JP2010216676A - Cooling substrate - Google Patents

Cooling substrate Download PDF

Info

Publication number
JP2010216676A
JP2010216676A JP2009060807A JP2009060807A JP2010216676A JP 2010216676 A JP2010216676 A JP 2010216676A JP 2009060807 A JP2009060807 A JP 2009060807A JP 2009060807 A JP2009060807 A JP 2009060807A JP 2010216676 A JP2010216676 A JP 2010216676A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
flow path
cooling substrate
side flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060807A
Other languages
Japanese (ja)
Inventor
Masashi Ikeda
匡▲視▼ 池田
Toshiaki Nakamura
敏明 中村
Yuichi Kimura
裕一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009060807A priority Critical patent/JP2010216676A/en
Publication of JP2010216676A publication Critical patent/JP2010216676A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling substrate having a flow passage capable of reducing a pressure loss in the flow passage by relatively increasing the cross sectional area of the flow passage at a heat transport side, and suppressing the generation of dryout in a heat absorbing part by relatively reducing the cross sectional area of the flow passage at a return side, easily making a refrigerant in the flow passage flow in one direction and having an improved heat transport capacity. <P>SOLUTION: In the cooling substrate, at least the one heat absorbing part 30 and one heat release part 40 are provided in the substrate 10, and the heat absorbing part and heat release part communicate with each other to form a loop shape by the refrigerant flow passage 50. The refrigerant is circulated in the refrigerant flow passage and heat transport is performed by the evaporation-condensation latent heat of the refrigerant. The refrigerant flow passage comprises a heat transport side flow passage 60 for sending the vaporized refrigerant from the heat absorbing part to the heat release part and a return side flow passage 70 for sending the liquefied refrigerant from the heat release part to the heat absorbing part. The cross sectional area of the return side flow passage is set smaller than that of the heat transport side flow passage. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、基板の内部に設けられた流路に冷媒を流すことにより発熱素子などの被冷却素子を冷却する冷却基板に関する。 The present invention relates to a cooling substrate that cools an element to be cooled such as a heating element by flowing a coolant through a flow path provided inside the substrate.

近年の電子機器においては、CPU、その他の素子等の発熱量が増加し、特に半導体プロセスの微細化によって発熱密度は高まる傾向にあるため、放熱効率に優れた高性能のヒートシンクが求められている。また、機器の小型化、低コスト化の要求に対応できるように、ヒートシンクも高性能であるばかりでなく、小型で低コストのものが必要になっている。 In recent electronic devices, the amount of heat generated by the CPU, other elements, etc. has increased, and the heat generation density tends to increase due to the miniaturization of the semiconductor process. Therefore, a high-performance heat sink with excellent heat dissipation efficiency is required. . Further, in order to meet the demands for downsizing and cost reduction of devices, not only high performance heat sinks but also small and low cost heat sinks are required.

従来より知られているヒートシンクとしては、金属製の受熱プレートの一方の面に発熱素子が熱的に接続され、他方の面に放熱フィンが形成されたものがある。放熱フィンの側面または上面には遠心ファン等の電動ファンが取り付けられ、電動ファンの回転によって放熱フィン間に強制的に冷却風を送り込むことによって、発熱素子から伝わった熱を大気中に放散していた。 As a conventionally known heat sink, there is a heat sink in which a heating element is thermally connected to one surface of a metal heat receiving plate and a radiation fin is formed on the other surface. An electric fan such as a centrifugal fan is attached to the side or top surface of the radiating fin, and the heat transmitted from the heating element is dissipated into the atmosphere by forcibly sending cooling air between the radiating fins by the rotation of the electric fan. It was.

また、ヒートシンクの高性能化のために、ヒートパイプを用いたヒートシンクもある。ヒートパイプの一方の端部を受熱プレートに熱的に接続し、他方の端部に放熱フィンを取り付けて、受熱プレートから離れた位置に熱を移動し、電動ファンによって熱を大気中に放散するという方法である。これにより放熱部の熱密度を低下させることができ、ヒートシンクの放熱効率が向上する。
しかし、上述した方法によっても、近年特に発熱密度が高くなっている発熱素子が発生する熱を、効果的に放熱することは難しくなってきている。
There is also a heat sink using a heat pipe for improving the performance of the heat sink. One end of the heat pipe is thermally connected to the heat receiving plate, a heat radiating fin is attached to the other end, heat is moved away from the heat receiving plate, and heat is dissipated into the atmosphere by an electric fan. It is a method. Thereby, the heat density of a heat radiating part can be reduced and the heat dissipation efficiency of a heat sink improves.
However, even with the above-described method, it has become difficult to effectively dissipate heat generated by a heating element having a particularly high heat generation density in recent years.

発熱量および発熱密度の増加に対応するために、基板の内部に流路を設け、冷媒を循環させて放熱する方法が提案されている。特許文献1には、CPU等が接触する冷却装置の基体内部に流路を設けて、流路内に冷媒を流して放熱する技術が開示されている。特許文献2には、実装基板の絶縁層などにマイクロ流路を設けて、流路内に冷媒を流して放熱する技術が開示されている。 In order to cope with the increase in the heat generation amount and the heat generation density, a method of dissipating heat by providing a flow path inside the substrate and circulating the refrigerant is proposed. Patent Document 1 discloses a technique in which a flow path is provided inside a base body of a cooling device with which a CPU or the like contacts, and a refrigerant is allowed to flow through the flow path to dissipate heat. Patent Document 2 discloses a technique for dissipating heat by providing a micro flow path in an insulating layer of a mounting substrate and flowing a coolant in the flow path.

また、特許文献3および特許文献4には、吸熱部と放熱部を流路で接続する技術が開示されている。 Patent Literature 3 and Patent Literature 4 disclose a technique for connecting a heat absorbing portion and a heat radiating portion with a flow path.

特開2004−134742号公報JP 2004-134742 A 特開2005−33162号公報JP-A-2005-33162 特開2005−229033号公報JP 2005-229033 A 特開2005−300038号公報JP 2005-300038 A

しかし、放熱性能を高めるために、吸熱部と放熱部との間で冷媒が蒸発・凝縮しながら循環し、潜熱によって熱輸送する方法を実際に行おうとすると、以下のような課題がある。 However, in order to improve the heat dissipation performance, if a method of circulating the refrigerant between the heat absorbing portion and the heat radiating portion while evaporating and condensing and transporting heat by latent heat is actually performed, there are the following problems.

吸熱部から放熱部への冷媒輸送流路においては、吸熱部で冷媒が蒸発して二相流となる場合には、圧力損失が大きくなり冷媒が流れにくくなることがある。放熱部から吸熱部への冷媒輸送流路においては、放熱部において凝縮しきれなかった蒸気を含む冷媒が再び吸熱部に供給されて、いわゆる局所ドライアウトを発生しやすい状況になることがある。 In the refrigerant transport channel from the heat absorbing part to the heat radiating part, when the refrigerant evaporates in the heat absorbing part to form a two-phase flow, the pressure loss increases and the refrigerant may not flow easily. In the refrigerant transport flow path from the heat radiating section to the heat absorbing section, the refrigerant containing the vapor that could not be condensed in the heat radiating section may be supplied again to the heat absorbing section, so that a so-called local dryout may occur easily.

さらに、機器の小型化に応えて冷却基板を小型、薄型にすると、上記の課題はより顕著になり、冷媒の蒸発・凝縮による潜熱を利用した冷却は困難になる。 Furthermore, if the cooling substrate is made smaller and thinner in response to downsizing of the device, the above problem becomes more prominent, and cooling using latent heat due to evaporation / condensation of the refrigerant becomes difficult.

上記の課題を解決するための、本発明の冷却基板の構成は、以下のようなものである。請求項1に記載の発明は、基板内に少なくとも一つの吸熱部と、少なくとも一つの放熱部とを備え、前記吸熱部と前記放熱部が冷媒流路によってループ状に連通し、前記冷媒流路において冷媒が循環するとともに、前記冷媒の蒸発・凝縮潜熱によって熱輸送する冷却基板において、前記冷媒流路は、前記吸熱部から前記放熱部に向かって気化した前記冷媒を送る熱輸送側流路と、前記放熱部から前記吸熱部に向かって液化した前記冷媒を送る還流側流路とからなり、前記還流側流路の断面積が、前記熱輸送側流路の断面積よりも小さいことを特徴とする、冷却基板である。 The configuration of the cooling substrate of the present invention for solving the above-described problems is as follows. The invention according to claim 1 includes at least one heat absorbing portion and at least one heat radiating portion in the substrate, wherein the heat absorbing portion and the heat radiating portion communicate with each other in a loop shape by a refrigerant flow path, and the refrigerant flow path In the cooling substrate in which the refrigerant circulates and heat transports by latent heat of evaporation and condensation of the refrigerant, the refrigerant flow path includes a heat transport side flow path for sending the vaporized refrigerant from the heat absorption part toward the heat dissipation part. A reflux side flow path for sending the liquefied refrigerant from the heat radiating section toward the heat absorption section, wherein the cross sectional area of the reflux side flow path is smaller than the cross sectional area of the heat transport side flow path. It is a cooling substrate.

吸熱部から放熱部へ向かう熱輸送側流路においては、冷媒流路の断面積を大きくすることで、熱輸送側流路において、冷媒が一部蒸発せずに気相液相の2相流になっていても、流路中の圧力損失を低減させることができる。また、蒸気は圧力損失の低いほうに優先的に流れるので、冷媒の流れが一方向になりやすい。これにより吸熱部で発生した蒸気が放熱部に効率良く移動できるので、熱輸送能力が向上する。 In the heat transport side flow path from the heat absorbing section to the heat radiating section, by increasing the cross-sectional area of the refrigerant flow path, the refrigerant does not partially evaporate in the heat transport side flow path and the two-phase flow of the gas phase liquid phase Even in this case, the pressure loss in the flow path can be reduced. In addition, since the steam flows preferentially to the lower pressure loss, the refrigerant flow tends to be unidirectional. Thereby, the steam generated in the heat absorbing part can be efficiently moved to the heat radiating part, so that the heat transport capability is improved.

さらに、放熱部から吸熱部へ向かう還流側で冷媒流路の断面積を小さくすることで、圧力損失が相対的に高くなる。このため、放熱部で凝縮しきれなかった蒸気が、液相とともに還流側流路に流れ込みにくくなる。これにより、凝縮しきれなかった蒸気が吸熱部に供給されるのを防止し、吸熱部でのドライアウトの発生を低減できる。 Furthermore, the pressure loss is relatively increased by reducing the cross-sectional area of the refrigerant flow path on the reflux side from the heat radiating portion to the heat absorbing portion. For this reason, it becomes difficult for the vapor | steam which was not able to condense in a thermal radiation part to flow into a reflux side flow path with a liquid phase. Thereby, it is possible to prevent the steam that has not been condensed from being supplied to the heat absorption part, and to reduce the occurrence of dryout in the heat absorption part.

また、吸熱部で大きな熱入力があっても、蒸気が還流側流路に逆流して液相の冷媒を飛散させることがなくなり、冷媒の流れが一方向になりやすい。これにより放熱部で凝縮した液相が吸熱部に効率よく移動できるので、熱輸送能力が向上する。 Further, even if there is a large heat input in the heat absorption part, the vapor does not flow backward to the reflux side flow path and the liquid phase refrigerant is not scattered, and the refrigerant flow tends to be unidirectional. Thereby, since the liquid phase condensed in the heat radiating part can be efficiently moved to the heat absorbing part, the heat transport capability is improved.

また、請求項2に記載の発明は、前記冷却基板において、前記還流側流路の断面積と前記熱輸送側流路の断面積の比が、0.0002〜0.77の範囲内であることを特徴とする、請求項1に記載の冷却基板である。 In the invention according to claim 2, in the cooling substrate, a ratio of a cross-sectional area of the reflux side flow path to a cross-sectional area of the heat transport side flow path is in a range of 0.0002 to 0.77. The cooling substrate according to claim 1, wherein:

この構成による効果は以下のようなものである。還流側流路の断面積と熱輸送側流路の断面積の比が0.0002〜0.77の範囲内であると、より効果的に、吸熱部で発生した冷媒の蒸気が還流側流路に逆流せずに熱輸送側流路に優先的に流れるとともに、放熱部で凝縮した冷媒の液相が還流側流路で十分に輸送される。 The effects of this configuration are as follows. When the ratio of the cross-sectional area of the reflux side channel to the cross-sectional area of the heat transport side channel is in the range of 0.0002 to 0.77, the vapor of the refrigerant generated in the heat absorption part is more effectively returned to the reflux side flow. While flowing preferentially in the heat transport flow path without flowing back to the path, the liquid phase of the refrigerant condensed in the heat radiating section is sufficiently transported in the reflux flow path.

還流側流路の断面積と熱輸送側流路の断面積の比が0.0002以下であると、還流側流路の断面積が小さくなりすぎて、凝縮した冷媒の液相が還流するさいの抵抗が大きくなる。また、還流側流路の断面積と熱輸送側流路の断面積の比が0.77を超えると、吸熱部で発生した冷媒の蒸気が還流側流路に逆流することがある。 If the ratio of the cross-sectional area of the reflux side channel to the cross-sectional area of the heat transport side channel is 0.0002 or less, the cross-sectional area of the reflux side channel becomes too small, and the liquid phase of the condensed refrigerant is refluxed. Resistance increases. In addition, when the ratio of the cross-sectional area of the reflux side channel and the cross-sectional area of the heat transport side channel exceeds 0.77, the refrigerant vapor generated in the heat absorption part may flow backward to the reflux side channel.

また、請求項3に記載の発明は、前記冷却基板において、前記還流側流路には、液化した前記冷媒が前記吸熱部から前記放熱部に向かって逆流することを防止する逆止構造を備えたことを特徴とする、請求項1または2に記載の冷却基板である。 According to a third aspect of the present invention, in the cooling substrate, the return-side flow path is provided with a check structure that prevents the liquefied refrigerant from flowing backward from the heat absorbing portion toward the heat radiating portion. The cooling substrate according to claim 1, wherein the cooling substrate is characterized by that.

この構成による効果は以下のようなものである。逆止弁のような逆止装置を備えることにより、冷媒が流路を逆流することを完全に防止することができる。これにより、冷媒の流れが完全に一方向になり、特に吸熱量が高い場合にも、還流側流路で蒸気流が圧力損失に打ち勝って逆流することを防止できるので、吸熱量が高い場合にも熱輸送能力がより安定する。 The effects of this configuration are as follows. By providing a check device such as a check valve, it is possible to completely prevent the refrigerant from flowing back through the flow path. As a result, the flow of the refrigerant is completely unidirectional, and even when the endothermic amount is particularly high, it is possible to prevent the vapor flow from overcoming the pressure loss and backflowing in the return side flow path. Even the heat transport capacity is more stable.

また、請求項4に記載の発明は、前記冷却基板において、前記還流側流路には、毛細管力を発生する毛細管構造を備えたことを特徴とする、請求項1から3のいずれか一項に記載の冷却基板である。 According to a fourth aspect of the present invention, in the cooling substrate, the return-side flow path is provided with a capillary structure that generates a capillary force. It is a cooling substrate as described in above.

この構成による効果は以下のようなものである。還流側流路に毛細管構造を備えたことにより、凝縮した液相の冷媒の流れが促進され、液相が吸熱部に効率よく移動できるので、熱輸送能力がさらに向上する。毛細管構造としては、多孔質体やメッシュの積層体が好ましく、冷媒の液相に対して優れた毛細管力を発揮するとともに、製造が容易で安価である。 The effects of this configuration are as follows. By providing the capillary structure in the reflux side flow path, the flow of the condensed liquid phase refrigerant is promoted, and the liquid phase can be efficiently moved to the heat absorption part, so that the heat transport capability is further improved. As the capillary structure, a porous body or a laminate of meshes is preferable. The capillary structure exhibits excellent capillary force against the liquid phase of the refrigerant, and is easy and inexpensive to manufacture.

また、請求項5に記載の発明は、前記冷却基板において、前記還流側流路には、動力を利用して、液化した前記冷媒を強制的に前記放熱部から前記吸熱部に向かって送る、冷媒輸送機構を備えたことを特徴とする、請求項1から4のいずれか一項に記載の冷却基板である。 In the cooling substrate according to the fifth aspect of the present invention, in the cooling substrate, the liquefied refrigerant is forcibly sent from the heat radiating portion toward the heat absorbing portion using power in the reflux side flow path. The cooling substrate according to any one of claims 1 to 4, further comprising a refrigerant transport mechanism.

この構成による効果は以下のようなものである。還流側流路に冷媒輸送機構を備えたことにより、強制的に液相の冷媒を輸送することができ、冷媒の循環量を増加させることができるので、熱輸送能力がさらに向上する。冷媒輸送機構としては、圧電ポンプが好ましく、小型で消費電力が小さく、基板内に埋め込むことが可能である。また圧電ポンプを還流側流路に埋め込むことで、流路を基板外に取り出して別途ポンプを設置したり、流路に継ぎ目を形成したりすることがなく、冷却基板を小型にでき、信頼性も向上する。 The effects of this configuration are as follows. By providing the refrigerant transport mechanism in the reflux side channel, the liquid phase refrigerant can be forcibly transported and the circulation amount of the refrigerant can be increased, so that the heat transport capability is further improved. As the refrigerant transport mechanism, a piezoelectric pump is preferable, and it is small and consumes little power, and can be embedded in the substrate. In addition, by embedding the piezoelectric pump in the flow path on the return side, the cooling circuit board can be made smaller and reliable without taking out the flow path from the substrate and installing a separate pump or forming a seam in the flow path. Will also improve.

本発明によれば、流路を備えた冷却基板において、熱輸送側の流路の断面積を相対的に大きくすることで流路中の圧力損失を低減し、かつ、還流側の流路の断面積を相対的に小さくすることで吸熱部でのドライアウトの発生を抑制することができるため、流路中の冷媒の流れが一方向になりやすく、熱輸送能力が向上した冷却基板を得ることができる。   According to the present invention, in the cooling substrate provided with the flow path, the pressure loss in the flow path is reduced by relatively increasing the cross-sectional area of the flow path on the heat transport side, and Since the cross-sectional area can be made relatively small, it is possible to suppress the occurrence of dry-out in the heat absorption part, so that the flow of the refrigerant in the flow path is likely to be unidirectional and a cooling substrate with improved heat transport capability is obtained. be able to.

本発明の第1の実施形態である冷却基板を示す斜視図である。It is a perspective view which shows the cooling substrate which is the 1st Embodiment of this invention. 本発明の第1の実施形態である冷却基板を示す三面図である。It is a three-plane figure which shows the cooling substrate which is the 1st Embodiment of this invention. 図2におけるA−A断面図である。It is AA sectional drawing in FIG. 図2におけるB−B断面図である。It is BB sectional drawing in FIG. 図2におけるC−C断面図である。It is CC sectional drawing in FIG. 図2におけるD−D断面図である。It is DD sectional drawing in FIG. 図2におけるE−E断面図である。It is EE sectional drawing in FIG. 本発明の第1の実施形態である冷却基板に用いられる、パターンが形成された第1の銅板の上面図である。It is a top view of the 1st copper plate in which the pattern used for the cooling substrate which is the 1st Embodiment of this invention was formed. 本発明の第1の実施形態である冷却基板に用いられる、パターンが形成された第2の銅板の上面図である。It is a top view of the 2nd copper plate in which the pattern used for the cooling substrate which is the 1st Embodiment of this invention was formed. 本発明の第1の実施形態である冷却基板を実装した状態の一例を示す側面図である。It is a side view which shows an example of the state which mounted the cooling substrate which is the 1st Embodiment of this invention. 本発明の第1の実施形態である冷却基板を実装した状態の別の例を示す側面図である。It is a side view which shows another example of the state which mounted the cooling substrate which is the 1st Embodiment of this invention. 本発明の第1の実施形態である冷却基板の熱抵抗を測定したグラフである。It is the graph which measured the thermal resistance of the cooling substrate which is the 1st Embodiment of this invention. 本発明の第2の実施形態である冷却基板の還流側流路を示す部分断面図である。It is a fragmentary sectional view which shows the return side flow path of the cooling substrate which is the 2nd Embodiment of this invention. 本発明の第3の実施形態である冷却基板の還流側流路を示す部分拡大図である。It is the elements on larger scale which show the return side flow path of the cooling substrate which is the 3rd Embodiment of this invention. 本発明の第4の実施形態である冷却基板の還流側流路を示す部分断面図である。It is a fragmentary sectional view which shows the return side flow path of the cooling substrate which is the 4th Embodiment of this invention. 本発明の実施形態である冷却基板における、熱入力と熱抵抗との関係を示すグラフである。It is a graph which shows the relationship between the heat input and thermal resistance in the cooling substrate which is embodiment of this invention. 本発明の実施形態である冷却基板における、熱入力と冷却水流量との関係を示すグラフである。It is a graph which shows the relationship between the heat input in the cooling substrate which is embodiment of this invention, and a cooling water flow rate. 本発明の第5の実施形態である冷却基板を示す斜視図である。It is a perspective view which shows the cooling substrate which is the 5th Embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。
図1、図2は、本発明の第1の実施形態である冷却基板10の概略図である。図1は斜視図、図2は三面図であり、図2(a)は平面図、図2(b)は正面図、図2(c)は側面図である。
冷却基板10は、銅製の板状で、外形が100mm×200mm×1mmである。外観上は略平板であるが、内部には破線で示すような空間20を備えている。また、図3は、図2中のA−A断面、すなわち冷却基板10を厚さ方向に切断した断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 are schematic views of a cooling substrate 10 according to the first embodiment of the present invention. 1 is a perspective view, FIG. 2 is a three-side view, FIG. 2 (a) is a plan view, FIG. 2 (b) is a front view, and FIG. 2 (c) is a side view.
The cooling substrate 10 is a copper plate and has an outer shape of 100 mm × 200 mm × 1 mm. Although it is a substantially flat plate in appearance, a space 20 shown by a broken line is provided inside. FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, that is, the cooling substrate 10 cut in the thickness direction.

空間20は、基板内で密閉された薄い空洞であり、吸熱部30、放熱部40、冷媒流路50からなる。冷媒流路50は、前記吸熱部30から前記放熱部40に向かって気化した冷媒を送る熱輸送側流路60と、前記放熱部40から前記吸熱部30に向かって液化した前記冷媒を送る還流側流路70とからなる。吸熱部30、熱輸送側流路60、放熱部40、還流側流路70は、前記の順にループ状に配置され、内部に純水からなる冷媒(図示せず)が封入され、図3に太い矢印で示す方向に、ループ状に循環できるようになっている。冷媒は、常温で液相が空間20の一部を占めるような分量が封入されている。空間20の残りは、冷媒の気相で占められている。また、空気等の、使用温度範囲で不凝縮性のガスは脱気されている。 The space 20 is a thin cavity sealed in the substrate, and includes a heat absorbing part 30, a heat radiating part 40, and a coolant channel 50. The refrigerant flow path 50 is a heat transport side flow path 60 that sends the vaporized refrigerant from the heat absorption part 30 toward the heat dissipation part 40, and a reflux that sends the liquefied refrigerant from the heat dissipation part 40 toward the heat absorption part 30. And a side flow path 70. The heat absorption part 30, the heat transport side flow path 60, the heat radiation part 40, and the reflux side flow path 70 are arranged in a loop in the order described above, and a refrigerant (not shown) made of pure water is enclosed therein, and FIG. It can be circulated in a loop shape in the direction indicated by the thick arrow. The refrigerant is sealed in such an amount that the liquid phase occupies a part of the space 20 at room temperature. The remainder of the space 20 is occupied by the refrigerant gas phase. Further, non-condensable gas such as air is degassed in the operating temperature range.

図3に太い矢印で示す方向は冷媒の移動方向であり、これを各部位における流路方向と定義する。また、前記冷却基板10が形成する面内で前記流路方向に略直交する方向を、各部位における幅方向と定義する。 The direction indicated by the thick arrow in FIG. 3 is the moving direction of the refrigerant, and this is defined as the flow direction in each part. Moreover, the direction substantially orthogonal to the flow path direction in the plane formed by the cooling substrate 10 is defined as the width direction at each portion.

図3に示すように、吸熱部30と放熱部40を比較すると、放熱部40は吸熱部30に比べ、流路方向、幅方向ともに長く、断面積が広くなっている。また、熱輸送側流路60と還流側流路70を比較すると、還流側流路70は熱輸送側流路60に比べ、流路方向には長く、幅方向には狭くなっている。なお、図3では、後述する微細流路32、42は省略して描かれている。 As shown in FIG. 3, when comparing the heat absorbing portion 30 and the heat radiating portion 40, the heat radiating portion 40 is longer than the heat absorbing portion 30 in both the flow direction and the width direction, and the cross-sectional area is wide. Further, when the heat transport side flow path 60 and the reflux side flow path 70 are compared, the reflux side flow path 70 is longer in the flow path direction and narrower in the width direction than the heat transport side flow path 60. In FIG. 3, fine channels 32 and 42 described later are omitted.

図2におけるB−B断面、すなわち吸熱部30の幅方向での断面の部分拡大図を、図4に示す。吸熱部30は、図3中で下半分が流路方向に沿って並列した複数の溝31、31・・・からなる微細流路32からなり、図4中で上半分が幅方向に連通した連通流路33からなる、複合流路34を形成している。言い換えると、吸熱部30の下半分は、流路方向に沿って並列した複数の壁35、35・・・によって仕切られている。 FIG. 4 shows a partially enlarged view of the cross section taken along the line B-B in FIG. The heat-absorbing part 30 is composed of a fine channel 32 composed of a plurality of grooves 31, 31... Arranged in parallel along the channel direction in FIG. 3, and the upper half communicates in the width direction in FIG. A composite flow path 34 composed of the communication flow path 33 is formed. In other words, the lower half of the heat absorbing portion 30 is partitioned by a plurality of walls 35, 35.

図2におけるC−C断面、すなわち放熱部40の幅方向での断面の部分拡大図を、図5に示す。放熱部40も、吸熱部30と同様に、図4中で下半分が流路方向に沿って並列した複数の溝41、41・・・からなる微細流路42からなり、図5中で上半分が幅方向に連通した連通流路43からなる、複合流路44を形成している。言い換えると、放熱部40の下半分は、流路方向に沿って並列した複数の壁45、45・・・によって仕切られている。 FIG. 5 shows a partially enlarged view of the CC cross section in FIG. 2, that is, the cross section in the width direction of the heat radiating portion 40. Similarly to the heat absorbing part 30, the heat radiating part 40 is also composed of a fine flow path 42 composed of a plurality of grooves 41, 41... In the lower half in FIG. A composite flow path 44 is formed which includes a communication flow path 43 half of which communicates in the width direction. In other words, the lower half of the heat radiating portion 40 is partitioned by a plurality of walls 45, 45.

また、図4および図5は部分拡大図なので、吸熱部30と放熱部40の幅方向の広がりを示していないが、放熱部40は吸熱部30よりも幅が広くなっている。吸熱部30、放熱部40とも、高さは略同一である。 4 and 5 are partially enlarged views, and therefore, the heat absorbing portion 30 and the heat radiating portion 40 are not widened in the width direction, but the heat radiating portion 40 is wider than the heat absorbing portion 30. The heat absorption part 30 and the heat radiation part 40 have substantially the same height.

図2におけるD−D断面、すなわち熱輸送側流路60の幅方向での断面の部分拡大図を、図6に示す。熱輸送側流路60は、単純な平板状の空間からなっている。また、図2におけるE−E断面、すなわち還流側流路70の幅方向での断面の部分拡大図を、図7に示す。還流側流路70も、熱輸送側流路60と同様に、単純な平板状の空間であるが、熱輸送側流路60よりも幅が狭くなっている。熱輸送側流路60、還流側流路70とも、高さは略同一であり、これらは吸熱部30、放熱部40の高さとも略同一になっている。本図において例えば、還流側流路70の幅は2mm、熱輸送側流路60の幅は10mmとなり流路比は0.2となっている。 FIG. 6 shows a partially enlarged view of the DD cross section in FIG. 2, that is, the cross section in the width direction of the heat transport side channel 60. The heat transport channel 60 is a simple flat space. Moreover, the EE cross section in FIG. 2, ie, the partial expanded view of the cross section in the width direction of the reflux side flow path 70, is shown in FIG. The reflux side channel 70 is also a simple flat space like the heat transport side channel 60, but is narrower than the heat transport side channel 60. The heat transport side flow path 60 and the reflux side flow path 70 have substantially the same height, and these have substantially the same height as the heat absorption part 30 and the heat dissipation part 40. In this figure, for example, the width of the reflux side channel 70 is 2 mm, the width of the heat transport side channel 60 is 10 mm, and the channel ratio is 0.2.

ここで、熱輸送側流路60と還流側流路70における流路の幅の比について説明する。流路の幅の比(断面積の比)の最大値は、冷媒流路50において蒸気が閉塞する条件として、下記で表すことができる。 Here, the ratio of the channel widths in the heat transport side channel 60 and the reflux side channel 70 will be described. The maximum value of the channel width ratio (cross-sectional area ratio) can be expressed as follows as a condition for the vapor to block in the coolant channel 50.

Figure 2010216676
Figure 2010216676

このとき、a1は熱輸送側流路60の幅、aは還流側流路70の幅、P1は放熱部40における飽和蒸気圧の、P2は吸熱部30における飽和蒸気圧、κは水蒸気の比熱比である。ここで、放熱部40の温度を40℃、吸熱部30の温度を70℃、とすると、それぞれ飽和蒸気圧は、6.2kPa、27.2kPaとなるため、流路の幅の比(a/a)の最大値は、0.77となる。 At this time, a 1 is the width of the heat transport side channel 60, ac is the width of the reflux side channel 70, P 1 is the saturated vapor pressure in the heat radiating unit 40, P 2 is the saturated vapor pressure in the heat absorbing unit 30, and κ is water vapor Specific heat ratio. Here, temperature 40 ° C. of the heat radiating portion 40, the temperature 70 ° C. The heat absorbing portion 30, and when each saturated vapor pressure, 6.2KPa, since the 27.2KPa, the ratio of the width of the channel (a c The maximum value of / a 1 ) is 0.77.

また、流路の幅の比の最小値は、冷媒流路50において、質量流量が変化しないとすると、冷媒の気相と液相体積比となる。吸熱部30(温度70℃)での冷媒の気相および液相、それぞれの密度は、0.11g/l、985g/lであるので、流路の幅の比の最小値は、0.0002程度となる。
以上から、熱輸送側流路60と還流側流路70における流路の幅の比は、0.0002〜0.77の範囲であることが好ましい。
Further, the minimum value of the ratio of the widths of the flow paths is the refrigerant gas-phase to liquid-phase volume ratio if the mass flow rate does not change in the refrigerant flow path 50. Since the density of the gas phase and liquid phase of the refrigerant at the endothermic part 30 (temperature 70 ° C.) is 0.11 g / l and 985 g / l, the minimum value of the ratio of the width of the flow path is 0.0002. It will be about.
From the above, it is preferable that the ratio of the channel widths in the heat transport channel 60 and the reflux channel 70 is in the range of 0.0002 to 0.77.

次に、本発明の実施形態となる冷却基板10の製造方法について説明する。
外形が100mm×200mmで厚さが0.5mmの銅板を2枚用意した。一方を第1の銅板11(第1の板材)とし、他方を第2の銅板12(第2の板材)とする。第1の銅板11は、図1で下側に配置される板材であり、第2の銅板12は、図1で上側に配置される板材である。
Next, the manufacturing method of the cooling substrate 10 which becomes embodiment of this invention is demonstrated.
Two copper plates having an outer diameter of 100 mm × 200 mm and a thickness of 0.5 mm were prepared. One is a first copper plate 11 (first plate material), and the other is a second copper plate 12 (second plate material). The first copper plate 11 is a plate material arranged on the lower side in FIG. 1, and the second copper plate 12 is a plate material arranged on the upper side in FIG.

第1の銅板11には、エッチングにより、図8に示すようなパターンの第1の凹部21を、エッチングにより形成した。第1の凹部21の深さは、0.15mmである。第1の凹部21は、吸熱部30、放熱部40、冷媒流路50、熱輸送側流路60、還流側流路70の、それぞれ下部に相当する。 A first recess 21 having a pattern as shown in FIG. 8 was formed on the first copper plate 11 by etching. The depth of the first recess 21 is 0.15 mm. The first recess 21 corresponds to the lower part of each of the heat absorbing unit 30, the heat radiating unit 40, the refrigerant channel 50, the heat transport side channel 60, and the reflux side channel 70.

また、第1の凹部21の、吸熱部30、放熱部40に相当する部分には、それぞれ複数の壁35、45を備えている。壁35、45の頂部の高さは、平面部11aと同一である。なお、図8では、壁35、45は適宜省略して描かれている。 In addition, a plurality of walls 35 and 45 are provided in portions corresponding to the heat absorbing portion 30 and the heat radiating portion 40 of the first recess 21, respectively. The height of the top portions of the walls 35 and 45 is the same as that of the flat portion 11a. In FIG. 8, the walls 35 and 45 are appropriately omitted.

第2の銅板12には、エッチングにより、図9に示すようなパターンの第2の凹部22を、エッチングにより形成した。第2の凹部22の深さは、0.15mmである。第2の凹部22は、吸熱部30、放熱部40、冷媒流路50、熱輸送側流路60、還流側流路70の、それぞれ上部に相当する。また、第2の銅板12には、還流側流路70に相当する部分に、貫通孔12bが開けられている。 On the second copper plate 12, a second recess 22 having a pattern as shown in FIG. 9 was formed by etching. The depth of the second recess 22 is 0.15 mm. The second recess 22 corresponds to the upper part of each of the heat absorbing unit 30, the heat radiating unit 40, the refrigerant channel 50, the heat transport side channel 60, and the reflux side channel 70. The second copper plate 12 is provided with a through hole 12 b in a portion corresponding to the reflux side flow path 70.

また、第1の凹部21と第2の凹部22は、第1の銅板11と第2の銅板12を向かい合わせに重ねたときに、平面上で同一の形状、位置に一致するように形成されている。 The first recess 21 and the second recess 22 are formed so as to coincide with the same shape and position on a plane when the first copper plate 11 and the second copper plate 12 are stacked face to face. ing.

第1の銅板11と、第2の銅板12の、各凹部21、22の周囲部分となる平面部11a、12aに、銀ロウ材をメッキした。
次に、第1の銅板11と、第2の銅板12を、各平面部11a、12aが向かい合い、第1の凹部21と第2の凹部22が重なり合うように重ね合わせた。次にこれを真空中で加熱プレスし、銀ロウ材を溶融させることによって、第1の銅板11と、第2の銅板12を一体化させ、冷却基板10を得た。これにより、第1の凹部21と第2の凹部22が合わさって、冷却基板10の内部に空間20を形成した。
Silver brazing material was plated on the flat portions 11a and 12a of the first copper plate 11 and the second copper plate 12, which are the peripheral portions of the recesses 21 and 22, respectively.
Next, the 1st copper plate 11 and the 2nd copper plate 12 were piled up so that each plane part 11a and 12a might face each other, and the 1st recessed part 21 and the 2nd recessed part 22 might overlap. Next, this was heated and pressed in a vacuum to melt the silver brazing material, thereby integrating the first copper plate 11 and the second copper plate 12 to obtain the cooling substrate 10. As a result, the first recess 21 and the second recess 22 are combined to form a space 20 inside the cooling substrate 10.

以上の工程により、図4、図5に示すような吸熱部30、放熱部40の複合流路34、44が形成できる。各凹部21、22の深さの比を変えることにより、複合流路34、44における溝31、41の高さの割合Pを変えたものを製造することができる。また、複合流路34、44の全体の高さは、第1の凹部21と第2の凹部22の深さの合計で決まる。 Through the above steps, the composite flow paths 34 and 44 of the heat absorbing portion 30 and the heat radiating portion 40 as shown in FIGS. 4 and 5 can be formed. By changing the ratio of the depths of the concave portions 21 and 22, it is possible to manufacture the composite flow passages 34 and 44 in which the height ratio P of the grooves 31 and 41 is changed. The total height of the composite flow paths 34 and 44 is determined by the sum of the depths of the first recess 21 and the second recess 22.

なお、本発明の冷却基板10において、還流側流路70の途中に、逆止弁71や毛細管構造72や圧電ポンプ75を設ける場合には、以下のように行う。第1の銅板11と第2の銅板12の少なくともいずれか一方に、還流側流路70の一部に図示しない部材設置孔をあけておく。すると、ロウ付け完了時に、還流側流路70は、当該部材設置孔の部分で外部に露出している。ここに逆止弁71や毛細管構造72や圧電ポンプ75を埋め込み、接着等で塞ぐことによって部材を設置することができる。 In the cooling substrate 10 of the present invention, when the check valve 71, the capillary structure 72, and the piezoelectric pump 75 are provided in the middle of the reflux side flow path 70, the following is performed. At least one of the first copper plate 11 and the second copper plate 12 is provided with a member installation hole (not shown) in a part of the reflux side flow path 70. Then, when brazing is completed, the reflux-side flow path 70 is exposed to the outside through the member installation hole. A member can be installed by embedding the check valve 71, the capillary structure 72, and the piezoelectric pump 75 and closing them with an adhesive or the like.

次に、貫通孔12bを通じて、空間20内を真空脱気するとともに、空間内の容積の30%を占める量の純水を注入し、脱気された状態のまま貫通孔12bを塞いで、空間20を密閉した。以上のような工程により、本発明の冷却基板10を製造することができる。 Next, the inside of the space 20 is evacuated through the through-hole 12b, and pure water in an amount occupying 30% of the volume in the space is injected, and the through-hole 12b is closed in the deaerated state, 20 was sealed. Through the steps as described above, the cooling substrate 10 of the present invention can be manufactured.

以下に、本発明の第1の実施の形態における、冷却の作用について説明する。図10に示すように、冷却基板10の吸熱部30の外面36に、CPU等の被冷却素子90を配置し、熱的に接触させる。被冷却素子90は、CPUに限らず、レーザダイオード、パワートランジスタ等、ジュール熱によって発熱して冷却が必要となる素子であれば、適用できる。
なお、被冷却素子90は、通常の絶縁基板210上に形成された回路220に、ハンダ230によって表面実装されている。
Below, the effect | action of cooling in the 1st Embodiment of this invention is demonstrated. As shown in FIG. 10, an element to be cooled 90 such as a CPU is disposed on the outer surface 36 of the heat absorbing portion 30 of the cooling substrate 10 and brought into thermal contact therewith. The element 90 to be cooled is not limited to a CPU, and may be any element that generates heat by Joule heat and requires cooling, such as a laser diode or a power transistor.
The element 90 to be cooled is surface-mounted by solder 230 on a circuit 220 formed on a normal insulating substrate 210.

被冷却素子90を吸熱部30の外面36に配置する方法は、図10のように、素子のパッケージ91を吸熱部30の外面36に熱伝導グリス240等を介して密着させて熱的接触させても良いし、図11のように、冷却基板10の上に絶縁皮膜250を介して回路220を形成し、被冷却素子90を回路220に表面実装しても良い。この場合、被冷却素子90は、電極92を通じて冷却基板10に熱的に接触しているが、パッケージ91と絶縁皮膜250の間に熱伝導グリス240等を注入して熱的接触させても良い。 As shown in FIG. 10, the element to be cooled 90 is disposed on the outer surface 36 of the heat absorbing unit 30 by bringing the package 91 of the element into close contact with the outer surface 36 of the heat absorbing unit 30 through thermal conductive grease 240 or the like. Alternatively, as shown in FIG. 11, the circuit 220 may be formed on the cooling substrate 10 via the insulating film 250, and the element to be cooled 90 may be surface-mounted on the circuit 220. In this case, the element 90 to be cooled is in thermal contact with the cooling substrate 10 through the electrode 92, but thermal conduction grease 240 or the like may be injected between the package 91 and the insulating film 250 to make thermal contact. .

被冷却素子90で発生した熱は、吸熱部30の外面36を通じて吸熱部30に伝わる。吸熱部30では、熱によって冷媒が蒸発し、液相から気相となる。このときに、吸熱部30で、冷媒が蒸発潜熱によって外部から熱を奪う。冷媒は、気相となって急激に体積が膨張するので、熱輸送側流路60を通過して放熱部40に広がる。 The heat generated in the element to be cooled 90 is transmitted to the heat absorbing unit 30 through the outer surface 36 of the heat absorbing unit 30. In the heat absorption part 30, the refrigerant evaporates due to heat and changes from the liquid phase to the gas phase. At this time, the refrigerant absorbs heat from the outside by the latent heat of vaporization in the heat absorbing section 30. Since the refrigerant becomes a gas phase and the volume rapidly expands, the refrigerant passes through the heat transport side channel 60 and spreads to the heat radiating unit 40.

放熱部40に広がった気相の冷媒は、放熱部40で凝縮潜熱を放出して液相に戻る。ここで、吸熱部30に入熱される熱量と、放熱部40で放熱される熱量は同等であるが、吸熱部30よりも放熱部40のほうが面積が広いことから、熱密度は吸熱部30でよりも放熱部40で小さくなり、放熱部40の外面46から、後述するフィン100等の別の放熱手段によって大気等に放熱することができる。 The gas-phase refrigerant spread to the heat radiating section 40 releases the latent heat of condensation in the heat radiating section 40 and returns to the liquid phase. Here, the amount of heat input to the heat absorbing portion 30 is equal to the amount of heat dissipated by the heat radiating portion 40, but the heat radiating portion 40 has a larger area than the heat absorbing portion 30, so the heat density is the heat absorbing portion 30. Therefore, the heat can be radiated from the outer surface 46 of the heat radiating portion 40 to the atmosphere or the like by another heat radiating means such as the fin 100 described later.

液相となった冷媒は、還流側流路70に入り、吸熱部30に戻る。吸熱部に戻った冷媒の液相は、前記と同様に蒸発することで被冷却素子90から熱を奪う。以上のサイクルを繰り返して、冷却基板10は被冷却素子90を冷却することができる。 The refrigerant that has become a liquid phase enters the reflux side flow path 70 and returns to the heat absorption unit 30. The refrigerant liquid phase that has returned to the heat-absorbing portion evaporates in the same manner as described above, thereby depriving the cooled element 90 of heat. By repeating the above cycle, the cooling substrate 10 can cool the element 90 to be cooled.

次に、吸熱部30および放熱部40の複合流路34、44の作用について説明する。外形が同一の冷却基板10を複数種類作製した。吸熱部30、放熱部40、熱輸送側流路60、還流側流路70とも、それぞれ底面積、幅、流路高さは同一である。ここで、吸熱部30および放熱部40の複合流路34、44の全体の高さは0.3mmに固定し、微細流路31、41の幅は0.2mmから0.5mmの間で変化させた。 Next, the effect | action of the composite flow paths 34 and 44 of the heat absorption part 30 and the thermal radiation part 40 is demonstrated. A plurality of types of cooling substrates 10 having the same external shape were produced. The bottom area, the width, and the flow path height are the same for the heat absorption part 30, the heat radiation part 40, the heat transport side flow path 60, and the reflux side flow path 70, respectively. Here, the overall height of the composite flow paths 34 and 44 of the heat absorbing section 30 and the heat radiating section 40 is fixed to 0.3 mm, and the width of the fine flow paths 31 and 41 varies between 0.2 mm and 0.5 mm. I let you.

ここで、連通流路33、43の高さの、複合流路34、44の全体高さに対する割合Pを、0から1の間で変化させ、吸熱部の外面36と放熱部の外面46との間の熱抵抗R(K/W)を測定した。熱抵抗Rは、吸熱部30の外面36と放熱部40の外面46の温度差ΔT(K)を被冷却素子90の発熱量W(W)で割ったものであり、R=ΔT/Wで表せる。 Here, the ratio P of the height of the communication flow paths 33 and 43 to the total height of the composite flow paths 34 and 44 is changed between 0 and 1, and the outer surface 36 of the heat absorption part and the outer surface 46 of the heat dissipation part The thermal resistance R (K / W) was measured. The thermal resistance R is obtained by dividing the temperature difference ΔT (K) between the outer surface 36 of the heat absorbing portion 30 and the outer surface 46 of the heat radiating portion 40 by the heat generation amount W (W) of the element 90 to be cooled, and R = ΔT / W I can express.

熱抵抗の測定結果を図12に示す。図12からわかるように、微細流路32、42の溝31、41の幅の影響は見られなかった。一方、連通流路33、43の高さの割合Pで比較すると、Pが0(すなわち、全体が微細流路で連通部がない)の場合よりもPが1(すなわち、全体が連通流路で溝がない)の場合のほうが熱抵抗Rが大きくなった。これは、微細流路によって吸熱部30、放熱部40で伝熱面積が増加し、かつ冷媒から吸熱部30または放熱部40の流路壁への伝熱距離を低減したことで、吸熱部30または放熱部40における熱伝達率が向上したからである。 The measurement result of thermal resistance is shown in FIG. As can be seen from FIG. 12, the influence of the widths of the grooves 31 and 41 of the fine channels 32 and 42 was not observed. On the other hand, when compared with the height ratio P of the communication channels 33 and 43, P is 1 (that is, the whole is a communication channel) than when P is 0 (that is, the whole is a fine channel and there is no communication part). The thermal resistance R was larger in the case of no groove). This is because the heat transfer area is increased in the heat absorbing part 30 and the heat radiating part 40 due to the fine flow path, and the heat transfer distance from the refrigerant to the heat absorbing part 30 or the flow path wall of the heat radiating part 40 is reduced. Alternatively, the heat transfer coefficient in the heat radiating section 40 is improved.

さらに、Pが0.3から0.6の間で熱抵抗Rが小さくなり、0.4付近で最小値になっている。これは、Pが小さいと熱伝達率が向上するが、一方で圧力損失が上昇し、冷媒が流れにくくなるからである。連通流路33、43によって圧力損失が低下し、冷媒の流量を増加することができるが、全体が連通流路33、43からなる(P=1)と、熱伝達率が低下するために熱抵抗Rは上昇する。 Furthermore, the thermal resistance R decreases when P is between 0.3 and 0.6, and is a minimum value near 0.4. This is because if P is small, the heat transfer coefficient is improved, but on the other hand, the pressure loss increases and the refrigerant does not flow easily. The pressure loss is reduced by the communication flow paths 33 and 43, and the flow rate of the refrigerant can be increased. However, when the whole is composed of the communication flow paths 33 and 43 (P = 1), the heat transfer coefficient is reduced, and thus the heat transfer rate is reduced. The resistance R increases.

冷却基板10の熱輸送量は、これらの2つの因子が組み合わさっており、これによって熱抵抗Rが決まるので、Pがある範囲でRが最小になる。Pが0.3から0.6の範囲内であると、Rが小さくなって好ましい。 The heat transport amount of the cooling substrate 10 is a combination of these two factors, which determines the thermal resistance R, so that R is minimized within a certain range. When P is in the range of 0.3 to 0.6, R is preferably small.

本発明の第2の実施形態となる冷却基板10においては、図13(a)に部分拡大図で示すように、還流側流路70の途中に、冷媒が吸熱部30から放熱部40に向かって逆流することを防止する逆止弁71を設けた。逆止弁71は、還流側流路の一方の壁面から流路方向に向かって斜めに突出した薄膜状の銅箔であり、基端部71aが壁面に固定され、先端部71bがフリー(可動)になっている。なお、図13は、還流側流路70を冷却基板に垂直かつ流路方向に平行な面で切った断面図である。 In the cooling substrate 10 according to the second embodiment of the present invention, as shown in the partially enlarged view in FIG. 13A, the refrigerant moves from the heat absorption part 30 toward the heat radiation part 40 in the middle of the reflux side flow path 70. Therefore, a check valve 71 is provided to prevent backflow. The check valve 71 is a thin-film copper foil projecting obliquely from one wall surface of the reflux side flow channel toward the flow channel direction, the base end portion 71a is fixed to the wall surface, and the distal end portion 71b is free (movable). )It has become. FIG. 13 is a cross-sectional view of the reflux side flow path 70 taken along a plane perpendicular to the cooling substrate and parallel to the flow path direction.

還流側流路70において、冷媒の流れが放熱部40から吸熱部30に向かう方向(順方向)であると、図13(b)のように、逆止弁71は冷媒の流れを妨害しないようにたわむ。冷媒の流れが吸熱部30から放熱部40に向かう方向(逆方向)であると、図13(c)のように、逆止弁71は還流側流路70を塞いで冷媒の逆流を防止する。
逆止弁71の逆止作用と、吸熱部30における冷媒の蒸発による圧力上昇により、冷媒を一方向にのみ輸送するポンプとして働く。
When the flow of the refrigerant is in the direction (forward direction) from the heat radiating unit 40 to the heat absorbing unit 30 in the reflux side flow path 70, the check valve 71 does not disturb the refrigerant flow as shown in FIG. 13B. Deflection. When the flow of the refrigerant is in the direction (reverse direction) from the heat absorbing unit 30 to the heat radiating unit 40, the check valve 71 blocks the recirculation-side flow path 70 to prevent the reverse flow of the refrigerant as shown in FIG. .
The check valve 71 works as a pump that transports the refrigerant only in one direction due to the check action of the check valve 71 and the pressure increase due to the evaporation of the refrigerant in the heat absorbing section 30.

本発明の第3の実施形態となる冷却基板10においては、図14(a)に部分拡大図で示すように、還流側流路70の途中に、銅の多孔質体73からなる毛細管構造72を設けた。毛細管構造72によって、液相の流れが促進され、液相が吸熱部に効率よく移動できる。また、気相に対しては抵抗となることから、液相が優先的に還流側流路70を通過することができる。そのため、冷媒を一方向にのみ輸送するポンプとして働く。なお、図14は、還流側流路70を冷却基板に垂直かつ流路方向に平行な面で切った断面図である。 In the cooling substrate 10 according to the third embodiment of the present invention, as shown in a partially enlarged view in FIG. 14A, a capillary structure 72 made of a copper porous body 73 is provided in the middle of the reflux side flow path 70. Was provided. The capillary structure 72 promotes the flow of the liquid phase, and the liquid phase can efficiently move to the heat absorption part. Moreover, since it becomes resistance with respect to a gaseous phase, a liquid phase can pass the reflux side flow path 70 preferentially. Therefore, it works as a pump that transports the refrigerant only in one direction. FIG. 14 is a cross-sectional view of the reflux side flow path 70 cut by a plane perpendicular to the cooling substrate and parallel to the flow path direction.

銅の多孔質体73は、図14(b)に示すように、銅の粉末を連通気孔を残すように緩く焼結させたものである。また、毛細管構造72は、図14(c)に示すような銅メッシュの積層体74でも良い。 As shown in FIG. 14B, the copper porous body 73 is obtained by gently sintering copper powder so as to leave a continuous air hole. The capillary structure 72 may be a copper mesh laminate 74 as shown in FIG.

本発明の第4の実施形態となる冷却基板10においては、図15に部分拡大図で示すように、還流側流路70の途中に、圧電ポンプ75が埋め込まれている。圧電ポンプ75によって、冷媒の輸送を外力によって補助するので、第1から第3の実施形態に比べ、冷媒の輸送量を増加し、熱輸送量を向上させることができる。なお、図15は、還流側流路70を冷却基板に垂直かつ流路方向に平行な面で切った断面図である。 In the cooling substrate 10 according to the fourth embodiment of the present invention, as shown in a partially enlarged view in FIG. 15, a piezoelectric pump 75 is embedded in the middle of the reflux side flow path 70. Since the transportation of the refrigerant is assisted by the external force by the piezoelectric pump 75, the transportation amount of the refrigerant can be increased and the heat transportation amount can be improved as compared with the first to third embodiments. FIG. 15 is a cross-sectional view of the reflux side flow path 70 taken along a plane perpendicular to the cooling substrate and parallel to the flow path direction.

Pが0.5の冷却基板とPが0の冷却基板を作製し、同じ圧電ポンプ75を利用し、熱入力量を変化させながら熱抵抗Rを測定した結果を、図16に示す。熱入力が0Wから240Wの間で、すべての場合において、P=0.5のほうがP=0よりも小さい熱抵抗を示した。また、そのときの冷媒の輸送量を測定すると、図17に示すように、圧電ポンプ75の出力が同じ場合でも、P=0.5のほうがP=0よりも冷媒輸送量が大きく、これが熱抵抗の違いとなって現れている。 FIG. 16 shows the result of measuring the thermal resistance R while producing a cooling substrate with P of 0.5 and a cooling substrate with P of 0 and using the same piezoelectric pump 75 and changing the amount of heat input. In all cases where the heat input was between 0W and 240W, P = 0.5 showed a lower thermal resistance than P = 0. Further, when the transport amount of the refrigerant at that time is measured, as shown in FIG. 17, even when the output of the piezoelectric pump 75 is the same, the transport amount of the refrigerant is larger at P = 0.5 than at P = 0. It appears as a difference in resistance.

本発明の第5の実施形態となる冷却基板10においては、図18に示すように、放熱部40の外面46に、銅の丸棒からなる伝熱柱101が複数本接合され、伝熱柱101にアルミの板からなるフィンプレート102が複数枚差し込まれて、積層フィン100を形成している。 In the cooling substrate 10 according to the fifth embodiment of the present invention, as shown in FIG. 18, a plurality of heat transfer columns 101 made of copper round bars are joined to the outer surface 46 of the heat radiating portion 40, and the heat transfer columns are formed. A plurality of fin plates 102 made of an aluminum plate are inserted into 101 to form a laminated fin 100.

これにより、放熱部40から伝熱柱101を経由してフィンプレート102に熱が伝導し、フィンプレート102によって、大気中に放熱することができ、放熱能力をさらに向上させることができる。また、図示しないファンによってフィンプレート102間に送風すると、さらに放熱量が増大し、放熱能力がさらに向上する。 Thereby, heat is conducted from the heat radiating portion 40 to the fin plate 102 via the heat transfer column 101 and can be radiated to the atmosphere by the fin plate 102, so that the heat radiating capability can be further improved. Further, when air is blown between the fin plates 102 by a fan (not shown), the heat radiation amount is further increased and the heat radiation capability is further improved.

また、伝熱柱101を銅の丸棒ではなく、ヒートパイプで構成しても良い。ヒートパイプを用いることにより、銅の丸棒よりもさらに熱伝導が良くなり、放熱能力をさらに向上させることができる。 Moreover, you may comprise the heat-transfer pillar 101 with a heat pipe instead of a copper round bar. By using a heat pipe, the heat conduction is further improved as compared with a copper round bar, and the heat dissipation capability can be further improved.

また、伝熱柱101を上端が閉じて下端が開いたパイプで形成し、下端が放熱部の空間と連通するように構成しても良い。これにより、冷媒が伝熱柱101の内部まで循環するので、放熱部40の面積を増加させたことになり、また伝熱柱101の熱抵抗が小さくなるので、放熱能力をさらに向上させることができる。 Alternatively, the heat transfer column 101 may be formed of a pipe whose upper end is closed and whose lower end is open, and the lower end communicates with the space of the heat radiating unit. Thereby, since the refrigerant circulates to the inside of the heat transfer column 101, the area of the heat radiating portion 40 is increased, and the heat resistance of the heat transfer column 101 is reduced, so that the heat dissipation capability can be further improved. it can.

本発明の冷却基板10に用いる板材11、12は、銅でなくても良い。アルミ等の他の金属、合金、あるいはシリコン、セラミック等であっても良く、熱伝導に優れ、微細加工と接合が可能な材料を用いるのが好ましい。 The plate members 11 and 12 used for the cooling substrate 10 of the present invention may not be copper. Other metals such as aluminum, alloys, silicon, ceramics, and the like may be used, and it is preferable to use a material that is excellent in heat conduction and that can be finely processed and bonded.

また、板材11、12の面上に凹部21、22を形成する方法は、エッチングに限らず、切削、サンドブラスト、鍛造、転写等の方法が適用できる。あるいは、逆に凹部以外の部分をメッキ、スパッタ等によって盛り上げて、残った部分を凹部としても良い。 The method for forming the recesses 21 and 22 on the surfaces of the plate members 11 and 12 is not limited to etching, and methods such as cutting, sandblasting, forging, and transfer can be applied. Or, conversely, a portion other than the recess may be raised by plating, sputtering, or the like, and the remaining portion may be used as the recess.

接合は、ロウ付けに限らず、拡散接合、溶接等の方法が適用できるし、カシメなどの機械的な接合を併用しても良い。ロウ付けの場合でも、メッキでロウを形成する以外にも、ペースト状のロウを塗布したり、箔状のロウを板材の間に挟んだりすることも可能である。 Joining is not limited to brazing, and methods such as diffusion joining and welding can be applied, and mechanical joining such as caulking may be used in combination. Even in the case of brazing, in addition to forming a solder by plating, it is also possible to apply a paste-like solder or sandwich a foil-like solder between plate materials.

貫通孔12bは、第1の銅板側に開けておいても良い。貫通孔12bは、ロウ付け後に開けても良い。また、第2の銅板12の表面ではなく、側面に開けても良い。貫通孔12bの外側に、図示しないパイプを形成しておいても良い。これにより、脱気、注水、密閉の加工が容易になる。 The through hole 12b may be opened on the first copper plate side. The through hole 12b may be opened after brazing. Moreover, you may open in the side surface instead of the surface of the 2nd copper plate 12. FIG. A pipe (not shown) may be formed outside the through hole 12b. Thereby, processing of deaeration, water injection, and sealing is facilitated.

冷媒は、純水以外にも、潜熱が大きく、使用する温度と圧力の範囲内で蒸発と凝縮が可能で、かつ冷却基板を形成する板材と化学反応を起こさない物質であれば良い。このような冷媒には、フロン、代替フロン、炭化水素、アルコール、エーテル等の物質が適用できる。 In addition to pure water, the refrigerant may be any substance that has a large latent heat, can be evaporated and condensed within the temperature and pressure ranges to be used, and does not cause a chemical reaction with the plate material forming the cooling substrate. As such a refrigerant, substances such as chlorofluorocarbon, alternative chlorofluorocarbon, hydrocarbon, alcohol, and ether can be applied.

10 冷却基板
11 第1の銅板
11a、12a 平面部
12 第2の銅版
12b 貫通孔
20 空間
21 第1の凹部
22 第2の凹部
30 吸熱部
31、41 溝
32、42 微細流路
33、43 連通流路
34、44 複合流路
35、45 壁
36、46 外面
40 放熱部
50 冷媒流路
60 熱輸送側流路
70 還流側流路
71 逆止弁
71a 基端部
71b 先端部
72 毛細管構造
73 多孔質体
74 積層体
75 圧電ポンプ
90 被冷却素子
100 積層フィン
101 伝熱柱
102 フィンプレート
DESCRIPTION OF SYMBOLS 10 Cooling board 11 1st copper plate 11a, 12a Plane part 12 2nd copper plate 12b Through-hole 20 Space 21 1st recessed part 22 2nd recessed part 30 Endothermic part 31, 41 Groove 32, 42 Fine flow path 33, 43 Communication Channels 34 and 44 Composite channels 35 and 45 Walls 36 and 46 Outer surface 40 Heat radiation portion 50 Refrigerant channel 60 Heat transport side channel 70 Return side channel 71 Check valve 71a Base end portion 71b Tip end portion 72 Capillary structure 73 Porous Mass 74 Laminated body 75 Piezoelectric pump 90 Cooled element 100 Laminated fin 101 Heat transfer column 102 Fin plate

Claims (5)

基板内に少なくとも一つの吸熱部と、少なくとも一つの放熱部とを備え、
前記吸熱部と前記放熱部が冷媒流路によってループ状に連通し、
前記冷媒流路において冷媒が循環するとともに、前記冷媒の蒸発・凝縮潜熱によって熱輸送する冷却基板において、
前記冷媒流路は、前記吸熱部から前記放熱部に向かって気化した前記冷媒を送る熱輸送側流路と、前記放熱部から前記吸熱部に向かって液化した前記冷媒を送る還流側流路とからなり、
前記還流側流路の断面積が、前記熱輸送側流路の断面積よりも小さいことを特徴とする、冷却基板。
Provided with at least one heat absorbing part and at least one heat radiating part in the substrate,
The heat absorbing part and the heat radiating part communicate with each other in a loop shape by a refrigerant flow path,
In the cooling substrate in which the refrigerant circulates in the refrigerant flow path and thermally transports by latent heat of evaporation and condensation of the refrigerant,
The refrigerant flow path includes a heat transport side flow path for sending the refrigerant vaporized from the heat absorption part toward the heat dissipation part, and a recirculation side flow path for sending the refrigerant liquefied from the heat dissipation part toward the heat absorption part. Consists of
The cooling substrate according to claim 1, wherein a cross-sectional area of the reflux side flow path is smaller than a cross-sectional area of the heat transport side flow path.
前記還流側流路の断面積と前記熱輸送側流路の断面積の比が、0.0002〜0.77の範囲内であることを特徴とする、
請求項1に記載の冷却基板。
The ratio of the cross-sectional area of the reflux side flow path and the cross-sectional area of the heat transport side flow path is in the range of 0.0002 to 0.77,
The cooling substrate according to claim 1.
前記還流側流路には、液化した前記冷媒が前記吸熱部から前記放熱部に向かって逆流することを防止する逆止構造を備えたことを特徴とする、
請求項1または2に記載の冷却基板。
The reflux side flow path is provided with a check structure that prevents the liquefied refrigerant from flowing backward from the heat absorption part toward the heat dissipation part,
The cooling substrate according to claim 1 or 2.
前記還流側流路には、毛細管力を発生する毛細管構造を備えたことを特徴とする、
請求項1から3のいずれか一項に記載の冷却基板。
The reflux channel is provided with a capillary structure that generates a capillary force,
The cooling substrate according to any one of claims 1 to 3.
前記還流側流路には、動力を利用して、液化した前記冷媒を強制的に前記放熱部から前記吸熱部に向かって送る、冷媒輸送機構を備えたことを特徴とする、
請求項1から4のいずれか一項に記載の冷却基板。
The reflux side flow path is provided with a refrigerant transport mechanism for forcibly sending the liquefied refrigerant from the heat radiating portion toward the heat absorbing portion using power.
The cooling substrate according to any one of claims 1 to 4.
JP2009060807A 2009-03-13 2009-03-13 Cooling substrate Pending JP2010216676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060807A JP2010216676A (en) 2009-03-13 2009-03-13 Cooling substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060807A JP2010216676A (en) 2009-03-13 2009-03-13 Cooling substrate

Publications (1)

Publication Number Publication Date
JP2010216676A true JP2010216676A (en) 2010-09-30

Family

ID=42975716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060807A Pending JP2010216676A (en) 2009-03-13 2009-03-13 Cooling substrate

Country Status (1)

Country Link
JP (1) JP2010216676A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005622A1 (en) * 2011-07-07 2013-01-10 日本電気株式会社 Cooling device and method for manufacturing same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
JP2014142143A (en) * 2013-01-24 2014-08-07 Ntec Co Ltd Heat pipe
JP2015200465A (en) * 2014-04-09 2015-11-12 富士通株式会社 Heat pipe built-in frame plate and electronic apparatus
JP2016142416A (en) * 2015-01-29 2016-08-08 富士通株式会社 Loop heat pipe and process of manufacture of loop heat pipe
JP2016203455A (en) * 2015-04-20 2016-12-08 株式会社日本製鋼所 Cover of heating cylinder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599580A (en) * 1991-10-11 1993-04-20 Toshiba Corp Looped heat pipe
JPH1137678A (en) * 1997-07-22 1999-02-12 Showa Alum Corp Heat pipe type radiator
JP2004134742A (en) * 2002-08-16 2004-04-30 Nec Corp Cooling device for electronic apparatus
JP2004353902A (en) * 2003-05-27 2004-12-16 Sony Corp Cooling system
JP2005033162A (en) * 2003-07-04 2005-02-03 Sentelic Corp Micro heat dissipation device and method of manufacturing same
JP2005123317A (en) * 2003-10-15 2005-05-12 Ceramission Kk Cooling and radiating device of electronic component
JP2005229033A (en) * 2004-02-16 2005-08-25 Hitachi Ltd Liquid-cooled system and electronic apparatus having the same
JP2005300038A (en) * 2004-04-13 2005-10-27 Sony Corp Heat transport device, process for manufacturing the heat transport device and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599580A (en) * 1991-10-11 1993-04-20 Toshiba Corp Looped heat pipe
JPH1137678A (en) * 1997-07-22 1999-02-12 Showa Alum Corp Heat pipe type radiator
JP2004134742A (en) * 2002-08-16 2004-04-30 Nec Corp Cooling device for electronic apparatus
JP2004353902A (en) * 2003-05-27 2004-12-16 Sony Corp Cooling system
JP2005033162A (en) * 2003-07-04 2005-02-03 Sentelic Corp Micro heat dissipation device and method of manufacturing same
JP2005123317A (en) * 2003-10-15 2005-05-12 Ceramission Kk Cooling and radiating device of electronic component
JP2005229033A (en) * 2004-02-16 2005-08-25 Hitachi Ltd Liquid-cooled system and electronic apparatus having the same
JP2005300038A (en) * 2004-04-13 2005-10-27 Sony Corp Heat transport device, process for manufacturing the heat transport device and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005622A1 (en) * 2011-07-07 2013-01-10 日本電気株式会社 Cooling device and method for manufacturing same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
JP2014142143A (en) * 2013-01-24 2014-08-07 Ntec Co Ltd Heat pipe
JP2015200465A (en) * 2014-04-09 2015-11-12 富士通株式会社 Heat pipe built-in frame plate and electronic apparatus
JP2016142416A (en) * 2015-01-29 2016-08-08 富士通株式会社 Loop heat pipe and process of manufacture of loop heat pipe
JP2016203455A (en) * 2015-04-20 2016-12-08 株式会社日本製鋼所 Cover of heating cylinder

Similar Documents

Publication Publication Date Title
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
CN210128646U (en) Vapor chamber and portable electronic device
Chein et al. Thermoelectric cooler application in electronic cooling
US6942021B2 (en) Heat transport device and electronic device
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
US20070246194A1 (en) Heat pipe with composite capillary wick structure
US8490683B2 (en) Flat plate type micro heat transport device
JP6560425B1 (en) heat pipe
US20080236795A1 (en) Low-profile heat-spreading liquid chamber using boiling
JP2007519877A (en) Plate heat transfer device and manufacturing method thereof
JP2007113864A (en) Heat transport apparatus and electronic instrument
JP2010216676A (en) Cooling substrate
CN111863746B (en) Heat abstractor, circuit board and electronic equipment
US10502496B2 (en) Micro vapor chamber
US20100126700A1 (en) Heat-radiating base plate and heat sink using the same
JP4496999B2 (en) Heat transport device and electronic equipment
WO1999034438A1 (en) Heat sink
US20120325439A1 (en) Method and apparatus for heat spreaders having a vapor chamber with a wick structure to promote incipient boiling
JP2005077052A (en) Flat heat pipe
Fang et al. Molybdenum copper based ultrathin two-phase heat transport system for high power-density gallium nitride chips
JP5938865B2 (en) Loop heat pipe and electronic device
JP2009076622A (en) Heat sink and electronic apparatus using the same
EP3723463B1 (en) Heat exchanger with integrated two-phase heat spreader
US20120024500A1 (en) Thermosyphon for cooling electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Effective date: 20121225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507