012524998A (en) * 2009-04-21 2012-10-18 ユナ ティーアンドイー カンパニーリミテッド Solar module with cooling device and method of manufacturing the same
WO2013005622A1 (en) * 2011-07-07 2013-01-10 日本電気株式会社 Cooling device and method for manufacturing same
JP2013504730A (en) * 2009-09-14 2013-02-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Heat exchange device with confined convection boiling and improved efficiency
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
JP2014074568A (en) * 2012-10-05 2014-04-24 Fujitsu Ltd Loop type thermo-siphon and electronic apparatus
JP2015059693A (en) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 Sheet type heat pipe or portable information terminal
JP2015059683A (en) * 2013-09-18 2015-03-30 富士通株式会社 Heat pipe and heat pipe manufacturing method
JP2015121355A (en) * 2013-12-24 2015-07-02 東芝ホームテクノ株式会社 Sheet-type heat pipe
JP2016188734A (en) * 2015-03-30 2016-11-04 株式会社フジクラ Vapor chamber
JP2017035953A (en) * 2015-08-07 2017-02-16 株式会社フジクラ Vehicular air conditioner
WO2018043442A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cooling device and electronic equipment using same
US9982949B2 (en) 2014-04-08 2018-05-29 Toyota Jidosha Kabushiki Kaisha Heat pipe having wick formed with hydrophilic and water-repellent treated surfaces
JP2018189320A (en) * 2017-05-09 2018-11-29 富士通株式会社 Heat pipe and electronic device

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659582B1 (en) * 2004-12-10 2006-12-20 한국전자통신연구원 Loop type micro heat transport device
JP2007120399A (en) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc Micro fluid chip and micro comprehensive analysis system
US20070151708A1 (en) * 2005-12-30 2007-07-05 Touzov Igor V Heat pipes with self assembled compositions
US20090260783A1 (en) * 2006-03-06 2009-10-22 Tokyo University Of Science Educational Foundation Boil Cooling Method, Boil Cooling Apparatus, Flow Channel Structure and Applied Product Thereof
US7824075B2 (en) 2006-06-08 2010-11-02 Lighting Science Group Corporation Method and apparatus for cooling a lightbulb
US8042606B2 (en) * 2006-08-09 2011-10-25 Utah State University Research Foundation Minimal-temperature-differential, omni-directional-reflux, heat exchanger
US8020613B2 (en) 2006-10-27 2011-09-20 Canon Kabushiki Kaisha Heat transfer controlling mechanism and fuel cell system having the heat transfer controlling mechanism
KR100912538B1 (en) * 2007-12-04 2009-08-18 한국전자통신연구원 The flat plate type micro heat transport device
ITTV20080145A1 (en) * 2008-11-14 2010-05-15 Uniheat Srl CLOSED OSCILLATING HEAT PIPE SYSTEM IN POLYMERIC MATERIAL
DE102009000914A1 (en) * 2009-02-17 2010-08-19 Stemke, Gudrun Evaporator and cooler using such evaporator
US8716689B2 (en) 2009-04-21 2014-05-06 Duke University Thermal diode device and methods
EP2433480B1 (en) * 2009-05-18 2013-05-01 Huawei Technologies Co., Ltd. Heat spreading device and method therefore
WO2010145074A1 (en) * 2009-06-17 2010-12-23 华为技术有限公司 Heat dissipation device and radio frequency module with same
US20110024085A1 (en) * 2009-07-28 2011-02-03 Huang Yu-Po Heat pipe and method for manufacturing the same
JP5714836B2 (en) * 2010-04-17 2015-05-07 モレックス インコーポレイテドMolex Incorporated Heat transport unit, electronic board, electronic equipment
KR101205715B1 (en) * 2010-05-24 2012-11-28 한국과학기술원 Heat spreader with flat plate and manufacturing method thereof
TWI436019B (en) * 2010-07-21 2014-05-01 Asia Vital Components Co Ltd The structure of the heat siphon plate is improved
TWI423015B (en) * 2010-07-21 2014-01-11 Asia Vital Components Co Ltd Pressure gradient driven thin plate type low pressure heat siphon plate
TW201040479A (en) * 2010-07-21 2010-11-16 Asia Vital Components Co Ltd Heat plate driven by pressure difference
DE102011015097B4 (en) * 2011-03-15 2013-10-24 Asia Vital Components Co., Ltd. Cooling unit with hydrophilic compound layer
US20150034288A1 (en) * 2011-10-04 2015-02-05 Nec Corporation Flat Plate Cooling Device and Method for Using the Same
US9506699B2 (en) * 2012-02-22 2016-11-29 Asia Vital Components Co., Ltd. Heat pipe structure
US8842435B2 (en) 2012-05-15 2014-09-23 Toyota Motor Engineering & Manufacturing North America, Inc. Two-phase heat transfer assemblies and power electronics incorporating the same
US20140246176A1 (en) * 2013-03-04 2014-09-04 Asia Vital Components Co., Ltd. Heat dissipation structure
CN105814389B (en) * 2013-12-13 2019-04-19 富士通株式会社 Ring type heat pipe and its manufacturing method and electronic equipment
CN108351179A (en) * 2015-12-18 2018-07-31 株式会社藤仓 Soaking plate
US10353445B2 (en) * 2016-04-11 2019-07-16 Qualcomm Incorporated Multi-phase heat dissipating device for an electronic device
US10746474B2 (en) 2016-04-11 2020-08-18 Qualcomm Incorporated Multi-phase heat dissipating device comprising piezo structures
WO2017203574A1 (en) * 2016-05-23 2017-11-30 富士通株式会社 Loop heat pipe, manufacturing method therefor, and electronic device
US10568240B2 (en) * 2016-06-30 2020-02-18 Ford Global Technologies, Llc Coolant flow distribution using coating materials
CN110024500B (en) * 2017-02-03 2020-11-17 惠普发展公司,有限责任合伙企业 Thermal management using steam and isolation chambers
US10760672B2 (en) * 2017-03-29 2020-09-01 Ford Global Technologies, Llc Coolant system pressure drop reduction
TWI676246B (en) * 2017-09-29 2019-11-01 雙鴻科技股份有限公司 Liquid-cooling heat dissipation apparatus
CN109671688B (en) * 2017-10-16 2020-08-28 中车株洲电力机车研究所有限公司 Refrigerant phase change cold plate
TWI639379B (en) * 2017-12-26 2018-10-21 訊凱國際股份有限公司 Heat dissipation structure
JP6997008B2 (en) * 2018-02-27 2022-01-17 新光電気工業株式会社 Flat plate loop heat pipe
JP7015197B2 (en) * 2018-03-26 2022-02-02 新光電気工業株式会社 Loop type heat pipe and its manufacturing method
CN110440619A (en) * 2018-05-04 2019-11-12 泰硕电子股份有限公司 Communicated the joint temperature-uniforming plate assemblies of multiple temperature-uniforming plates with extending capillary layer
CN110440618A (en) * 2018-05-04 2019-11-12 泰硕电子股份有限公司 The circuit temperature-uniforming plate that liquid, vapour separate
US20190353431A1 (en) * 2018-05-18 2019-11-21 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having compensational wick geometry to enhance fluid flow
US11181323B2 (en) 2019-02-21 2021-11-23 Qualcomm Incorporated Heat-dissipating device with interfacial enhancements
WO2020181605A1 (en) * 2019-03-12 2020-09-17 山东省科学院能源研究所 Microchannel heat exchanger structure having nozzle and working method
CN110243217B (en) * 2019-05-05 2020-06-26 山东大学 Flat plate type loop heat pipe evaporator with enclosed liquid storage chamber
TWI716932B (en) * 2019-07-10 2021-01-21 汎海科技股份有限公司 Dissapating plate, manufactuing method therefor and electronic device having the same
WO2022099089A1 (en) * 2020-11-05 2022-05-12 Deeia, Inc. Loop thermosyphon devices and systems, and related methods
US11812582B2 (en) * 2020-11-09 2023-11-07 Baidu Usa Llc Symmetrical cold plate design
FI20215154A1 (en) * 2021-02-15 2022-08-16 Teknologian Tutkimuskeskus Vtt Oy Heat dissipation apparatus
CN114916193B (en) * 2022-04-24 2024-01-09 大连保税区金宝至电子有限公司 Method for conveying liquid against gravity and heat dissipating device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392362A (en) * 1979-03-23 1983-07-12 The Board Of Trustees Of The Leland Stanford Junior University Micro miniature refrigerators
JP3549933B2 (en) * 1995-01-27 2004-08-04 住友精密工業株式会社 Plate fin type element cooler
JPH11307704A (en) * 1998-04-27 1999-11-05 Denso Corp Boiling and cooling device
JP2000049265A (en) * 1998-07-31 2000-02-18 Denso Corp Boiling cooler
JP2001227852A (en) * 2000-02-16 2001-08-24 Komatsu Ltd Thermal insulating panel
AU2001286515A1 (en) * 2000-08-17 2002-02-25 Robert L. Campbell Heat exchange element with hydrophilic evaporator surface
US6437981B1 (en) * 2000-11-30 2002-08-20 Harris Corporation Thermally enhanced microcircuit package and method of forming same
US6976527B2 (en) * 2001-07-17 2005-12-20 The Regents Of The University Of California MEMS microcapillary pumped loop for chip-level temperature control
JP2003042672A (en) * 2001-07-31 2003-02-13 Denso Corp Ebullient cooling device
KR100414860B1 (en) * 2001-08-29 2004-01-13 (주)아이큐리랩 Cooling device of thin plate type
JP4032954B2 (en) * 2002-07-05 2008-01-16 ソニー株式会社 COOLING DEVICE, ELECTRONIC DEVICE DEVICE, SOUND DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
US7188484B2 (en) * 2003-06-09 2007-03-13 Lg Electronics Inc. Heat dissipating structure for mobile device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524998A (en) * 2009-04-21 2012-10-18 ユナ ティーアンドイー カンパニーリミテッド Solar module with cooling device and method of manufacturing the same
JP2013504730A (en) * 2009-09-14 2013-02-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Heat exchange device with confined convection boiling and improved efficiency
JP2011163751A (en) * 2010-02-12 2011-08-25 Micro Base Technology Corp Cooling device, and cooling-radiating system having the same
WO2013005622A1 (en) * 2011-07-07 2013-01-10 日本電気株式会社 Cooling device and method for manufacturing same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
JP2014074568A (en) * 2012-10-05 2014-04-24 Fujitsu Ltd Loop type thermo-siphon and electronic apparatus
US9551538B2 (en) 2013-09-18 2017-01-24 Toshiba Home Technology Corporation Sheet-type heat pipe and mobile terminal using the same
JP2015059693A (en) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 Sheet type heat pipe or portable information terminal
JP2015059683A (en) * 2013-09-18 2015-03-30 富士通株式会社 Heat pipe and heat pipe manufacturing method
JP2015121355A (en) * 2013-12-24 2015-07-02 東芝ホームテクノ株式会社 Sheet-type heat pipe
US9854705B2 (en) 2013-12-24 2017-12-26 Toshiba Home Technology Corporation Sheet-type heat pipe
US9982949B2 (en) 2014-04-08 2018-05-29 Toyota Jidosha Kabushiki Kaisha Heat pipe having wick formed with hydrophilic and water-repellent treated surfaces
JP2016188734A (en) * 2015-03-30 2016-11-04 株式会社フジクラ Vapor chamber
JP2017035953A (en) * 2015-08-07 2017-02-16 株式会社フジクラ Vehicular air conditioner
WO2018043442A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cooling device and electronic equipment using same
JPWO2018043442A1 (en) * 2016-08-30 2019-06-24 パナソニックIpマネジメント株式会社 Cooling device and electronic device using the same
US10349556B2 (en) 2016-08-30 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Cooling device and electronic device using same
JP2018189320A (en) * 2017-05-09 2018-11-29 富士通株式会社 Heat pipe and electronic device

Also Published As

Publication number Publication date
EP1639301A1 (en) 2006-03-29
RU2005137166A (en) 2006-06-10
WO2004106822A1 (en) 2004-12-09
KR100505279B1 (en) 2005-07-29
US20060157227A1 (en) 2006-07-20
AU2003273115A1 (en) 2005-01-21
CN100447991C (en) 2008-12-31
KR20040103151A (en) 2004-12-08
CN1781007A (en) 2006-05-31
BR0318323A (en) 2006-07-18

Similar Documents

Publication Publication Date Title
KR100505279B1 (en) Cooling device of thin plate type for preventing dry-out
US7249627B2 (en) Cooling device of hybrid-type
JP3202014B2 (en) Micro cooling device
US7607470B2 (en) Synthetic jet heat pipe thermal management system
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
US6443222B1 (en) Cooling device using capillary pumped loop
US9685393B2 (en) Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling
JP2004190976A (en) Heat transport device and electronic device
KR101205715B1 (en) Heat spreader with flat plate and manufacturing method thereof
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
WO2002081996A2 (en) Orientation-independent thermosyphon heat spreader
KR100414860B1 (en) Cooling device of thin plate type
JP2014143417A (en) Integrated thin film evaporation thermal spreader and planar heat pipe heat sink
Tong et al. Liquid cooling devices and their materials selection
JP2007263427A (en) Loop type heat pipe
JP2006242455A (en) Cooling method and device
JP2013245875A (en) Cooling device and electronic device
Chen et al. High power electronic component
JP2005142513A (en) Cooling device and electronic equipment
US20220412662A1 (en) Integrated Heat Spreader
JP2014120516A (en) Semiconductor device
KR20050082311A (en) Micro cooling device manufactured by mems process
Dhillon A Planar Evaporator Design to Counter Parasitic Heat Flow During Device Startup of a Microscale Loop Heat Pipe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080402

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080604

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930