JP2015059683A - Heat pipe and heat pipe manufacturing method - Google Patents

Heat pipe and heat pipe manufacturing method Download PDF

Info

Publication number
JP2015059683A
JP2015059683A JP2013192891A JP2013192891A JP2015059683A JP 2015059683 A JP2015059683 A JP 2015059683A JP 2013192891 A JP2013192891 A JP 2013192891A JP 2013192891 A JP2013192891 A JP 2013192891A JP 2015059683 A JP2015059683 A JP 2015059683A
Authority
JP
Japan
Prior art keywords
passage
heat pipe
film
hydrophobic
hydrophilic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013192891A
Other languages
Japanese (ja)
Other versions
JP6183090B2 (en
Inventor
千香良 西尾
Chikara Nishio
千香良 西尾
勉 小室
Tsutomu Komuro
勉 小室
朋美 佐藤
Tomomi Sato
朋美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013192891A priority Critical patent/JP6183090B2/en
Publication of JP2015059683A publication Critical patent/JP2015059683A/en
Application granted granted Critical
Publication of JP6183090B2 publication Critical patent/JP6183090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Abstract

PROBLEM TO BE SOLVED: To provide a heat pipe and a heat pipe manufacturing method, capable of improving refrigerant transportability.SOLUTION: A heat pipe includes: a passage 1 absorbing heat from an outside by a gas-liquid phase change in refrigerant flowing inside; a wide portion 6 formed by increasing a width of the passage 1 along a downstream end edge of the passage 1, an internal surface exhibiting hydrophobic property; and a stepped surface 6a constituting a part of the wide portion 6 and formed into a planar shape crossing an internal surface of the passage 1. The heat pipe also includes a hydrophilic film 4 exhibiting hydrophilic property and covering an internal surface 1a of the passage 1 upstream of a line of crossing between the internal surface 1a of the passage 1 and the stepped surface 6a.

Description

本件は、ヒートパイプ及びヒートパイプの製造方法に関する。   The present case relates to a heat pipe and a method for manufacturing the heat pipe.

従来、管の内部に揮発性の冷媒を封入したヒートパイプが知られている。このヒートパイプとは、冷媒の蒸発,凝縮(気液相変化)による潜熱の吸収,放出を利用して熱輸送を行う熱交換デバイスである。近年では、見かけ上の熱伝導率が金属の千倍以上に達する低損失のヒートパイプも開発されている。   Conventionally, a heat pipe in which a volatile refrigerant is sealed inside a pipe is known. This heat pipe is a heat exchange device that performs heat transport using absorption and release of latent heat due to evaporation and condensation (gas-liquid phase change) of refrigerant. In recent years, low-loss heat pipes whose apparent thermal conductivity is more than 1000 times that of metals have been developed.

ヒートパイプの内部構造をその機能で分類すると、ヒートパイプの内部には、冷媒が流通する順に、蒸発部,気相移動部,凝縮部,液相移動部の各部が設けられる。蒸発部は、外部から吸熱して液体冷媒を気化させる部位であり、気相移動部は気体冷媒を凝縮部に供給するための通路である。また、凝縮部は外部に放熱して気体冷媒を液化させる部位であり、液相移動部は液体冷媒を蒸発部に供給するための通路である。液相移動部や蒸発部には、毛細管状の流路が設けられる。これにより、冷媒が毛管作用で輸送され、ヒートパイプ内を循環する。   If the internal structure of the heat pipe is classified according to its function, the evaporation pipe, the vapor phase moving section, the condensing section, and the liquid phase moving section are provided in the heat pipe in the order in which the refrigerant flows. The evaporation unit is a part that absorbs heat from the outside and vaporizes the liquid refrigerant, and the gas phase moving unit is a passage for supplying the gas refrigerant to the condensing unit. The condensing part is a part that radiates heat to the outside and liquefies the gaseous refrigerant, and the liquid phase moving part is a passage for supplying the liquid refrigerant to the evaporating part. A capillary channel is provided in the liquid phase transfer part and the evaporation part. As a result, the refrigerant is transported by capillary action and circulates in the heat pipe.

ところで、毛細管の表面を伝って移動する冷媒に作用する毛細管力の大きさは、冷媒と毛細管表面との接触角の余弦に比例する。そこで、ヒートパイプ内での冷媒の循環性を向上させるべく、毛細管内部の濡れ性を毛細管外部よりも高めることが提案されている。例えば、液体冷媒が通過する部位の表面に親水化処理を施し、気体冷媒が通過する部位の表面に疎水化処理を施すことが検討されている(特許文献1参照)。このような構成により毛細管内部で生じうる毛細管力が増大し、あるいは、毛細管力の低下が抑制されて、冷媒の循環性が向上する。   By the way, the magnitude of the capillary force acting on the refrigerant moving along the surface of the capillary is proportional to the cosine of the contact angle between the refrigerant and the capillary surface. Therefore, in order to improve the circulation of the refrigerant in the heat pipe, it has been proposed to increase the wettability inside the capillary as compared with the outside of the capillary. For example, it has been studied that the surface of the portion through which the liquid refrigerant passes is subjected to a hydrophilization treatment and the surface of the portion through which the gas refrigerant passes is subjected to a hydrophobization treatment (see Patent Document 1). With such a configuration, the capillary force that can be generated inside the capillary tube is increased, or the decrease in the capillary force is suppressed, and the circulation of the refrigerant is improved.

特表2006-526128号公報Special Table 2006-526128

しかしながら、従来のヒートパイプ及びその製造方法では、親水化処理及び疎水化処理を施す際の施工誤差により、親水面及び疎水面の境界を適切に設定することは困難であり、その境界が毛細管の縁端に必ずしも一致しない場合がある。特に、毛細管力を増大させるべく毛細管を微細化した場合には、親水面及び疎水面の境界と毛細管の縁端とのずれが大きくなりやすい。このような毛細管の形状と濡れ性との不一致により、毛細管における冷媒の輸送性が低下し、あるいは、冷媒の輸送性が阻害されるという課題がある。   However, in the conventional heat pipe and its manufacturing method, it is difficult to appropriately set the boundary between the hydrophilic surface and the hydrophobic surface due to construction errors when performing the hydrophilic treatment and the hydrophobic treatment. It may not always coincide with the edge. In particular, when the capillary is miniaturized to increase the capillary force, the deviation between the boundary between the hydrophilic surface and the hydrophobic surface and the edge of the capillary tends to increase. Due to the mismatch between the shape of the capillary and the wettability, there is a problem that the transportability of the refrigerant in the capillary is lowered or the transportability of the refrigerant is hindered.

例えば、毛細管の外部から内部に向かって疎水面がはみ出して形成された場合には、疎水面に生じる毛細管力が親水面に生じる毛細管力を弱める方向に作用する。これにより、毛細管の内部に生じうるトータルの毛細管力が減少し、冷媒の輸送性が低下する。
また、毛細管の内部から外部に向かって親水面がはみ出して形成された場合には、冷媒が毛細管の外部まで濡れ広がりやすくなり、毛細管の出口端部に液体冷媒が滞留しやすくなる。このような冷媒の滞留は、冷媒の輸送性,循環性を阻害する要因となる。
For example, when the hydrophobic surface protrudes from the outside to the inside of the capillary, the capillary force generated on the hydrophobic surface acts in a direction to weaken the capillary force generated on the hydrophilic surface. Thereby, the total capillary force that can be generated inside the capillary tube is reduced, and the transportability of the refrigerant is lowered.
Further, when the hydrophilic surface protrudes from the inside of the capillary toward the outside, the refrigerant tends to spread out to the outside of the capillary, and the liquid refrigerant tends to stay at the outlet end of the capillary. Such stagnation of the refrigerant becomes a factor that hinders the transportability and circulation of the refrigerant.

本件の目的の一つは、このような課題に鑑み創案されたもので、ヒートパイプにおける冷媒の輸送性を改善することである。
また、前記目的に限らず、後述する「発明を実施するための形態」に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置付けることができる。
One of the purposes of the present case has been devised in view of such a problem, and is to improve the transportability of the refrigerant in the heat pipe.
In addition, the present invention is not limited to the above-described purpose, and is an operational effect derived from each configuration shown in “Mode for Carrying Out the Invention” to be described later. Can be positioned as a purpose.

開示のヒートパイプは、内部を流れる冷媒の気液相変化により外部から吸熱する通路と、前記通路の下流端外縁に沿って前記通路を拡幅してなり、内面が疎水性を有する拡幅部と、前記拡幅部の一部をなし前記通路の内面と交差する面状に形成された段差面とを備える。また、親水性を有し、前記通路の内面と前記段差面との交差線よりも上流側における前記通路の内面を被覆する親水膜を備える。   The disclosed heat pipe includes a passage that absorbs heat from the outside due to a gas-liquid phase change of the refrigerant flowing inside, a widened portion that widens the passage along the outer edge of the downstream end of the passage, and an inner surface is hydrophobic. A step surface formed in a planar shape that forms part of the widened portion and intersects the inner surface of the passage. Moreover, it has a hydrophilic film and has a hydrophilic film that covers the inner surface of the passage on the upstream side of the intersection line between the inner surface of the passage and the step surface.

開示の技術によれば、ヒートパイプにおける冷媒の輸送性を改善することができる。   According to the disclosed technology, the transportability of the refrigerant in the heat pipe can be improved.

実施形態に係るヒートパイプの構成を例示する図である。It is a figure which illustrates the composition of the heat pipe concerning an embodiment. 図1のヒートパイプの要部を拡大して示す図である。It is a figure which expands and shows the principal part of the heat pipe of FIG. 図1のヒートパイプにおける蒸発部の形状を例示する斜視図である。It is a perspective view which illustrates the shape of the evaporation part in the heat pipe of FIG. 図3の蒸発部に形成された通路における下流端の断面図である。It is sectional drawing of the downstream end in the channel | path formed in the evaporation part of FIG. (a),(b)は、通路の下流端の断面図である。(A), (b) is sectional drawing of the downstream end of a channel | path. 図1のヒートパイプの製造手順を例示するフローチャートである。It is a flowchart which illustrates the manufacture procedure of the heat pipe of FIG. (a)は製造過程における通路形成部材の上面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図、(d)は(a)のC−C断面図である。(A) is a top view of the passage forming member in the manufacturing process, (b) is a cross-sectional view taken along line AA of (a), (c) is a cross-sectional view taken along line BB of (a), and (d) is a cross-sectional view of (a). It is CC sectional drawing. (a)は製造過程における通路形成部材の上面図、(b)は(a)のD−D断面図、(c)は(a)のE−E断面図である。(A) is a top view of the channel | path formation member in a manufacture process, (b) is DD sectional drawing of (a), (c) is EE sectional drawing of (a). 通路形成部材へのプラズマ処理を説明するための図であり、(a)はイオンミリング装置の概念図、(b)は通路形成部材の上面図、(c)は(b)のF−F断面図、(d)は(b)のG−G断面図である。It is a figure for demonstrating the plasma processing to a channel | path formation member, (a) is a conceptual diagram of an ion milling apparatus, (b) is a top view of a channel | path formation member, (c) is FF cross section of (b). (D) is a GG cross-sectional view of (b). 通路内を流れる冷媒の状態を説明するための断面図であり、(a),(b)は従来のヒートパイプにおける状態を示し、(c),(d)は図1のヒートパイプにおける状態を示す。It is sectional drawing for demonstrating the state of the refrigerant | coolant which flows in the inside of a channel | path, (a), (b) shows the state in the conventional heat pipe, (c), (d) shows the state in the heat pipe of FIG. Show. (a)〜(e)は、通路の下流端形状の変形例を示す断面図である。(A)-(e) is sectional drawing which shows the modification of the downstream end shape of a channel | path.

以下、図面を参照してヒートパイプ及びヒートパイプの製造方法に係る実施の形態を説明する。ただし、以下に示す実施形態はあくまでも例示に過ぎず、実施形態で明示しない種々の変形や技術の適用を排除する意図はない。すなわち、本実施形態をその趣旨を逸脱しない範囲で種々変形(実施形態及び各変形例を組み合わせる等)して実施することができる。   Hereinafter, an embodiment relating to a heat pipe and a method for manufacturing the heat pipe will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described in the embodiment. That is, the present embodiment can be implemented with various modifications (combining the embodiments and each modification) without departing from the spirit of the present embodiment.

[1.ヒートパイプ]
金属管の内部に揮発性の液体冷媒を封入したヒートパイプ10を図1に例示する。このヒートパイプ10は、冷媒が流通する管状の経路が形成されたループ型ヒートパイプ(ループヒートパイプ)である。冷媒の具体例としては、水,エタノール,代替フロン等の作動流体が挙げられる。ヒートパイプ10の内部には、冷媒が流通する順に蒸発部11,気相移動部12,凝縮部13,液相移動部14が設けられる。
[1. heat pipe]
A heat pipe 10 in which a volatile liquid refrigerant is sealed inside a metal tube is illustrated in FIG. The heat pipe 10 is a loop heat pipe (loop heat pipe) in which a tubular path through which a refrigerant flows is formed. Specific examples of the refrigerant include working fluids such as water, ethanol, and alternative chlorofluorocarbon. Inside the heat pipe 10, an evaporation unit 11, a gas phase moving unit 12, a condensing unit 13, and a liquid phase moving unit 14 are provided in the order in which the refrigerant flows.

蒸発部11は、外部の熱源15から吸熱して液体冷媒を気化させる部位であり、気相移動部12は気体冷媒を凝縮部13に供給するための通路である。また、凝縮部13は外部に放熱して気体冷媒を液化させる部位であり、液相移動部14は液体冷媒を蒸発部11に供給するための通路である。   The evaporation unit 11 is a part that absorbs heat from the external heat source 15 and vaporizes the liquid refrigerant, and the gas phase moving unit 12 is a passage for supplying the gas refrigerant to the condensing unit 13. The condensing unit 13 is a part that radiates heat to the outside and liquefies the gaseous refrigerant, and the liquid phase moving unit 14 is a passage for supplying the liquid refrigerant to the evaporation unit 11.

蒸発部11の内部には、図2に示すように、毛細管状に形成された複数の通路1(微細チャネル)が設けられる。液体冷媒は、例えば通路1の内部を通過する過程で吸熱して気化する。また、冷媒が気化した部位には液体冷媒が濡れ広がり、液相移動部14側の液体冷媒が蒸発部11の通路1内へと補充される。一方、気化冷媒は蒸発部11から気相移動部12へと移動し、凝縮部13側に供給される。これらの一連の動作により、毛管作用を利用した冷媒の循環が達成される。
以下、通路1の内部表面のことを内面1aと呼び、通路1の下流側の開口部が形成された面(気相移動部12の内面となる面)のことを端面1bと呼ぶ。
As shown in FIG. 2, a plurality of passages 1 (fine channels) formed in a capillary shape are provided inside the evaporation unit 11. For example, the liquid refrigerant absorbs heat and vaporizes in the process of passing through the passage 1. Further, the liquid refrigerant wets and spreads in the portion where the refrigerant is vaporized, and the liquid refrigerant on the liquid phase moving unit 14 side is replenished into the passage 1 of the evaporation unit 11. On the other hand, the vaporized refrigerant moves from the evaporation unit 11 to the gas phase moving unit 12 and is supplied to the condensing unit 13 side. Through these series of operations, refrigerant circulation utilizing capillary action is achieved.
Hereinafter, the inner surface of the passage 1 is referred to as an inner surface 1a, and the surface on which the opening on the downstream side of the passage 1 is formed (the surface serving as the inner surface of the gas phase moving unit 12) is referred to as an end surface 1b.

[2.通路の構造]
通路1の出口端部の構造を図3に例示する。ここでは、複数の通路1が形成された蒸発部11の内部を部分的に示す。通路1は、表面に凹溝7aが形成された二枚の通路形成部材7を貼り合わせて形成される。各々の通路形成部材7には、例えば断面形状が矩形の凹溝7aが刻設され、凹溝7aの刻設面が向かい合わせとなるように接着される。凹溝7aの溝幅は例えば0.1[mm]程度である。また、凹溝7a間のピッチ(隣接する凹溝7aとの距離)は0.1[mm]程度であり、それぞれの凹溝7aは互いに平行に配置される。
[2. Aisle structure]
The structure of the exit end of the passage 1 is illustrated in FIG. Here, the inside of the evaporation part 11 in which the several channel | path 1 was formed is shown partially. The passage 1 is formed by bonding together two passage forming members 7 having concave grooves 7a formed on the surface. For example, a concave groove 7a having a rectangular cross-sectional shape is engraved on each passage forming member 7 and bonded so that the engraved surfaces of the concave groove 7a face each other. The groove width of the concave groove 7a is, for example, about 0.1 [mm]. The pitch between the concave grooves 7a (distance to the adjacent concave grooves 7a) is about 0.1 [mm], and the respective concave grooves 7a are arranged in parallel to each other.

通路1の下流端の断面形状を図4に例示する。通路形成部材7は、基材2,疎水膜3,親水膜4を備える。基材2は、通路形成部材7の基になる板状部材であり、例えば合成樹脂やガラス,繊維強化プラスティック,金属等で形成される。基材2の一方の表面には、凹溝7aに対応する溝2aが形成される。溝2aの形成手法としては、例えばサンドブラストやエッチング(ドライエッチング,ウェットエッチング,光エッチング等)が適用可能であり、あるいは機械的に切削,除去してもよい。   The cross-sectional shape of the downstream end of the passage 1 is illustrated in FIG. The passage forming member 7 includes a base material 2, a hydrophobic film 3, and a hydrophilic film 4. The base material 2 is a plate-like member that is the basis of the passage forming member 7, and is formed of, for example, synthetic resin, glass, fiber reinforced plastic, metal, or the like. On one surface of the substrate 2, a groove 2a corresponding to the concave groove 7a is formed. As a method for forming the groove 2a, for example, sand blasting or etching (dry etching, wet etching, optical etching, etc.) can be applied, or mechanical cutting and removal may be performed.

疎水膜3(疎水層,疎水性の部位)は、疎水性物質で形成されたコーティング層であり、例えばPTFE(Poly-tetra-fluoro-ethylene)や、FEP(Fluorinated Ethylene Propylene)等のフッ素樹脂を基材2の表面に蒸着して形成される。疎水膜3は、少なくとも通路1の内面1a(溝2aの内面)に形成され、好ましくは、通路1の下流端側(出口側)の開口部が形成された端面1b(基材端面2b)にも形成される。これらのうち、疎水膜3が通路1の表面に露出している部位は、図4に示すように、通路1の内面1a以外の部位である。通路1の内面1aでは、疎水膜3が親水膜4の下層に形成される。   Hydrophobic membrane 3 (hydrophobic layer, hydrophobic part) is a coating layer formed of a hydrophobic substance. For example, a fluororesin such as PTFE (Poly-tetra-fluoro-ethylene) or FEP (Fluorinated Ethylene Propylene) is used. It is formed by vapor deposition on the surface of the substrate 2. The hydrophobic film 3 is formed at least on the inner surface 1a of the passage 1 (the inner surface of the groove 2a), and preferably on the end surface 1b (base material end surface 2b) where the downstream end (exit side) opening of the passage 1 is formed. Is also formed. Of these, the portion where the hydrophobic film 3 is exposed on the surface of the passage 1 is a portion other than the inner surface 1a of the passage 1, as shown in FIG. On the inner surface 1 a of the passage 1, the hydrophobic film 3 is formed below the hydrophilic film 4.

疎水膜3の膜厚T1は、後述する切削部6を形成するための余裕代に応じて設定される。これは、疎水膜3の膜厚T1を増大させるほど、後述する切削部6を形成するための余裕代が増大するからである。本実施形態では、疎水膜3の膜厚T1が1000[nm]程度(1[μm]程度)に設定される。なお、疎水膜3が露出する端面1bにおいて、その表面に疎水性の特性を付与することのみを考慮して、疎水膜3の膜厚T1をより薄くすることも可能である。一方、本実施形態では、切削部6の施工性等を考慮して、疎水膜3の膜厚T1をやや厚く設定している。 The film thickness T 1 of the hydrophobic film 3 is set according to a margin for forming a cutting portion 6 described later. This is because as the film thickness T 1 of the hydrophobic film 3 is increased, a margin for forming a cutting portion 6 described later increases. In the present embodiment, the film thickness T 1 of the hydrophobic film 3 is set to about 1000 [nm] (about 1 [μm]). Note that it is possible to make the thickness T 1 of the hydrophobic film 3 thinner in consideration of only imparting hydrophobic characteristics to the surface of the end face 1 b where the hydrophobic film 3 is exposed. On the other hand, in the present embodiment, the film thickness T 1 of the hydrophobic film 3 is set slightly thick in consideration of the workability of the cutting part 6 and the like.

親水膜4(親水層)は、親水性物質で形成されたコーティング層であり、例えば二酸化ケイ素,二酸化チタン等の酸化物を疎水膜3の表面に蒸着して形成される。親水膜4は、通路1の内面1aに形成され、端面1bには形成されない。また、図4に示すように、通路1の内面1aが親水膜4の露出面となる。
親水膜4の膜厚T2は、例えば10[nm]程度である。この膜厚T2は、例えば通路1の内面1aに親水性の特性を付与するために必要十分な厚みに設定される。つまり、疎水膜3が機能上の望ましい厚みに比してやや厚めに形成されるのに対し、親水膜4は機能上の望ましい厚みに形成される。なお、親水膜4の膜厚T2を大きくするほど、後述する切削部6を形成する際の切削深さ(除去深さ)が増大する。
The hydrophilic film 4 (hydrophilic layer) is a coating layer formed of a hydrophilic substance, and is formed, for example, by depositing an oxide such as silicon dioxide or titanium dioxide on the surface of the hydrophobic film 3. The hydrophilic film 4 is formed on the inner surface 1a of the passage 1 and is not formed on the end surface 1b. In addition, as shown in FIG. 4, the inner surface 1 a of the passage 1 becomes the exposed surface of the hydrophilic film 4.
Thickness T 2 of the hydrophilic film 4 is, for example, about 10 [nm]. This film thickness T 2 is set to a thickness necessary and sufficient for imparting hydrophilic characteristics to the inner surface 1 a of the passage 1, for example. That is, the hydrophobic film 3 is formed to be slightly thicker than the functionally desirable thickness, while the hydrophilic film 4 is formed to have a desirable functional thickness. Incidentally, the larger the thickness T 2 of the hydrophilic film 4, the cutting depth when forming the cutting unit 6 to be described later (removal depth) increases.

図4に示すように、通路1の出口が形成された端面1bには、切削部6(拡幅部)が設けられる。切削部6とは、通路1の出口側の開口部における外縁(下流端外縁)に沿って、その外縁の全周にわたって、通路1の内法寸法を拡幅(拡張,拡大,拡径)した部位である。切削部6の内面には、疎水性を有する部位が設けられる。なお、この疎水性の部位は、切削部6(拡幅部)の内面から、通路1の内面1aにおける親水膜4の下層にわたって形成される。   As shown in FIG. 4, a cutting portion 6 (widening portion) is provided on the end surface 1 b where the exit of the passage 1 is formed. The cutting part 6 is a part where the internal dimension of the passage 1 is widened (expanded, expanded, expanded) along the outer edge (outer edge of the downstream end) of the opening on the outlet side of the passage 1 over the entire circumference of the outer edge. It is. A portion having hydrophobicity is provided on the inner surface of the cutting portion 6. This hydrophobic portion is formed from the inner surface of the cutting portion 6 (widened portion) to the lower layer of the hydrophilic film 4 on the inner surface 1 a of the passage 1.

切削部6の形成手法としては、例えば後述するように、物理的に切削することや、化学的に分解,除去すること等が考えられる。あるいは、開口端の外縁の形状が段差形状(しゃくりのある面取り形状)となるように、疎水膜3の形状を成型してもよい。いずれにしても、通路1の出口側の端面1bにおいて、通路1を拡幅するように形成された部位が切削部6であり、切削以外の形成手法を通じて形成された部位を除外する意図はない。   As a method for forming the cutting portion 6, for example, as will be described later, physical cutting, chemical decomposition, removal, or the like can be considered. Alternatively, the shape of the hydrophobic film 3 may be molded so that the shape of the outer edge of the opening end is a step shape (chamfered chamfered shape). In any case, on the end face 1b on the outlet side of the passage 1, the portion formed so as to widen the passage 1 is the cutting portion 6, and there is no intention to exclude the portion formed through a forming method other than cutting.

本実施形態の切削部6は、段差面6a,拡張面6bを有する。段差面6aは、通路1を拡張する方向に傾斜して、通路1の内面1aと交差する面状の部位である。図4に示す例では、段差面6aが平面状であって通路1に対する傾斜角が略90°であり、通路1の内面1aに対して略垂直に交差している。段差面6aには、図5(a)に示すように、その表面に疎水膜3が露出する。また、段差面6aの表面のうち通路1の内面1a側の端部Y(立体的には端辺)が、親水膜4の端部(端辺)に一致する。つまり、疎水膜3と親水膜4との境界が、通路1の内面1aと段差面6aとの交差位置に一致する。   The cutting part 6 of the present embodiment has a step surface 6a and an extended surface 6b. The step surface 6 a is a planar portion that inclines in the direction of expanding the passage 1 and intersects the inner surface 1 a of the passage 1. In the example shown in FIG. 4, the step surface 6 a is planar and the inclination angle with respect to the passage 1 is approximately 90 °, and intersects the inner surface 1 a of the passage 1 substantially perpendicularly. As shown in FIG. 5A, the hydrophobic film 3 is exposed on the step surface 6a. Further, the end portion Y (three-dimensional end side) on the inner surface 1 a side of the passage 1 in the surface of the step surface 6 a coincides with the end portion (end side) of the hydrophilic film 4. That is, the boundary between the hydrophobic film 3 and the hydrophilic film 4 coincides with the intersecting position between the inner surface 1a of the passage 1 and the step surface 6a.

なお、厳密にいえば、疎水膜3と親水膜4との境界は、図5(a)中に点Xで示す位置となる。つまり、図5(a)中における疎水膜3と親水膜4との境界は、通路1の内面1aと段差面6aとの交差位置から親水膜4の膜厚T2に対応する寸法分だけ、通路1の内面1aよりも下方にずれた位置となる。一方、図5(a),(b)では、親水膜4の膜厚T2がデフォルメされ、実際の状態よりも極端に厚く表現されている。親水膜4の膜厚T2は、実際には十分に薄いため、点Xの位置は通路1の内面1aと段差面6aとの交差位置に一致するものとみなせる。 Strictly speaking, the boundary between the hydrophobic film 3 and the hydrophilic film 4 is a position indicated by a point X in FIG. That is, the boundary between the hydrophobic film 3 and the hydrophilic film 4 in FIG. 5A is the dimension corresponding to the film thickness T 2 of the hydrophilic film 4 from the intersection position of the inner surface 1a of the passage 1 and the step surface 6a. The position is shifted downward from the inner surface 1 a of the passage 1. On the other hand, in FIG. 5 (a), (b) , the thickness T 2 of the hydrophilic film 4 is deformed, it is extremely thick representation than the actual state. Thickness T 2 of the hydrophilic film 4, since in practice sufficiently thin, the position of the point X can be considered a match at intersections between the inner surface 1a and the step surface 6a of the passage 1.

拡張面6bは、段差面6aと端面1bとを接続する面状の部位である。図4に示す例では、拡張面6bが通路1の内面1aに対して平行に配置されている。拡張面6bには、図5(a)に示すように、その表面に疎水膜3が露出する。拡張面6bの面勾配や面形状は任意に設定可能である。
ここで、切削部6の寸法に関して、段差面6aによって拡張された通路1の幅寸法〔図5(a)中の上下方向の寸法〕のことを、切削部6の高さHと呼ぶ。また、段差面6aによって拡張された部位について、流路方向の寸法〔図5(a)中の左右方向の寸法〕のことを切削部6の幅Wと呼ぶ。
The extended surface 6b is a planar portion that connects the step surface 6a and the end surface 1b. In the example shown in FIG. 4, the expansion surface 6 b is arranged in parallel to the inner surface 1 a of the passage 1. As shown in FIG. 5 (a), the hydrophobic film 3 is exposed on the surface of the extended surface 6b. The surface gradient and surface shape of the extended surface 6b can be arbitrarily set.
Here, regarding the dimension of the cutting part 6, the width dimension of the passage 1 (the vertical dimension in FIG. 5A) expanded by the step surface 6 a is referred to as the height H of the cutting part 6. In addition, the dimension in the flow path direction (the dimension in the left-right direction in FIG. 5A) of the portion expanded by the step surface 6a is referred to as the width W of the cutting portion 6.

本実施形態の切削部6は、高さH及び幅Wがそれぞれ、疎水膜3の膜厚T1と親水膜4の膜厚T2とを加算した値(T1+T2)よりも小さい値に設定される。高さHが膜厚の加算値(T1+T2)未満であれば、幅Wの大小に関わらず、切削部6の表面に基材2が露出することが防止される。同様に、幅Wが膜厚の加算値(T1+T2)未満であれば、高さHの大小に関わらず、切削部6の表面に基材2が露出することが防止される。したがって、これらの二重の寸法設定により、基材2の表面露出がより確実に防止される。 In the cutting part 6 of this embodiment, the height H and the width W are smaller than the value (T 1 + T 2 ) obtained by adding the film thickness T 1 of the hydrophobic film 3 and the film thickness T 2 of the hydrophilic film 4, respectively. Set to a value. If the height H is less than the added value (T 1 + T 2 ) of the film thickness, the substrate 2 is prevented from being exposed on the surface of the cutting portion 6 regardless of the width W. Similarly, if the width W is less than the added value (T 1 + T 2 ) of the film thickness, the base material 2 is prevented from being exposed on the surface of the cutting portion 6 regardless of the height H. Therefore, the surface exposure of the base material 2 is more reliably prevented by these double dimension settings.

また、切削部6の形状は、疎水膜3の濡れ性に応じて設定される。ここで、図5(b)に示すように、疎水膜3における液体冷媒との接触角をθ[rad](0≦θ≦π)とおき、通路1の内面1aと段差面6aとのなす角をφ[rad](0≦θ≦π)とおく。切削部6の幅W及び高さHは、以下の式1の関係を満たすように設定される。このような設定により、通路1の内部を伝わる冷媒が内面1aと段差面6aとの交差位置まで達したとしても、冷媒と拡張面6bとの接触が防止される。なお、親水膜4の膜厚T2は高さHに比して十分に小さいことから、T2=0とみなしてもよい。 Further, the shape of the cutting part 6 is set according to the wettability of the hydrophobic film 3. Here, as shown in FIG. 5 (b), the contact angle of the hydrophobic film 3 with the liquid refrigerant is θ [rad] (0 ≦ θ ≦ π), and the inner surface 1a of the passage 1 and the step surface 6a are formed. The angle is set to φ [rad] (0 ≦ θ ≦ π). The width W and the height H of the cutting part 6 are set so as to satisfy the relationship of the following formula 1. With such a setting, even when the refrigerant transmitted through the passage 1 reaches the intersection of the inner surface 1a and the step surface 6a, the contact between the refrigerant and the expansion surface 6b is prevented. Note that since the film thickness T 2 of the hydrophilic film 4 is sufficiently smaller than the height H, it may be considered that T 2 = 0.

Figure 2015059683
Figure 2015059683

[3.製造方法]
図6は、上記のヒートパイプ10に内蔵される蒸発部11の通路1を形成するための製造プロセスを例示するフローチャートである。
[3. Production method]
FIG. 6 is a flowchart illustrating a manufacturing process for forming the passage 1 of the evaporation unit 11 built in the heat pipe 10.

ステップA10(疎水膜の積層工程)では、基材2の表面に疎水膜3が形成される。疎水膜3を形成する手法としては、真空蒸着やスパッタリング,プラズマ重合等の手法を適用することが可能である。例えば、真空蒸着を用いる場合には、成膜装置の真空槽の内部に基材2を載置し、真空槽内を減圧する。また、真空槽内でフッ素樹脂を加熱して蒸発させ、基材2の表面に付着させることによって疎水膜3を成膜する。
疎水膜3は、基材2の表面全体を覆って積層形成される。ただし、切削部6を形成する上では、少なくとも通路1の出口が形成された端面1bと通路1の内面1aとの双方に疎水膜3が形成されていればよい。
In step A10 (hydrophobic film lamination step), the hydrophobic film 3 is formed on the surface of the substrate 2. As a method for forming the hydrophobic film 3, it is possible to apply a method such as vacuum deposition, sputtering, or plasma polymerization. For example, when vacuum deposition is used, the base material 2 is placed inside the vacuum chamber of the film forming apparatus, and the inside of the vacuum chamber is decompressed. In addition, the hydrophobic film 3 is formed by heating and evaporating the fluororesin in a vacuum chamber and adhering it to the surface of the substrate 2.
The hydrophobic film 3 is formed so as to cover the entire surface of the substrate 2. However, when forming the cutting part 6, the hydrophobic film 3 should just be formed in both the end surface 1b in which the exit of the channel | path 1 was formed, and the inner surface 1a of the channel | path 1. FIG.

ステップA20(親水膜の積層工程)では、疎水膜3が形成された基材2の表面に親水膜4が形成される。親水膜4を形成する手法も、疎水膜3の形成手法と同様に、真空蒸着やスパッタリング,プラズマ重合等の手法を適用することが可能である。親水膜4は、疎水膜3の表面全体を覆って積層形成される。親水膜4は、少なくとも通路1の内面1aにおける疎水膜3の上に形成されればよいが、基材2の表面全体に積層形成されてもよい。
図7(a)〜(d)は、ステップA20が完了した時点の通路形成部材7を例示する図である。ここでは、基材2の表面が疎水膜3によって覆われ、さらにその表面が親水膜4によって覆われている。
In step A20 (hydrophilic film lamination step), the hydrophilic film 4 is formed on the surface of the substrate 2 on which the hydrophobic film 3 is formed. Similarly to the method of forming the hydrophobic film 3, the method of forming the hydrophilic film 4 can be applied with a method such as vacuum deposition, sputtering, or plasma polymerization. The hydrophilic film 4 is formed so as to cover the entire surface of the hydrophobic film 3. The hydrophilic film 4 may be formed on at least the hydrophobic film 3 on the inner surface 1 a of the passage 1, but may be laminated on the entire surface of the substrate 2.
7A to 7D are diagrams illustrating the passage forming member 7 at the time when Step A20 is completed. Here, the surface of the substrate 2 is covered with the hydrophobic film 3, and the surface is further covered with the hydrophilic film 4.

ステップA30(保護層の被覆工程)では、少なくとも、通路1の内面1aに相当する部位を被覆するレジストマスク5が形成される。レジストマスク5は、親水膜4を次工程のプラズマ処理から保護するための保護層として機能するものである。本実施形態では、凹溝7aの内外を問わず、通路形成部材7の上面視において端面1bからの距離が所定寸法V未満の部分を除く全ての親水膜4が、レジストマスク5で保護される。本実施形態でのマスキング範囲を、図8(a)〜(c)に例示する。これにより、後の工程で貼り合わされる二枚の通路形成部材7における接合面7bも保護される。   In step A30 (protective layer coating step), at least a resist mask 5 that covers a portion corresponding to the inner surface 1a of the passage 1 is formed. The resist mask 5 functions as a protective layer for protecting the hydrophilic film 4 from plasma processing in the next step. In the present embodiment, all the hydrophilic films 4 except the portion whose distance from the end surface 1b is less than the predetermined dimension V in the top view of the passage forming member 7 is protected by the resist mask 5 regardless of the inside or outside of the groove 7a. . The masking range in this embodiment is illustrated in FIGS. Thereby, the joint surface 7b in the two channel | path formation members 7 bonded together by a next process is also protected.

また、通路1の内面1aにおいてレジストマスク5が形成される範囲は、図8(c)に示すように、屈曲面1cを避けて設定される。屈曲面1cとは、通路1の内面1aと端面1bとを接続する曲面状の面であり、通路1の下流端外縁に沿って、通路1の全周を囲むように形成されている。図8(c)中に符号5aで示すレジストマスク5の先端位置は、この後の工程で形成される段差面6aと通路1の内面1aとの交差位置に一致することになる。   Further, the range in which the resist mask 5 is formed on the inner surface 1a of the passage 1 is set to avoid the bent surface 1c as shown in FIG. The bent surface 1 c is a curved surface that connects the inner surface 1 a and the end surface 1 b of the passage 1, and is formed so as to surround the entire circumference of the passage 1 along the outer edge of the downstream end of the passage 1. The tip position of the resist mask 5 indicated by reference numeral 5a in FIG. 8C coincides with the intersecting position of the step surface 6a formed in the subsequent process and the inner surface 1a of the passage 1.

具体的なレジストマスク5の形成手法としては、ドライフィルムレジスト(DFR)を通路形成部材7に貼着して露光,現像する手法や、液体レジストに通路形成部材7を浸漬する手法、スピンコートする手法等が適用可能である。DFRとは、光感光性を持つレジストマスク(フォトレジスト)の一例であり、硬化させる部位を露光させるネガ型のフォトレジストや、硬化させない部位を露光させるポジ型のフォトレジスト等を含む。   As a specific method for forming the resist mask 5, a dry film resist (DFR) is attached to the passage forming member 7 for exposure and development, a method for immersing the passage forming member 7 in a liquid resist, or spin coating. Techniques etc. are applicable. DFR is an example of a resist mask (photoresist) having photosensitivity, and includes a negative photoresist that exposes a portion to be cured, a positive photoresist that exposes a portion that is not cured, and the like.

ネガ型のDFRを用いる場合には、通路形成部材7の全体に対してDFRをローラーで貼り付け、マスキング範囲を紫外線等で露光させることにより、マスキング範囲のDFRを変成硬化させる。DFRの膜厚は、例えば10[μm](10000[nm])程度とされる。なお、レジストマスク5は、親水膜4をプラズマ処理から保護することを目的としたものであることから、DFRの膜厚をさらに厚く設定してもよい。また、貼着部位によって膜厚を相違させてもよく、あるいは膜厚にばらつきが生じてもよい。レジストマスク5の膜厚は、均一でなくてもよい。   In the case of using a negative DFR, the DFR in the masking range is denatured and cured by sticking the DFR to the entire passage forming member 7 with a roller and exposing the masking range with ultraviolet rays or the like. The film thickness of DFR is, for example, about 10 [μm] (10000 [nm]). Note that the resist mask 5 is intended to protect the hydrophilic film 4 from the plasma treatment, and therefore the DFR film thickness may be set further thicker. In addition, the film thickness may be different depending on the attachment site, or the film thickness may vary. The film thickness of the resist mask 5 may not be uniform.

マスキング範囲の位置合わせには、例えばマスクアライナーが使用される。この場合、光学顕微鏡を用いて、ガラスマスク越しに通路1の形状や端面1bの位置を確認しながら、マスキングの対象とする位置を調整することが好ましい。本実施形態では、レジストマスク5の先端位置5aから端面1bまでの距離が、疎水膜3の膜厚T1と親水膜4の膜厚T2との加算値(T1+T2)未満の値に設定される。これにより、次工程で形成される切削部6の幅Wが、加算値(T1+T2)未満となる。 For aligning the masking range, for example, a mask aligner is used. In this case, it is preferable to adjust the position to be masked using an optical microscope while confirming the shape of the passage 1 and the position of the end face 1b through the glass mask. In the present embodiment, the distance from the tip position 5a of the resist mask 5 to the end face 1b is less than the added value (T 1 + T 2 ) of the film thickness T 1 of the hydrophobic film 3 and the film thickness T 2 of the hydrophilic film 4. Set to a value. Thereby, the width W of the cutting part 6 formed in the next step is less than the added value (T 1 + T 2 ).

その後、露光していない部分のDFRを弱アルカリ溶剤で現像処理して除去すれば、所望の位置を保護するレジストマスク5が完成する。なお、ネガ型のDFRの代わりにポジ型のDFRを用いる場合には、露光範囲を上記の場合と反転させればよい。   Thereafter, if the unexposed portion of DFR is removed by development with a weak alkaline solvent, a resist mask 5 for protecting a desired position is completed. When a positive DFR is used instead of a negative DFR, the exposure range may be reversed from that in the above case.

ステップA40(切削部の形成工程)では、レジストマスク5が施された通路形成部材7に切削部6が形成される。ここでは、例えばイオンミリング装置16を用いたプラズマ処理により、通路1の出口の縁に沿って切削部6が切削される。この工程では、図9(a)に示すように、通路形成部材7の表面に対して加速したイオンビーム8が照射される。これにより、通路形成部材7の表面がイオンによって機械研磨され、レジストマスク5で保護されていない部位の疎水膜3及び親水膜4が物理的に除去(物理エッチング)される。また、端面1bに親水膜4が形成されている場合には、これも併せて除去される。   In step A40 (cutting portion forming step), the cutting portion 6 is formed on the passage forming member 7 on which the resist mask 5 has been applied. Here, the cutting portion 6 is cut along the edge of the exit of the passage 1 by, for example, plasma processing using the ion milling device 16. In this step, as shown in FIG. 9A, the surface of the passage forming member 7 is irradiated with an accelerated ion beam 8. As a result, the surface of the passage forming member 7 is mechanically polished by ions, and the hydrophobic film 3 and the hydrophilic film 4 at portions not protected by the resist mask 5 are physically removed (physical etching). Moreover, when the hydrophilic film | membrane 4 is formed in the end surface 1b, this is also removed collectively.

切削部6は、図3に示すように、通路1の出口の縁に沿って開口部の全周にわたって設けられる。したがって、イオンビーム8の照射方向が一方向に固定されたイオンミリング装置16を使用する場合には、通路形成部材7をイオンビーム8の照射方向に対して傾斜させた状態で回転させることが好ましい。例えば、図9(a)に示すように、イオンビーム8の照射方向に対して通路形成部材7の板面(例えば、接合面7b)の法線Kを傾斜させ、この法線Kを中心軸として通路形成部材7の全体を回転させる。   As shown in FIG. 3, the cutting portion 6 is provided over the entire periphery of the opening along the edge of the outlet of the passage 1. Therefore, when the ion milling device 16 in which the irradiation direction of the ion beam 8 is fixed in one direction is used, it is preferable to rotate the passage forming member 7 while being inclined with respect to the irradiation direction of the ion beam 8. . For example, as shown in FIG. 9A, the normal line K of the plate surface (for example, the bonding surface 7b) of the passage forming member 7 is inclined with respect to the irradiation direction of the ion beam 8, and the normal line K is set as the central axis. As a whole, the entire passage forming member 7 is rotated.

これにより、図9(b)〜(d)に示すように、通路形成部材7の表面に対するイオンビーム8の照射方向を歳差運動のように変化させることができ、通路1の内面1aの全体を切削することが可能となる。通路形成部材7の接合面7bに対するイオンビーム8の入射角は、イオンビームの照射方向に対する法線Kの傾斜角κと通路形成部材7の回転角ψに応じて変化する。例えば傾斜角κをπ/6〜π/4[rad] 程度の範囲内に設定すれば、凹溝7aの形状や深さにもよるものの、通路形成部材7が一回転する間に概ね凹溝7aの内面全体に対してイオンビーム8を照射することができる。また、イオンビーム8は、図9(d)に示すように通路形成部材7の凹溝7aの内部だけでなく、図9(c)に示すように通路1の端面1bにも照射される。したがって、親水膜4が端面1bに形成されている場合には、この工程で除去される。   Accordingly, as shown in FIGS. 9B to 9D, the irradiation direction of the ion beam 8 with respect to the surface of the passage forming member 7 can be changed like precession, and the entire inner surface 1a of the passage 1 can be changed. Can be cut. The incident angle of the ion beam 8 with respect to the joint surface 7b of the passage forming member 7 changes according to the inclination angle κ of the normal K with respect to the ion beam irradiation direction and the rotation angle ψ of the passage forming member 7. For example, if the inclination angle κ is set within a range of about π / 6 to π / 4 [rad], the groove is generally recessed during one rotation of the passage forming member 7 although it depends on the shape and depth of the groove 7a. The entire inner surface of 7a can be irradiated with the ion beam 8. In addition, the ion beam 8 is applied not only to the inside of the groove 7a of the passage forming member 7 as shown in FIG. 9 (d) but also to the end face 1b of the passage 1 as shown in FIG. 9 (c). Therefore, when the hydrophilic film 4 is formed on the end face 1b, it is removed in this step.

イオンミリング装置16による部材の切削方向はイオンビーム8の照射方向に依存し、部材の切削深さ(除去深さ)はイオンビーム8の照射時間に比例する。したがって、イオンビーム8の照射時間を調節することで、切削深さを制御することができる。あるいは、イオンビーム8に対する通路形成部材7の傾斜角度や回転速度に応じてイオンビーム8の照射時間を補正することで、切削深さを制御することができる。本実施形態では、切削部6の高さHが上記の加算値(T1+T2)未満となるように、イオンビーム8の照射時間が設定される。 The cutting direction of the member by the ion milling device 16 depends on the irradiation direction of the ion beam 8, and the cutting depth (removal depth) of the member is proportional to the irradiation time of the ion beam 8. Therefore, the cutting depth can be controlled by adjusting the irradiation time of the ion beam 8. Alternatively, the cutting depth can be controlled by correcting the irradiation time of the ion beam 8 according to the inclination angle and rotation speed of the passage forming member 7 with respect to the ion beam 8. In the present embodiment, the irradiation time of the ion beam 8 is set so that the height H of the cutting part 6 is less than the above added value (T 1 + T 2 ).

ステップA50(保護層の除去工程)では、ステップA30で形成されたレジストマスク5が除去される。この工程では、例えば強アルカリ溶剤で通路形成部材7が洗浄され、DFRが剥離除去される。これにより、図4に示すような端部構造が通路1の出口側に形成された通路形成部材7が完成する。
その後、ステップA60(貼合工程)では、図3に示すように二枚の通路形成部材7が貼り合わされる。これにより、内壁面が親水膜4で覆われ、疎水膜3と親水膜4との境界が内面1aと段差面6aとの交差位置に一致するように形成された通路1が完成する。ここで完成した部品は、例えば図1に示すような構造のヒートパイプ10に内蔵されて、蒸発部11として機能する。
In step A50 (protective layer removing step), the resist mask 5 formed in step A30 is removed. In this step, for example, the passage forming member 7 is washed with a strong alkaline solvent, and the DFR is peeled and removed. Thereby, the channel | path formation member 7 in which the edge part structure as shown in FIG. 4 was formed in the exit side of the channel | path 1 is completed.
Then, in step A60 (bonding process), as shown in FIG. 3, the two channel | path formation members 7 are bonded together. Thereby, the inner wall surface is covered with the hydrophilic film 4, and the passage 1 formed so that the boundary between the hydrophobic film 3 and the hydrophilic film 4 coincides with the intersecting position between the inner surface 1a and the step surface 6a is completed. The completed component is built in, for example, a heat pipe 10 having a structure as shown in FIG.

[4.作用]
従来のヒートパイプにおける冷媒の状態を図10(a),(b)に例示し、上記のヒートパイプ10における冷媒の状態を図10(c),(d)に例示する。
図10(a)は、通路1の内面1aに親水膜4が形成され、かつ、通路1の外部(端面1b側)から内部に向かって疎水膜3がはみ出して形成されたものである。図中の破線は、通路1の親水膜4に沿って液体冷媒が充填された状態の液面を示す。ここで、蒸発部11の昇温により液体冷媒が膨張し、液体冷媒の液面が実線で示す位置まで下流側へと移動したとする。このとき、液体冷媒と疎水膜3との間には、図10(a)中に黒矢印で示すように、液体冷媒を通路1の入口側へと押し戻す方向に作用する。したがって、通路1内に生じうるトータルの毛細管力が減少し、冷媒の輸送性が低下する。
[4. Action]
The state of the refrigerant in the conventional heat pipe is illustrated in FIGS. 10 (a) and 10 (b), and the state of the refrigerant in the heat pipe 10 is illustrated in FIGS. 10 (c) and 10 (d).
In FIG. 10A, the hydrophilic film 4 is formed on the inner surface 1a of the passage 1, and the hydrophobic film 3 protrudes from the outside (end surface 1b side) of the passage 1 toward the inside. The broken line in the figure indicates the liquid level in a state where the liquid refrigerant is filled along the hydrophilic film 4 in the passage 1. Here, it is assumed that the liquid refrigerant expands due to the temperature rise of the evaporation unit 11, and the liquid level of the liquid refrigerant moves to the downstream side to the position indicated by the solid line. At this time, the liquid refrigerant acts between the liquid refrigerant and the hydrophobic film 3 in a direction in which the liquid refrigerant is pushed back to the inlet side of the passage 1 as indicated by a black arrow in FIG. Therefore, the total capillary force that can be generated in the passage 1 is reduced, and the transportability of the refrigerant is lowered.

図10(b)は、通路1の内面1aから親水膜4が端面1bまではみ出し、拡径方向に親水膜4が広がって形成されたものである。図中の破線は、通路1の内面1aの親水膜4に沿って液体冷媒が充填された状態の液面を示す。この場合、液体冷媒が膨張すると、液体冷媒が端面1b側の親水膜4に沿って濡れ広がり、通路1の下流端において滞留する。液体冷媒の滞留形状は、図中に実線で示すように、端面1bに裾野を広げた山形状となる。このとき、液体冷媒と端面1bの親水膜4との間に作用する毛細管力は、図10(b)中に黒矢印で示すように、端面1bに沿った方向へと作用するため、通路1の内面1aに沿った方向への毛細管力は増加しない。また、通路1の内面1aよりも端面1bの方が低温であれば、通路1の下流端に滞留した液体冷媒の気化効率が低下する。その結果、液体冷媒の輸送性,循環性が阻害される。   In FIG. 10B, the hydrophilic film 4 protrudes from the inner surface 1a of the passage 1 to the end surface 1b, and the hydrophilic film 4 is formed to expand in the diameter increasing direction. The broken line in the figure indicates the liquid level in a state where the liquid refrigerant is filled along the hydrophilic film 4 on the inner surface 1 a of the passage 1. In this case, when the liquid refrigerant expands, the liquid refrigerant wets and spreads along the hydrophilic film 4 on the end face 1 b side and stays at the downstream end of the passage 1. As shown by the solid line in the figure, the retention state of the liquid refrigerant is a mountain shape with an expanded base at the end face 1b. At this time, the capillary force acting between the liquid refrigerant and the hydrophilic film 4 on the end face 1b acts in the direction along the end face 1b as shown by the black arrow in FIG. The capillary force in the direction along the inner surface 1a is not increased. Further, if the end surface 1b is cooler than the inner surface 1a of the passage 1, the vaporization efficiency of the liquid refrigerant staying at the downstream end of the passage 1 is lowered. As a result, the transportability and circulation of the liquid refrigerant are hindered.

一方、上記のヒートパイプ10では、通路1の下流端外縁に沿って切削部6が形成されるとともに、段差面6aが通路1の内面1aと交差する面状に形成される。つまり、図10(c)に示すように、通路1の内面1aから段差面6aと交差する位置までの範囲に親水膜4が形成される。したがって、図10(a)に示すように、疎水膜3が通路1の内面1aまではみ出して形成されることがなく、冷媒の輸送性の低下が回避される。   On the other hand, in the heat pipe 10, the cutting portion 6 is formed along the outer edge of the downstream end of the passage 1, and the step surface 6 a is formed in a planar shape that intersects the inner surface 1 a of the passage 1. That is, as shown in FIG. 10C, the hydrophilic film 4 is formed in the range from the inner surface 1a of the passage 1 to the position intersecting the step surface 6a. Therefore, as shown in FIG. 10A, the hydrophobic film 3 is not formed so as to protrude to the inner surface 1a of the passage 1, and a decrease in the transportability of the refrigerant is avoided.

また、図中の破線は、通路1の親水膜4に沿って液体冷媒が充填された状態の液面を示す。この場合、液体冷媒が膨張したとしても、段差面6aの表面には疎水膜3が露出しているため液体冷媒の濡れ広がりが阻止される。液体冷媒の滞留形状は、図中に実線で示すように小粒状となる。したがって、図10(b)に示す場合と比較して、滞留する液体冷媒の体積が僅かとなる。   Moreover, the broken line in a figure shows the liquid level of the state with which the liquid refrigerant was filled along the hydrophilic film | membrane 4 of the channel | path 1. FIG. In this case, even if the liquid refrigerant expands, the hydrophobic film 3 is exposed on the surface of the step surface 6a, so that wetting and spreading of the liquid refrigerant is prevented. The retention shape of the liquid refrigerant is small as shown by the solid line in the figure. Therefore, compared with the case shown in FIG.10 (b), the volume of the liquid refrigerant which retains becomes small.

さらに、液体冷媒が膨張した場合には、図10(d)に示すように、液体冷媒が端面1bに沿って濡れ広がる前に表面張力で通路1から離脱し、気相移動部12側へと飛散する。このとき、図中に実線で示すように、通路1の内面1aと段差面6aとの交差位置に液体冷媒の液面が形成され、通路1の親水膜4に沿って液体冷媒が充填された状態となる。これにより、冷媒の輸送性,循環性が回復する。
なお、切削部6の形状は、疎水膜3の濡れ性(接触角)に応じて設定されるため、滞留した液体冷媒と拡張面6bとの接触も阻止される。通路1から弾き出された球形の液体冷媒は、気相移動部12の内部でより小さな粒子に分割され、あるいは気化される。
Further, when the liquid refrigerant expands, as shown in FIG. 10D, before the liquid refrigerant wets and spreads along the end surface 1b, the liquid refrigerant leaves the passage 1 due to surface tension and moves toward the gas phase moving unit 12 side. Scatter. At this time, as shown by the solid line in the figure, the liquid surface of the liquid refrigerant is formed at the intersection of the inner surface 1a of the passage 1 and the step surface 6a, and the liquid refrigerant is filled along the hydrophilic film 4 of the passage 1. It becomes a state. As a result, the transportability and circulation of the refrigerant are restored.
In addition, since the shape of the cutting part 6 is set according to the wettability (contact angle) of the hydrophobic film 3, contact between the staying liquid refrigerant and the expansion surface 6b is also prevented. The spherical liquid refrigerant ejected from the passage 1 is divided into smaller particles or vaporized inside the gas phase moving part 12.

[5.効果]
(1)上記のヒートパイプ10では、蒸発部11の内部に形成される通路1の下流端外縁に切削部6が形成され、通路1の内面1aと交差する面状の段差面6aが設けられる。また、通路1の内面1aと段差面6aとの交差線よりも通路1の上流側に親水膜4が形成され、切削部6の内面に疎水膜3が形成される。このような構造により、通路1の内面1aでの毛管作用を維持しつつ、出口近傍での液体冷媒の濡れ広がりを抑制することができる。つまり、液体冷媒の濡れ広がりによって生じるフロー(流動性)の低下を抑制することができる。したがって、濡れ広がりが生じうる従来のヒートパイプ10と比較して、冷媒の輸送性を改善することができる。
[5. effect]
(1) In the heat pipe 10 described above, the cutting portion 6 is formed at the outer edge of the downstream end of the passage 1 formed inside the evaporation portion 11, and a planar step surface 6 a that intersects the inner surface 1 a of the passage 1 is provided. . Further, the hydrophilic film 4 is formed on the upstream side of the passage 1 with respect to the intersecting line between the inner surface 1 a and the step surface 6 a of the passage 1, and the hydrophobic film 3 is formed on the inner surface of the cutting portion 6. With such a structure, wetting and spreading of the liquid refrigerant in the vicinity of the outlet can be suppressed while maintaining the capillary action on the inner surface 1a of the passage 1. That is, it is possible to suppress a decrease in flow (fluidity) caused by wetting and spreading of the liquid refrigerant. Therefore, compared with the conventional heat pipe 10 in which wetting and spreading can occur, the transportability of the refrigerant can be improved.

(2)上記のヒートパイプ10では、図4に示すように、通路1の内面1aから切削部6にかけての範囲に疎水膜3が形成され、親水膜4は通路1の内面1aにおいて疎水膜3の表面に積層して形成される。このような疎水膜3及び親水膜4の二層構造により、通路1の下流端外縁に沿って疎水膜3及び親水膜4を取り除くことで切削部6を容易に形成することができる。例えば、イオンミリング装置16を用いたプラズマ処理を施して物理的に切削するだけで、切削部6の形状を容易に形成することができる。したがって、冷媒の輸送性が改善される通路形状の加工性,施工性を向上させることができる。   (2) In the heat pipe 10, as shown in FIG. 4, the hydrophobic film 3 is formed in the range from the inner surface 1 a of the passage 1 to the cutting portion 6, and the hydrophilic film 4 is formed on the inner surface 1 a of the passage 1. It is formed by laminating on the surface. With such a two-layer structure of the hydrophobic film 3 and the hydrophilic film 4, the cutting part 6 can be easily formed by removing the hydrophobic film 3 and the hydrophilic film 4 along the outer edge of the downstream end of the passage 1. For example, the shape of the cutting part 6 can be easily formed simply by performing a plasma treatment using the ion milling device 16 and physically cutting it. Therefore, the workability and workability of the passage shape that improves the transportability of the refrigerant can be improved.

(3)上記のヒートパイプ10では、通路1の幅方向(通路1の流路方向に対する垂直方向)についての段差面6aの寸法、すなわち、切削部6の高さHが疎水膜3の膜厚T1と親水膜4の膜厚T2とを加算した値(T1+T2)よりも小さい値に設定される。このような寸法設定により、切削部6の幅Wの大小に関わらず、拡張面6bの表面に基材2が露出することを防止することができる。つまり、拡張面6bの表面に疎水膜3を露出させることができ、拡張面6bへの液体冷媒の濡れ広がりを抑制することができる。 (3) In the heat pipe 10 described above, the dimension of the step surface 6a in the width direction of the passage 1 (the direction perpendicular to the flow path direction of the passage 1), that is, the height H of the cutting portion 6 is the film thickness of the hydrophobic film 3. It is set to a value smaller than the value (T 1 + T 2 ) obtained by adding T 1 and the film thickness T 2 of the hydrophilic film 4. By such dimension setting, it is possible to prevent the base material 2 from being exposed on the surface of the extended surface 6b regardless of the width W of the cutting portion 6. That is, the hydrophobic film 3 can be exposed on the surface of the extended surface 6b, and wetting and spreading of the liquid refrigerant to the extended surface 6b can be suppressed.

(4)上記のヒートパイプ10では、通路1の流路方向に沿った切削部6の寸法、すなわち、切削部6の幅Wが疎水膜3の膜厚T1と親水膜4の膜厚T2とを加算した値(T1+T2)よりも小さい値に設定される。このような寸法設定により、切削部6の高さHの大小に関わらず、段差面6aの表面に基材2が露出することを防止することができる。つまり、段差面6aの表面に疎水膜3を露出させることができ、段差面6aへの液体冷媒の濡れ広がりを抑制することができる。 (4) In the above heat pipe 10, the dimension of the cutting part 6 along the flow path direction of the passage 1, that is, the width W of the cutting part 6 is the film thickness T 1 of the hydrophobic film 3 and the film thickness T of the hydrophilic film 4. A value smaller than the value obtained by adding 2 (T 1 + T 2 ) is set. By such dimension setting, it is possible to prevent the base material 2 from being exposed on the surface of the step surface 6a regardless of the height H of the cutting portion 6. That is, the hydrophobic film 3 can be exposed on the surface of the step surface 6a, and wetting and spreading of the liquid refrigerant on the step surface 6a can be suppressed.

(5)上記のヒートパイプ10では、切削部6の幅W及び高さHが上記の式1の関係を満たすように設定される。式1の左辺と右辺とが一致するとき、通路1の下流端に滞留した液体冷媒と段差面6aの疎水膜3との接触角がθであれば、その冷媒と拡張面6bとが接触する。一方、式1の関係が満たされていれば、液体冷媒と拡張面6bとが接触することはない。したがって、拡張面6bへの液体冷媒の濡れ広がりを抑制することができる。   (5) In the heat pipe 10 described above, the width W and the height H of the cutting portion 6 are set so as to satisfy the relationship of the above formula 1. When the left side and the right side of Equation 1 coincide with each other, if the contact angle between the liquid refrigerant staying at the downstream end of the passage 1 and the hydrophobic film 3 on the step surface 6a is θ, the refrigerant and the expansion surface 6b come into contact with each other. . On the other hand, if the relationship of Formula 1 is satisfied, the liquid refrigerant and the expansion surface 6b do not contact each other. Therefore, wetting and spreading of the liquid refrigerant to the extended surface 6b can be suppressed.

(6)上記のヒートパイプ10では、図4に示すように、切削部6の段差面6aの断面形状が通路1の内面1aに対して垂直に形成されるとともに、拡張面6bの断面形状が通路1の内面1aに対して平行に形成される。このように、切削部6の形状設定をシンプルにすることで、切削部6の加工,形成作業を容易にすることができ、加工性,施工性を向上させることができる。   (6) In the heat pipe 10, as shown in FIG. 4, the cross-sectional shape of the step surface 6 a of the cutting portion 6 is formed perpendicular to the inner surface 1 a of the passage 1, and the cross-sectional shape of the expansion surface 6 b is The passage 1 is formed in parallel to the inner surface 1a. As described above, by simplifying the shape setting of the cutting part 6, the machining and forming work of the cutting part 6 can be facilitated, and the workability and workability can be improved.

(7)上記のヒートパイプ10の製造方法では、通路1の内面1aに疎水膜3が積層され、その疎水膜3の上に親水膜4が形成される。その後、段差面6aが形成されるように、通路1の下流端外縁に沿って疎水膜3,親水膜4が切削される。これらの製造工程を通して、通路1の内面1aに形成された親水膜4をそのまま残存させつつ、通路1の下流側外縁において疎水膜3が露出した切削部6を形成することができる。これにより、通路1の下流端における液体冷媒の濡れ広がりが抑制された通路形成部材7を製造することができる。また、この通路形成部材7を用いてヒートパイプ10が製造されるため、従来のヒートパイプ10と比較して冷媒の輸送性,循環性を改善することができ、熱輸送効率を向上させることができる。   (7) In the method for manufacturing the heat pipe 10, the hydrophobic film 3 is laminated on the inner surface 1 a of the passage 1, and the hydrophilic film 4 is formed on the hydrophobic film 3. Thereafter, the hydrophobic film 3 and the hydrophilic film 4 are cut along the outer edge of the downstream end of the passage 1 so that the step surface 6a is formed. Through these manufacturing steps, it is possible to form the cutting portion 6 in which the hydrophobic film 3 is exposed at the outer edge on the downstream side of the passage 1 while leaving the hydrophilic film 4 formed on the inner surface 1a of the passage 1 as it is. Thereby, the channel | path formation member 7 in which the wetting spread of the liquid refrigerant in the downstream end of the channel | path 1 was suppressed can be manufactured. Moreover, since the heat pipe 10 is manufactured using the passage forming member 7, the transportability and circulation of the refrigerant can be improved as compared with the conventional heat pipe 10, and the heat transport efficiency can be improved. it can.

(8)上記のヒートパイプ10の製造方法では、通路1の下流端外縁を切削する前に、親水膜4の上にレジストマスク5(保護層)が形成される。これにより、切削される部位と切削されない部位との境界をレジストマスク5の端辺で設定することが可能となる。例えば、図8(b)に示すように、段差面6aと通路1の内面1aとの交差位置をレジストマスク5の先端位置5aで設定することができる。したがって、切削部6の切削精度を向上させることができる。   (8) In the manufacturing method of the heat pipe 10 described above, the resist mask 5 (protective layer) is formed on the hydrophilic film 4 before cutting the outer edge of the downstream end of the passage 1. Thereby, the boundary between the part to be cut and the part not to be cut can be set by the end side of the resist mask 5. For example, as shown in FIG. 8B, the intersection position between the step surface 6 a and the inner surface 1 a of the passage 1 can be set at the tip position 5 a of the resist mask 5. Therefore, the cutting accuracy of the cutting part 6 can be improved.

(9)上記のヒートパイプ10の製造方法では、通路1の端面1bからレジストマスク5の先端位置5aまでの距離が、疎水膜3の膜厚T1と親水膜4の膜厚T2との加算値(T1+T2)未満の値に設定される。これにより、切削される部位(切削部6)の幅Wを加算値(T1+T2)未満とすることができる。したがって、切削部6の高さHの大小に関わらず、段差面6aの表面に基材2が露出することを防止することができる。つまり、段差面6aの表面に疎水膜3を露出させることができ、段差面6aへの液体冷媒の濡れ広がりを抑制することができる。 (9) In the manufacturing method of the heat pipe 10 described above, from the end face 1b of the passage 1 the distance to the tip position 5a of the resist mask 5, the thickness T 2 of the film thickness T 1 and the hydrophilic film 4 of the hydrophobic film 3 It is set to a value less than the addition value (T 1 + T 2 ). Thereby, the width W of the part to be cut (cutting part 6) can be made smaller than the added value (T 1 + T 2 ). Therefore, the base material 2 can be prevented from being exposed on the surface of the step surface 6a regardless of the height H of the cutting portion 6. That is, the hydrophobic film 3 can be exposed on the surface of the step surface 6a, and wetting and spreading of the liquid refrigerant on the step surface 6a can be suppressed.

(10)上記のヒートパイプ10の製造方法では、通路1の下流端外縁に沿って疎水膜3,親水膜4を切削する際の切削深さ(切削部6の高さH)が、上記の加算値(T1+T2)未満とされる。これにより、切削部6の幅Wの大小に関わらず、拡張面6bの表面に基材2が露出することを防止することができる。つまり、拡張面6bの表面に疎水膜3を露出させることができ、拡張面6bへの液体冷媒の濡れ広がりを抑制することができる。 (10) In the manufacturing method of the heat pipe 10 described above, the cutting depth (height H of the cutting portion 6) when cutting the hydrophobic film 3 and the hydrophilic film 4 along the outer edge of the downstream end of the passage 1 is as described above. Less than the added value (T 1 + T 2 ). Thereby, irrespective of the size of the width W of the cutting part 6, it can prevent that the base material 2 is exposed to the surface of the extended surface 6b. That is, the hydrophobic film 3 can be exposed on the surface of the extended surface 6b, and wetting and spreading of the liquid refrigerant to the extended surface 6b can be suppressed.

(11)上記のヒートパイプ10の製造方法において、レジストマスク5としてDFRを使用した場合には、フォトレジストの現像処理を施すことで容易にレジストマスク5形成することができる。一方、フォトレジストの剥離処理を施すことで容易にレジストマスク5を除去することができる。
例えば、図6に示すように、切削部6の形成前にレジストマスク5を形成し、切削部6の形成後にそのレジストマスク5を除去することができる。このように保護層の形成及び除去が容易なDFRを用いることで、親水膜4を一時的に保護することができる。したがって、通路形成部材7の加工性,施工性を向上させることができ、ひいてはヒートパイプ10の生産性を向上させることができる。
(11) In the manufacturing method of the heat pipe 10 described above, when DFR is used as the resist mask 5, the resist mask 5 can be easily formed by performing development processing of the photoresist. On the other hand, the resist mask 5 can be easily removed by performing a photoresist peeling process.
For example, as shown in FIG. 6, the resist mask 5 can be formed before the cutting portion 6 is formed, and the resist mask 5 can be removed after the cutting portion 6 is formed. Thus, the hydrophilic film | membrane 4 can be temporarily protected by using DFR with which formation and removal of a protective layer are easy. Therefore, the workability and workability of the passage forming member 7 can be improved, and as a result, the productivity of the heat pipe 10 can be improved.

[6.変形例]
開示の実施形態の一例に関わらず、本実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。本実施形態の各構成及び各処理は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。
[6. Modified example]
Regardless of an example of the disclosed embodiment, various modifications can be made without departing from the spirit of the present embodiment. Each structure and each process of this embodiment can be selected as needed, or may be combined suitably.

上述の実施形態では、切削部6の段差面6aが通路1の内面1aに対して垂直な平面状に形成されたものを例示したが、段差面6aの形状,面勾配,曲率等はこれに限定されない。切削部6の拡張面6bについても同様である。
例えば、図11(a)に示すように、内面1aに対する垂直断面において、段差面6aと内面1aとのなす角を鋭角に形成してもよいし、これとは反対に、鈍角に形成してもよい。また、図11(b)に示すように、拡張面6bと端面1bとのなす角を鋭角に形成してもよいし、反対に鈍角に形成してもよい。なお、上記のイオンミリング装置16を用いて切削部6を切削形成する場合には、通路形成部材7の回転軸の向きを法線Kとは異なる向きに変更することで切削方向を調節可能である。
In the above-described embodiment, the step surface 6a of the cutting portion 6 is exemplified as a plane that is perpendicular to the inner surface 1a of the passage 1. However, the shape, surface gradient, curvature, etc. of the step surface 6a are shown here. It is not limited. The same applies to the extended surface 6b of the cutting part 6.
For example, as shown in FIG. 11 (a), in the cross section perpendicular to the inner surface 1a, the angle formed by the step surface 6a and the inner surface 1a may be formed at an acute angle, or conversely, it may be formed at an obtuse angle. Also good. Moreover, as shown in FIG.11 (b), the angle | corner which the extended surface 6b and the end surface 1b make may be formed in an acute angle, and you may form in an obtuse angle on the contrary. When the cutting part 6 is formed by cutting using the ion milling device 16, the cutting direction can be adjusted by changing the direction of the rotation axis of the passage forming member 7 to a direction different from the normal line K. is there.

また、上述の実施形態では、切削部6の段差面6aと拡張面6bとが略垂直に交差したものを例示したが、これらの面は明確に分離されていなくてもよい。すなわち、図11(c)に示すように、段差面6aと拡張面6bとが屈曲面で接続された形状であってもよい。また、図11(d)に示すように、拡張面6bが段差面6aと略同一平面状に形成されてもよい。つまり、拡張面6bは省略することができ、少なくとも段差面6aが拡幅部6に形成されていればよい。   In the above-described embodiment, the step surface 6a and the extended surface 6b of the cutting portion 6 are illustrated as intersecting substantially vertically, but these surfaces may not be clearly separated. That is, as shown in FIG. 11C, the step surface 6a and the extended surface 6b may be connected by a bent surface. Moreover, as shown in FIG.11 (d), the expansion surface 6b may be formed in substantially the same planar shape as the level | step difference surface 6a. That is, the extended surface 6 b can be omitted, and at least the step surface 6 a only needs to be formed in the widened portion 6.

また、上述の実施形態では、イオンミリング装置16を使って切削部6を形成する手法を示した。一方、これ以外の物理的な切削手法としては、単結晶ダイヤモンドやナノ多結晶ダイヤモンドで形成された切削工具によるマイクロ切削,マイクロ研削等が適用可能である。あるいは、マイクロ放電加工,マイクロレーザー加工等を適用してもよい。段差面6a,拡張面6bの面形状は、加工方法によって種々考えられるが、例えば図11(e)に示すように、曲面状や凹凸面状であってもよい。なお、前述の通り、切削部6の形成手法は切削によるものに限定されない。例えば、化学的に分解,除去する手法を適用してもよいし、疎水膜3の形状を成形することによって切削部6を形作ってもよい。   Moreover, in the above-mentioned embodiment, the method of forming the cutting part 6 using the ion milling apparatus 16 was shown. On the other hand, as other physical cutting methods, micro cutting, micro grinding, and the like using a cutting tool formed of single crystal diamond or nano-polycrystalline diamond can be applied. Alternatively, micro electric discharge machining, micro laser machining, or the like may be applied. Various surface shapes of the step surface 6a and the extended surface 6b are conceivable depending on the processing method. For example, as shown in FIG. 11E, a curved surface shape or an uneven surface shape may be used. Note that, as described above, the method for forming the cutting portion 6 is not limited to cutting. For example, a method of chemically decomposing and removing may be applied, or the cutting portion 6 may be formed by shaping the shape of the hydrophobic film 3.

[7.付記]
以上の実施例及び変形例に関し、さらに以下の付記を開示する。
(付記1)
内部を流れる冷媒の気液相変化により外部から吸熱する通路と、
前記通路の下流端外縁に沿って前記通路を拡幅してなり、疎水性を有する拡幅部と、
前記拡幅部の一部をなし前記通路の内面と交差する面状に形成された段差面と、
親水性を有し、前記通路の内面と前記段差面との交差線よりも上流側における前記通路の内面を被覆する親水膜と、
を備えたことを特徴とする、ヒートパイプ。
[7. Addendum]
The following additional notes are disclosed with respect to the above-described embodiments and modifications.
(Appendix 1)
A passage that absorbs heat from the outside by a gas-liquid phase change of the refrigerant flowing inside,
Widening the passage along the outer edge of the downstream end of the passage, a widened portion having hydrophobicity,
A stepped surface formed in a plane that forms part of the widened portion and intersects the inner surface of the passage;
A hydrophilic film that has hydrophilicity and covers the inner surface of the passage on the upstream side of the intersection line between the inner surface of the passage and the step surface;
A heat pipe characterized by comprising:

(付記2)
前記疎水性の部位が、前記拡幅部の内面から、前記通路の内面における前記親水膜の下層にわたって形成される
ことを特徴とする、付記1記載のヒートパイプ。
(Appendix 2)
The heat pipe according to claim 1, wherein the hydrophobic portion is formed from an inner surface of the widened portion to a lower layer of the hydrophilic film on the inner surface of the passage.

(付記3)
前記通路の幅方向についての前記段差面の寸法が、前記親水膜の厚みと前記疎水性の部位の厚みとを加算した値未満である
ことを特徴とする、付記1又は2記載のヒートパイプ。
(Appendix 3)
The heat pipe according to appendix 1 or 2, wherein a dimension of the step surface in the width direction of the passage is less than a value obtained by adding a thickness of the hydrophilic film and a thickness of the hydrophobic portion.

(付記4)
前記通路の流路方向についての前記拡幅部の寸法が、前記親水膜の厚みと前記疎水性の部位の厚みとを加算した値未満である
ことを特徴とする、付記1〜3の何れか1項に記載のヒートパイプ。
(Appendix 4)
Any one of appendices 1 to 3, wherein the dimension of the widened portion in the flow path direction of the passage is less than the sum of the thickness of the hydrophilic film and the thickness of the hydrophobic portion. The heat pipe according to item.

(付記5)
内部を流れる冷媒の気液相変化により外部から吸熱する通路を備えたヒートパイプの製造方法において、
前記通路の内部に疎水性を持つ疎水膜を積層し、
前記通路の内部における前記疎水膜の上に親水性を持つ親水膜を積層し、
前記通路の内面と交差する面状の段差面が形成されるように、前記通路の下流端外縁に沿って前記通路を拡幅する方向に向かって前記親水膜及び前記疎水膜の一部を除去する
ことを特徴とする、ヒートパイプの製造方法。
(Appendix 5)
In the manufacturing method of the heat pipe provided with a passage that absorbs heat from the outside by the gas-liquid phase change of the refrigerant flowing inside,
Laminating a hydrophobic membrane having hydrophobicity inside the passage,
Laminating a hydrophilic film having hydrophilicity on the hydrophobic film inside the passage,
The hydrophilic film and a part of the hydrophobic film are removed in the direction of widening the passage along the outer edge of the downstream end of the passage so that a planar stepped surface intersecting the inner surface of the passage is formed. A method for manufacturing a heat pipe.

(付記6)
前記親水膜及び前記疎水膜を除去する前に、前記親水膜を保護する保護層で前記親水膜の表面を被覆する
ことを特徴とする、付記5記載のヒートパイプの製造方法。
(Appendix 6)
The method for producing a heat pipe according to appendix 5, wherein the surface of the hydrophilic film is covered with a protective layer for protecting the hydrophilic film before the hydrophilic film and the hydrophobic film are removed.

(付記7)
前記通路の下流端外縁から前記保護層の端辺までの距離が、前記疎水膜の厚みと前記親水膜の厚みとを加算した値未満となるように、前記保護層を被覆する
ことを特徴とする、付記6記載のヒートパイプの製造方法。
(Appendix 7)
The protective layer is covered so that the distance from the outer edge of the downstream end of the passage to the edge of the protective layer is less than the sum of the thickness of the hydrophobic film and the thickness of the hydrophilic film. The manufacturing method of the heat pipe of Additional remark 6.

(付記8)
前記親水膜の表面からの除去深さが、前記疎水膜の厚みと前記親水膜の厚みとを加算した値未満となるように、前記親水膜及び前記疎水膜を除去する
ことを特徴とする、付記5〜7の何れか1項に記載のヒートパイプの製造方法。
(Appendix 8)
The hydrophilic film and the hydrophobic film are removed so that the removal depth from the surface of the hydrophilic film is less than the sum of the thickness of the hydrophobic film and the thickness of the hydrophilic film, The method for manufacturing a heat pipe according to any one of appendices 5 to 7.

(付記9)
前記保護層としてフォトレジストを使用するとともに、
前記親水膜及び前記疎水膜を除去した後に前記フォトレジストを除去する
ことを特徴とする、付記5〜8の何れか1項に記載のヒートパイプの製造方法。
(Appendix 9)
While using a photoresist as the protective layer,
The method for manufacturing a heat pipe according to any one of appendices 5 to 8, wherein the photoresist is removed after removing the hydrophilic film and the hydrophobic film.

1 通路
1a 内面
1b 端面
3 疎水膜
4 親水膜
5 レジストマスク(保護層)
6 切削部(拡幅部)
6a 段差面
6b 拡張面
7 通路形成部材
10 ヒートパイプ
DESCRIPTION OF SYMBOLS 1 Passage 1a Inner surface 1b End surface 3 Hydrophobic film 4 Hydrophilic film 5 Resist mask (protective layer)
6 Cutting part (widening part)
6a Step surface 6b Expansion surface 7 Passage forming member 10 Heat pipe

Claims (6)

内部を流れる冷媒の気液相変化により外部から吸熱する通路と、
前記通路の下流端外縁に沿って前記通路を拡幅してなり、内面が疎水性を有する拡幅部と、
前記拡幅部の一部をなし前記通路の内面と交差する面状に形成された段差面と、
親水性を有し、前記通路の内面と前記段差面との交差線よりも上流側における前記通路の内面を被覆する親水膜と
を備えたことを特徴とする、ヒートパイプ。
A passage that absorbs heat from the outside by a gas-liquid phase change of the refrigerant flowing inside,
Widening the passage along the outer edge of the downstream end of the passage, the widened portion whose inner surface is hydrophobic,
A stepped surface formed in a plane that forms part of the widened portion and intersects the inner surface of the passage;
A heat pipe having a hydrophilic property and having a hydrophilic film covering the inner surface of the passage on the upstream side of the intersection line between the inner surface of the passage and the step surface.
前記疎水性の部位が、前記拡幅部の内面から、前記通路の内面における前記親水膜の下層にわたって形成される
ことを特徴とする、請求項1記載のヒートパイプ。
The heat pipe according to claim 1, wherein the hydrophobic portion is formed from an inner surface of the widened portion to a lower layer of the hydrophilic film on the inner surface of the passage.
前記通路の幅方向についての前記段差面の寸法が、前記親水膜の厚みと前記疎水性の部位の厚みとを加算した値未満である
ことを特徴とする、請求項1又は2記載のヒートパイプ。
3. The heat pipe according to claim 1, wherein a dimension of the step surface in the width direction of the passage is less than a value obtained by adding a thickness of the hydrophilic film and a thickness of the hydrophobic portion. .
前記通路の流路方向についての前記拡幅部の寸法が、前記親水膜の厚みと前記疎水性の部位の厚みとを加算した値未満である
ことを特徴とする、請求項1〜3の何れか1項に記載のヒートパイプ。
The dimension of the said widening part about the flow direction of the said channel | path is less than the value which added the thickness of the said hydrophilic film, and the thickness of the said hydrophobic part, The any one of Claims 1-3 characterized by the above-mentioned. The heat pipe according to item 1.
内部を流れる冷媒の気液相変化により外部から吸熱する通路を備えたヒートパイプの製造方法において、
前記通路の内部に疎水性を持つ疎水膜を積層し、
前記通路の内部における前記疎水膜の上に親水性を持つ親水膜を積層し、
前記通路の内面と交差する面状の段差面が形成されるように、前記通路の下流端外縁に沿って前記通路を拡幅する方向に向かって前記親水膜及び前記疎水膜の一部を除去する
ことを特徴とする、ヒートパイプの製造方法。
In the manufacturing method of the heat pipe provided with a passage that absorbs heat from the outside by the gas-liquid phase change of the refrigerant flowing inside,
Laminating a hydrophobic membrane having hydrophobicity inside the passage,
Laminating a hydrophilic film having hydrophilicity on the hydrophobic film inside the passage,
The hydrophilic film and a part of the hydrophobic film are removed in the direction of widening the passage along the outer edge of the downstream end of the passage so that a planar stepped surface intersecting the inner surface of the passage is formed. A method for manufacturing a heat pipe.
前記親水膜及び前記疎水膜を除去する前に、前記親水膜を保護する保護層で前記親水膜の表面を被覆する
ことを特徴とする、請求項5記載のヒートパイプの製造方法。
6. The method of manufacturing a heat pipe according to claim 5, wherein the surface of the hydrophilic film is covered with a protective layer that protects the hydrophilic film before removing the hydrophilic film and the hydrophobic film.
JP2013192891A 2013-09-18 2013-09-18 Heat pipe and heat pipe manufacturing method Active JP6183090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192891A JP6183090B2 (en) 2013-09-18 2013-09-18 Heat pipe and heat pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192891A JP6183090B2 (en) 2013-09-18 2013-09-18 Heat pipe and heat pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2015059683A true JP2015059683A (en) 2015-03-30
JP6183090B2 JP6183090B2 (en) 2017-08-23

Family

ID=52817358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192891A Active JP6183090B2 (en) 2013-09-18 2013-09-18 Heat pipe and heat pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP6183090B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043442A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cooling device and electronic equipment using same
JP2020153620A (en) * 2019-03-22 2020-09-24 三菱重工業株式会社 Cooling device
WO2020226115A1 (en) * 2019-05-09 2020-11-12 国立大学法人九州大学 Heat-transfer member and cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044990A (en) * 2002-07-15 2004-02-12 Sony Corp Cooling device, and method of manufacturing electronic device and cooling device
JP2004044916A (en) * 2002-07-11 2004-02-12 Sony Corp Heat transport device
JP2006526128A (en) * 2003-05-31 2006-11-16 アイキュリ ラボ ホールディングズ リミテッド Thin plate type cooling device that prevents dryout
JP2008039378A (en) * 2006-07-14 2008-02-21 Central Glass Co Ltd Heat pipe
JP2011237156A (en) * 2010-05-13 2011-11-24 Fujikura Ltd Vibration type heat pipe
US8235096B1 (en) * 2009-04-07 2012-08-07 University Of Central Florida Research Foundation, Inc. Hydrophilic particle enhanced phase change-based heat exchange

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044916A (en) * 2002-07-11 2004-02-12 Sony Corp Heat transport device
JP2004044990A (en) * 2002-07-15 2004-02-12 Sony Corp Cooling device, and method of manufacturing electronic device and cooling device
JP2006526128A (en) * 2003-05-31 2006-11-16 アイキュリ ラボ ホールディングズ リミテッド Thin plate type cooling device that prevents dryout
JP2008039378A (en) * 2006-07-14 2008-02-21 Central Glass Co Ltd Heat pipe
US8235096B1 (en) * 2009-04-07 2012-08-07 University Of Central Florida Research Foundation, Inc. Hydrophilic particle enhanced phase change-based heat exchange
JP2011237156A (en) * 2010-05-13 2011-11-24 Fujikura Ltd Vibration type heat pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043442A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cooling device and electronic equipment using same
JPWO2018043442A1 (en) * 2016-08-30 2019-06-24 パナソニックIpマネジメント株式会社 Cooling device and electronic device using the same
US10349556B2 (en) 2016-08-30 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Cooling device and electronic device using same
JP2020153620A (en) * 2019-03-22 2020-09-24 三菱重工業株式会社 Cooling device
JP7263073B2 (en) 2019-03-22 2023-04-24 三菱重工業株式会社 Cooling system
WO2020226115A1 (en) * 2019-05-09 2020-11-12 国立大学法人九州大学 Heat-transfer member and cooling system
CN113597673A (en) * 2019-05-09 2021-11-02 国立大学法人九州大学 Heat transfer member and cooling system

Also Published As

Publication number Publication date
JP6183090B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
KR101316469B1 (en) Apparatus and method for etching mold
JP6183090B2 (en) Heat pipe and heat pipe manufacturing method
KR101852910B1 (en) Fabrication Method of Mold for Microneedle
US7760435B2 (en) Method of fabricating tridimensional micro- and nanostructures as well as optical element assembly having a tridimensional convex structure obtained by the method
US10359609B2 (en) Spacer wafer for wafer-level camera and method for manufacturing same
WO2005074052A1 (en) Method for fabricating piezoelectric element
US8007695B2 (en) Method of fabricating small dimensioned lens elements and lens arrays using surface tension effects
JP2016122782A (en) Method of manufacturing substrate, mask blank, and imprint mold
JP2009139545A (en) Optical film, and method for manufacturing optical film
JP2009223310A (en) Method of producing endless pattern, method of manufacturing resin pattern molding, endless molding, resin pattern molding, and optical element
KR20160146614A (en) Thin flat heat pipe
KR101686709B1 (en) Thin flat heat pipe having micro scale surface roughness and the method thereof
Yang et al. The fabrication of integrated and three-layer SU-8 nozzles for electrohydrodynamic printing
Qiu et al. Multiscale Micro/Nanostructured Heat Spreaders for Thermal Management of Power Electronics
JP2019145578A (en) Blank backing material, imprint mold, manufacturing method of imprint mold and imprint method
CN113825365B (en) Layered micro-nano composite structure for enhancing boiling heat transfer and processing method thereof
TW201841063A (en) Configuring optical layers in imprint lithography processes
JP7061895B2 (en) Manufacturing method of imprint mold substrate, mask blank and imprint mold
US8735024B2 (en) Non-planar lithography mask and system and methods
TW594387B (en) Method for fabricating three dimensional photoresist structure
Du et al. Fabrication of high-aspect-ratio stepped Cu microcolumn array using UV-LIGA technology
Hogue An Experimental Study of Enhanced Thermal Conductivity Utilizing Columnated Silicon Microevaporators for Convective Boiling Heat Transfer at the Microscale
TW202127571A (en) Method of manufacturing a substrate support for a lithographic apparatus, substrate table, lithographic apparatus, device manufacturing method, method of use
CN117555205A (en) Photoetching method and photoetching system
Li et al. Thickness management in three-dimensional laser manufacturing of suspended structures in a single SU-8 layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6183090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150