WO2017082127A1 - Electronic equipment cooling device - Google Patents

Electronic equipment cooling device Download PDF

Info

Publication number
WO2017082127A1
WO2017082127A1 PCT/JP2016/082509 JP2016082509W WO2017082127A1 WO 2017082127 A1 WO2017082127 A1 WO 2017082127A1 JP 2016082509 W JP2016082509 W JP 2016082509W WO 2017082127 A1 WO2017082127 A1 WO 2017082127A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling
outlet
liquid
fine flow
refrigerant
Prior art date
Application number
PCT/JP2016/082509
Other languages
French (fr)
Japanese (ja)
Inventor
松田 和也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017082127A1 publication Critical patent/WO2017082127A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device for an electronic apparatus having therein a semiconductor device which is a high heat generating element such as a central processing unit (CPU) or a power conversion element.
  • a semiconductor device which is a high heat generating element such as a central processing unit (CPU) or a power conversion element.
  • a cooling device for a power converter that uses air or water as a refrigerant and uses a sensible heat difference (temperature difference) of the refrigerant.
  • a cooling device using the sensible heat difference of the refrigerant a refrigerant having a low temperature up to the part of the electronic device that generates heat by using external power such as a fan or a pump or natural convection for transporting the refrigerant.
  • the electronic equipment is cooled by exchanging heat and exchanging heat with the high-temperature electronic equipment generating heat.
  • the cooling device using sensible heat has a problem of insufficient cooling capacity and an increase in the size of the cooling device. For this reason, in recent years, a cooling device that has a higher cooling capacity and uses latent heat at the time of phase change of the refrigerant has been used.
  • latent heat is larger than sensible heat, and since there is no temperature rise during phase change, a large amount of heat can be transferred from the heating element to the refrigerant even if the temperature difference between the refrigerant and the heating element is small. High efficiency can be achieved.
  • Patent Document 1 JP 2011-47616 A
  • the refrigerant in the heat receiving jacket, the refrigerant is vaporized by exchanging heat with the heating element, and flows to the condenser via the header provided above, and the vaporized refrigerant is condensed again by this condenser.
  • a gravity-type cooling system for electronic devices is described that is configured to return to the heat receiving jacket via a liquid return pipe by the gravity of the condensed liquid refrigerant.
  • Patent Document 2 Another conventional cooling device using latent heat is described in Japanese Patent Application Laid-Open No. 2004-190976 (Patent Document 2).
  • Patent Document 2 an electronic device that circulates a refrigerant by using a capillary wick structure provided with a wick structure that generates a capillary force without using the gravity of the liquid refrigerant to circulate the refrigerant.
  • a cooling device is described.
  • the condenser In the gravity-type cooling device that circulates the refrigerant by the gravity of the liquid refrigerant as described in the above-mentioned Patent Document 1, in order to circulate the refrigerant, the condenser is compared with the liquid level of the liquid refrigerant in the heat receiving jacket.
  • the liquid height of the liquid refrigerant in must be increased. That is, the liquid refrigerant condensed in the condenser flows into the heat receiving jacket, vaporizes, and the liquid level in the condenser is the liquid loss in the heat receiving jacket by the pressure loss necessary for returning to the condenser again. It must be higher than the liquid level of the refrigerant. For this reason, the cooling device of an electronic device has the subject to enlarge in a height direction.
  • the wick has a two-phase flow in which the liquid refrigerant and the vaporized refrigerant coexist. For this reason, the pressure loss by a flow becomes large in the wick, and as a result, the flow of the refrigerant is hindered and there is a problem that the heat transfer capability is lowered.
  • An object of the present invention is to obtain a cooling device for an electronic device that can circulate a refrigerant with a small pressure loss while utilizing a capillary force and that is small in size and has a high cooling capacity.
  • the present invention vaporizes the liquid refrigerant sealed inside to cool the heating element, condenses the boiling part having a boiling part outlet through which the vaporized gas refrigerant flows, and the vaporized refrigerant.
  • a condensing unit a liquid storage unit that is provided around the boiling unit and stores the liquid refrigerant condensed in the condensing unit, a gas pipe connecting the boiling unit outlet and the upper inlet of the condensing unit, and the condensing unit
  • a liquid pipe that connects the lower part of the liquid part and the liquid reservoir part, and the boiling part is provided with a plurality of fine flow paths that connect the liquid reservoir part and the boiling part outlet, and the fine flow path Is configured to be inclined so that the outlet side is higher than the inlet side, and the liquid refrigerant in the liquid reservoir is configured to rise in the fine flow path by the capillary force of the fine flow path. It is in the cooling device for electronic equipment.
  • liquid refrigerant sealed inside is vaporized to cool the heating element, and the boiling part has a boiling part outlet through which the vaporized gas refrigerant flows out, and the condensing part condenses the vaporized refrigerant.
  • a liquid reservoir portion that is provided around the boiling portion and stores the liquid refrigerant condensed in the condensing portion; a gas pipe that connects the boiling portion outlet and the upper inlet of the condensing portion; and a lower portion of the condensing portion
  • a liquid pipe connecting the liquid reservoir, the boiling portion is provided with a plurality of fine flow paths connecting the liquid reservoir and the outlet of the boiling portion, and the fine flow path is Cooling of electronic equipment configured to have a continuous shape with a constant flow path area from the inlet side to the outlet side, and to allow the liquid refrigerant in the liquid reservoir to flow into the fine flow path by the capillary force of the fine flow path In the device.
  • the present invention it is possible to circulate the refrigerant with a small pressure loss while utilizing the capillary force, and to obtain an electronic device cooling apparatus having a small size and a high cooling capacity.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is the A section enlarged view of FIG. It is sectional drawing explaining the flow of the refrigerant
  • Example 8 is a plan cross-sectional view showing the boiling portion and the liquid reservoir shown in FIG. 7, and shows a cross section along the portion of the fine passage. It is a side view of the boiling part explaining Example 3 of this invention. It is a perspective view of the cooling device of the electronic device which shows Example 4 of this invention.
  • FIG. 1 is a perspective view of a cooling apparatus for an electronic apparatus according to the first embodiment.
  • the cooling device 1 includes a boiling unit 2, a condensing unit 3, a liquid storage unit 4, a liquid pipe 5, a gas pipe 6, and the like.
  • Arrow g is the direction of gravity.
  • the boiling section 2 is connected to the liquid reservoir section 4 and the gas pipe 6 so that the refrigerant can flow while the inside is sealed.
  • the heat generating element 7 is thermally connected to the heat generating element 7 such as a semiconductor element, and the heat generated by the heat generating element 7 is transmitted to the refrigerant flowing through the boiling portion 2 to cool the heat generating element 7. ing.
  • the gas pipe 6 is connected to the boiling unit 2 and the condensing unit 3 so that the refrigerant can flow in a sealed state.
  • the gas pipe 6 preferably has a larger pipe diameter than the liquid pipe 5 because the refrigerant that has been vaporized and expanded by boiling mainly flows inside the gas pipe 6.
  • the gas pipe 6 is a circular pipe, but other pipe shapes such as an elliptical pipe or a square pipe may be used.
  • the condensing unit 3 is connected to the gas pipe 6 and the liquid pipe 5 so that the refrigerant can flow in a state where the inside is sealed.
  • the gas refrigerant flowing from the gas pipe 6 is recondensed. Therefore, the material of the condensing part 3 should have a high thermal conductivity, and is made of, for example, copper or aluminum.
  • the liquid pipe 5 is connected to the condensing unit 3 and the liquid storage unit 4 and can flow the refrigerant in a state where the inside is sealed.
  • the liquid pipe 5 is connected horizontally from the condensing part 3 to the liquid storage part 4, but may be connected obliquely.
  • the gravity of the liquid refrigerant can be used for transporting the liquid refrigerant.
  • the liquid can be sent to the liquid reservoir 4 more smoothly.
  • the cross-sectional shape of the liquid pipe 5 is a circular pipe, similar to the gas pipe 6, but is not limited to a circular pipe, and may be other pipe shapes such as an elliptical pipe or a square pipe. Also good.
  • the liquid reservoir 4 is connected to the liquid pipe 5 and the boiling part 2 so that the refrigerant can flow in a state where the inside is sealed.
  • the liquid reservoir 4 stores liquid refrigerant recondensed in the condensing unit 3.
  • the heating element 7 is a CPU, a power conversion element or the like and serves as a heat source.
  • the heating element 7 is thermally connected to the boiling part 2, and heat generated by the heating element 7 is transmitted to the boiling part 2. That is, the heating element 7 and the boiling part 2 are in direct contact with each other or are connected via a sheet or grease having a high thermal conductivity, and further, the heating element 7 is connected by a screw (not shown) or the like. Since the cooling device 1 is fixed to the surroundings, heat resistance can be reduced and heat can be efficiently transferred to the cooling device 1.
  • a coolant is injected into the cooling device 1 from a coolant inlet (not shown). Thereafter, the pressure inside the cooling device 1 is adjusted to a predetermined pressure, and the refrigerant inlet is sealed. Since the temperature at which the refrigerant evaporates is determined by the type of refrigerant and the saturated vapor pressure, after the refrigerant inlet is sealed so that the saturated vapor pressure inside the cooling device 1 does not change, the outside air and the refrigerant are brought into the cooling device 1. It is necessary to prevent transmission. For this reason, the material of the part through which the refrigerant flows in the cooling device 1 is preferably a metal material with a small gas permeation. Moreover, the refrigerant
  • coolant should just be a thing which a gas-liquid phase change occurs at the use temperature of the said heat generating body 7, and the pressure-reduced water and a fluorocarbon refrigerant are suitable.
  • FIGS. 2 is a cross-sectional plan view showing the boiling section 2 and the liquid reservoir 4 shown in FIG. 1, showing a cross section along the portion of the fine passage 22, and
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is an enlarged view of part A of FIG.
  • the boiling part 2 includes a disk-shaped member 2a, a boiling part outlet (center of the boiling part) 21 provided at the center upper part of the disk-shaped member 2a, and the disk-shaped member.
  • a plurality of fine flow paths 22 provided radially from the outer peripheral side of the disk-shaped member 2 a toward the boiling part outlet 21 are provided.
  • the fine channel 22 is configured in a continuous shape having a constant channel area from the inlet side to the outlet side, that is, a shape that is not intermittent.
  • a liquid reservoir 4 formed in an annular shape is provided along the outer peripheral side of the disk-shaped member 2a.
  • the liquid reservoir 4 is formed in an annular member 4a provided along the outer periphery of the disk-shaped member 2a, and the liquid refrigerant flowing from the liquid pipe 5 is stored. Therefore, the fine flow path 22 is provided so as to connect the liquid reservoir 4 and the boiling part outlet 21, and the liquid refrigerant in the liquid reservoir 4 is made fine by the capillary force of the fine passage 22. It is configured to flow into the passage 22.
  • the boiling part outlet 21 is disposed at a position higher than the liquid reservoir 4, and the fine channel 22 of the boiling part 2 has one end as shown in FIG. The side is open to the liquid reservoir 4 and the other end is open to the boiling part outlet 21. Therefore, the fine channel 22 is formed in an inclined structure so as to rise from the liquid reservoir 4 provided on the outer peripheral side toward the boiling part outlet 21. Further, as shown in FIG. 2, a large number of the fine flow paths 22 are formed in the circumferential direction of the disk-like member 2 a, and the many fine flow paths 22 are joined at the boiling portion center 21. Yes.
  • the said boiling part exit 21 is connected with the said gas piping 6 (refer FIG. 1).
  • the fine channel 22 is formed so that the outlet side is higher than the inlet side.
  • the inlet side of the fine channel 22 is connected to the liquid reservoir 4 and is made of liquid refrigerant. be satisfied.
  • the liquid refrigerant on the inlet side of the fine channel 22 flows to the outlet 221 of the fine channel 22 by capillary force as shown in FIG. Since the boiling part center 21 has a larger cross-sectional area than the fine flow path 22, the capillary force is reduced. Therefore, the liquid refrigerant is transported from the liquid reservoir 4 to the position of the outlet 221 of the fine channel.
  • the cross-sectional shape of the fine channel 22 is not limited as long as the liquid refrigerant can be transported by a capillary force, and is preferably square or circular in consideration of ease of manufacture.
  • 5 is a cross-sectional view for explaining the flow of the refrigerant when the fine flow path 22 shown in FIG. 3 is a square
  • FIG. 6 is a cross-sectional view for explaining the flow of the refrigerant when the fine flow path 22 shown in FIG. is there.
  • the flow state of the refrigerant flowing through the fine flow path 22 in each cross-sectional shape will be compared and described with reference to FIGS. 5 and 6.
  • the liquid refrigerant flowing in the fine flow path 22 is gasified by heat from the heating element 7 (see FIG. 3).
  • the inside of the fine flow path 22 is a two-phase flow of gasified gas refrigerant and non-gasified liquid refrigerant, and the gas refrigerant is a cross section of the fine flow path 22.
  • the liquid refrigerant flows in the form of a film around the outer periphery.
  • the cross-sectional shape of the fine channel 22 is a quadrangle
  • the liquid refrigerant has a large film thickness near the corners of the quadrangle indicated by arrows in FIG.
  • the upper two corners and the lower two corners are configured to be at the same height position. You may comprise so that it may arrange
  • angular part may become the lowest part.
  • the cross section of the fine channel 22 when the cross section of the fine channel 22 is circular, the liquid refrigerant is distributed around the gas refrigerant with a substantially uniform thickness. Therefore, when the fine flow path 22 is formed in a circular shape, the heat from the heating element 7 can be uniformly transmitted to the liquid refrigerant from the entire outer periphery of the circular fine passage 22.
  • the material of the boiling part 2 since it is necessary to efficiently transfer the heat from the heating element 7 to the refrigerant, it is preferable to use a material having a high thermal conductivity such as copper or aluminum.
  • liquid refrigerant When liquid refrigerant is stored in the liquid reservoir 4, the liquid refrigerant flows from the liquid reservoir 4 into the microchannel 22 of the boiling unit 2 by capillary force, and further, the microchannel 22. The liquid refrigerant is accumulated up to the outlet 221 (see FIG. 4).
  • heat from the heating element 7 is transmitted to the boiling part 2 in a state where the liquid refrigerant is accumulated in the fine flow path 22, the fine flow path 22 is heated and the wall surface of the heated fine flow path 22 is heated. Heat is transferred from the liquid refrigerant to the liquid refrigerant.
  • the liquid refrigerant in the microchannel 22 boils and gasifies, and a large amount of gas slag (gas-liquid two-layer flow appears in the microchannel 22 as shown in FIGS. 5 and 6). Gas) is generated and flows as a slag flow.
  • the liquid refrigerant that has not boiled moves to the tube wall surface side of the fine flow path 22 to form a liquid film. Since the fine channel 22 is inclined in the height direction toward the boiling part outlet 21, the gas slag flows toward the boiling part outlet 21 by buoyancy.
  • the diameter is preferably 0.5 to 0.1 mm.
  • the hydraulic equivalent diameter may be 0.5 to 0.1 mm.
  • air having a temperature lower than the condensation temperature of the refrigerant is blown from the fan (not shown) to the condensing unit 3 in the direction of the arrow indicated by Air in FIG. Heat exchange is performed between the gas refrigerant and the air, and the gas refrigerant is cooled and condensed.
  • fins 31 are provided on the air side of the condensing unit 3 for the purpose of increasing the heat transfer area and the heat transfer coefficient.
  • the ventilation direction of the air by the fan is directed from the condensing unit 3 to the boiling unit 2, but the ventilation direction is appropriately changed according to the electronic device on which the cooling device 1 is mounted.
  • the condensing unit 3 is disposed on the back side of the paper with respect to the boiling unit 2, and the gas pipe 6 and the liquid pipe 5 are also configured to face the back side of the paper in FIG. The same effect can be obtained even if a fan is provided to ventilate the air.
  • the condensing unit 3 is cooled with external air.
  • the condensing unit 3 may be cooled with cold water, or may be cooled with a cold heat source such as a Peltier element or a refrigeration cycle.
  • the liquid refrigerant condensed in the condensing unit 3 flows from the lower part of the condensing unit 3 into the liquid storing unit 4 through the liquid pipe 5 and is stored again in the liquid storing unit 4. repeat.
  • the lower end of the condensing unit 3 is provided at a position higher than the upper end of the liquid storing unit 4 so that the liquid refrigerant smoothly flows from the condensing unit 3 to the liquid storing unit 4.
  • the material of the annular member 4a forming the liquid pipe 5 and the liquid reservoir 4 is such that the condensed liquid refrigerant is transferred to the liquid pipe 5 or the liquid reservoir by heat conduction from the outside air or the heating element 7.
  • a material having a relatively low thermal conductivity such as stainless steel.
  • the fine flow path 22 is formed in the boiling part 2 radially around the boiling part outlet 21, more fine flow paths 22 can be provided. This increases the capillary force for guiding the liquid refrigerant to the fine flow path. Accordingly, even when the amount of heat generated from the heating element 7 is large, the liquid refrigerant is filled in the fine flow path by the capillary force, and the heating element 7 can be cooled. From this point, the cooling capacity can be improved. .
  • the fine flow path 22 is inclined so as to rise from the liquid reservoir 4 toward the boiling part center 21, the buoyancy of the gas slag generated by boiling in the fine flow path 22, Naturally, the refrigerant can flow toward the gas pipe 6.
  • the pressure loss due to the flow of the refrigerant that is a gas-liquid two-phase flow can be greatly reduced as compared with a cooling device that circulates the refrigerant using capillary force as described in Patent Document 2 above.
  • the flow of the refrigerant is not hindered, and the effect of improving the heat transfer capability is also obtained.
  • the heat transfer to the refrigerant in the fine flow path 22 can be obtained by a heat transfer in a liquid film using a slag flow in addition to boiling, so that a cooling device for a small electronic device having a high cooling capacity can be obtained.
  • FIG. 7 is a perspective view of a cooling device for an electronic device showing the second embodiment, and FIG. FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different parts will be mainly described.
  • the shape of the boiling portion 2 having a plurality of fine flow paths 22 is not a circular shape as shown in the first embodiment, but a square shape. It is what you are doing.
  • the liquid reservoir 4 is also formed along the outer periphery of the boiling portion 2 so as to be square according to the shape of the square boiling portion 2. That is, the boiling part 2 includes a rectangular plate-like member 2b, a plurality of fine channels 22 formed in the rectangular plate-like member 2b, and a boiling part outlet (boiling) provided at the center of the plate-like member 2b. Part center) 21.
  • a square annular member 4a is provided around the square plate-like member 2b, and a liquid reservoir 4 is formed in the annular member 4a.
  • a large number of the fine flow paths 22 are provided radially from the outer peripheral side of the plate-like member 2b toward the boiling part outlet so as to connect the liquid reservoir 4 and the boiling part outlet 21.
  • the heating element 7 has a square shape
  • the entire boiling part 2 can be brought into contact with the rectangular heating element 7 in contact therewith.
  • the entire boiling portion 2 can be effectively used for cooling the heating element 7. That is, it is possible to further reduce the portion of the boiling portion 2 that does not contribute to the cooling of the heating element 7.
  • the flow path lengths of the fine flow paths 22 provided in the circumferential direction are different depending on the respective inlet positions. .
  • all the microchannels 22 provided in the circumferential direction have the same diameter (the same hydraulic equivalent diameter when the cross section of the microchannel is not circular), but the length of the microchannel 22 Accordingly, it is also possible to adjust the capillary force by changing the diameter of each fine channel 22 or the hydraulic equivalent diameter.
  • the shape of the boiling part 2 is also made square with respect to the general rectangular heating element 7, so that the heat transfer surface of the boiling part 2 can be used effectively, and highly efficient electrons. Equipment cooling devices can be obtained.
  • FIG. 9 is a side view of the boiling part 2 for explaining the third embodiment of the present invention, and the fine pipes 22 are indicated by broken lines. Also in the description of the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different parts will be mainly described.
  • FIG. 9 shows only the boiling part 2, but the other configuration is the same as that of the first embodiment.
  • the present Example 3 is the same as that of the said Example 1 in the point that the boiling part 2 is circular, and it is the same also in the point that many fine flow paths 22 are provided in the circumferential direction.
  • the third embodiment is different from the first embodiment in that two types of fine channels 22 formed in the boiling portion 2 are provided, that is, an upper layer fine channel 223 and a lower layer fine channel 224.
  • each fine channel 22 (223, 224) are equally spaced in the circumferential direction and the same height as shown in FIG. In the position. Further, the outlet side of the upper layer fine channel 223 opens to the position of the upper part 21a of the boiling part outlet 21, and the outlet side of the lower layer fine channel 224 opens to the position of the lower part 21b of the boiling part outlet 21. ing. Further, as shown in FIG. 9, the upper microchannel 223 and the lower microchannel 224 are alternately provided in the circumferential direction.
  • the upper microchannel 223 and the lower microchannel 224 have the same inlet height but different outlet heights. Therefore, the upper microchannel 223 and the lower microchannel 224 have a channel. Are different, and the upper fine flow path 223 is longer. In each fine channel 22, the liquid refrigerant must be filled to the outlet side, that is, to the boiling portion center 21 side by capillary force. Therefore, it is preferable to adjust the capillary force of the upper microchannel 223 to be larger by making the diameter of the upper microchannel 223 or the hydraulic equivalent diameter smaller than that of the lower microchannel 224.
  • the capillary force can be appropriately adjusted by changing the diameter of the fine flow path 22 or the hydraulic equivalent diameter as in the second embodiment.
  • the number of the microchannels 22 is increased, the space
  • the microchannel 22 is multi-layered into two layers of an upper layer microchannel 223 and a lower layer microchannel 224, so that the inlet side of each microchannel 22 overlaps the adjacent microchannel 22 with the adjacent one.
  • the number of fine channels can be increased.
  • the occurrence of the dry-out phenomenon can be prevented, and even when the amount of heat generated by the heating element 7 is large, it can be sufficiently cooled.
  • the microchannel 22 is provided with two types of the upper microchannel 223 and the lower microchannel 224 has been described.
  • the microchannel 22 has three or more layers in the vertical direction of the boiling portion outlet 21. Three or more kinds of fine flow paths may be provided in each.
  • Other configurations and effects are the same as those of the first embodiment.
  • FIG. 10 is a perspective view of the electronic apparatus cooling apparatus according to the fourth embodiment, and shows another example of the boiling unit 2. Also in the description of the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and different parts are mainly described.
  • Example 4 a plurality of boiling parts are provided, a boiling part outlet is provided at the center upper part of each boiling part, and a liquid reservoir is provided at a position lower than the boiling part outlet around the boiling part. A large number of fine flow paths are provided radially so as to connect these liquid reservoirs and the boiling part outlet.
  • the boiling part 2 is constituted by an upper boiling part 24 and a lower boiling part 25, and the heating element 7 is cooled by the two upper and lower boiling parts 24,25.
  • the boiling parts 24 and 25 are formed in a quadrangular shape, and the U-shaped liquid reservoir 4 (upper liquid reservoir 44, lower side) extends along the lower surface and the two side surfaces of the boiling parts 24 and 25.
  • a liquid reservoir 45) is provided.
  • an upper boiling portion outlet 21 ⁇ / b> A and a lower boiling portion outlet 21 ⁇ / b> B are provided at the center upper portions of the upper boiling portion 24 and the lower boiling portion 25 at positions higher than the liquid reservoir 4, respectively.
  • a large number of fine flow paths 22 are provided radially so as to connect the liquid reservoirs 44, 45 and the boiling part outlets 21A, 21B. That is, the fine flow paths 22 are provided radially so as to rise from the upper liquid reservoir 44 and the lower liquid reservoir 45 toward the gas pipe 6.
  • the liquid level of the liquid refrigerant condensed in the condensing unit 3 is the liquid pipe 5. It is configured to exist at least above the inner liquid level 51.
  • the heating element 7 and the boiling parts 24 and 25 are provided in a direction parallel to the direction of gravity indicated by the arrow g. Therefore, the refrigerant vaporized in the fine flow path 22 of each of the boiling parts 24 and 25 becomes a slag flow, and moves to the gas pipe 6 by receiving buoyancy in the direction opposite to gravity.
  • a phenomenon occurs in which the slag flow in which the refrigerant is vaporized flows backward to the inlet side of the microchannel 22.
  • the upper liquid reservoir 44 and the lower liquid reservoir 45 flow into the fine flow path 22 in the upper boiling portion 24 and the lower boiling portion 25.
  • the flow direction of the refrigerant is from the horizontal to the upper direction in any fine channel 22. Therefore, it is possible to prevent the slag flow generated in the fine flow path 22 and rising due to buoyancy from flowing back to the liquid reservoirs 44 and 45.
  • Other configurations are the same as those of the first embodiment.
  • the cooling capacity can be further increased.
  • the capillary force for guiding the liquid refrigerant to the fine flow paths is increased. Accordingly, even when the amount of heat generated from the heating element 7 is large, the liquid refrigerant is filled in the fine flow path by the capillary force, and the heating element 7 can be cooled. From this point, the cooling capacity can be improved. .
  • two boiling parts 2 and two liquid storage parts 4 are arranged on the upper side and the lower side.
  • the present invention is not limited to two.
  • the boiling portion 2 is configured in a quadrangular shape
  • it may be a semicircular shape.
  • the some boiling part 2 and the liquid storage part 4 were set as the structure arrange
  • this invention is not limited to the Example mentioned above, Various modifications are included. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is an electronic equipment cooling device which is capable of circulating refrigerant by utilizing capillary force and with small pressure loss, and which is small and has a high cooling capacity. The electronic equipment cooling device is provided with: a boiling unit which cools a heat-generating member by vaporizing an internally enclosed liquid refrigerant, and which has a boiling unit exit via which vaporized gas refrigerant flows out; a condensation unit which condenses the vaporized refrigerant; a liquid reservoir unit which is disposed around the boiling unit and in which liquid refrigerant condensed by the condensation unit is accumulated; a gas pipe connecting the boiling unit exit and an entrance in an upper part of the condensation unit; and a liquid pipe connecting a lower part of the condensation unit and the liquid reservoir unit. The boiling unit is fitted with a plurality of fine flow passageways connecting the liquid reservoir unit and the boiling unit exit, wherein the fine flow passageways are configured so as to be inclined with the exit side thereof positioned higher than the entrance side thereof, and configured to cause the liquid refrigerant in the liquid reservoir unit to rise through the fine flow passageways by the capillary force of the fine flow passageways.

Description

電子機器の冷却装置Electronic equipment cooling device
 本発明は、中央演算装置(CPU)や電力変換素子等の高発熱体となる半導体デバイスを内部に有する電子機器の冷却装置に関する。 The present invention relates to a cooling device for an electronic apparatus having therein a semiconductor device which is a high heat generating element such as a central processing unit (CPU) or a power conversion element.
 近年、電子機器や電力変換装置は、小型化、高密度化が進み、発熱密度が増加している。これらの装置に用いられるCPUや電力変換素子等の半導体デバイスは、動作時に発熱するが、所定の温度を超えると性能が低下する、或いは破損することがある。従って、発熱する電子機器については所定の温度以下に冷却する必要がある。また、電子機器を有する装置全体の小型化に伴い、発熱する電子機器を冷却するための冷却装置も、小型化や冷却能力の向上が求められている。 In recent years, electronic devices and power conversion devices have been reduced in size and density, and the heat generation density has increased. Semiconductor devices such as CPUs and power conversion elements used in these devices generate heat during operation, but their performance may be degraded or damaged when they exceed a predetermined temperature. Therefore, it is necessary to cool an electronic device that generates heat to a predetermined temperature or lower. In addition, with the downsizing of the entire apparatus having electronic devices, cooling devices for cooling electronic devices that generate heat are also required to be downsized and have improved cooling capacity.
 従来の電子機器の冷却装置としては、例えば、電力変換装置の冷却装置として、空気や水を冷媒とし、この冷媒の顕熱差(温度差)を利用したものがある。このような冷媒の顕熱差を利用した冷却装置においては、前記冷媒の輸送のために、ファン、ポンプ等の外部動力や、自然対流等を用い、発熱する電子機器の部分まで温度の低い冷媒を輸送し、発熱している高温の電子機器と熱交換を行うことで、電子機器を冷却している。 As a conventional cooling device for electronic equipment, for example, there is a cooling device for a power converter that uses air or water as a refrigerant and uses a sensible heat difference (temperature difference) of the refrigerant. In such a cooling device using the sensible heat difference of the refrigerant, a refrigerant having a low temperature up to the part of the electronic device that generates heat by using external power such as a fan or a pump or natural convection for transporting the refrigerant. The electronic equipment is cooled by exchanging heat and exchanging heat with the high-temperature electronic equipment generating heat.
 発熱密度の向上に伴い、顕熱を利用した冷却装置では、冷却能力の不足や、冷却装置が大型化する問題があった。このため、近年は更に冷却能力が高い、冷媒の相変化時の潜熱を利用した冷却装置が用いられるようになっている。一般に潜熱は顕熱に比べ大きく、また相変化時は温度上昇がないため、冷媒と発熱体との温度差が小さくても大量の熱を発熱体から冷媒へ伝えることができ、冷却装置の小型高効率化が可能となる。 With the improvement of heat generation density, the cooling device using sensible heat has a problem of insufficient cooling capacity and an increase in the size of the cooling device. For this reason, in recent years, a cooling device that has a higher cooling capacity and uses latent heat at the time of phase change of the refrigerant has been used. In general, latent heat is larger than sensible heat, and since there is no temperature rise during phase change, a large amount of heat can be transferred from the heating element to the refrigerant even if the temperature difference between the refrigerant and the heating element is small. High efficiency can be achieved.
 この潜熱を利用した冷却装置としては、例えば、特開2011-47616号公報(特許文献1)に記載されたものがある。この特許文献1のものには、受熱ジャケットにおいて、冷媒を発熱体と熱交換させて気化させ、上方に設けたヘッダを介して凝縮器に流し、この凝縮器で前記気化した冷媒を再度凝縮させ、その後、凝縮した液冷媒の重力により、液戻り管を介して前記受熱ジャケットに戻るように構成されている重力式の電子装置用冷却システムが記載されている。 As a cooling device using this latent heat, for example, there is one described in JP 2011-47616 A (Patent Document 1). In this Patent Document 1, in the heat receiving jacket, the refrigerant is vaporized by exchanging heat with the heating element, and flows to the condenser via the header provided above, and the vaporized refrigerant is condensed again by this condenser. Then, a gravity-type cooling system for electronic devices is described that is configured to return to the heat receiving jacket via a liquid return pipe by the gravity of the condensed liquid refrigerant.
 この特許文献1のものでは、冷媒の輸送にポンプ等の外部動力を用いないので、より消費電力を低減させた冷却装置とすることができ、結果として、これを搭載する電子機器の低消費電力化を実現することができる。 In this patent document 1, since external power such as a pump is not used for transporting the refrigerant, it is possible to provide a cooling device with further reduced power consumption, and as a result, low power consumption of an electronic device equipped with the cooling device. Can be realized.
 また、潜熱を利用した従来の他の冷却装置として、特開2004-190976号公報(特許文献2)に記載されたものがある。この特許文献2のものには、冷媒の循環のために液冷媒の重力を用いず、毛細管力を発生するウィック構造を蒸発器に設け、前記毛細管力を利用して、冷媒を循環させる電子デバイスの冷却装置が記載されている。 Another conventional cooling device using latent heat is described in Japanese Patent Application Laid-Open No. 2004-190976 (Patent Document 2). In this patent document 2, an electronic device that circulates a refrigerant by using a capillary wick structure provided with a wick structure that generates a capillary force without using the gravity of the liquid refrigerant to circulate the refrigerant. A cooling device is described.
特開2011-47616号公報JP 2011-47616 A 特開2004-190976号公報JP 2004-190976 A
 上記特許文献1に記載されているような液冷媒の重力により冷媒を循環させる重力式の冷却装置では、冷媒を循環させるために、前記受熱ジャケットにおける液冷媒の液面高さに比べ、凝縮器における液冷媒の液高さを高くしなければならない。即ち、前記凝縮器で凝縮した液冷媒が前記受熱ジャケットに流れて気化し、再び前記凝縮器まで戻るのに必要な圧力損失分、凝縮器における液冷媒の液面高さを、受熱ジャケットにおける液冷媒の液面高さより高くしなければならない。このため、電子機器の冷却装置が高さ方向に大型化する課題がある。 In the gravity-type cooling device that circulates the refrigerant by the gravity of the liquid refrigerant as described in the above-mentioned Patent Document 1, in order to circulate the refrigerant, the condenser is compared with the liquid level of the liquid refrigerant in the heat receiving jacket. The liquid height of the liquid refrigerant in must be increased. That is, the liquid refrigerant condensed in the condenser flows into the heat receiving jacket, vaporizes, and the liquid level in the condenser is the liquid loss in the heat receiving jacket by the pressure loss necessary for returning to the condenser again. It must be higher than the liquid level of the refrigerant. For this reason, the cooling device of an electronic device has the subject to enlarge in a height direction.
 また、上記特許文献2に記載されているような毛細管力を利用して冷媒を循環させる冷却装置では、上記特許文献1のように、冷媒液面の高低差を設ける必要はないが、蒸発器に毛細管力を発生するウィック構造をもつため、前記ウィック内は液冷媒と気化した冷媒の共存する二相流となる。このため、前記ウィック内は流動による圧力損失が大きくなり、結果として冷媒の流動が阻害され、伝熱能力が低下する課題がある。 Further, in the cooling device that circulates the refrigerant using the capillary force described in Patent Document 2, it is not necessary to provide a difference in the level of the refrigerant liquid as in Patent Document 1, but the evaporator Therefore, the wick has a two-phase flow in which the liquid refrigerant and the vaporized refrigerant coexist. For this reason, the pressure loss by a flow becomes large in the wick, and as a result, the flow of the refrigerant is hindered and there is a problem that the heat transfer capability is lowered.
 本発明の目的は、毛細管力を利用しつつ小さい圧力損失で冷媒を循環させることができ、しかも小型で冷却能力の高い電子機器の冷却装置を得ることにある。 An object of the present invention is to obtain a cooling device for an electronic device that can circulate a refrigerant with a small pressure loss while utilizing a capillary force and that is small in size and has a high cooling capacity.
 上記目的を達成するため、本発明は、内部に封入した液冷媒を気化させて発熱体を冷却すると共に、気化したガス冷媒が流出する沸騰部出口を有する沸騰部と、気化した冷媒を凝縮させる凝縮部と、前記沸騰部の周囲に設けられ、前記凝縮部で凝縮した液冷媒を貯留する液溜部と、前記沸騰部出口と前記凝縮部上部の入口とを接続するガス配管と、前記凝縮部の下部と前記液溜部とを接続する液配管とを備え、前記沸騰部は、前記液溜部と前記沸騰部出口とを接続する複数の微細流路が設けられ、かつ前記微細流路は、その入口側よりも出口側が高い位置となるように傾斜させて構成され、前記液溜部の液冷媒を微細流路の毛細管力によりこの微細流路内を上昇させる構成としていることを特徴とする電子機器の冷却装置にある。 In order to achieve the above object, the present invention vaporizes the liquid refrigerant sealed inside to cool the heating element, condenses the boiling part having a boiling part outlet through which the vaporized gas refrigerant flows, and the vaporized refrigerant. A condensing unit, a liquid storage unit that is provided around the boiling unit and stores the liquid refrigerant condensed in the condensing unit, a gas pipe connecting the boiling unit outlet and the upper inlet of the condensing unit, and the condensing unit A liquid pipe that connects the lower part of the liquid part and the liquid reservoir part, and the boiling part is provided with a plurality of fine flow paths that connect the liquid reservoir part and the boiling part outlet, and the fine flow path Is configured to be inclined so that the outlet side is higher than the inlet side, and the liquid refrigerant in the liquid reservoir is configured to rise in the fine flow path by the capillary force of the fine flow path. It is in the cooling device for electronic equipment.
 本発明の他の特徴は、内部に封入した液冷媒を気化させて発熱体を冷却すると共に、気化したガス冷媒が流出する沸騰部出口を有する沸騰部と、 気化した冷媒を凝縮させる凝縮部と、前記沸騰部の周囲に設けられ、前記凝縮部で凝縮した液冷媒を貯留する液溜部と、前記沸騰部出口と前記凝縮部上部の入口とを接続するガス配管と、前記凝縮部の下部と前記液溜部とを接続する液配管とを備え、前記沸騰部は、前記液溜部と前記沸騰部出口とを接続する複数の微細流路が設けられ、かつ前記微細流路は、その入口側から出口側まで流路面積が一定の連続した形状に構成され、前記液溜部の液冷媒を前記微細流路の毛細管力によりこの微細流路内に流入させる構成としている電子機器の冷却装置にある。 Another feature of the present invention is that the liquid refrigerant sealed inside is vaporized to cool the heating element, and the boiling part has a boiling part outlet through which the vaporized gas refrigerant flows out, and the condensing part condenses the vaporized refrigerant. A liquid reservoir portion that is provided around the boiling portion and stores the liquid refrigerant condensed in the condensing portion; a gas pipe that connects the boiling portion outlet and the upper inlet of the condensing portion; and a lower portion of the condensing portion And a liquid pipe connecting the liquid reservoir, the boiling portion is provided with a plurality of fine flow paths connecting the liquid reservoir and the outlet of the boiling portion, and the fine flow path is Cooling of electronic equipment configured to have a continuous shape with a constant flow path area from the inlet side to the outlet side, and to allow the liquid refrigerant in the liquid reservoir to flow into the fine flow path by the capillary force of the fine flow path In the device.
 本発明によれば、毛細管力を利用しつつ小さい圧力損失で冷媒を循環させることができ、しかも小型で冷却能力の高い電子機器の冷却装置を得ることができる効果がある。 According to the present invention, it is possible to circulate the refrigerant with a small pressure loss while utilizing the capillary force, and to obtain an electronic device cooling apparatus having a small size and a high cooling capacity.
本発明の実施例1を示す電子機器の冷却装置の斜視図である。It is a perspective view of the cooling device of the electronic device which shows Example 1 of this invention. 図1に示す沸騰部及び液溜部を示す平面断面図で、微細通路の部分に沿った断面を示す図である。It is a top sectional view showing a boiling part and a liquid reservoir shown in Drawing 1, and is a figure showing a section along a portion of a fine passage. 図2のIII-III線矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 図3のA部拡大図である。It is the A section enlarged view of FIG. 図3に示す微細流路が四角形の場合における冷媒の流動を説明する断面図である。It is sectional drawing explaining the flow of the refrigerant | coolant in case the fine flow path shown in FIG. 3 is a rectangle. 図3に示す微細流路が円形の場合における冷媒の流動を説明する断面図である。It is sectional drawing explaining the flow of a refrigerant | coolant in case the microchannel shown in FIG. 3 is circular. 本発明の実施例2を示す電子機器の冷却装置の斜視図である。It is a perspective view of the cooling device of the electronic device which shows Example 2 of this invention. 図7に示す沸騰部及び液溜部を示す平面断面図で、微細通路の部分に沿った断面を示す図である。FIG. 8 is a plan cross-sectional view showing the boiling portion and the liquid reservoir shown in FIG. 7, and shows a cross section along the portion of the fine passage. 本発明の実施例3を説明する沸騰部の側面図である。It is a side view of the boiling part explaining Example 3 of this invention. 本発明の実施例4を示す電子機器の冷却装置の斜視図である。It is a perspective view of the cooling device of the electronic device which shows Example 4 of this invention.
 以下、本発明の電子機器の冷却装置における具体的実施例を、図面を用いて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific examples of the electronic apparatus cooling apparatus according to the present invention will be described with reference to the drawings. In each figure, the part which attached | subjected the same code | symbol has shown the part which is the same or it corresponds.
 本発明の電子機器の冷却装置における実施例1を、図1~図6を用いて説明する。 
 まず、図1により、本実施例1の全体構成を説明する。図1は本実施例1を示す電子機器の冷却装置の斜視図である。
A first embodiment of the electronic apparatus cooling apparatus according to the present invention will be described with reference to FIGS.
First, the overall configuration of the first embodiment will be described with reference to FIG. FIG. 1 is a perspective view of a cooling apparatus for an electronic apparatus according to the first embodiment.
 図1において、冷却装置1は、沸騰部2、凝縮部3、液溜部4、液配管5、ガス配管6などを備えている。矢印gは重力の方向である。 
 前記沸騰部2は、前記液溜部4及び前記ガス配管6と接続され、内部が密閉された状態で冷媒を流すことができるように構成されている。また、半導体素子等の発熱体7と熱的に接続され、前記発熱体7で発熱する熱を、前記沸騰部2を流れる冷媒に伝達することで、前記発熱体7を冷却するように構成されている。
In FIG. 1, the cooling device 1 includes a boiling unit 2, a condensing unit 3, a liquid storage unit 4, a liquid pipe 5, a gas pipe 6, and the like. Arrow g is the direction of gravity.
The boiling section 2 is connected to the liquid reservoir section 4 and the gas pipe 6 so that the refrigerant can flow while the inside is sealed. Further, the heat generating element 7 is thermally connected to the heat generating element 7 such as a semiconductor element, and the heat generated by the heat generating element 7 is transmitted to the refrigerant flowing through the boiling portion 2 to cool the heat generating element 7. ing.
 前記ガス配管6は、前記沸騰部2及び前記凝縮部3と接続され、内部が密閉された状態で冷媒を流すことができる。前記ガス配管6は、その内部を主に沸騰により気化して膨張した冷媒が流れるため、前記液配管5に比べて配管径は大きい方が好ましい。また、本実施例では、前記ガス配管6を円管としているが、楕円形の管や四角形の管等、他の管形状としても良い。 The gas pipe 6 is connected to the boiling unit 2 and the condensing unit 3 so that the refrigerant can flow in a sealed state. The gas pipe 6 preferably has a larger pipe diameter than the liquid pipe 5 because the refrigerant that has been vaporized and expanded by boiling mainly flows inside the gas pipe 6. In the present embodiment, the gas pipe 6 is a circular pipe, but other pipe shapes such as an elliptical pipe or a square pipe may be used.
 前記凝縮部3は、前記ガス配管6及び前記液配管5と接続され、内部が密閉された状態で冷媒を流すことができる。前記凝縮部3では、前記ガス配管6から流入するガス冷媒を再凝縮させる。従って、前記凝縮部3の材質は、熱伝導率の大きいものが良く、例えば銅やアルミで構成されている。 The condensing unit 3 is connected to the gas pipe 6 and the liquid pipe 5 so that the refrigerant can flow in a state where the inside is sealed. In the condensing unit 3, the gas refrigerant flowing from the gas pipe 6 is recondensed. Therefore, the material of the condensing part 3 should have a high thermal conductivity, and is made of, for example, copper or aluminum.
 前記液配管5は、前記凝縮部3及び前記液溜部4と接続され、内部が密閉された状態で冷媒を流すことができる。なお、本実施例においては、前記液配管5は前記凝縮部3から液溜部4まで水平に接続されているが、斜めに接続させるようにしても良い。前記液配管5の入口側(凝縮部3側)よりも出口側(液溜部4側)が低くなるように接続すれば、液冷媒の輸送に液冷媒の重力を利用できるため、液冷媒をよりスムーズに前記液溜部4まで送ることができる。また、前記液配管5の断面形状は、前記ガス配管6と同様に、円管で構成されているが、円管に限られず、楕円形の管や四角形の管等の他の管形状にしても良い。 The liquid pipe 5 is connected to the condensing unit 3 and the liquid storage unit 4 and can flow the refrigerant in a state where the inside is sealed. In the present embodiment, the liquid pipe 5 is connected horizontally from the condensing part 3 to the liquid storage part 4, but may be connected obliquely. By connecting the liquid pipe 5 so that the outlet side (liquid reservoir 4 side) is lower than the inlet side (condenser 3 side), the gravity of the liquid refrigerant can be used for transporting the liquid refrigerant. The liquid can be sent to the liquid reservoir 4 more smoothly. The cross-sectional shape of the liquid pipe 5 is a circular pipe, similar to the gas pipe 6, but is not limited to a circular pipe, and may be other pipe shapes such as an elliptical pipe or a square pipe. Also good.
 前記液溜部4は、前記液配管5及び前記沸騰部2と接続され、内部が密閉された状態で冷媒を流すことができる。この液溜部4には、前記凝縮部3で再凝縮した液冷媒が貯留される。 The liquid reservoir 4 is connected to the liquid pipe 5 and the boiling part 2 so that the refrigerant can flow in a state where the inside is sealed. The liquid reservoir 4 stores liquid refrigerant recondensed in the condensing unit 3.
 前記発熱体7は、CPUや電力変換素子等であり、発熱源となる。前記発熱体7は、前記沸騰部2と熱的に接続されており、前記発熱体7で発生した熱は前記沸騰部2に伝達されるように構成されている。即ち、前記発熱体7と前記沸騰部2とは、直接接触させるか、或いは熱伝導率の大きいシートやグリス等を介して接続され、更に、ネジ(図示せず)などにより、前記発熱体7の周囲と前記冷却装置1が固定されることにより、熱抵抗を小さくして、効率良く熱を冷却装置1に伝達することができる。 The heating element 7 is a CPU, a power conversion element or the like and serves as a heat source. The heating element 7 is thermally connected to the boiling part 2, and heat generated by the heating element 7 is transmitted to the boiling part 2. That is, the heating element 7 and the boiling part 2 are in direct contact with each other or are connected via a sheet or grease having a high thermal conductivity, and further, the heating element 7 is connected by a screw (not shown) or the like. Since the cooling device 1 is fixed to the surroundings, heat resistance can be reduced and heat can be efficiently transferred to the cooling device 1.
 前記冷却装置1には、冷媒が冷媒注入口(図示せず)から注入される。その後、冷却装置1内部の圧力を所定圧力に調整し、前記冷媒注入口を封止する。冷媒が気化する温度は冷媒の種類及び飽和蒸気圧により決まるため、冷却装置1内部の飽和蒸気圧が変化しないように、前記冷媒注入口を封止した後、外気と冷媒とが冷却装置1内で透過しないようにする必要がある。このため、冷却装置1で冷媒が流れる部分の材質は、気体の透過が小さい金属材が好適である。 
 また、冷媒は、前記発熱体7の使用温度で、気液相変化が起きるものであれば良く、減圧した水やフロン系冷媒が好適である。
A coolant is injected into the cooling device 1 from a coolant inlet (not shown). Thereafter, the pressure inside the cooling device 1 is adjusted to a predetermined pressure, and the refrigerant inlet is sealed. Since the temperature at which the refrigerant evaporates is determined by the type of refrigerant and the saturated vapor pressure, after the refrigerant inlet is sealed so that the saturated vapor pressure inside the cooling device 1 does not change, the outside air and the refrigerant are brought into the cooling device 1. It is necessary to prevent transmission. For this reason, the material of the part through which the refrigerant flows in the cooling device 1 is preferably a metal material with a small gas permeation.
Moreover, the refrigerant | coolant should just be a thing which a gas-liquid phase change occurs at the use temperature of the said heat generating body 7, and the pressure-reduced water and a fluorocarbon refrigerant are suitable.
 次に、本実施例における沸騰部2の構造について、図2~図4を用いて説明する。図2は図1に示す沸騰部2及び液溜部4を示す平面断面図で、微細通路22の部分に沿った断面を示す図、図3は図2のIII-III線矢視断面図、図4は図3のA部拡大図である。 Next, the structure of the boiling part 2 in this embodiment will be described with reference to FIGS. 2 is a cross-sectional plan view showing the boiling section 2 and the liquid reservoir 4 shown in FIG. 1, showing a cross section along the portion of the fine passage 22, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG. FIG. 4 is an enlarged view of part A of FIG.
 図2、図3に示すように、沸騰部2は、円板状部材2aと、この円板状部材2aの中央上部に設けられた沸騰部出口(沸騰部中心)21と、前記円板状部材2aの外周側と前記沸騰部出口21を接続するように、前記円板状部材2aの外周側から前記沸騰部出口21に向かって放射状に多数設けられた微細流路22を備えている。また、この微細流路22は、その入口側から出口側まで流路面積が一定の連続した形状、即ち断続的ではない形状に構成されている。 As shown in FIG. 2 and FIG. 3, the boiling part 2 includes a disk-shaped member 2a, a boiling part outlet (center of the boiling part) 21 provided at the center upper part of the disk-shaped member 2a, and the disk-shaped member. In order to connect the outer peripheral side of the member 2 a and the boiling part outlet 21, a plurality of fine flow paths 22 provided radially from the outer peripheral side of the disk-shaped member 2 a toward the boiling part outlet 21 are provided. Further, the fine channel 22 is configured in a continuous shape having a constant channel area from the inlet side to the outlet side, that is, a shape that is not intermittent.
 前記円板状部材2aの外周側には、この円板状部材2aの外周側に沿って、環状(ドーナツ状)に形成された液溜部4が設けられている。この液溜部4は、前記円板状部材2aの外周部に沿って設けられた環状部材4aに形成されており、前記液配管5から流入する液冷媒が貯留される。従って、前記微細流路22は、この液溜部4と前記沸騰部出口21とを接続するように設けられており、前記液溜部4の液冷媒を前記微細通路22の毛細管力により該微細通路22内に流入させるように構成されている。 On the outer peripheral side of the disk-shaped member 2a, a liquid reservoir 4 formed in an annular shape (doughnut shape) is provided along the outer peripheral side of the disk-shaped member 2a. The liquid reservoir 4 is formed in an annular member 4a provided along the outer periphery of the disk-shaped member 2a, and the liquid refrigerant flowing from the liquid pipe 5 is stored. Therefore, the fine flow path 22 is provided so as to connect the liquid reservoir 4 and the boiling part outlet 21, and the liquid refrigerant in the liquid reservoir 4 is made fine by the capillary force of the fine passage 22. It is configured to flow into the passage 22.
 図3に示すように、前記沸騰部出口21は前記液溜部4よりも高い位置に配置されており、また、前記沸騰部2の前記微細流路22は、図2に示すように、一端側が前記液溜部4に開口し、他端側が前記沸騰部出口21に開口するように形成されている。従って、前記微細流路22は、外周側に設けた前記液溜部4から前記沸騰部出口21に向かって上昇するように、傾斜した構造に形成されている。更に、前記微細流路22は、図2に示すように、前記円板状部材2aの周方向に、多数形成されており、この多数の微細流路22は前記沸騰部中心21で合流されている。従って、前記微細通路22は、前記沸騰部中心21から前記円板状部材2aの外周全体に亘って放射状に多数設けられている。なお、前記沸騰部出口21は前記ガス配管6(図1参照)と接続されている。 As shown in FIG. 3, the boiling part outlet 21 is disposed at a position higher than the liquid reservoir 4, and the fine channel 22 of the boiling part 2 has one end as shown in FIG. The side is open to the liquid reservoir 4 and the other end is open to the boiling part outlet 21. Therefore, the fine channel 22 is formed in an inclined structure so as to rise from the liquid reservoir 4 provided on the outer peripheral side toward the boiling part outlet 21. Further, as shown in FIG. 2, a large number of the fine flow paths 22 are formed in the circumferential direction of the disk-like member 2 a, and the many fine flow paths 22 are joined at the boiling portion center 21. Yes. Accordingly, a large number of the fine passages 22 are provided radially from the boiling portion center 21 to the entire outer periphery of the disk-like member 2a. In addition, the said boiling part exit 21 is connected with the said gas piping 6 (refer FIG. 1).
 前記微細流路22は、前述したように、入口側より出口側の方が高くなるように形成されており、この微細流路22の入口側は前記液溜部4と接続され、液冷媒で満たされている。このため、微細流路22入口側の液冷媒は、毛細管力により、図4に示すように、該微細流路22の出口221まで流れる。前記沸騰部中心21は、前記微細流路22に比べて断面積が大きいため、毛細管力は小さくなる。したがって、液冷媒は液溜部4から微細流路の出口221の位置まで輸送される。 As described above, the fine channel 22 is formed so that the outlet side is higher than the inlet side. The inlet side of the fine channel 22 is connected to the liquid reservoir 4 and is made of liquid refrigerant. be satisfied. For this reason, the liquid refrigerant on the inlet side of the fine channel 22 flows to the outlet 221 of the fine channel 22 by capillary force as shown in FIG. Since the boiling part center 21 has a larger cross-sectional area than the fine flow path 22, the capillary force is reduced. Therefore, the liquid refrigerant is transported from the liquid reservoir 4 to the position of the outlet 221 of the fine channel.
 前記微細流路22の断面形状は、毛細管力により液冷媒を輸送できればよく、製作のし易さを考慮すると、四角形または円形が好適である。 
 図5は図3に示す微細流路22が四角形の場合における冷媒の流動を説明する断面図、図6は図3に示す微細流路22が円形の場合における冷媒の流動を説明する断面図である。これら図5、図6を用いて、それぞれの断面形状における前記微細流路22を流れる冷媒の流動状態を比較して説明する。
The cross-sectional shape of the fine channel 22 is not limited as long as the liquid refrigerant can be transported by a capillary force, and is preferably square or circular in consideration of ease of manufacture.
5 is a cross-sectional view for explaining the flow of the refrigerant when the fine flow path 22 shown in FIG. 3 is a square, and FIG. 6 is a cross-sectional view for explaining the flow of the refrigerant when the fine flow path 22 shown in FIG. is there. The flow state of the refrigerant flowing through the fine flow path 22 in each cross-sectional shape will be compared and described with reference to FIGS. 5 and 6.
 微細流路22内を流れる液冷媒は、発熱体7(図3参照)からの熱によってガス化する。このため、前記微細流路22内は、図5、図6に示すように、ガス化したガス冷媒と、ガス化していない液冷媒の二相流となり、前記ガス冷媒は微細流路22の断面中心部分を流れ、その外周を液冷媒が膜状に流れる。前記微細流路22の断面形状が四角形の場合には、図5中に矢印で示した四角形の角部付近では、液冷媒の膜厚が厚くなる。この膜厚の厚い部分が生じるため、瞬時的に前記発熱部7における局所の発熱量が大きくなった場合でも、前記液膜の厚い部分により、液冷媒が不足することを抑制して、液冷媒の蒸発を継続することができる。従って、前記発熱部7を安定して冷却できる効果が得られる。 The liquid refrigerant flowing in the fine flow path 22 is gasified by heat from the heating element 7 (see FIG. 3). For this reason, as shown in FIGS. 5 and 6, the inside of the fine flow path 22 is a two-phase flow of gasified gas refrigerant and non-gasified liquid refrigerant, and the gas refrigerant is a cross section of the fine flow path 22. The liquid refrigerant flows in the form of a film around the outer periphery. When the cross-sectional shape of the fine channel 22 is a quadrangle, the liquid refrigerant has a large film thickness near the corners of the quadrangle indicated by arrows in FIG. Since this thick portion is generated, even when the local heat generation amount in the heat generating portion 7 is instantaneously increased, the liquid refrigerant is prevented from being insufficient due to the thick portion of the liquid film. Can continue to evaporate. Therefore, an effect of stably cooling the heat generating portion 7 is obtained.
 なお、図5に示す四角形の微細流路22では、上の2つの角部と下の2つの角部を、同じ高さ位置となるように構成しているが、四角形の1つの角部が最上部、他の1つの角部が最下部となるように斜めに配置、即ちひし形形状となるように構成しても良い。 In the rectangular fine channel 22 shown in FIG. 5, the upper two corners and the lower two corners are configured to be at the same height position. You may comprise so that it may arrange | position diagonally, ie, it may become a rhombus shape so that the uppermost part and another one corner | angular part may become the lowest part.
 一方、図6に示すように、微細流路22の断面が円形の場合は、液冷媒はガス冷媒の周囲にほぼ均一な厚さで分布する。従って、微細流路22を円形に形成した場合、前記発熱体7からの熱を、円形の微細通路22の外周全体から均一に液冷媒に伝えることができる。
  前記沸騰部2の材質としては、前記発熱体7からの熱を効率良く冷媒に伝達させる必要があるため、例えば銅やアルミなどの熱伝導率の大きい材料を使用すると良い。
On the other hand, as shown in FIG. 6, when the cross section of the fine channel 22 is circular, the liquid refrigerant is distributed around the gas refrigerant with a substantially uniform thickness. Therefore, when the fine flow path 22 is formed in a circular shape, the heat from the heating element 7 can be uniformly transmitted to the liquid refrigerant from the entire outer periphery of the circular fine passage 22.
As the material of the boiling part 2, since it is necessary to efficiently transfer the heat from the heating element 7 to the refrigerant, it is preferable to use a material having a high thermal conductivity such as copper or aluminum.
 次に、図1を用いて、本実施例の電子機器の冷却装置1の動作について説明する。
  液溜部4に液冷媒が貯留されている場合、この液冷媒は、前記液溜部4から、毛細管力により、沸騰部2の前記微細流路22内へ流入し、更に前記微細流路22の出口221(図4参照)まで液冷媒は溜まる。前記微細流路22に液冷媒が溜っている状態で、前記発熱体7からの熱が沸騰部2へ伝達されると、前記微細流路22が加熱され、加熱された微細流路22の壁面から、液冷媒へ熱が伝わる。これにより、微細流路22内の液冷媒は沸騰し、ガス化し、前記微細流路22内には、図5、図6に示すように、気体スラグ(気液二層流の中に現れる大きな気体)が生成され、スラグ流となって流れる。
Next, the operation of the electronic apparatus cooling apparatus 1 according to this embodiment will be described with reference to FIG.
When liquid refrigerant is stored in the liquid reservoir 4, the liquid refrigerant flows from the liquid reservoir 4 into the microchannel 22 of the boiling unit 2 by capillary force, and further, the microchannel 22. The liquid refrigerant is accumulated up to the outlet 221 (see FIG. 4). When heat from the heating element 7 is transmitted to the boiling part 2 in a state where the liquid refrigerant is accumulated in the fine flow path 22, the fine flow path 22 is heated and the wall surface of the heated fine flow path 22 is heated. Heat is transferred from the liquid refrigerant to the liquid refrigerant. As a result, the liquid refrigerant in the microchannel 22 boils and gasifies, and a large amount of gas slag (gas-liquid two-layer flow appears in the microchannel 22 as shown in FIGS. 5 and 6). Gas) is generated and flows as a slag flow.
 前記微細流路22内で、沸騰していない液冷媒はこの微細流路22の管壁面側に移動して液膜となる。前記微細流路22は、前記沸騰部出口21に向かって高さ方向に傾斜しているため、前記気体スラグは浮力により前記沸騰部出口21に向かって流れる。 In the fine flow path 22, the liquid refrigerant that has not boiled moves to the tube wall surface side of the fine flow path 22 to form a liquid film. Since the fine channel 22 is inclined in the height direction toward the boiling part outlet 21, the gas slag flows toward the boiling part outlet 21 by buoyancy.
 このように、スラグ流が前記微細流路22を流れる際は、浮力による力が働くため、前記微細流路22の入口と出口との間の圧力損失を小さくすることができる。また、前記スラグ流が前記微細流路22を流れることによって、スラグ流周囲の液膜は非常に薄くなるから、前記微細流路22を流れる液冷媒への熱伝達性が向上する。これにより、前記発熱体7からの熱を、より効率良く液冷媒へ伝えることができる。 Thus, when a slag flow flows through the fine flow path 22, a force due to buoyancy acts, so that the pressure loss between the inlet and the outlet of the fine flow path 22 can be reduced. Moreover, since the liquid film around the slag flow becomes very thin as the slag flow flows through the fine flow path 22, heat transfer to the liquid refrigerant flowing through the fine flow path 22 is improved. Thereby, the heat from the said heat generating body 7 can be more efficiently transmitted to a liquid refrigerant.
 前記微細流路22を流れる液冷媒への熱伝達性が向上するためには、前記微細流路22が円形の場合には、その直径を0.5~0.1mmにすることが好ましい。前記微細流路22が円形以外の場合には、その水力等価直径を0.5~0.1mmとすれば良い。 In order to improve heat transfer to the liquid refrigerant flowing through the fine channel 22, when the fine channel 22 is circular, the diameter is preferably 0.5 to 0.1 mm. When the fine channel 22 is not circular, the hydraulic equivalent diameter may be 0.5 to 0.1 mm.
 前記沸騰部出口21から、図1に示す前記ガス配管6へ流れたガス冷媒は、前記凝縮部3へ流入して凝縮され、再度液冷媒となる。本実施例では、ファン(図示せず)から前記凝縮部3に対し、冷媒の凝縮温度よりも低温の空気を、図1にAirで示す矢印の方向に送風し、前記凝縮部3内を流れるガス冷媒と前記空気を熱交換させ、ガス冷媒を冷却し、凝縮させている。 The gas refrigerant that has flowed from the boiling part outlet 21 to the gas pipe 6 shown in FIG. 1 flows into the condensing part 3 to be condensed and becomes liquid refrigerant again. In this embodiment, air having a temperature lower than the condensation temperature of the refrigerant is blown from the fan (not shown) to the condensing unit 3 in the direction of the arrow indicated by Air in FIG. Heat exchange is performed between the gas refrigerant and the air, and the gas refrigerant is cooled and condensed.
 一般に、空気の熱伝導率は小さいため、伝熱面積や熱伝達率を増加させる目的で、前記凝縮部3の空気側には、フィン31が設けられている。前記ファンによる空気の通風方向は、本実施例では、前記凝縮部3から前記沸騰部2へ向かうようにしているが、冷却装置1を実装する電子機器に応じて、前記通風方向を適宜変えるようにしても良い。例えば、前記凝縮部3を前記沸騰部2よりも、紙面奥側に配置し、前記ガス配管6及び前記液配管5も図1の紙面奥側に向くように構成し、紙面奥側から手前方向へ通風するようにファンを設けた場合でも同様の効果が得られる。 Generally, since the thermal conductivity of air is small, fins 31 are provided on the air side of the condensing unit 3 for the purpose of increasing the heat transfer area and the heat transfer coefficient. In this embodiment, the ventilation direction of the air by the fan is directed from the condensing unit 3 to the boiling unit 2, but the ventilation direction is appropriately changed according to the electronic device on which the cooling device 1 is mounted. Anyway. For example, the condensing unit 3 is disposed on the back side of the paper with respect to the boiling unit 2, and the gas pipe 6 and the liquid pipe 5 are also configured to face the back side of the paper in FIG. The same effect can be obtained even if a fan is provided to ventilate the air.
 また、上記実施例1では、前記凝縮部3を外部空気で冷却するようにしているが、冷水で冷却したり、或いはペルチェ素子や冷凍サイクル等の冷熱源で冷却するようにしても良い。 In the first embodiment, the condensing unit 3 is cooled with external air. However, the condensing unit 3 may be cooled with cold water, or may be cooled with a cold heat source such as a Peltier element or a refrigeration cycle.
 前記凝縮部3において凝縮された液冷媒は、該凝縮部3の下部から前記液配管5を介して前記液溜部4へ流入し、再びこの液溜部4に貯留され、以下同様の動作を繰り返す。
  なお、前記凝縮部3から前記液溜部4へ液冷媒がスムーズに流れるように、前記凝縮部3の下端は前記液溜部4の上端より高い位置に設けられている。
The liquid refrigerant condensed in the condensing unit 3 flows from the lower part of the condensing unit 3 into the liquid storing unit 4 through the liquid pipe 5 and is stored again in the liquid storing unit 4. repeat.
In addition, the lower end of the condensing unit 3 is provided at a position higher than the upper end of the liquid storing unit 4 so that the liquid refrigerant smoothly flows from the condensing unit 3 to the liquid storing unit 4.
 また、前記液配管5及び前記液溜部4を形成している環状部材4aの材質は、凝縮した液冷媒が、外気や前記発熱体7からの熱伝導により、前記液配管5や前記液溜部4内部で沸騰することを防止するため、熱伝導率が比較的小さい材料、例えばステンレス等で構成すると良い。 The material of the annular member 4a forming the liquid pipe 5 and the liquid reservoir 4 is such that the condensed liquid refrigerant is transferred to the liquid pipe 5 or the liquid reservoir by heat conduction from the outside air or the heating element 7. In order to prevent boiling inside the portion 4, it is preferable to use a material having a relatively low thermal conductivity, such as stainless steel.
 以上述べた本実施例1によれば、上述した特許文献1に記載されている液冷媒の重力により冷媒を循環させる重力式の冷却装置で必要だった液面高さほどの高低差が必要ないため、電子機器の冷却装置が高さ方向に大型化するのを防止でき、冷却装置をより小型化できる効果が得られる。 According to the first embodiment described above, there is no need for a height difference as high as the liquid level required in the gravity type cooling device that circulates the refrigerant by the gravity of the liquid refrigerant described in Patent Document 1 described above. Further, it is possible to prevent the cooling device of the electronic device from increasing in size in the height direction, and the effect of further reducing the size of the cooling device can be obtained.
 また、沸騰部2に微細流路22を、沸騰部出口21周りに放射状に形成する構成としているので、微細流路22をより多く設けることが可能となる。これにより、液冷媒を微細流路まで誘導するための毛細管力が大きくなる。従って、発熱体7からの発熱量が大きい場合も毛細管力により液冷媒が微細流路に充填され、発熱体7を冷却することができるから、この点からも冷却能力の向上を図ることができる。 Further, since the fine flow path 22 is formed in the boiling part 2 radially around the boiling part outlet 21, more fine flow paths 22 can be provided. This increases the capillary force for guiding the liquid refrigerant to the fine flow path. Accordingly, even when the amount of heat generated from the heating element 7 is large, the liquid refrigerant is filled in the fine flow path by the capillary force, and the heating element 7 can be cooled. From this point, the cooling capacity can be improved. .
 更に、前記微細流路22は、液溜部4から沸騰部中心21に向かって上昇するように傾斜をつけているので、前記微細流路22内で沸騰して発生した気体スラグの浮力により、自然に、冷媒をガス配管6へ向かって流すことができる。これにより、上記特許文献2に記載されているような、毛細管力を利用して冷媒を循環させる冷却装置に比べ、気液二相流となっている冷媒の流動による圧力損失を大幅に低減でき、冷媒の流動が阻害されず、伝熱能力を向上できる効果も得られる。また、前記微細流路22における冷媒への熱伝熱は、沸騰に加えてスラグ流を利用した液膜での熱伝達により、小型で冷却能力の高い電子機器の冷却装置を得ることができる。 Further, since the fine flow path 22 is inclined so as to rise from the liquid reservoir 4 toward the boiling part center 21, the buoyancy of the gas slag generated by boiling in the fine flow path 22, Naturally, the refrigerant can flow toward the gas pipe 6. As a result, the pressure loss due to the flow of the refrigerant that is a gas-liquid two-phase flow can be greatly reduced as compared with a cooling device that circulates the refrigerant using capillary force as described in Patent Document 2 above. The flow of the refrigerant is not hindered, and the effect of improving the heat transfer capability is also obtained. In addition, the heat transfer to the refrigerant in the fine flow path 22 can be obtained by a heat transfer in a liquid film using a slag flow in addition to boiling, so that a cooling device for a small electronic device having a high cooling capacity can be obtained.
 本発明の電子機器の冷却装置における実施例2を、図7及び図8を用いて説明する。図7は本実施例2を示す電子機器の冷却装置の斜視図、図8は図7に示す沸騰部2及び液溜部4を示す平面断面図で、微細通路22の部分に沿った断面を示す図である。本実施例2の説明においては、上記実施例1と同様の部分については同一符号を付して説明を省略し、異なる部分を中心に説明する。 Example 2 of the electronic apparatus cooling apparatus of the present invention will be described with reference to FIGS. FIG. 7 is a perspective view of a cooling device for an electronic device showing the second embodiment, and FIG. FIG. In the description of the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different parts will be mainly described.
 図7、図8に示すように、本実施例2では、複数の微細流路22を有する沸騰部2の形状を、実施例1に示すように円形の形状ではなく、四角形となるように構成しているものである。また、液溜部4も、四角形の前記沸騰部2の形状に合わせて、四角形となるように構成して、前記沸騰部2の外周部に沿って設けられている。即ち、前記沸騰部2は、四角形の板状部材2b、この四角形の板状部材2bに形成された複数の微細流路22、及び前記板状部材2bの中心に設けられた沸騰部出口(沸騰部中心)21を備えている。また、四角形の前記板状部材2bの周囲には四角形の環状部材4aが設けられ、この環状部材4aには液溜部4が形成されている。前記微細流路22は前記液溜部4と前記沸騰部出口21を接続するように、前記板状部材2bの外周側から前記沸騰部出口に向かって放射状に多数設けられている。 As shown in FIGS. 7 and 8, in the second embodiment, the shape of the boiling portion 2 having a plurality of fine flow paths 22 is not a circular shape as shown in the first embodiment, but a square shape. It is what you are doing. The liquid reservoir 4 is also formed along the outer periphery of the boiling portion 2 so as to be square according to the shape of the square boiling portion 2. That is, the boiling part 2 includes a rectangular plate-like member 2b, a plurality of fine channels 22 formed in the rectangular plate-like member 2b, and a boiling part outlet (boiling) provided at the center of the plate-like member 2b. Part center) 21. A square annular member 4a is provided around the square plate-like member 2b, and a liquid reservoir 4 is formed in the annular member 4a. A large number of the fine flow paths 22 are provided radially from the outer peripheral side of the plate-like member 2b toward the boiling part outlet so as to connect the liquid reservoir 4 and the boiling part outlet 21.
 一般に、発熱体7は角型形状であるため、本実施例のように沸騰部2を四角形とすることにより、沸騰部2の全体を四角形の発熱体7に対応させて接触させることができるため、沸騰部2の全体を有効に発熱体7の冷却に使用できる。即ち、沸騰部2における発熱体7の冷却に寄与しない部分をより低減することが可能となる。 In general, since the heating element 7 has a square shape, by making the boiling part 2 square as in the present embodiment, the entire boiling part 2 can be brought into contact with the rectangular heating element 7 in contact therewith. The entire boiling portion 2 can be effectively used for cooling the heating element 7. That is, it is possible to further reduce the portion of the boiling portion 2 that does not contribute to the cooling of the heating element 7.
 また、図8に示すように、沸騰部2が四角形の形状となっているため、周方向に多数設けられている微細流路22は、それぞれの入口位置によって流路長さが異なることになる。本実施例2では、周方向に設けられている全ての微細流路22は同じ直径(微細流路の断面が円形でない場合には同じ水力等価直径)としているが、微細流路22の長さに応じて、それぞれの微細流路22の直径或いは水力等価直径を変えることにより、毛細管力を調整することも可能である。 Moreover, as shown in FIG. 8, since the boiling part 2 has a quadrangular shape, the flow path lengths of the fine flow paths 22 provided in the circumferential direction are different depending on the respective inlet positions. . In the second embodiment, all the microchannels 22 provided in the circumferential direction have the same diameter (the same hydraulic equivalent diameter when the cross section of the microchannel is not circular), but the length of the microchannel 22 Accordingly, it is also possible to adjust the capillary force by changing the diameter of each fine channel 22 or the hydraulic equivalent diameter.
 即ち、全ての微細流路22の出口221(図4参照)の部分まで液冷媒が充填されるように、流路の長い微細流路22では、その直径或いは水力等価直径をより小さくすることにより、毛細管力が大きくなるように調整し、流路の短い微細流路22の場合には、直径或いは水力等価直径を大きくする。他の構成は、上記実施例1と同様である。 That is, by reducing the diameter or hydraulic equivalent diameter of the fine flow path 22 having a long flow path so that the liquid refrigerant is filled up to the outlet 221 (see FIG. 4) of all the fine flow paths 22. The capillary force is adjusted so as to increase, and in the case of the fine channel 22 with a short channel, the diameter or the hydraulic equivalent diameter is increased. Other configurations are the same as those of the first embodiment.
 本実施例によれば、一般的な四角形の発熱体7に対して沸騰部2の形状も四角形とすることにより、沸騰部2の伝熱面を有効に利用することができ、高効率な電子機器の冷却装置を得ることができる。 According to the present embodiment, the shape of the boiling part 2 is also made square with respect to the general rectangular heating element 7, so that the heat transfer surface of the boiling part 2 can be used effectively, and highly efficient electrons. Equipment cooling devices can be obtained.
 本発明の電子機器の冷却装置における実施例3を、図9を用いて説明する。図9は本発明の実施例3を説明する沸騰部2の側面図で、微細配管22を破線で示している。本実施例3の説明においても、上記実施例1と同様の部分については同一符号を付して説明を省略し、異なる部分を中心に説明する。また、図9は沸騰部2のみを示しているが、他の構成は上記実施例1と同様である。 Embodiment 3 of the electronic apparatus cooling apparatus of the present invention will be described with reference to FIG. FIG. 9 is a side view of the boiling part 2 for explaining the third embodiment of the present invention, and the fine pipes 22 are indicated by broken lines. Also in the description of the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different parts will be mainly described. FIG. 9 shows only the boiling part 2, but the other configuration is the same as that of the first embodiment.
 図9に示すように、本実施例3において、沸騰部2が円形である点では上記実施例1と同様であり、また微細流路22が周方向に多数設けられている点でも同じである。本実施例3が上記実施例1と異なる点は、沸騰部2に形成している微細流路22を、上層微細流路223と下層微細流路224の2種類設けている点である。 As shown in FIG. 9, in the present Example 3, it is the same as that of the said Example 1 in the point that the boiling part 2 is circular, and it is the same also in the point that many fine flow paths 22 are provided in the circumferential direction. . The third embodiment is different from the first embodiment in that two types of fine channels 22 formed in the boiling portion 2 are provided, that is, an upper layer fine channel 223 and a lower layer fine channel 224.
 各微細流路22(223,224)における液溜部4(図2参照)への開口部(入口側開口部)は、図9に示すように、周方向に等間隔で、且つ同じ高さ位置に設けられている。
  また、前記上層微細流路223の出口側は、沸騰部出口21の上部21aの位置に開口し、前記下層微細流路224の出口側は、前記沸騰部出口21の下部21bの位置に開口している。また、前記上層微細流路223と下層微細流路224は、図9に示すように、周方向に交互に設けられている。
The openings (inlet side openings) to the liquid reservoir 4 (see FIG. 2) in each fine channel 22 (223, 224) are equally spaced in the circumferential direction and the same height as shown in FIG. In the position.
Further, the outlet side of the upper layer fine channel 223 opens to the position of the upper part 21a of the boiling part outlet 21, and the outlet side of the lower layer fine channel 224 opens to the position of the lower part 21b of the boiling part outlet 21. ing. Further, as shown in FIG. 9, the upper microchannel 223 and the lower microchannel 224 are alternately provided in the circumferential direction.
 上述したように、上層微細流路223と下層微細流路224は、入口高さは共通であるが、出口高さが異なっているため、上層微細流路223と下層微細流路224では流路の長さが異なり、上層微細流路223の方が長くなる。各微細流路22では、毛細管力により液冷媒をその出口側、即ち沸騰部中心21側まで充填しなければならない。従って、上層微細流路223の直径或いは水力等価直径を下層微細流路224のそれより小さくすることにより、上層微細流路223の毛細管力の方が大きくなるように調整することが好ましい。このように、本実施例においても上記実施例2と同様に、微細流路22の直径或いは水力等価直径を変えて毛細管力を適切に調節することができる。 As described above, the upper microchannel 223 and the lower microchannel 224 have the same inlet height but different outlet heights. Therefore, the upper microchannel 223 and the lower microchannel 224 have a channel. Are different, and the upper fine flow path 223 is longer. In each fine channel 22, the liquid refrigerant must be filled to the outlet side, that is, to the boiling portion center 21 side by capillary force. Therefore, it is preferable to adjust the capillary force of the upper microchannel 223 to be larger by making the diameter of the upper microchannel 223 or the hydraulic equivalent diameter smaller than that of the lower microchannel 224. Thus, also in the present embodiment, the capillary force can be appropriately adjusted by changing the diameter of the fine flow path 22 or the hydraulic equivalent diameter as in the second embodiment.
 ところで、上記実施例1のものにおいて、微細流路22の数を増加させていくと、微細流路の入口側の間隔は十分確保できるが、微細流路の出口側の間隔は小さくなり、隣接する微細流路22の出口側どうしが合体すると、微細流路22出口の水力等価直径が大きくなり、毛細管力が働かなくなる。このため、隣接する微細流路22の出口側どうしが合体しないようにするため、前記微細流路22の数を一定数以上増加できない。
  これに対し、本実施例3のように、微細流路22の出口の高さを変える構成とすることにより、実施例1のものに対し、例えば前記微細流路22の数を2倍に増加させることが可能となる。
By the way, in the thing of the said Example 1, if the number of the microchannels 22 is increased, the space | interval of the entrance side of a microchannel can fully be ensured, but the space | interval of the exit side of a microchannel becomes small, and it adjoins. If the outlet sides of the fine channel 22 to be joined together, the hydraulic equivalent diameter at the outlet of the fine channel 22 increases, and the capillary force does not work. For this reason, in order not to unite the exit sides of the adjacent microchannels 22, the number of the microchannels 22 cannot be increased by a certain number or more.
On the other hand, by adopting a configuration in which the height of the outlet of the fine channel 22 is changed as in the third example, for example, the number of the fine channels 22 is doubled with respect to that of the first example. It becomes possible to make it.
 発熱体7(図1参照)の発熱量が大きい場合、微細流路22内の液冷媒がすべて気化するドライアウト現象が起こることがある。このドライアウト現象が起こると、微細流路22内に液冷媒が無くなり、発熱体7を適切な温度に冷却することができなくなる。 When the heat generation amount of the heating element 7 (see FIG. 1) is large, a dry-out phenomenon may occur in which all the liquid refrigerant in the fine flow path 22 is vaporized. When this dry-out phenomenon occurs, the liquid refrigerant disappears in the fine flow path 22, and the heating element 7 cannot be cooled to an appropriate temperature.
 本実施例3では、前記微細流路22を、上層微細流路223と下層微細流路224の2層に多層化しているので、各微細流路22の入口側が隣接する微細流路22と重ならない限り、微細流路を増加させることができ、この結果、前記ドライアウト現象の発生を防止し、発熱体7の発熱量が大きい場合でも十分に冷却することが可能となる。 In the third embodiment, the microchannel 22 is multi-layered into two layers of an upper layer microchannel 223 and a lower layer microchannel 224, so that the inlet side of each microchannel 22 overlaps the adjacent microchannel 22 with the adjacent one. As long as this is not the case, the number of fine channels can be increased. As a result, the occurrence of the dry-out phenomenon can be prevented, and even when the amount of heat generated by the heating element 7 is large, it can be sufficiently cooled.
 なお、本実施例3では前記微細流路22を、上層微細流路223と下層微細流路224の2種類設けた例を説明したが、沸騰部出口21の上下方向に3層以上となるように3種類以上の微細流路を設けるようにしても良い。その他の構成、効果は、上記実施例1と同様である。 In the third embodiment, the example in which the microchannel 22 is provided with two types of the upper microchannel 223 and the lower microchannel 224 has been described. However, the microchannel 22 has three or more layers in the vertical direction of the boiling portion outlet 21. Three or more kinds of fine flow paths may be provided in each. Other configurations and effects are the same as those of the first embodiment.
 本発明の電子機器の冷却装置における実施例4を、図10を用いて説明する。図10は本実施例4を示す電子機器の冷却装置の斜視図であり、沸騰部2の別の例を示す図である。本実施例4の説明においても、上記実施例1と同様の部分については同一符号を付して説明を省略し、異なる部分を中心に説明する。 Embodiment 4 of the electronic apparatus cooling apparatus according to the present invention will be described with reference to FIG. FIG. 10 is a perspective view of the electronic apparatus cooling apparatus according to the fourth embodiment, and shows another example of the boiling unit 2. Also in the description of the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and different parts are mainly described.
 本実施例4は、沸騰部を複数設け、各沸騰部の中央上部にはそれぞれ沸騰部出口を設け、且つ前記沸騰部の周囲における前記沸騰部出口よりも低い位置には、それぞれ液溜部を設け、これらの液溜部と前記沸騰部出口を接続するように多数の微細流路を放射状に設けているものである。 In Example 4, a plurality of boiling parts are provided, a boiling part outlet is provided at the center upper part of each boiling part, and a liquid reservoir is provided at a position lower than the boiling part outlet around the boiling part. A large number of fine flow paths are provided radially so as to connect these liquid reservoirs and the boiling part outlet.
 即ち、図10に示すように、沸騰部2を、上側沸騰部24と下側沸騰部25で構成し、発熱体7を上下2つの前記沸騰部24,25により冷却するようにしている。また、前記沸騰部24,25は四角形状に構成され、この沸騰部24,25の下面と2つの側面に沿うように、コの字型の液溜部4(上側液溜部44、下側液溜部45)が設けられている。更に、前記上側沸騰部24と下側沸騰部25の中央上部には、前記液溜部4よりも高い位置に、それぞれ上側沸騰部出口21Aと下側沸騰部出口21Bが設けられている。 That is, as shown in FIG. 10, the boiling part 2 is constituted by an upper boiling part 24 and a lower boiling part 25, and the heating element 7 is cooled by the two upper and lower boiling parts 24,25. The boiling parts 24 and 25 are formed in a quadrangular shape, and the U-shaped liquid reservoir 4 (upper liquid reservoir 44, lower side) extends along the lower surface and the two side surfaces of the boiling parts 24 and 25. A liquid reservoir 45) is provided. Further, an upper boiling portion outlet 21 </ b> A and a lower boiling portion outlet 21 </ b> B are provided at the center upper portions of the upper boiling portion 24 and the lower boiling portion 25 at positions higher than the liquid reservoir 4, respectively.
 前記上側沸騰部24と前記下側沸騰部25内には、前記液溜部44,45と前記沸騰部出口21A,21Bを接続するように多数の微細流路22が放射状に設けられている。即ち、上側液溜部44及び下側液溜部45からガス配管6に向かって上昇するように、前記微細流路22が放射状に設けられている。 In the upper boiling part 24 and the lower boiling part 25, a large number of fine flow paths 22 are provided radially so as to connect the liquid reservoirs 44, 45 and the boiling part outlets 21A, 21B. That is, the fine flow paths 22 are provided radially so as to rise from the upper liquid reservoir 44 and the lower liquid reservoir 45 toward the gas pipe 6.
 また、前記上側液溜部44と前記下側液溜部45には、液冷媒が充填されている状態にする必要があるため、凝縮部3で凝縮した液冷媒の液面は、液配管5内の液面高さ51よりも、少なくとも上方に存在するように構成している。 Further, since the upper liquid reservoir 44 and the lower liquid reservoir 45 need to be filled with the liquid refrigerant, the liquid level of the liquid refrigerant condensed in the condensing unit 3 is the liquid pipe 5. It is configured to exist at least above the inner liquid level 51.
 本実施例においては、前記発熱体7及び前記沸騰部24,25は矢印gで示した重力方向と平行な向きに設けられている。従って、前記各沸騰部24,25の微細流路22内において気化した冷媒はスラグ流となり、重力と逆方向に浮力を受けてガス管6へと移動していく。仮に、上記実施例1に示すように、微細流路22を沸騰部2の外側全周からその沸騰部出口21に向かって放射状に形成したものを、図10に示すように、重力方向gと平行な向きに配置すると、沸騰部出口21よりも上方に位置する微細流路22ができてしまう。この上方に位置する微細流路22では、冷媒が気化したスラグ流が微細流路22の入口側に逆流する現象が発生する。 In this embodiment, the heating element 7 and the boiling parts 24 and 25 are provided in a direction parallel to the direction of gravity indicated by the arrow g. Therefore, the refrigerant vaporized in the fine flow path 22 of each of the boiling parts 24 and 25 becomes a slag flow, and moves to the gas pipe 6 by receiving buoyancy in the direction opposite to gravity. Temporarily, as shown in the said Example 1, what formed the fine flow path 22 radially toward the boiling part exit 21 from the outer periphery of the boiling part 2 as shown in FIG. If it arrange | positions in a parallel direction, the fine flow path 22 located above the boiling part exit 21 will be made. In the microchannel 22 positioned above, a phenomenon occurs in which the slag flow in which the refrigerant is vaporized flows backward to the inlet side of the microchannel 22.
 これに対し、本実施例4のような構成とすることにより、前記上側液溜部44及び前記下側液溜部45から、上側沸騰部24及び下側沸騰部25における微細流路22に流入する冷媒の流れ方向は、どの微細流路22においても水平から上方の向きとなる。従って、微細流路22内で発生し、浮力により上昇するスラグ流が、前記液溜部44,45に逆流することを防止することができる。他の構成は上記実施例1と同様である。 On the other hand, with the configuration as in the fourth embodiment, the upper liquid reservoir 44 and the lower liquid reservoir 45 flow into the fine flow path 22 in the upper boiling portion 24 and the lower boiling portion 25. The flow direction of the refrigerant is from the horizontal to the upper direction in any fine channel 22. Therefore, it is possible to prevent the slag flow generated in the fine flow path 22 and rising due to buoyancy from flowing back to the liquid reservoirs 44 and 45. Other configurations are the same as those of the first embodiment.
 本実施例4によれば、沸騰部2を上下に配置した複数個の沸騰部2(上側沸騰部24、下側沸騰部25)で構成しているので、冷却能力をより大きくすることができ、また、発熱体7が長いものにも対応することができ、更に複数個の発熱体7の冷却も可能となる。また、微細流路22をより多く設けることが可能となるから、液冷媒を微細流路まで誘導するための毛細管力が大きくなる。従って、発熱体7からの発熱量が大きい場合も毛細管力により液冷媒が微細流路に充填され、発熱体7を冷却することができるから、この点からも冷却能力の向上を図ることができる。 According to the fourth embodiment, since the boiling part 2 is composed of a plurality of boiling parts 2 (upper boiling part 24, lower boiling part 25) arranged one above the other, the cooling capacity can be further increased. In addition, it is possible to cope with a long heating element 7, and it is also possible to cool a plurality of heating elements 7. In addition, since it is possible to provide more fine flow paths 22, the capillary force for guiding the liquid refrigerant to the fine flow paths is increased. Accordingly, even when the amount of heat generated from the heating element 7 is large, the liquid refrigerant is filled in the fine flow path by the capillary force, and the heating element 7 can be cooled. From this point, the cooling capacity can be improved. .
 なお、本実施例では、沸騰部2及び液溜部4を、上側と下側に2つ配置する構成としているが、2つに限定されるものでなく、発熱体7の大きさや微細流路22の毛細管力に応じて、分割数(沸騰部2及び液溜部4の数)を増加させることも可能である。この分割数に応じて、液配管5及びガス配管6を分岐させる数を増やす必要はある。 In the present embodiment, two boiling parts 2 and two liquid storage parts 4 are arranged on the upper side and the lower side. However, the present invention is not limited to two. Depending on the capillary force of 22, it is possible to increase the number of divisions (the number of boiling parts 2 and liquid reservoirs 4). It is necessary to increase the number of branches of the liquid pipe 5 and the gas pipe 6 according to the number of divisions.
 また、前記沸騰部2を四角形状に構成した例を説明したが、半円形状とすることも可能である。更に、本実施例4では、複数の沸騰部2及び液溜部4を上下に配置する構成としたが、複数の沸騰部2及び液溜部4を左右に配置する構成としても良い。 In addition, although the example in which the boiling portion 2 is configured in a quadrangular shape has been described, it may be a semicircular shape. Furthermore, in the present Example 4, although the some boiling part 2 and the liquid storage part 4 were set as the structure arrange | positioned up and down, it is good also as a structure which arrange | positions the several boiling part 2 and the liquid storage part 4 on right and left.
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。
  更に、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
In addition, this invention is not limited to the Example mentioned above, Various modifications are included. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Further, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
1:冷却装置、
2:沸騰部、2a:円板状部材、2b:板状部材、
21:沸騰部出口(沸騰部中心)、21a:上部、21b:下部、
21A:上側沸騰部出口、21B:下側沸騰部出口、
22:微細流路(微細管路)、221:微細流路の出口、
223:上層微細流路、224:下層微細流路、
24:上側沸騰部、25:下側沸騰部、
3:凝縮部、31:フィン、
4:液溜部、4a:環状部材、44:上側液溜部、45:下側液溜部、
5:液配管、51:液配管の液面高さ、
6:ガス配管、7:発熱体。
1: cooling device,
2: boiling part, 2a: disk-shaped member, 2b: plate-shaped member,
21: Boiling part exit (boiling part center), 21a: upper part, 21b: lower part,
21A: Upper boiling part outlet, 21B: Lower boiling part outlet,
22: Fine flow path (fine pipe line), 221: Exit of fine flow path,
223: Upper microchannel, 224: Lower microchannel,
24: Upper boiling part, 25: Lower boiling part,
3: Condensing part, 31: Fin,
4: liquid reservoir, 4a: annular member, 44: upper liquid reservoir, 45: lower liquid reservoir,
5: Liquid piping, 51: Liquid level height of liquid piping,
6: Gas piping, 7: Heating element.

Claims (9)

  1.  内部に封入した液冷媒を気化させて発熱体を冷却すると共に、気化したガス冷媒が流出する沸騰部出口を有する沸騰部と、
     気化した冷媒を凝縮させる凝縮部と、
     前記沸騰部の周囲に設けられ、前記凝縮部で凝縮した液冷媒を貯留する液溜部と、
     前記沸騰部出口と前記凝縮部上部の入口とを接続するガス配管と、
     前記凝縮部の下部と前記液溜部とを接続する液配管とを備え、
     前記沸騰部は、前記液溜部と前記沸騰部出口とを接続する複数の微細流路が設けられ、かつ前記微細流路は、その入口側よりも出口側が高い位置となるように傾斜させて構成され、前記液溜部の液冷媒を微細流路の毛細管力によりこの微細流路内を上昇させる構成としている
     ことを特徴とする電子機器の冷却装置。
    A boiling part having a boiling part outlet through which the liquid refrigerant sealed inside is vaporized to cool the heating element and the vaporized gas refrigerant flows out,
    A condensing part for condensing the vaporized refrigerant;
    A liquid reservoir that is provided around the boiling portion and stores the liquid refrigerant condensed in the condenser;
    A gas pipe connecting the boiling part outlet and the inlet at the top of the condensing part;
    A liquid pipe connecting the lower part of the condensing unit and the liquid reservoir,
    The boiling section is provided with a plurality of fine flow paths connecting the liquid reservoir section and the boiling section outlet, and the fine flow paths are inclined so that the outlet side is higher than the inlet side. A cooling apparatus for electronic equipment, characterized in that the liquid refrigerant in the liquid reservoir is raised in the fine flow path by the capillary force of the fine flow path.
  2.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部の前記微細流路の直径或いは水力等価直径が0.5~0.1mmであることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    The electronic apparatus cooling apparatus according to claim 1, wherein a diameter of the fine flow path or a hydraulic equivalent diameter of the boiling portion is 0.5 to 0.1 mm.
  3.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部は、円板状部材を備え、この円板状部材の中心には前記沸騰部出口が設けられ、前記微細流路は、この円板状部材の外周側から前記沸騰部出口に向かって放射状に形成されていることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    The boiling part includes a disk-shaped member, and the boiling part outlet is provided at the center of the disk-shaped member, and the fine flow path is directed from the outer peripheral side of the disk-shaped member toward the boiling part outlet. A cooling device for electronic equipment, characterized by being formed radially.
  4.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部は、四角形の板状部材を備え、この板状部材の中心には前記沸騰部出口が設けられ、前記微細流路は、この板状部材の外周側から前記沸騰部出口に向かって放射状に形成されていることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    The boiling portion includes a rectangular plate-like member, the boiling portion outlet is provided at the center of the plate-like member, and the fine flow path is directed from the outer peripheral side of the plate-like member toward the boiling portion outlet. A cooling device for electronic equipment, characterized by being formed radially.
  5.  請求項4に記載の電子機器の冷却装置において、
     流路の長い微細流路では、その直径或いは水力等価直径が、流路の短い微細流路よりも小さくなるように構成していることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device according to claim 4,
    An electronic device cooling apparatus characterized in that a fine flow path with a long flow path has a smaller diameter or a hydraulic equivalent diameter than a fine flow path with a short flow path.
  6.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部に設けられている前記微細流路は、その出口側が、前記沸騰部出口の上部に接続される上層微細流路と、前記沸騰部出口の下部に接続される下層微細流路により構成されていることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    The fine flow path provided in the boiling part is composed of an upper fine flow path whose outlet side is connected to the upper part of the boiling part outlet and a lower fine flow path connected to the lower part of the boiling part outlet. A cooling device for electronic equipment.
  7.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部を複数設け、各沸騰部の中央上部にはそれぞれ沸騰部出口を設け、且つ前記沸騰部の周囲における前記沸騰部出口よりも低い位置には、それぞれ液溜部を設け、この液溜部と前記沸騰部出口を接続するように多数の微細流路が放射状に設けられていることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    A plurality of the boiling parts are provided, a boiling part outlet is provided at the center upper part of each boiling part, and a liquid reservoir is provided at a position lower than the boiling part outlet around the boiling part. A cooling device for electronic equipment, wherein a plurality of fine flow paths are provided radially so as to connect the part and the boiling part outlet.
  8.  請求項1に記載の電子機器の冷却装置において、
     前記沸騰部を、上側沸騰部と下側沸騰部で構成し、前記沸騰部は四角形状に構成され、それぞれの沸騰部の下面と2つの側面に沿うように、コの字型の液溜部がそれぞれ設けられ、前記上側沸騰部と下側沸騰部の中央上部には、前記液溜部よりも高い位置に、それぞれ上側沸騰部出口と下側沸騰部出口が設けられ、前記上側沸騰部と前記下側沸騰部内には、前記液溜部と前記沸騰部出口を接続するように多数の微細流路が放射状に設けられていることを特徴とする電子機器の冷却装置。
    In the cooling device of the electronic device of Claim 1,
    The boiling part is composed of an upper boiling part and a lower boiling part, and the boiling part is formed in a square shape, and a U-shaped liquid reservoir so as to be along the lower surface and two side surfaces of each boiling part. The upper boiling part outlet and the lower boiling part outlet are provided at positions higher than the liquid reservoir at the center upper part of the upper boiling part and the lower boiling part, respectively, and the upper boiling part and A cooling device for electronic equipment, wherein a plurality of fine flow paths are provided radially in the lower boiling portion so as to connect the liquid reservoir and the outlet of the boiling portion.
  9.  内部に封入した液冷媒を気化させて発熱体を冷却すると共に、気化したガス冷媒が流出する沸騰部出口を有する沸騰部と、
     気化した冷媒を凝縮させる凝縮部と、
     前記沸騰部の周囲に設けられ、前記凝縮部で凝縮した液冷媒を貯留する液溜部と、
     前記沸騰部出口と前記凝縮部上部の入口とを接続するガス配管と、
     前記凝縮部の下部と前記液溜部とを接続する液配管とを備え、
     前記沸騰部は、前記液溜部と前記沸騰部出口とを接続する複数の微細流路が設けられ、かつ前記微細流路は、その入口側から出口側まで流路面積が一定の連続した形状に構成され、前記液溜部の液冷媒を前記微細流路の毛細管力によりこの微細流路内に流入させる構成としている
     ことを特徴とする電子機器の冷却装置。
    A boiling part having a boiling part outlet through which the liquid refrigerant sealed inside is vaporized to cool the heating element and the vaporized gas refrigerant flows out,
    A condensing part for condensing the vaporized refrigerant;
    A liquid reservoir that is provided around the boiling portion and stores the liquid refrigerant condensed in the condenser;
    A gas pipe connecting the boiling part outlet and the inlet at the top of the condensing part;
    A liquid pipe connecting the lower part of the condensing unit and the liquid reservoir,
    The boiling portion is provided with a plurality of fine flow paths connecting the liquid reservoir portion and the boiling portion outlet, and the fine flow passage has a continuous shape with a constant flow passage area from the inlet side to the outlet side. An electronic device cooling apparatus, characterized in that the liquid refrigerant in the liquid reservoir is configured to flow into the fine flow path by the capillary force of the fine flow path.
PCT/JP2016/082509 2015-11-10 2016-11-02 Electronic equipment cooling device WO2017082127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-220439 2015-11-10
JP2015220439A JP2019024028A (en) 2015-11-10 2015-11-10 Cooler for electronic equipment

Publications (1)

Publication Number Publication Date
WO2017082127A1 true WO2017082127A1 (en) 2017-05-18

Family

ID=58695169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082509 WO2017082127A1 (en) 2015-11-10 2016-11-02 Electronic equipment cooling device

Country Status (2)

Country Link
JP (1) JP2019024028A (en)
WO (1) WO2017082127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120755A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107153A (en) * 2008-10-31 2010-05-13 Toshiba Corp Evaporator and circulation type cooling device using the same
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
JP2012233642A (en) * 2011-05-02 2012-11-29 Fujitsu Ltd Multi-loop heat pipe, and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107153A (en) * 2008-10-31 2010-05-13 Toshiba Corp Evaporator and circulation type cooling device using the same
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
JP2012233642A (en) * 2011-05-02 2012-11-29 Fujitsu Ltd Multi-loop heat pipe, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120755A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector

Also Published As

Publication number Publication date
JP2019024028A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
TWI778292B (en) Cooling device and cooling system using cooling device
JP2008281229A (en) Evaporator and circulation type cooling device using the same
TW201641910A (en) Coolant type heat dissipation device
JP4953075B2 (en) heatsink
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JPWO2017170153A1 (en) Phase change cooler and electronic device
JP2010133686A (en) Heat pipe and cooler
WO2017110740A1 (en) Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat
JP2012255624A (en) Electric vehicle
JP6678235B2 (en) Heat exchanger
JP2013033807A (en) Cooling device and electronic apparatus using the same
WO2017082127A1 (en) Electronic equipment cooling device
JP2011142298A (en) Boiling cooler
JP6825615B2 (en) Cooling system and cooler and cooling method
JP3168202U (en) Structure of thin plate heat pipe
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
JP2007081375A (en) Cooling device
CN111818756B (en) Heat exchanger with integrated two-phase radiator
JP2008218513A (en) Cooling device
JP3924674B2 (en) Boiling cooler for heating element
TWI721344B (en) Thermosyphon heat exchanger
JP2017112189A (en) Thermo-siphon cooling device
CN108323099B (en) Fin type heat pipe coupling radiator
JP6197651B2 (en) Cooling system
JP2016133287A (en) Loop type heat pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP