WO2017110740A1 - Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat - Google Patents

Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat Download PDF

Info

Publication number
WO2017110740A1
WO2017110740A1 PCT/JP2016/087783 JP2016087783W WO2017110740A1 WO 2017110740 A1 WO2017110740 A1 WO 2017110740A1 JP 2016087783 W JP2016087783 W JP 2016087783W WO 2017110740 A1 WO2017110740 A1 WO 2017110740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
phase refrigerant
phase
header
heat
Prior art date
Application number
PCT/JP2016/087783
Other languages
French (fr)
Japanese (ja)
Inventor
有仁 松永
正樹 千葉
佐藤 正典
孔一 轟
水季 和田
吉川 実
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017558118A priority Critical patent/JP6806086B2/en
Priority to US16/064,519 priority patent/US20190003776A1/en
Publication of WO2017110740A1 publication Critical patent/WO2017110740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Definitions

  • the present invention relates to a heat radiating device, a phase change cooling device using the heat radiating device, and a heat radiating method, and more particularly to a heat radiating device used for cooling electronic devices and the like, a phase change cooling device using the radiating device, and a heat radiating method.
  • a cooling device (phase change cooling device) using a phase change cooling method
  • the refrigerant received by the heat receiving part boils (vaporizes) and flows into the heat radiating part as a gas-liquid two-phase flow.
  • heat transport is performed when a gaseous-phase refrigerant condenses and dissipates heat in a thermal radiation part.
  • the heat radiating tube is blocked in the vicinity of the inlet portion to inhibit the gas phase refrigerant from entering. Therefore, there has been a problem that the refrigerant cannot be circulated well.
  • a phase change cooling device (boiling cooling device) described in Patent Document 1 includes a refrigerant tank that stores liquid refrigerant therein, and a refrigerant vapor that has boiled by receiving heat from a heating element in the refrigerant tank. And a heat radiator that liquefies by heat exchange.
  • the radiator includes a vapor side header into which the refrigerant vapor boiled by the heat of the heating element flows in the refrigerant tank, a core part composed of the radiation tube and the radiation fin, and a liquid side header into which the condensate liquefied in the core part flows.
  • the heat radiating tube communicates the vapor side header and the liquid side header.
  • One end portion of the heat radiating tube is provided so as to protrude from the inner wall surface of the header plate of the steam side header into the steam side header, thereby forming a gas-liquid separation structure.
  • JP 2000-156444 A paragraphs [0010] to [0022], FIG. 1)
  • the related phase change cooling device (boiling cooling device) described in Patent Document 1 includes a radiator in which one end portion of the heat radiating tube is provided to protrude into the vapor side header. It is said. In such a configuration, even if the heat radiating tube is increased to increase the cooling capacity and the heat radiating area is expanded, the flow of the gas phase refrigerant is hindered by the protruding end of the heat radiating tube. Cannot fully fill up to the end of the side header. As a result, there is a problem that the cooling capacity of the related phase change cooling device cannot be improved.
  • the object of the present invention is to solve the above-mentioned problem that the cooling capacity of the phase change cooling device in which the refrigerant flows in a gas-liquid two-phase state cannot be sufficiently improved even if the heat radiation area is expanded.
  • An object of the present invention is to provide a heat dissipation device, a phase change cooling device using the same, and a heat dissipation method.
  • a gas-liquid two-phase refrigerant flows in, and a gas-phase refrigerant diffusion section filled with a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, a first header, and a second header
  • a heat-dissipating part comprising a header, a plurality of heat-dissipating pipes that connect the first header and the second header, and the gas-phase refrigerant flows; and a gas-phase refrigerant diffusion part and the first header are connected to each other; A gas phase side connection portion through which the gas flows.
  • the heat dissipation method of the present invention receives a gas-liquid two-phase refrigerant, uniformly diffuses the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, generates a diffusion gas-phase refrigerant, A plurality of gas-phase refrigerant streams are generated by branching, and each of the gas-phase refrigerant streams is condensed and liquefied.
  • the phase change cooling device using the heat dissipating device, and the heat dissipating method the heat dissipating region can be expanded even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used.
  • the cooling capacity can be sufficiently improved.
  • FIG. 1 is a cross-sectional view showing a configuration of a heat dissipation device 100 according to the first embodiment of the present invention.
  • the heat dissipation device 100 according to the present embodiment includes a gas phase refrigerant diffusion unit 110, a heat dissipation unit 120, and a gas phase side connection unit 130.
  • FIG. 2 is a front view of the heat radiating unit 120
  • FIG. 3 is a cross-sectional view of the heat radiating unit 120.
  • a gas-liquid two-phase refrigerant flows into the gas-phase refrigerant diffusion unit 110, and the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is filled.
  • the heat dissipating unit 120 includes a first header 121, a second header 122, and a plurality of heat dissipating tubes 123 that connect the first header 121 and the second header 122 and through which the gas-phase refrigerant flows.
  • the gas phase side connection part 130 connects the gas phase refrigerant diffusion part 110 and the first header 121, and thereby the gas phase refrigerant flows.
  • the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant diffuses and fills in the gas-phase refrigerant diffusion unit 110, and then passes through the gas-phase side connection unit 130 to dissipate the heat radiation unit 120. Flows into the first header 121 constituting the. Therefore, even when the number of the radiating pipes 123 is increased to increase the cooling capacity and the radiating area is expanded, the radiating pipes 123 do not hinder the inflow and diffusion of the gas-phase refrigerant. Therefore, according to the heat radiating device 100 of the present embodiment, even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, the cooling capacity is sufficiently improved by expanding the heat radiating region. be able to.
  • the heat radiation part 120 is typically a parallel flow type heat radiator as shown in FIG. That is, for example, a pipe-shaped header is arranged in the upper part (first header 121) and the lower part (second header 122), and the heat-dissipating part 120 is configured such that these headers communicate with each other through a heat-dissipating tube (radiating pipe 123). be able to. Fins 124 are provided on the surface of the heat radiating tube (heat radiating tube 123) as shown in FIG. Thereby, since a surface area expands, the heat dissipation capability to air can be improved. Note that the cross-sectional shape of the header may be cylindrical or rectangular.
  • the vapor phase side connection portion 130 can be configured to connect the central region in the longitudinal direction of the first header 121 and the vapor phase refrigerant diffusion portion 110. As a result, the distance from the inflow position of the gas-phase refrigerant to the far end of the first header 121 is minimized, so that the pressure loss of the gas-phase refrigerant can be reduced and the cooling efficiency can be improved.
  • the heat radiating pipe 123 can be configured such that the first end of the heat radiating pipe 123 extends to the inside of the first header 121. That is, the upper header (first header 121) may have a large number of through holes, and a heat radiating tube (heat radiating pipe 123) having fins on the outer periphery may be inserted to the vicinity of the center of the upper header.
  • coolant of a gas-liquid two-phase state retains between the thermal radiation tubes (radiation pipe
  • the gas phase side connection portion 130 includes a first tubular structure, and the extension of the central axis C ⁇ b> 1 of the first tubular structure is higher than the first end E ⁇ b> 1 of the heat radiating tube 123. It can be set as the structure located in. That is, the vapor phase side connection part 130 can be configured to be eccentrically connected so that the central axis C1 is located above the central axis of the upper header (first header 121). In this case, the opening area at the connection portion of the gas phase side connection portion 130 is larger in the opening area above the central axis of the upper header than in the lower opening area.
  • FIG. 1 shows the case where the gas phase side connection part 130 and the first header 121 are connected at a substantially right angle.
  • the configuration is not limited to this, and the central axis C1 of the first tubular structure of the gas-phase side connection portion 130 and the central axis C1 of the gas-phase-side connection portion 130 may not be in a parallel relationship on the same plane. That is, the gas phase side connection part 130 can be configured to be connected so as not to be parallel to the flow path direction (vertical direction) of the heat radiation tube (heat radiation pipe 123).
  • the gas-phase refrigerant diffusion unit 110 is positioned obliquely above the first header 121, and the gas-phase side connection unit 130 is perpendicular to the vertical direction. It can be set as the structure which inclines and arranges. By setting it as such a structure, it can avoid that the liquid phase refrigerant
  • connection between the gas phase side connection portion 130 and the gas phase refrigerant diffusion portion 110 or the upper header (first header 121) can be performed by brazing or welding.
  • a gas-liquid two-phase refrigerant is received, and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is uniformly diffused to generate a diffusion gas-phase refrigerant.
  • the diffusion gas phase refrigerant is branched to generate a plurality of gas phase refrigerant flows. Then, each of the plurality of gas-phase refrigerant flows is condensed and liquefied.
  • the structure is such that the gas-phase refrigerant is branched after being uniformly diffused to form a diffusion gas-phase refrigerant
  • the pressure loss compared with the case where the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is directly branched. Can be reduced.
  • the diffusion gas-phase refrigerant can be branched so that the flow distributions of the plurality of gas-phase refrigerant flows are symmetrical. In this case, it is possible to reduce the maximum pressure loss for each of the plurality of gas-phase refrigerant flows.
  • the cooling capacity can be sufficiently improved even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used.
  • FIG. 5 the structure of the thermal radiation apparatus 200 which concerns on the 2nd Embodiment of this invention is shown.
  • the heat dissipating device 200 includes a gas phase refrigerant diffusion unit 110, a heat dissipating unit 120, and a gas phase side connection unit.
  • a gas-liquid two-phase refrigerant flows into the gas-phase refrigerant diffusion unit 110 and is filled with the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant.
  • the heat dissipating unit 120 includes a first header 121, a second header 122, and a plurality of heat dissipating tubes 123 that connect the first header 121 and the second header 122 and through which the gas-phase refrigerant flows.
  • gas phase side connection part 130 connects the gas phase refrigerant diffusion part 110 and the first header 121, and thereby the gas phase refrigerant flows.
  • the configuration so far is the same as the configuration of the heat dissipation device 100 according to the first embodiment.
  • the heat dissipation device 200 further includes a liquid-phase refrigerant transport unit 210 and a liquid-phase side connection unit 220 in addition to the above-described configuration.
  • the liquid-phase refrigerant transport unit 210 accommodates and transports the liquid-phase refrigerant that has passed through the heat radiating pipe 123.
  • the liquid phase side connection part 220 connects the liquid phase refrigerant transport part 210 and the second header 122, whereby the liquid phase refrigerant flows.
  • the gas-phase refrigerant diffusing unit 110 is located above the heat radiating unit 120 and is connected to the upper header (first header 121) by the gas-phase side connecting unit 130.
  • the liquid-phase refrigerant transport unit 210 is located below the heat radiating unit 120 and is connected to the lower header (second header 122) by the liquid-phase side connection unit 220.
  • the heat radiating pipe 123 can be configured such that the second end E ⁇ b> 2 of the heat radiating pipe 123 extends to the inside of the second header 122.
  • the liquid phase side connection part 220 is provided with the 2nd tubular structure, and it can be set as the structure where the extension of the center axis
  • the heat dissipating unit 120 may include a plurality of heat dissipating regions (heat radiators). That is, as shown in FIG. 6, the heat dissipation device 300 includes a gas phase refrigerant diffusion unit 110, a liquid phase refrigerant transport unit 210, a gas phase side connection unit 130, a liquid phase side connection unit 220, and a plurality of heat dissipation regions (heat radiators). ) 320 and the heat dissipating part 120 may be provided.
  • each heat radiation area (heat radiator) 320 includes a first header area (third header) 321 constituting a first header and a second header area (fourth fourth) constituting a second header.
  • each heat radiation area 320 can be used as each heat radiation area 320.
  • the gas phase side connection part 130 is configured to include a plurality of gas phase side connection structures 330 that connect the gas phase refrigerant diffusion part 110 and the first header regions 321 and flow the gas phase refrigerant.
  • the gas-phase-side connection structure 330 can be configured to connect the central region in the longitudinal direction of the first header region 321 and the gas-phase refrigerant diffusing unit 110, respectively.
  • the plurality of heat radiation regions 320 are arranged in the longitudinal direction of each header region, and the gas-phase refrigerant diffusion portion 110 can be arranged substantially parallel to the longitudinal direction of the header region. .
  • the gas-phase refrigerant diffusing unit 110 needs to supply the gas-phase refrigerant to the plurality of heat-dissipating regions 320, and thus the cross-sectional area of the gas-phase refrigerant diffusing unit 110 is the same as that of the first header region 321. It is desirable to make it larger than the area.
  • the gas-phase side connection structure 330 that connects the gas-phase refrigerant diffusing portion 110 and each upper header (first header region 321) has a tubular structure having the same cross-sectional area as the upper header in order to reduce pressure loss. It is desirable to use (piping).
  • the refrigerant In the phase change cooling device, the refrigerant is transported in a state where the gas-liquid two phases are mixed (gas-liquid two-phase state).
  • the reason for this is that the liquid phase refrigerant received by the heat receiving device (evaporation unit) is vaporized and flows into the gas phase refrigerant diffusion unit 110, but at this time, not all the liquid phase refrigerants are changed into the gas phase refrigerant. This is because a part of the refrigerant flows as a liquid phase refrigerant.
  • the refrigerant flowing through the vapor-phase refrigerant diffusion unit 110 branches and flows into a plurality of radiators (the heat dissipation unit 120 and the heat dissipation region 320) connected to the gas-phase refrigerant diffusion unit 110, respectively. At this time, the refrigerant flows into the upper header (first header 121, first header region 321) of each radiator through the vapor phase side connection structure 330.
  • the gas-liquid two-phase refrigerant containing the liquid-phase refrigerant flowing into the upper header collides with the wall surface of the upper header, and the liquid-phase refrigerant mixed with the gas-phase refrigerant falls. This is because the liquid-phase refrigerant has a higher density than the gas-phase refrigerant and thus loses momentum and falls by its own weight.
  • the density of the gas-phase refrigerant is smaller than that of the liquid-phase refrigerant, the gas-phase refrigerant is distributed upward in the upper header, and even when it collides with the wall surface of the upper header, the amount of momentum lost from the liquid-phase refrigerant is small. Therefore, the gas phase refrigerant moves in the longitudinal direction of the upper header along the wall surface of the upper header.
  • the gas-phase refrigerant that has moved in the longitudinal direction of the upper header flows from the openings of the radiating tubes (radiating tubes 123 and 323) connected to the upper header, and receives heat in the heat receiving device in the region where the fins are connected to the outside. Heat is released.
  • the liquid refrigerant is stored between the heat radiation tubes in the upper header.
  • the liquid phase refrigerant stored between the heat radiating tubes loses its fluidity in the longitudinal direction of the upper header due to the radiating tubes, the refrigerant flowing in the longitudinal direction of the upper header has a large amount of gas phase refrigerant.
  • the liquid phase refrigerant When the liquid phase refrigerant is mixed in the gas phase refrigerant, the liquid phase refrigerant has a higher density than the gas phase refrigerant, and thus the flow of the gas phase refrigerant is hindered. For this reason, it is difficult to efficiently distribute the gas-phase refrigerant to the heat radiating tubes.
  • the amount of gas-phase refrigerant that can move in the upper header can be increased. Therefore, the gas phase refrigerant can be supplied more evenly to the heat radiating tubes. Thereby, it becomes possible to improve cooling performance.
  • the liquid refrigerant condensed in each heat radiating tube descends due to the action of gravity or the like, and flows into the lower header (second header 122, second header region 322).
  • the gas phase refrigerant is mixed in part. Since the gas-phase refrigerant has a density lower than that of the liquid-phase refrigerant, the gas-phase refrigerant is accumulated upward in the lower header.
  • the second header region 322) is extended to the inside. Therefore, the gas phase refrigerant stays between the heat radiating tubes. Since the gas phase refrigerant staying between the heat radiating tubes is prevented from flowing by the heat radiating tubes, the movement of the lower header in the longitudinal direction is restricted.
  • the flow rate is higher than that of the liquid-phase refrigerant.
  • the flow of the gas-phase refrigerant in the lower header is limited as described above, so that the liquid-phase refrigerant is efficiently discharged to the liquid-phase refrigerant transport unit 210. It is possible.
  • the flow of the gas-phase refrigerant is not hindered by the mixed liquid-phase refrigerant, so that the gas-phase refrigerant is evenly distributed to the heat radiating tubes.
  • the liquid-phase refrigerant condensed in the heat radiating unit 120 can be efficiently discharged to the liquid-phase refrigerant transport unit 210 without being disturbed by the movement of the gas-phase refrigerant that has flowed into the lower header without being condensed. Thereby, it becomes possible to improve the cooling performance of the heat dissipation devices 200 and 300.
  • the heat dissipating device 200 and the heat dissipating device 300 according to the present embodiment even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, by expanding the heat dissipating region.
  • the cooling capacity can be sufficiently improved.
  • FIG. 7 schematically shows the configuration of a phase change cooling device 1000 according to the third embodiment of the present invention.
  • the phase change cooling device 1000 includes a heat dissipation device 1100, a heat receiving device 1200, a first connection portion 1300, and a second connection portion 1400.
  • the heat dissipating device 1100 has the same configuration as the heat dissipating device 200 and the heat dissipating device 300 according to the second embodiment described above, and includes the gas phase refrigerant diffusion unit 110, the heat dissipating unit 120, the gas phase side connection unit 130, and the liquid phase refrigerant transport unit. 210 and the liquid phase side connection part 220 are provided.
  • the heat radiating device 1100 is typically a condenser that condenses and liquefies a gas phase refrigerant.
  • Heat receiving device 1200 receives heat from a cooling target and generates a gas-liquid two-phase refrigerant. That is, the heat receiving apparatus 1200 includes an evaporator that generates a gas-liquid two-phase refrigerant by receiving the refrigerant and receiving the heat.
  • the first connection unit 1300 connects the heat receiving device 1200 and the gas-phase refrigerant diffusion unit 110.
  • the second connection unit 1400 connects the heat receiving device 1200 and the liquid-phase refrigerant transport unit 210.
  • the gas-liquid two-phase refrigerant generated by the heat receiving device 1200 flows from the gas phase refrigerant diffusion portion 110 of the heat dissipation device 1100 through the first connection portion 1300 to the heat dissipation portion 120 via the gas phase side connection portion 130. To do.
  • the liquid-phase refrigerant condensed and liquefied in the heat radiating unit 120 flows into the liquid-phase refrigerant transport unit 210 via the liquid-phase side connection unit 220 and returns to the heat receiving apparatus 1200 through the second connection unit 1400. This completes the phase change cooling cycle.
  • the phase change cooling device 1000 may be configured such that the heat receiving device 1200 is installed in a building and the heat dissipation device 1100 is installed outside the building.
  • the heat receiving device 1200 is installed to receive heat generated in a server room or the like provided in a factory, a data center, or the like.
  • the heat radiating device 1100 is installed to radiate the heat received by the heat receiving device 1100 to the outside air.
  • the phase change cooling device 1000 is not limited to the phase change cooling method based on the natural circulation of the refrigerant, but has a configuration in which the refrigerant circulation pump is provided in the second connection portion 1400, thereby providing a pump circulation type phase change cooling. It can also be configured as a device.
  • the phase change cooling device 1000 includes a heat dissipation device 1100 having the same configuration as the heat dissipation device 200 or the heat dissipation device 300 according to the second embodiment. Therefore, as described above, even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, the cooling capacity can be sufficiently improved by expanding the heat radiation area.
  • Heat dissipation device 100, 101, 200, 300 Heat dissipation device 110 Gas phase refrigerant diffusion portion 120 Heat dissipation portion 121 First header 122 Second header 123, 323 Radiation pipe 124 Fin 130 Gas phase side connection portion 210 Liquid phase refrigerant transport portion 220 Liquid phase Side connection section 320 Heat radiation area 321 First header area 322 Second header area 330 Gas phase side connection structure 1000 Phase change cooling device 1100 Heat radiation apparatus 1200 Heat receiving apparatus 1300 First connection section 1400 Second connection section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

In prior phase-change cooling devices in which a refrigerant flows in a gas-liquid two-phase state, it was not possible to adequately improve cooling capability even when the heat-dissipating region was increased. Therefore, this heat-dissipating device has: a gas-phase refrigerant diffusion unit into which a refrigerant in a gas-liquid two-phase state flows, the gas-phase refrigerant diffusion unit being filled with the gas-phase refrigerant contained in the refrigerant in the gas-liquid two-phase state; a first header; a second header; a heat-dissipating unit connected to the first header and the second header, the heat-dissipating unit being provided with a plurality of heat-dissipating tubes in which the gas-phase refrigerant flows; and a gas-phase-side connection unit for connecting the gas-phase refrigerant diffusion unit and the first header, the gas-phase refrigerant flowing through the gas-phase-side connection unit.

Description

放熱装置、それを用いた相変化冷却装置、および放熱方法Heat dissipation device, phase change cooling device using the same, and heat dissipation method
 本発明は、放熱装置、それを用いた相変化冷却装置、および放熱方法に関し、特に、電子機器などの冷却に用いられる放熱装置、それを用いた相変化冷却装置、および放熱方法に関する。 The present invention relates to a heat radiating device, a phase change cooling device using the heat radiating device, and a heat radiating method, and more particularly to a heat radiating device used for cooling electronic devices and the like, a phase change cooling device using the radiating device, and a heat radiating method.
 近年、電子機器の小型化、高性能化にともなって、その発熱量および発熱密度が増大している。このような電子機器等を効率的に冷却するため、冷却能力が高い冷却方式を採用する必要がある。冷却能力が高い冷却方式の一つとして、冷媒の相変化を用いた相変化冷却方式が注目されている。 In recent years, the heat generation amount and the heat generation density have increased with the downsizing and higher performance of electronic devices. In order to efficiently cool such electronic devices and the like, it is necessary to adopt a cooling method having a high cooling capacity. As one of the cooling methods having a high cooling capacity, a phase change cooling method using a phase change of a refrigerant has attracted attention.
 相変化冷却方式による冷却装置(相変化冷却装置)においては、受熱部で受熱した冷媒が沸騰(気化)し、気液二相流となって放熱部に流動する。そして、放熱部において気相冷媒が凝縮し放熱することにより熱輸送を行う。このとき、気液二相流に含まれる液相冷媒が、放熱部を構成する放熱チューブに直接進入すると、放熱チューブが入口部近傍で閉塞して気相冷媒の進入を阻害する。そのため、冷媒が良好に循環できなくなるという問題点があった。 In a cooling device (phase change cooling device) using a phase change cooling method, the refrigerant received by the heat receiving part boils (vaporizes) and flows into the heat radiating part as a gas-liquid two-phase flow. And heat transport is performed when a gaseous-phase refrigerant condenses and dissipates heat in a thermal radiation part. At this time, when the liquid phase refrigerant contained in the gas-liquid two-phase flow directly enters the heat radiating tube constituting the heat radiating portion, the heat radiating tube is blocked in the vicinity of the inlet portion to inhibit the gas phase refrigerant from entering. Therefore, there has been a problem that the refrigerant cannot be circulated well.
 このような問題点を解決する技術の一例が特許文献1に記載されている。特許文献1に記載された相変化冷却装置(沸騰冷却装置)は、内部に液冷媒を貯留する冷媒槽と、この冷媒槽で発熱体の熱を受けて沸騰した冷媒蒸気を外部流体(例えば空気)との熱交換によって液化する放熱器とを備える。 An example of a technique for solving such problems is described in Patent Document 1. A phase change cooling device (boiling cooling device) described in Patent Document 1 includes a refrigerant tank that stores liquid refrigerant therein, and a refrigerant vapor that has boiled by receiving heat from a heating element in the refrigerant tank. And a heat radiator that liquefies by heat exchange.
 放熱器は、冷媒槽で発熱体の熱を受けて沸騰した冷媒蒸気が流入する蒸気側ヘッダ、放熱チューブと放熱フィンからなるコア部、およびコア部で液化した凝縮液が流入する液側ヘッダを備える。放熱チューブは、蒸気側ヘッダと液側ヘッダとを連通している。そして、放熱チューブの一方の端部は、蒸気側ヘッダのヘッダプレートの内壁面より蒸気側ヘッダの内部へ突出して設けられ、気液分離構造を形成している。 The radiator includes a vapor side header into which the refrigerant vapor boiled by the heat of the heating element flows in the refrigerant tank, a core part composed of the radiation tube and the radiation fin, and a liquid side header into which the condensate liquefied in the core part flows. Prepare. The heat radiating tube communicates the vapor side header and the liquid side header. One end portion of the heat radiating tube is provided so as to protrude from the inner wall surface of the header plate of the steam side header into the steam side header, thereby forming a gas-liquid separation structure.
 このような構成としたことにより、冷媒槽から冷媒蒸気とともに飛散した液冷媒が蒸気側ヘッダ内へ進入しても、蒸気側ヘッダ内の気液分離構造によって液冷媒と冷媒蒸気とが分離され、液冷媒が放熱チューブへ進入することを阻止できる。その結果、特許文献1に記載された沸騰冷却装置によれば、略冷媒蒸気のみが放熱チューブへ進入することができ、冷媒槽と放熱器との間を冷媒が良好に循環できるので、安定的に動作させることができる、としている。 By adopting such a configuration, even if the liquid refrigerant scattered with the refrigerant vapor from the refrigerant tank enters the vapor header, the liquid refrigerant and the refrigerant vapor are separated by the gas-liquid separation structure in the vapor header, The liquid refrigerant can be prevented from entering the heat radiating tube. As a result, according to the boiling cooling device described in Patent Document 1, only substantially refrigerant vapor can enter the heat radiating tube, and the refrigerant can circulate well between the refrigerant tank and the radiator, so that it is stable. You can make it work.
特開2000-156444号公報(段落[0010]~[0022]、図1)JP 2000-156444 A (paragraphs [0010] to [0022], FIG. 1)
 上述したように、特許文献1に記載された関連する相変化冷却装置(沸騰冷却装置)は、放熱チューブの一方の端部が蒸気側ヘッダの内部へ突出して設けられた放熱器を備えた構成としている。このような構成において、冷却能力を増大させるために放熱チューブを増加させて放熱領域を拡大しても、放熱チューブの突出した端部によって気相冷媒の流動が妨げられるので、気相冷媒は蒸気側ヘッダの端まで十分に充満することができない。その結果、関連する相変化冷却装置の冷却能力の向上が図れないという問題があった。 As described above, the related phase change cooling device (boiling cooling device) described in Patent Document 1 includes a radiator in which one end portion of the heat radiating tube is provided to protrude into the vapor side header. It is said. In such a configuration, even if the heat radiating tube is increased to increase the cooling capacity and the heat radiating area is expanded, the flow of the gas phase refrigerant is hindered by the protruding end of the heat radiating tube. Cannot fully fill up to the end of the side header. As a result, there is a problem that the cooling capacity of the related phase change cooling device cannot be improved.
 このように、冷媒が気液二相状態で流動する相変化冷却装置においては、放熱領域を拡大しても冷却能力の十分な向上が図れない、という問題があった。 Thus, in the phase change cooling device in which the refrigerant flows in a gas-liquid two-phase state, there is a problem that the cooling capacity cannot be sufficiently improved even if the heat radiation area is expanded.
 本発明の目的は、上述した課題である、冷媒が気液二相状態で流動する相変化冷却装置においては、放熱領域を拡大しても冷却能力の十分な向上が図れない、という課題を解決する放熱装置、それを用いた相変化冷却装置、および放熱方法を提供することにある。 The object of the present invention is to solve the above-mentioned problem that the cooling capacity of the phase change cooling device in which the refrigerant flows in a gas-liquid two-phase state cannot be sufficiently improved even if the heat radiation area is expanded. An object of the present invention is to provide a heat dissipation device, a phase change cooling device using the same, and a heat dissipation method.
 本発明の放熱装置は、気液二相状態の冷媒が流入し、気液二相状態の冷媒に含まれる気相冷媒が充満する気相冷媒拡散部と、第1のヘッダと、第2のヘッダと、第1のヘッダと第2のヘッダを連結し気相冷媒が流動する複数の放熱管、とを備える放熱部と、気相冷媒拡散部と第1のヘッダを接続し、気相冷媒が流動する気相側接続部、とを有する。 In the heat dissipation device of the present invention, a gas-liquid two-phase refrigerant flows in, and a gas-phase refrigerant diffusion section filled with a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, a first header, and a second header A heat-dissipating part comprising a header, a plurality of heat-dissipating pipes that connect the first header and the second header, and the gas-phase refrigerant flows; and a gas-phase refrigerant diffusion part and the first header are connected to each other; A gas phase side connection portion through which the gas flows.
 本発明の放熱方法は、気液二相状態の冷媒を受け付け、気液二相状態の冷媒に含まれる気相冷媒を一様に拡散させて拡散気相冷媒を生成し、拡散気相冷媒を分岐して複数の気相冷媒流を生成し、複数の気相冷媒流をそれぞれ凝縮液化させる。 The heat dissipation method of the present invention receives a gas-liquid two-phase refrigerant, uniformly diffuses the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, generates a diffusion gas-phase refrigerant, A plurality of gas-phase refrigerant streams are generated by branching, and each of the gas-phase refrigerant streams is condensed and liquefied.
 本発明の放熱装置、それを用いた相変化冷却装置、および放熱方法によれば、冷媒が気液二相状態で流動する相変化冷却方式を用いる場合であっても、放熱領域を拡大することにより冷却能力の十分な向上を図ることができる。 According to the heat dissipating device of the present invention, the phase change cooling device using the heat dissipating device, and the heat dissipating method, the heat dissipating region can be expanded even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used. Thus, the cooling capacity can be sufficiently improved.
本発明の第1の実施形態に係る放熱装置の構成を示す断面図である。It is sectional drawing which shows the structure of the thermal radiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る放熱装置が備える放熱部の構成を示す正面図である。It is a front view which shows the structure of the thermal radiation part with which the thermal radiation apparatus which concerns on the 1st Embodiment of this invention is provided. 本発明の第1の実施形態に係る放熱装置が備える放熱部の構成を示す断面図である。It is sectional drawing which shows the structure of the thermal radiation part with which the thermal radiation apparatus which concerns on the 1st Embodiment of this invention is provided. 本発明の第1の実施形態に係る放熱装置の別の構成を示す断面図である。It is sectional drawing which shows another structure of the thermal radiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る放熱装置の構成を示す断面図である。It is sectional drawing which shows the structure of the thermal radiation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る放熱装置の別の構成を示す正面図である。It is a front view which shows another structure of the thermal radiation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る相変化冷却装置の構成を示す概略図である。It is the schematic which shows the structure of the phase change cooling device which concerns on the 3rd Embodiment of this invention.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る放熱装置100の構成を示す断面図である。本実施形態による放熱装置100は、気相冷媒拡散部110、放熱部120、および気相側接続部130を有する。図2に放熱部120の正面図を、図3に放熱部120の断面図をそれぞれ示す。
[First Embodiment]
FIG. 1 is a cross-sectional view showing a configuration of a heat dissipation device 100 according to the first embodiment of the present invention. The heat dissipation device 100 according to the present embodiment includes a gas phase refrigerant diffusion unit 110, a heat dissipation unit 120, and a gas phase side connection unit 130. FIG. 2 is a front view of the heat radiating unit 120, and FIG. 3 is a cross-sectional view of the heat radiating unit 120.
 気相冷媒拡散部110には気液二相状態の冷媒が流入し、この気液二相状態の冷媒に含まれる気相冷媒が充満する。放熱部120は、第1のヘッダ121、第2のヘッダ122、および第1のヘッダ121と第2のヘッダ122を連結し気相冷媒が流動する複数の放熱管123を備える。そして、気相側接続部130は、気相冷媒拡散部110と第1のヘッダ121を接続し、それにより気相冷媒が流動する。 A gas-liquid two-phase refrigerant flows into the gas-phase refrigerant diffusion unit 110, and the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is filled. The heat dissipating unit 120 includes a first header 121, a second header 122, and a plurality of heat dissipating tubes 123 that connect the first header 121 and the second header 122 and through which the gas-phase refrigerant flows. And the gas phase side connection part 130 connects the gas phase refrigerant diffusion part 110 and the first header 121, and thereby the gas phase refrigerant flows.
 このような構成としたことにより、気液二相状態の冷媒に含まれる気相冷媒は、気相冷媒拡散部110内で拡散し充満した後に、気相側接続部130を通って放熱部120を構成する第1のヘッダ121に流入する。そのため、冷却能力を増大させるために放熱管123の個数を増加させて放熱領域を拡大した場合であっても、放熱管123が気相冷媒の流入および拡散を阻害することはない。したがって、本実施形態の放熱装置100によれば、冷媒が気液二相状態で流動する相変化冷却方式を用いる場合であっても、放熱領域を拡大することにより冷却能力の十分な向上を図ることができる。 With such a configuration, the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant diffuses and fills in the gas-phase refrigerant diffusion unit 110, and then passes through the gas-phase side connection unit 130 to dissipate the heat radiation unit 120. Flows into the first header 121 constituting the. Therefore, even when the number of the radiating pipes 123 is increased to increase the cooling capacity and the radiating area is expanded, the radiating pipes 123 do not hinder the inflow and diffusion of the gas-phase refrigerant. Therefore, according to the heat radiating device 100 of the present embodiment, even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, the cooling capacity is sufficiently improved by expanding the heat radiating region. be able to.
 放熱部120は典型的には、図2に示すようなパラレルフロー型の放熱器である。すなわち、放熱部120は例えばパイプ状のヘッダが上部(第1のヘッダ121)および下部(第2のヘッダ122)に配置され、これらのヘッダを放熱チューブ(放熱管123)によって連通した構成とすることができる。放熱チューブ(放熱管123)の表面には、図2に示すようにフィン124が設けられている。これにより、表面積が拡大するので空気への放熱能力を向上させることができる。なお、ヘッダの断面形状は、円筒形であっても角型であってもよい。 The heat radiation part 120 is typically a parallel flow type heat radiator as shown in FIG. That is, for example, a pipe-shaped header is arranged in the upper part (first header 121) and the lower part (second header 122), and the heat-dissipating part 120 is configured such that these headers communicate with each other through a heat-dissipating tube (radiating pipe 123). be able to. Fins 124 are provided on the surface of the heat radiating tube (heat radiating tube 123) as shown in FIG. Thereby, since a surface area expands, the heat dissipation capability to air can be improved. Note that the cross-sectional shape of the header may be cylindrical or rectangular.
 気相側接続部130は、図3に示すように、第1のヘッダ121の長手方向の中央領域と気相冷媒拡散部110を接続する構成とすることができる。これにより、気相冷媒の流入位置から第1のヘッダ121の遠い側の端までの距離が最小となるので、気相冷媒の圧力損失が低減し冷却効率を向上させることができる。 As shown in FIG. 3, the vapor phase side connection portion 130 can be configured to connect the central region in the longitudinal direction of the first header 121 and the vapor phase refrigerant diffusion portion 110. As a result, the distance from the inflow position of the gas-phase refrigerant to the far end of the first header 121 is minimized, so that the pressure loss of the gas-phase refrigerant can be reduced and the cooling efficiency can be improved.
 放熱管123は、図3に示すように、放熱管123の第1の端部が第1のヘッダ121の内部まで延伸した構成とすることができる。すなわち、上部ヘッダ(第1のヘッダ121)は多数の貫通穴を備え、外周にフィンを有する放熱チューブ(放熱管123)が上部ヘッダの中央付近まで挿入された構成とすることができる。これにより、気液二相状態の冷媒に含まれる液相冷媒LRは放熱チューブ(放熱管123)間に滞留するので、気相冷媒VRの流動が容易となる。 As shown in FIG. 3, the heat radiating pipe 123 can be configured such that the first end of the heat radiating pipe 123 extends to the inside of the first header 121. That is, the upper header (first header 121) may have a large number of through holes, and a heat radiating tube (heat radiating pipe 123) having fins on the outer periphery may be inserted to the vicinity of the center of the upper header. Thereby, since the liquid phase refrigerant | coolant LR contained in the refrigerant | coolant of a gas-liquid two-phase state retains between the thermal radiation tubes (radiation pipe | tube 123), the flow of the gaseous-phase refrigerant | coolant VR becomes easy.
 また、図1に示すように、気相側接続部130は第1の管状構造を備え、第1の管状構造の中心軸C1の延長が、放熱管123の第1の端部E1よりも上側に位置している構成とすることができる。すなわち、気相側接続部130は、その中心軸C1が上部ヘッダ(第1のヘッダ121)の中心軸よりも上側になるように偏心して接続された構成とすることができる。この場合、気相側接続部130の接続部における開口面積は、上部ヘッダの中心軸より上側の開口面積の方が下側の開口面積よりも大きくなる。このような構成としたことにより、放熱チューブ(放熱管123)間に滞留した液相冷媒が気相側接続部130に逆流するのを防止することができる。 Further, as shown in FIG. 1, the gas phase side connection portion 130 includes a first tubular structure, and the extension of the central axis C <b> 1 of the first tubular structure is higher than the first end E <b> 1 of the heat radiating tube 123. It can be set as the structure located in. That is, the vapor phase side connection part 130 can be configured to be eccentrically connected so that the central axis C1 is located above the central axis of the upper header (first header 121). In this case, the opening area at the connection portion of the gas phase side connection portion 130 is larger in the opening area above the central axis of the upper header than in the lower opening area. By adopting such a configuration, it is possible to prevent the liquid-phase refrigerant staying between the heat radiating tubes (heat radiating pipes 123) from flowing back to the gas phase side connection portion 130.
 図1では、気相側接続部130と第1のヘッダ121が略直角に接続している場合を示した。これに限らず、放熱管123の中心軸と気相側接続部130の第1の管状構造の中心軸C1が、同一平面上において平行関係にない構成とすることができる。すなわち、気相側接続部130は、放熱チューブ(放熱管123)の流路方向(鉛直方向)と平行にならないように接続された構成とすることができる。具体的には例えば、図4に示した放熱装置101のように、気相冷媒拡散部110が第1のヘッダ121に対して斜め上方に位置し、気相側接続部130が鉛直方向に対して傾斜して配置している構成とすることができる。このような構成とすることにより、気液二相状態の冷媒に含まれる液相冷媒が、気相側接続部130から放熱チューブ(放熱管123)に直接流入することを回避できる。そのため、気相冷媒の放熱チューブ(放熱管123)への流入が、液相冷媒によって阻害されることを防止することができる。 FIG. 1 shows the case where the gas phase side connection part 130 and the first header 121 are connected at a substantially right angle. However, the configuration is not limited to this, and the central axis C1 of the first tubular structure of the gas-phase side connection portion 130 and the central axis C1 of the gas-phase-side connection portion 130 may not be in a parallel relationship on the same plane. That is, the gas phase side connection part 130 can be configured to be connected so as not to be parallel to the flow path direction (vertical direction) of the heat radiation tube (heat radiation pipe 123). Specifically, for example, as in the heat dissipation device 101 illustrated in FIG. 4, the gas-phase refrigerant diffusion unit 110 is positioned obliquely above the first header 121, and the gas-phase side connection unit 130 is perpendicular to the vertical direction. It can be set as the structure which inclines and arranges. By setting it as such a structure, it can avoid that the liquid phase refrigerant | coolant contained in the gas-liquid two-phase state refrigerant | coolant flows directly into the radiation tube (radiation pipe 123) from the gaseous-phase side connection part 130. FIG. Therefore, it is possible to prevent the inflow of the gas-phase refrigerant into the heat radiating tube (heat radiating pipe 123) from being hindered by the liquid phase refrigerant.
 なお、気相側接続部130と気相冷媒拡散部110または上部ヘッダ(第1のヘッダ121)との接続は、ろう付けや溶接により行うことができる。 In addition, the connection between the gas phase side connection portion 130 and the gas phase refrigerant diffusion portion 110 or the upper header (first header 121) can be performed by brazing or welding.
 次に、本実施形態による放熱方法について説明する。 Next, the heat dissipation method according to this embodiment will be described.
 本実施形態の放熱方法においては、まず、気液二相状態の冷媒を受け付け、この気液二相状態の冷媒に含まれる気相冷媒を一様に拡散させて拡散気相冷媒を生成する。次に、拡散気相冷媒を分岐して複数の気相冷媒流を生成する。そして、これらの複数の気相冷媒流をそれぞれ凝縮液化させる。このように、気相冷媒を一様に拡散させて拡散気相冷媒とした後に分岐する構成としているので、気液二相状態の冷媒に含まれる気相冷媒を直接分岐する場合に比べ圧力損失を低減することができる。このとき、複数の気相冷媒流の流量の分布が対称になるように、拡散気相冷媒を分岐する構成とすることができる。この場合には、複数の気相冷媒流毎の圧力損失の最大値を低減することが可能である。 In the heat dissipation method of the present embodiment, first, a gas-liquid two-phase refrigerant is received, and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is uniformly diffused to generate a diffusion gas-phase refrigerant. Next, the diffusion gas phase refrigerant is branched to generate a plurality of gas phase refrigerant flows. Then, each of the plurality of gas-phase refrigerant flows is condensed and liquefied. As described above, since the structure is such that the gas-phase refrigerant is branched after being uniformly diffused to form a diffusion gas-phase refrigerant, the pressure loss compared with the case where the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is directly branched. Can be reduced. At this time, the diffusion gas-phase refrigerant can be branched so that the flow distributions of the plurality of gas-phase refrigerant flows are symmetrical. In this case, it is possible to reduce the maximum pressure loss for each of the plurality of gas-phase refrigerant flows.
 上述したように、本実施形態の放熱方法によれば、冷媒が気液二相状態で流動する相変化冷却方式を用いる場合であっても、冷却能力の十分な向上を図ることができる。 As described above, according to the heat dissipation method of the present embodiment, the cooling capacity can be sufficiently improved even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図5に、本発明の第2の実施形態に係る放熱装置200の構成を示す。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In FIG. 5, the structure of the thermal radiation apparatus 200 which concerns on the 2nd Embodiment of this invention is shown.
 本実施形態による放熱装置200は、気相冷媒拡散部110、放熱部120、および気相側接続部130を有する。気相冷媒拡散部110には気液二相状態の冷媒が流入し、この気液二相状態の冷媒に含まれる気相冷媒が充満する。放熱部120は、第1のヘッダ121、第2のヘッダ122、および第1のヘッダ121と第2のヘッダ122を連結し気相冷媒が流動する複数の放熱管123を備える。そして、気相側接続部130は、気相冷媒拡散部110と第1のヘッダ121を接続し、それにより気相冷媒が流動する。ここまでの構成は、第1の実施形態による放熱装置100の構成と同様である。 The heat dissipating device 200 according to the present embodiment includes a gas phase refrigerant diffusion unit 110, a heat dissipating unit 120, and a gas phase side connection unit. A gas-liquid two-phase refrigerant flows into the gas-phase refrigerant diffusion unit 110 and is filled with the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant. The heat dissipating unit 120 includes a first header 121, a second header 122, and a plurality of heat dissipating tubes 123 that connect the first header 121 and the second header 122 and through which the gas-phase refrigerant flows. And the gas phase side connection part 130 connects the gas phase refrigerant diffusion part 110 and the first header 121, and thereby the gas phase refrigerant flows. The configuration so far is the same as the configuration of the heat dissipation device 100 according to the first embodiment.
 本実施形態による放熱装置200は、上述した構成に加えてさらに、液相冷媒輸送部210と液相側接続部220を有する。液相冷媒輸送部210は、放熱管123を通過した液相冷媒を収容し輸送する。液相側接続部220は液相冷媒輸送部210と第2のヘッダ122を接続し、それにより液相冷媒が流動する。 The heat dissipation device 200 according to the present embodiment further includes a liquid-phase refrigerant transport unit 210 and a liquid-phase side connection unit 220 in addition to the above-described configuration. The liquid-phase refrigerant transport unit 210 accommodates and transports the liquid-phase refrigerant that has passed through the heat radiating pipe 123. The liquid phase side connection part 220 connects the liquid phase refrigerant transport part 210 and the second header 122, whereby the liquid phase refrigerant flows.
 図5に示すように、気相冷媒拡散部110は放熱部120の上方に位置し、気相側接続部130により上部ヘッダ(第1のヘッダ121)と接続される。一方、液相冷媒輸送部210は放熱部120の下方に位置し、液相側接続部220により下部ヘッダ(第2のヘッダ122)と接続される。 As shown in FIG. 5, the gas-phase refrigerant diffusing unit 110 is located above the heat radiating unit 120 and is connected to the upper header (first header 121) by the gas-phase side connecting unit 130. On the other hand, the liquid-phase refrigerant transport unit 210 is located below the heat radiating unit 120 and is connected to the lower header (second header 122) by the liquid-phase side connection unit 220.
 放熱管123は、図5に示すように、放熱管123の第2の端部E2が第2のヘッダ122の内部まで延伸した構成とすることができる。そして、液相側接続部220は第2の管状構造を備え、第2の管状構造の中心軸C2の延長が、第2の端部E2よりも下側に位置する構成とすることができる。すなわち、液相側接続部220は、その中心軸C2が下部ヘッダ(第2のヘッダ122)の中心軸よりも下側になるように偏心して接続された構成とすることができる。この場合、液相側接続部220の接続部における開口面積は、下部ヘッダの中心軸より下側の開口面積の方が上側の開口面積よりも大きくなる。このような構成としたことにより、下部ヘッダ(第2のヘッダ122)に溜まった液相冷媒が、液相側接続部220を通って液相冷媒輸送部210に流動することが容易になる。 As shown in FIG. 5, the heat radiating pipe 123 can be configured such that the second end E <b> 2 of the heat radiating pipe 123 extends to the inside of the second header 122. And the liquid phase side connection part 220 is provided with the 2nd tubular structure, and it can be set as the structure where the extension of the center axis | shaft C2 of a 2nd tubular structure is located below the 2nd edge part E2. That is, the liquid phase side connection part 220 can be configured to be eccentrically connected so that the central axis C2 is below the central axis of the lower header (second header 122). In this case, the opening area in the connection part of the liquid phase side connection part 220 is larger in the opening area below the central axis of the lower header than in the upper opening area. With such a configuration, it becomes easy for the liquid-phase refrigerant accumulated in the lower header (second header 122) to flow to the liquid-phase refrigerant transport unit 210 through the liquid-phase side connection unit 220.
 放熱部120は、複数の放熱領域(放熱器)を含む構成としてもよい。すなわち、図6に示すように、放熱装置300は、気相冷媒拡散部110、液相冷媒輸送部210、気相側接続部130、液相側接続部220、および複数の放熱領域(放熱器)320を備えた放熱部120を有する構成とすることができる。ここで、各放熱領域(放熱器)320は、第1のヘッダを構成する第1のヘッダ領域(第3のヘッダ)321と、第2のヘッダを構成する第2のヘッダ領域(第4のヘッダ)322と、第1のヘッダ領域321と第2のヘッダ領域322を連結し気相冷媒が流動する複数の放熱管323とを備える。各放熱領域320として典型的にはパラレルフロー型熱交換器を用いることができる。 The heat dissipating unit 120 may include a plurality of heat dissipating regions (heat radiators). That is, as shown in FIG. 6, the heat dissipation device 300 includes a gas phase refrigerant diffusion unit 110, a liquid phase refrigerant transport unit 210, a gas phase side connection unit 130, a liquid phase side connection unit 220, and a plurality of heat dissipation regions (heat radiators). ) 320 and the heat dissipating part 120 may be provided. Here, each heat radiation area (heat radiator) 320 includes a first header area (third header) 321 constituting a first header and a second header area (fourth fourth) constituting a second header. Header) 322, and a plurality of heat radiation pipes 323 that connect the first header region 321 and the second header region 322 and through which the gas-phase refrigerant flows. Typically, a parallel flow type heat exchanger can be used as each heat radiation area 320.
 この場合、気相側接続部130は、気相冷媒拡散部110と各第1のヘッダ領域321をそれぞれ接続し、気相冷媒が流動する複数の気相側接続構造330を含む構成である。そして、気相側接続構造330は、第1のヘッダ領域321の長手方向の中央領域と気相冷媒拡散部110をそれぞれ接続する構成とすることができる。 In this case, the gas phase side connection part 130 is configured to include a plurality of gas phase side connection structures 330 that connect the gas phase refrigerant diffusion part 110 and the first header regions 321 and flow the gas phase refrigerant. The gas-phase-side connection structure 330 can be configured to connect the central region in the longitudinal direction of the first header region 321 and the gas-phase refrigerant diffusing unit 110, respectively.
 複数の放熱領域320は、図6に示すように、各ヘッダ領域の長手方向に配置されており、ヘッダ領域の長手方向と略平行に気相冷媒拡散部110が配置した構成とすることができる。 As shown in FIG. 6, the plurality of heat radiation regions 320 are arranged in the longitudinal direction of each header region, and the gas-phase refrigerant diffusion portion 110 can be arranged substantially parallel to the longitudinal direction of the header region. .
 上述した放熱装置300においては、気相冷媒拡散部110は複数の放熱領域320に気相冷媒を供給する必要があるため、気相冷媒拡散部110の断面積は第1のヘッダ領域321の断面積よりも大きくすることが望ましい。また、気相冷媒拡散部110と各上部ヘッダ(第1のヘッダ領域321)を接続する気相側接続構造330は、圧力損失を小さくするため、上部ヘッダと同程度の断面積を有する管状構造(配管)を用いることが望ましい。 In the heat dissipation device 300 described above, the gas-phase refrigerant diffusing unit 110 needs to supply the gas-phase refrigerant to the plurality of heat-dissipating regions 320, and thus the cross-sectional area of the gas-phase refrigerant diffusing unit 110 is the same as that of the first header region 321. It is desirable to make it larger than the area. In addition, the gas-phase side connection structure 330 that connects the gas-phase refrigerant diffusing portion 110 and each upper header (first header region 321) has a tubular structure having the same cross-sectional area as the upper header in order to reduce pressure loss. It is desirable to use (piping).
 次に、本実施形態による放熱装置200および放熱装置300の動作について説明する。 Next, the operation of the heat dissipation device 200 and the heat dissipation device 300 according to the present embodiment will be described.
 相変化冷却装置においては、冷媒は気液二相が混合した状態(気液二相状態)で輸送される。この理由は、受熱装置(蒸発部)において受熱した液相冷媒は気化して気相冷媒拡散部110に流入するが、この時、すべての液相冷媒が気相冷媒に相変化するのではなく、一部の冷媒は液相冷媒のままで流動するからである。 In the phase change cooling device, the refrigerant is transported in a state where the gas-liquid two phases are mixed (gas-liquid two-phase state). The reason for this is that the liquid phase refrigerant received by the heat receiving device (evaporation unit) is vaporized and flows into the gas phase refrigerant diffusion unit 110, but at this time, not all the liquid phase refrigerants are changed into the gas phase refrigerant. This is because a part of the refrigerant flows as a liquid phase refrigerant.
 気相冷媒拡散部110を流動する冷媒は分岐し、気相冷媒拡散部110に接続されている複数の放熱器(放熱部120、放熱領域320)にそれぞれ流入する。このとき冷媒は、気相側接続構造330を通って各放熱器の上部ヘッダ(第1のヘッダ121、第1のヘッダ領域321)に流入する。 The refrigerant flowing through the vapor-phase refrigerant diffusion unit 110 branches and flows into a plurality of radiators (the heat dissipation unit 120 and the heat dissipation region 320) connected to the gas-phase refrigerant diffusion unit 110, respectively. At this time, the refrigerant flows into the upper header (first header 121, first header region 321) of each radiator through the vapor phase side connection structure 330.
 上部ヘッダに流入した液相冷媒を含む気液二相状態の冷媒は、上部ヘッダの壁面に衝突し、気相冷媒と混合している液相冷媒が降下する。これは、液相冷媒は気相冷媒よりも密度が大きいため運動量を失いその自重で降下するからである。一方、気相冷媒は密度が液相冷媒より小さいため上部ヘッダ内の上方に分布し、上部ヘッダの壁面に衝突しても液相冷媒より喪失する運動量の量は小さい。そのため、気相冷媒は上部ヘッダの壁面に沿って、上部ヘッダの長手方向に移動する。 The gas-liquid two-phase refrigerant containing the liquid-phase refrigerant flowing into the upper header collides with the wall surface of the upper header, and the liquid-phase refrigerant mixed with the gas-phase refrigerant falls. This is because the liquid-phase refrigerant has a higher density than the gas-phase refrigerant and thus loses momentum and falls by its own weight. On the other hand, since the density of the gas-phase refrigerant is smaller than that of the liquid-phase refrigerant, the gas-phase refrigerant is distributed upward in the upper header, and even when it collides with the wall surface of the upper header, the amount of momentum lost from the liquid-phase refrigerant is small. Therefore, the gas phase refrigerant moves in the longitudinal direction of the upper header along the wall surface of the upper header.
 上部ヘッダの長手方向に移動した気相冷媒は、上部ヘッダに接続されている各放熱チューブ(放熱管123、323)の開口から流入し、外側にフィンが接続された領域で、受熱装置において受熱した熱を放熱する。 The gas-phase refrigerant that has moved in the longitudinal direction of the upper header flows from the openings of the radiating tubes (radiating tubes 123 and 323) connected to the upper header, and receives heat in the heat receiving device in the region where the fins are connected to the outside. Heat is released.
 ここで、図3に示したように、放熱チューブ(放熱管123、323)が上部ヘッダの中央付近まで挿入された構成とすることにより、上部ヘッダ内の放熱チューブ間に液相冷媒が貯蔵される。放熱チューブ間に貯蔵された液相冷媒は、放熱チューブにより上部ヘッダの長手方向では流動性を喪失するので、上部ヘッダの長手方向に流動する冷媒は気相冷媒が多くなる。 Here, as shown in FIG. 3, by setting the heat radiation tubes (heat radiation pipes 123 and 323) to the vicinity of the center of the upper header, the liquid refrigerant is stored between the heat radiation tubes in the upper header. The Since the liquid phase refrigerant stored between the heat radiating tubes loses its fluidity in the longitudinal direction of the upper header due to the radiating tubes, the refrigerant flowing in the longitudinal direction of the upper header has a large amount of gas phase refrigerant.
 気相冷媒に液相冷媒が混入している場合、液相冷媒の方が気相冷媒よりも密度が大きいので、気相冷媒の流動が妨げられる。そのため、気相冷媒を効率よく各放熱チューブに分配することは困難である。しかし、本実施形態による放熱装置200および放熱装置300の構成とすることによって、上部ヘッダ内を移動できる気相冷媒の量を増大させることが可能になる。そのため、各放熱チューブに気相冷媒をより均等に供給することができる。これにより、冷却性能を向上させることが可能になる。 When the liquid phase refrigerant is mixed in the gas phase refrigerant, the liquid phase refrigerant has a higher density than the gas phase refrigerant, and thus the flow of the gas phase refrigerant is hindered. For this reason, it is difficult to efficiently distribute the gas-phase refrigerant to the heat radiating tubes. However, with the configuration of the heat dissipation device 200 and the heat dissipation device 300 according to the present embodiment, the amount of gas-phase refrigerant that can move in the upper header can be increased. Therefore, the gas phase refrigerant can be supplied more evenly to the heat radiating tubes. Thereby, it becomes possible to improve cooling performance.
 一方、各放熱チューブで凝縮した液相冷媒は重力等の作用により降下し、下部ヘッダ(第2のヘッダ122、第2のヘッダ領域322)に流入する。このとき下部ヘッダに流入する冷媒の全部が液相冷媒であるわけではなく、一部に気相冷媒が混合している。気相冷媒は液相冷媒よりも密度が小さいため、下部ヘッダにおいては上方に気相冷媒が溜まる。この場合、本実施形態による放熱装置200および放熱装置300においては、図5に示すように、放熱チューブ(放熱管123、323)の第2の端部E2が下部ヘッダ(第2のヘッダ122、第2のヘッダ領域322)の内部まで延伸した構成としている。そのため、気相冷媒は放熱チューブ間に滞留する。放熱チューブ間に滞留した気相冷媒は放熱チューブにより流動を妨げられるため、下部ヘッダの長手方向の移動が制限される。 On the other hand, the liquid refrigerant condensed in each heat radiating tube descends due to the action of gravity or the like, and flows into the lower header (second header 122, second header region 322). At this time, not all of the refrigerant flowing into the lower header is liquid phase refrigerant, and gas phase refrigerant is mixed in part. Since the gas-phase refrigerant has a density lower than that of the liquid-phase refrigerant, the gas-phase refrigerant is accumulated upward in the lower header. In this case, in the heat dissipating device 200 and the heat dissipating device 300 according to the present embodiment, as shown in FIG. The second header region 322) is extended to the inside. Therefore, the gas phase refrigerant stays between the heat radiating tubes. Since the gas phase refrigerant staying between the heat radiating tubes is prevented from flowing by the heat radiating tubes, the movement of the lower header in the longitudinal direction is restricted.
 このとき、気相冷媒は液相冷媒より密度が小さいので、流動速度が液相冷媒よりも大きいことから、液相冷媒の流動を妨げる場合がある。しかし、本実施形態による放熱装置200および放熱装置300においては、上述したように下部ヘッダ内における気相冷媒の流動が制限されるため、液相冷媒を効率よく液相冷媒輸送部210に排出することが可能である。 At this time, since the density of the gas-phase refrigerant is smaller than that of the liquid-phase refrigerant, the flow rate is higher than that of the liquid-phase refrigerant. However, in the heat dissipating device 200 and the heat dissipating device 300 according to the present embodiment, the flow of the gas-phase refrigerant in the lower header is limited as described above, so that the liquid-phase refrigerant is efficiently discharged to the liquid-phase refrigerant transport unit 210. It is possible.
 このように、本実施形態による放熱装置200および放熱装置300によれば、気相冷媒の流動が、混在する液相冷媒によって妨げられることがないので、気相冷媒を各放熱チューブに均等に分配することが容易になる。さらに、放熱部120において凝縮した液相冷媒を、凝縮しないまま下部ヘッダに流入した気相冷媒の動きによって妨げられることなく、効率よく液相冷媒輸送部210に排出することができる。これにより、放熱装置200、300の冷却性能を高めることが可能になる。 Thus, according to the heat radiating device 200 and the heat radiating device 300 according to the present embodiment, the flow of the gas-phase refrigerant is not hindered by the mixed liquid-phase refrigerant, so that the gas-phase refrigerant is evenly distributed to the heat radiating tubes. Easy to do. Furthermore, the liquid-phase refrigerant condensed in the heat radiating unit 120 can be efficiently discharged to the liquid-phase refrigerant transport unit 210 without being disturbed by the movement of the gas-phase refrigerant that has flowed into the lower header without being condensed. Thereby, it becomes possible to improve the cooling performance of the heat dissipation devices 200 and 300.
 以上説明したように、本実施形態による放熱装置200および放熱装置300によれば、冷媒が気液二相状態で流動する相変化冷却方式を用いる場合であっても、放熱領域を拡大することにより冷却能力の十分な向上を図ることができる。 As described above, according to the heat dissipating device 200 and the heat dissipating device 300 according to the present embodiment, even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, by expanding the heat dissipating region. The cooling capacity can be sufficiently improved.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図7に、本発明の第3の実施形態に係る相変化冷却装置1000の構成を概略的に示す。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 7 schematically shows the configuration of a phase change cooling device 1000 according to the third embodiment of the present invention.
 本実施形態による相変化冷却装置1000は、放熱装置1100、受熱装置1200、第1の接続部1300、および第2の接続部1400を有する。 The phase change cooling device 1000 according to the present embodiment includes a heat dissipation device 1100, a heat receiving device 1200, a first connection portion 1300, and a second connection portion 1400.
 放熱装置1100は、上述した第2の実施形態による放熱装置200および放熱装置300と同様の構成であり、気相冷媒拡散部110、放熱部120、気相側接続部130、液相冷媒輸送部210、および液相側接続部220を備える。放熱装置1100は、典型的には気相冷媒を凝縮液化させる凝縮器である。 The heat dissipating device 1100 has the same configuration as the heat dissipating device 200 and the heat dissipating device 300 according to the second embodiment described above, and includes the gas phase refrigerant diffusion unit 110, the heat dissipating unit 120, the gas phase side connection unit 130, and the liquid phase refrigerant transport unit. 210 and the liquid phase side connection part 220 are provided. The heat radiating device 1100 is typically a condenser that condenses and liquefies a gas phase refrigerant.
 受熱装置1200は、冷却対象から受熱して気液二相状態の冷媒を生成する。すなわち、受熱装置1200は、冷媒を収容し、受熱することにより気液二相冷媒を生成する蒸発器を備える。 Heat receiving device 1200 receives heat from a cooling target and generates a gas-liquid two-phase refrigerant. That is, the heat receiving apparatus 1200 includes an evaporator that generates a gas-liquid two-phase refrigerant by receiving the refrigerant and receiving the heat.
 第1の接続部1300は、受熱装置1200と気相冷媒拡散部110を接続する。第2の接続部1400は、受熱装置1200と液相冷媒輸送部210を接続する。 The first connection unit 1300 connects the heat receiving device 1200 and the gas-phase refrigerant diffusion unit 110. The second connection unit 1400 connects the heat receiving device 1200 and the liquid-phase refrigerant transport unit 210.
 受熱装置1200で生成された気液二相状態の冷媒は、第1の接続部1300を通って放熱装置1100の気相冷媒拡散部110から気相側接続部130を介して放熱部120に流入する。放熱部120において凝縮液化した液相冷媒は、液相側接続部220を介して液相冷媒輸送部210に流入し、第2の接続部1400を通って受熱装置1200に還流する。これにより、相変化冷却サイクルが完結する。 The gas-liquid two-phase refrigerant generated by the heat receiving device 1200 flows from the gas phase refrigerant diffusion portion 110 of the heat dissipation device 1100 through the first connection portion 1300 to the heat dissipation portion 120 via the gas phase side connection portion 130. To do. The liquid-phase refrigerant condensed and liquefied in the heat radiating unit 120 flows into the liquid-phase refrigerant transport unit 210 via the liquid-phase side connection unit 220 and returns to the heat receiving apparatus 1200 through the second connection unit 1400. This completes the phase change cooling cycle.
 相変化冷却装置1000は例えば、受熱装置1200が建造物内に設置され、放熱装置1100が建造物の外部に設置された構成とすることができる。具体的には例えば、受熱装置1200は、工場やデータセンタ等に設けられたサーバルーム等で発生する熱を受熱するために設置される。また、放熱装置1100は、受熱装置1100において受熱した熱を外気に放熱するために設置される。 For example, the phase change cooling device 1000 may be configured such that the heat receiving device 1200 is installed in a building and the heat dissipation device 1100 is installed outside the building. Specifically, for example, the heat receiving device 1200 is installed to receive heat generated in a server room or the like provided in a factory, a data center, or the like. Further, the heat radiating device 1100 is installed to radiate the heat received by the heat receiving device 1100 to the outside air.
 なお、相変化冷却装置1000は冷媒の自然循環による相変化冷却方式に限らず、第2の接続部1400内に冷媒循環用のポンプを備えた構成とすることにより、ポンプ循環式の相変化冷却装置として構成することも可能である。 The phase change cooling device 1000 is not limited to the phase change cooling method based on the natural circulation of the refrigerant, but has a configuration in which the refrigerant circulation pump is provided in the second connection portion 1400, thereby providing a pump circulation type phase change cooling. It can also be configured as a device.
 本実施形態による相変化冷却装置1000は、第2の実施形態による放熱装置200または放熱装置300と同様の構成である放熱装置1100を備えた構成としている。したがって、上述したように、冷媒が気液二相状態で流動する相変化冷却方式を用いる場合であっても、放熱領域を拡大することにより冷却能力の十分な向上を図ることができる。 The phase change cooling device 1000 according to the present embodiment includes a heat dissipation device 1100 having the same configuration as the heat dissipation device 200 or the heat dissipation device 300 according to the second embodiment. Therefore, as described above, even when the phase change cooling method in which the refrigerant flows in a gas-liquid two-phase state is used, the cooling capacity can be sufficiently improved by expanding the heat radiation area.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年12月25日に出願された日本出願特願2015-253988を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-253988 filed on December 25, 2015, the entire disclosure of which is incorporated herein.
 100、101、200、300  放熱装置
 110  気相冷媒拡散部
 120  放熱部
 121  第1のヘッダ
 122  第2のヘッダ
 123、323  放熱管
 124  フィン
 130  気相側接続部
 210  液相冷媒輸送部
 220  液相側接続部
 320  放熱領域
 321  第1のヘッダ領域
 322  第2のヘッダ領域
 330  気相側接続構造
 1000  相変化冷却装置
 1100  放熱装置
 1200  受熱装置
 1300  第1の接続部
 1400  第2の接続部
100, 101, 200, 300 Heat dissipation device 110 Gas phase refrigerant diffusion portion 120 Heat dissipation portion 121 First header 122 Second header 123, 323 Radiation pipe 124 Fin 130 Gas phase side connection portion 210 Liquid phase refrigerant transport portion 220 Liquid phase Side connection section 320 Heat radiation area 321 First header area 322 Second header area 330 Gas phase side connection structure 1000 Phase change cooling device 1100 Heat radiation apparatus 1200 Heat receiving apparatus 1300 First connection section 1400 Second connection section

Claims (10)

  1.  気液二相状態の冷媒が流入し、前記気液二相状態の冷媒に含まれる気相冷媒が充満する気相冷媒拡散手段と、
     第1のヘッダと、第2のヘッダと、前記第1のヘッダと前記第2のヘッダを連結し前記気相冷媒が流動する複数の放熱管、とを備える放熱手段と、
     前記気相冷媒拡散手段と前記第1のヘッダを接続し、前記気相冷媒が流動する気相側接続手段、とを有する
     放熱装置。
    A gas-phase refrigerant diffusion means in which a gas-liquid two-phase refrigerant flows in and the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant is filled;
    A heat dissipating means comprising: a first header; a second header; and a plurality of heat dissipating pipes connecting the first header and the second header to flow the gas phase refrigerant;
    A heat dissipating device, comprising: a gas-phase-side connecting unit that connects the gas-phase refrigerant diffusing unit and the first header so that the gas-phase refrigerant flows.
  2.  請求項1に記載した放熱装置において、
     前記気相側接続手段は、前記第1のヘッダの長手方向の中央領域と前記気相冷媒拡散手段を接続する
     放熱装置。
    In the heat dissipation device according to claim 1,
    The gas phase side connection means connects the central region in the longitudinal direction of the first header and the gas phase refrigerant diffusion means.
  3.  請求項1または2に記載した放熱装置において、
     前記放熱管の第1の端部が前記第1のヘッダの内部まで延伸しており、
     前記気相側接続手段は第1の管状構造を備え、
     前記第1の管状構造の中心軸の延長が、前記第1の端部よりも上側に位置している
     放熱装置。
    In the heat dissipation device according to claim 1 or 2,
    The first end of the heat radiating tube extends to the inside of the first header;
    The gas phase side connection means comprises a first tubular structure;
    An extension of the central axis of the first tubular structure is located above the first end portion.
  4.  請求項1から3のいずれか一項に記載した放熱装置において、
     前記気相側接続手段は第1の管状構造を備え、
     前記放熱管の中心軸と前記第1の管状構造の中心軸は、同一平面上において平行関係にない
     放熱装置。
    In the heat radiating device according to any one of claims 1 to 3,
    The gas phase side connection means comprises a first tubular structure;
    The center axis of the heat radiating tube and the center axis of the first tubular structure are not in a parallel relationship on the same plane.
  5.  請求項1から4のいずれか一項に記載した放熱装置において、
     前記放熱手段は、複数の放熱器を含み、
      前記放熱器は、前記第1のヘッダを構成する第3のヘッダと、前記第2のヘッダを構成する第4のヘッダと、前記第3のヘッダと前記第4のヘッダを連結し前記気相冷媒が流動する前記複数の放熱管、とを備え、
     前記気相側接続手段は、前記気相冷媒拡散手段と前記第3のヘッダをそれぞれ接続し、前記気相冷媒が流動する複数の気相側接続構造を含み、
     前記気相側接続構造は、前記第3のヘッダの長手方向の中央領域と前記気相冷媒拡散手段をそれぞれ接続する
     放熱装置。
    In the heat radiating device according to any one of claims 1 to 4,
    The heat dissipation means includes a plurality of radiators,
    The heat radiator connects the third header constituting the first header, the fourth header constituting the second header, the third header and the fourth header, and the gas phase. A plurality of heat radiation pipes through which refrigerant flows, and
    The gas phase side connection means includes a plurality of gas phase side connection structures that connect the gas phase refrigerant diffusion means and the third header, respectively, and the gas phase refrigerant flows.
    The gas-phase-side connection structure is a heat dissipation device that connects a central region in the longitudinal direction of the third header and the gas-phase refrigerant diffusing unit.
  6.  請求項1から5のいずれか一項に記載した放熱装置において、
     前記放熱管を通過した液相冷媒を収容し輸送する液相冷媒輸送手段と、
     前記液相冷媒輸送手段と前記第2のヘッダを接続し、前記液相冷媒が流動する液相側接続手段、とを有する
     放熱装置。
    In the heat dissipation device according to any one of claims 1 to 5,
    Liquid phase refrigerant transporting means for containing and transporting the liquid phase refrigerant that has passed through the radiator pipe,
    A heat dissipation device, comprising: a liquid phase side connection means for connecting the liquid phase refrigerant transport means and the second header, and for allowing the liquid phase refrigerant to flow.
  7.  請求項6に記載した放熱装置において、
     前記放熱管の第2の端部が前記第2のヘッダの内部まで延伸しており、
     前記液相側接続手段は第2の管状構造を備え、
     前記第2の管状構造の中心軸の延長が、前記第2の端部よりも下側に位置している
     放熱装置。
    In the heat dissipation device according to claim 6,
    The second end of the heat radiating tube extends to the inside of the second header;
    The liquid phase side connection means comprises a second tubular structure;
    The extension of the central axis of the second tubular structure is located below the second end portion.
  8.  請求項6または7に記載した放熱装置と、
     受熱して前記気液二相状態の冷媒を生成する受熱手段と、
     前記受熱手段と前記気相冷媒拡散手段を接続する第1の接続手段と、
     前記受熱手段と前記液相冷媒輸送手段を接続する第2の接続手段、とを有する
     相変化冷却装置。
    A heat dissipation device according to claim 6 or 7,
    Heat receiving means for receiving heat to generate the gas-liquid two-phase refrigerant;
    First connection means for connecting the heat receiving means and the gas-phase refrigerant diffusion means;
    A phase change cooling device comprising: the heat receiving means; and second connection means for connecting the liquid refrigerant transport means.
  9.  気液二相状態の冷媒を受け付け、前記気液二相状態の冷媒に含まれる気相冷媒を一様に拡散させて拡散気相冷媒を生成し、
     前記拡散気相冷媒を分岐して複数の気相冷媒流を生成し、
     前記複数の気相冷媒流をそれぞれ凝縮液化させる
     放熱方法。
    Receiving a refrigerant in a gas-liquid two-phase state, uniformly diffusing the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant to generate a diffusion gas-phase refrigerant;
    Branching the diffusion gas phase refrigerant to produce a plurality of gas phase refrigerant streams;
    A heat radiation method for condensing and liquefying the plurality of gas-phase refrigerant flows.
  10.  請求項9に記載した放熱方法において、
     前記複数の気相冷媒流の流量の分布が対称になるように、前記拡散気相冷媒を分岐する
     放熱方法。
    In the heat dissipation method according to claim 9,
    A heat dissipation method for branching the diffusion gas-phase refrigerant so that the distribution of flow rates of the plurality of gas-phase refrigerant flows is symmetrical.
PCT/JP2016/087783 2015-12-25 2016-12-19 Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat WO2017110740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017558118A JP6806086B2 (en) 2015-12-25 2016-12-19 Heat dissipation device, phase change cooling device using it, and heat dissipation method
US16/064,519 US20190003776A1 (en) 2015-12-25 2016-12-19 Heat radiation apparatus, phase-change cooling apparatus including the same, and method for radiating heat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-253988 2015-12-25
JP2015253988 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110740A1 true WO2017110740A1 (en) 2017-06-29

Family

ID=59090432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087783 WO2017110740A1 (en) 2015-12-25 2016-12-19 Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat

Country Status (3)

Country Link
US (1) US20190003776A1 (en)
JP (1) JP6806086B2 (en)
WO (1) WO2017110740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633302A1 (en) * 2018-10-01 2020-04-08 ABB Schweiz AG Heat exchanger and method of manufacturing a heat exchanger
CN111394065A (en) * 2020-04-15 2020-07-10 电子科技大学中山学院 Building envelope system based on phase-change material
CN113865657A (en) * 2021-09-09 2021-12-31 夏罗登工业科技(上海)股份有限公司 Electromagnetic flowmeter with multifunctional color display screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035620B1 (en) * 2020-11-19 2021-06-15 Richard W. Trent Loop heat pipe transfer system with manifold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118779A (en) * 1991-10-25 1993-05-14 Natl Space Dev Agency Japan<Nasda> Condensing device
US20060272798A1 (en) * 2005-06-03 2006-12-07 Tay-Jian Liu Loop-type heat exchange device
WO2010058520A1 (en) * 2008-11-18 2010-05-27 日本電気株式会社 Boiling and cooling device
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2014074537A (en) * 2012-10-04 2014-04-24 Fujikura Ltd Loop type heat pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340189A (en) * 1995-04-14 1996-12-24 Nippondenso Co Ltd Boiling cooling device
JP3651081B2 (en) * 1995-10-06 2005-05-25 株式会社デンソー Boiling cooler
US6397934B2 (en) * 1997-12-11 2002-06-04 Denso Corporation Cooling device boiling and condensing refrigerant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118779A (en) * 1991-10-25 1993-05-14 Natl Space Dev Agency Japan<Nasda> Condensing device
US20060272798A1 (en) * 2005-06-03 2006-12-07 Tay-Jian Liu Loop-type heat exchange device
WO2010058520A1 (en) * 2008-11-18 2010-05-27 日本電気株式会社 Boiling and cooling device
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2014074537A (en) * 2012-10-04 2014-04-24 Fujikura Ltd Loop type heat pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633302A1 (en) * 2018-10-01 2020-04-08 ABB Schweiz AG Heat exchanger and method of manufacturing a heat exchanger
CN111394065A (en) * 2020-04-15 2020-07-10 电子科技大学中山学院 Building envelope system based on phase-change material
CN113865657A (en) * 2021-09-09 2021-12-31 夏罗登工业科技(上海)股份有限公司 Electromagnetic flowmeter with multifunctional color display screen
CN113865657B (en) * 2021-09-09 2024-02-02 夏罗登工业科技(上海)股份有限公司 Electromagnetic flowmeter with multi-functional color display screen

Also Published As

Publication number Publication date
JP6806086B2 (en) 2021-01-06
JPWO2017110740A1 (en) 2018-10-11
US20190003776A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
WO2017110740A1 (en) Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat
JP6769870B2 (en) Heat exchanger
US20140165638A1 (en) Cooling device and electronic device made therewith
JP6749398B2 (en) Heat exchangers and air conditioning systems
JPH0420788A (en) Cooling device and temperature control device
WO2016047185A1 (en) Evaporator and refrigerator
JP2018194197A (en) Heat pipe and electronic equipment
JP2012241976A (en) Loop heat pipe
JP2018162900A (en) Heat exchanger and air conditioner including the same
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP6678235B2 (en) Heat exchanger
JP2010010204A (en) Ebullient cooling device
JP2001066080A (en) Loop type heat pipe
WO2017110683A1 (en) Coolant circulating device and coolant circulating method
WO2016159056A1 (en) Heat medium distribution device and heat medium distribution method
JP2011142298A (en) Boiling cooler
JP2014154683A (en) Cooling apparatus
JP2020085311A (en) Ebullient cooling device
WO2016031186A1 (en) Phase-change cooling device, and phase-change cooling method
CN113758324A (en) Loop type heat pipe for low-voltage driver
JP2016133287A (en) Loop type heat pipe
JP2017155994A (en) Heat exchanger and air conditioner
JP2017050449A (en) Cooling system
WO2017082127A1 (en) Electronic equipment cooling device
JP2017112189A (en) Thermo-siphon cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878629

Country of ref document: EP

Kind code of ref document: A1