JP2010007893A - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP2010007893A
JP2010007893A JP2008164712A JP2008164712A JP2010007893A JP 2010007893 A JP2010007893 A JP 2010007893A JP 2008164712 A JP2008164712 A JP 2008164712A JP 2008164712 A JP2008164712 A JP 2008164712A JP 2010007893 A JP2010007893 A JP 2010007893A
Authority
JP
Japan
Prior art keywords
heat receiving
receiving surface
heat
partition
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008164712A
Other languages
Japanese (ja)
Other versions
JP5092931B2 (en
Inventor
Koji Yoshihara
康二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008164712A priority Critical patent/JP5092931B2/en
Publication of JP2010007893A publication Critical patent/JP2010007893A/en
Application granted granted Critical
Publication of JP5092931B2 publication Critical patent/JP5092931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporative cooling device enabling successful heat transfer with boiling. <P>SOLUTION: The evaporative cooling device 10 includes a storage part 1 which has a heat receiving face 50 extended vertically and receiving heat of a heating element Z by a liquid refrigerant and stores the liquid refrigerant inside. The storage part 1 includes: a heat receiving passage 100 in which the liquid refrigerant passes from the lower side to the upper side and the heat receiving face 50 is arranged; a supply passage 110 to which the liquid refrigerant is supplied; and a partition part 400 for partitioning the inner space of the storage part 1 into the heat receiving passage 100 and the supply passage 110. The width on the upper side of a clearance between the face of the partition part 400 facing the heat receiving face 50 and the heat receiving face 50 is expanded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷媒を用いた沸騰冷却装置に関するものである。   The present invention relates to a boiling cooling device using a refrigerant.

沸騰冷却装置は、液体冷媒が沸騰する際の潜熱を利用して発熱体を冷却する装置である。例えば、特開2003−42672号公報(特許文献1)に開示された沸騰冷却装置では、内部に冷媒を貯留し一方表面に発熱体が取り付けられる冷媒容器と、冷媒容器の他方表面に組付けられた放熱部とを備えている。さらに、この沸騰冷却装置は、冷媒容器内を発熱体側流路と放熱部側流路とに仕切る障壁部を備えている。沸騰冷却装置は、冷媒容器の両表面が直立した状態で使用されることを前提として、良好な冷媒循環を実現している。   The boiling cooling device is a device that cools a heating element using latent heat when a liquid refrigerant boils. For example, in a boiling cooling device disclosed in Japanese Patent Application Laid-Open No. 2003-42672 (Patent Document 1), a refrigerant container that stores a refrigerant therein and a heating element is attached to one surface thereof is assembled to the other surface of the refrigerant container. And a heat dissipation part. Further, the boiling cooling device includes a barrier section that partitions the inside of the refrigerant container into a heating element side flow path and a heat radiation section side flow path. The boiling cooling device realizes good refrigerant circulation on the assumption that both surfaces of the refrigerant container are used in an upright state.

また特開平8−29041号公報(特許文献2)に開示された沸騰冷却装置では、障壁部はなく、冷却容器の幅を上部に行くほど幅広にする構造を備えている。冷却容器の幅が上部にいくほど幅広となっているため発生した気泡が上部の発熱体により発生した気泡と干渉することがないとされている。
特開2003−42672号公報 特開平8−29041号公報
In addition, the boiling cooling device disclosed in Japanese Patent Application Laid-Open No. 8-29041 (Patent Document 2) has a structure in which there is no barrier portion and the width of the cooling container increases toward the top. Since the width of the cooling container becomes wider toward the upper part, the generated bubbles do not interfere with the bubbles generated by the upper heating element.
JP 2003-42672 A JP-A-8-29041

沸騰冷却装置では、沸騰伝熱を利用して冷却を行っている。沸騰伝熱は、図5に示すように、受熱面500と障壁部600との感覚が狭いと(例えば1mm〜5mm程度)、沸騰熱伝導が向上することが確認されている。それは、障壁部600により一時的に気泡700が保持され、その保持された気泡700と受熱面500との間のマイクロレイヤー900という部分における熱の移動が良好であるため、沸騰熱伝導が向上すると推測されている。しかし冷媒が沸騰することによって出来た気泡700が上部の受熱面500に溜まると、上部の気泡700が多すぎ、受熱面500の伝熱不良が起こる。   In the boiling cooling device, cooling is performed using boiling heat transfer. As shown in FIG. 5, boiling heat transfer has been confirmed to improve boiling heat conduction when the sense of the heat receiving surface 500 and the barrier portion 600 is narrow (for example, about 1 mm to 5 mm). This is because the bubble 700 is temporarily held by the barrier portion 600, and heat transfer in the portion of the microlayer 900 between the held bubble 700 and the heat receiving surface 500 is good, so that boiling heat conduction is improved. Has been speculated. However, if bubbles 700 generated by boiling of the refrigerant accumulate on upper heat receiving surface 500, there are too many upper air bubbles 700 and heat transfer failure of heat receiving surface 500 occurs.

特許文献1に記載の沸騰冷却装置は、障壁部を設けているが、それは発熱体側流路と放熱部側流路を分けるために設けられただけであって、受熱面と障壁部との距離を小さくすることで沸騰伝熱を向上させるものではない。   The boiling cooling device described in Patent Document 1 is provided with a barrier portion, which is provided only to separate the heating element side flow path and the heat dissipation section side flow path, and the distance between the heat receiving surface and the barrier section. It is not intended to improve the boiling heat transfer by reducing.

また特許文献2では、気泡の干渉を抑えるために冷媒容器の幅を上部に行くほど幅広にしているが、単に気泡が充満しないようにするために上部の幅を広くするという発想しか開示されておらず、受熱面と障壁部との距離をどの程度にするのが良いのかという開示はない。   Further, in Patent Document 2, the width of the refrigerant container is increased as it goes upward in order to suppress the interference of bubbles, but only the idea of increasing the width of the upper portion so as not to fill the bubbles is disclosed. There is no disclosure of how much distance between the heat receiving surface and the barrier portion should be.

本発明は、このような事情に鑑みてなされたものであり、良好な沸騰伝熱が行われる沸騰冷却装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the boiling cooling device in which favorable boiling heat transfer is performed.

本発明の沸騰冷却装置は、上下方向に延在し発熱体の熱を液体冷媒が受熱する受熱面を有し、内部に液体冷媒を収容する収容部を備え、収容部は、液体冷媒が下方から上方に向かって流れると共に、受熱面が配置される受熱通路と、液体冷媒が供給される供給通路と、収容部の内部空間を受熱通路と供給通路とに仕切る仕切部と、を有する沸騰冷却装置であって、仕切部の受熱面と対向する面と受熱面との間隙は上方側が拡幅されていることを特徴とする。   The boiling cooling device of the present invention has a heat receiving surface that extends in the vertical direction and receives the heat of the heating element by the liquid refrigerant, and includes an accommodating portion that accommodates the liquid refrigerant therein. And boil cooling having a heat receiving passage in which the heat receiving surface is disposed, a supply passage to which liquid refrigerant is supplied, and a partition that partitions the internal space of the housing portion into the heat receiving passage and the supply passage. It is an apparatus, Comprising: The upper side is widened by the clearance gap between the surface facing the heat receiving surface of a partition part, and a heat receiving surface, It is characterized by the above-mentioned.

発熱体の発熱によって、受熱通路の冷媒が沸騰し気泡が発生する。受熱面の下方部側で発生した気泡は冷媒中を上部に向かって上昇していく。本発明の沸騰冷却装置は収容部に仕切部を有し、かつ仕切部の受熱面と対向する面と受熱面との間隙は上方側が拡幅されているため、下方部側で発生した気泡が上方部側で発生した気泡と合体するのを抑制出来、そのため受熱面の上部と冷媒との熱伝導が悪くなることを抑制できる。また気泡の浮力と気泡成長によって冷媒の流れが形成されるのを利用し、冷媒中に仕切部に沿って受熱通路−供給通路−受熱通路の一方向へ流れる自然対流による冷媒の流路を形成することが出来る。   Due to the heat generated by the heating element, the refrigerant in the heat receiving passage boils and bubbles are generated. Bubbles generated on the lower side of the heat receiving surface rise upward in the refrigerant. The boiling cooling device of the present invention has a partition portion in the housing portion, and the gap between the surface facing the heat receiving surface of the partition portion and the heat receiving surface is widened on the upper side. It is possible to suppress coalescence with bubbles generated on the part side, and therefore, it is possible to suppress deterioration of heat conduction between the upper portion of the heat receiving surface and the refrigerant. In addition, by utilizing the fact that the flow of the refrigerant is formed by bubble buoyancy and bubble growth, a refrigerant flow path is formed in the refrigerant by natural convection flowing in one direction along the partitioning section along the heat receiving passage, the supply passage, and the heat receiving passage. I can do it.

このような冷媒の流路を形成出来ることによって発熱体の上方、下方にかかわらず発熱体全体の伝熱の促進を図ることが出来る。これにより、良好な冷媒循環を実現できる。   By forming such a refrigerant flow path, heat transfer of the entire heating element can be promoted regardless of whether it is above or below the heating element. Thereby, a favorable refrigerant circulation is realizable.

この時、発熱体は収容部に直接取り付けずに熱伝導性部材をはさんで取り付けられていても良い。また液体冷媒は下方から上方に向かって流れ、上方において沸騰した冷媒を大気に開放し、新たな冷媒を供給通路に供給する構造としても良いし、収容部の上方に沸騰した冷媒を凝縮する凝縮部を取り付け、沸騰した冷媒を凝縮部で凝縮して供給通路に供給する構造としても良い。   At this time, the heating element may be attached with the heat conductive member interposed therebetween without being directly attached to the accommodating portion. Further, the liquid refrigerant may flow from the lower side to the upper side, the refrigerant boiling at the upper side may be opened to the atmosphere, and a new refrigerant may be supplied to the supply passage. It is good also as a structure which attaches a part and condenses the boiled refrigerant in a condensation part, and supplies it to a supply channel.

ここで、仕切部の受熱面と対向する面は、受熱面との間隙が上方側において拡幅するように傾斜していることが好ましい。これによれば、仕切部の傾斜面に沿って流路が形成出来るため、よりスムーズに冷媒循環を行うことが出来る。この時仕切部の受熱面に対向していない面だけが、受熱面との間隙が上方側において拡幅するように傾斜していることは本発明には含まれない。   Here, it is preferable that the surface facing the heat receiving surface of the partition portion is inclined so that the gap with the heat receiving surface is widened on the upper side. According to this, since a flow path can be formed along the inclined surface of a partition part, a refrigerant | coolant circulation can be performed more smoothly. It is not included in the present invention that only the surface of the partition portion that does not oppose the heat receiving surface is inclined so that the gap with the heat receiving surface widens on the upper side.

また仕切部ではなく、受熱面が形成される収容部の側壁部が仕切部の受熱面と対向する面と受熱面との間隙が上方側において拡幅するように傾斜していてもよい。   Further, instead of the partition portion, the side wall portion of the housing portion where the heat receiving surface is formed may be inclined so that the gap between the surface facing the heat receiving surface of the partition portion and the heat receiving surface is widened on the upper side.

また発熱体は収容部の受熱通路内に配置する構成としてもよく、その場合収容部内の発熱体の表面に受熱面が形成されることになる。そのため発熱体自身の側面形状が仕切部の受熱面と対向する面と受熱面との間隙が上方側において拡幅するように傾斜している形状となっても良い。   Further, the heating element may be arranged in the heat receiving passage of the housing part. In that case, a heat receiving surface is formed on the surface of the heating element in the housing part. Therefore, the shape of the side surface of the heating element itself may be inclined such that the gap between the surface facing the heat receiving surface of the partition and the heat receiving surface is widened on the upper side.

また発熱体は収容部の一方の側壁部に取り付けられた第1発熱体と、対向する他方の側壁部に取り付けられた第2発熱体とからなり、収容部は、第1発熱体の熱を液体冷媒が受熱する第1受熱面と供給通路とを仕切る第1仕切部と、第2発熱体の熱を液体冷媒が受熱する第2受熱面と供給通路とを仕切る第2仕切部とを有し、第1仕切部の第1受熱面と対向する面と第1受熱面との間隙及び第2仕切部の第2受熱面と対向する面と第2受熱面との間隙は共に上方側が拡幅されていることが好ましい。   The heating element includes a first heating element attached to one side wall portion of the housing portion and a second heating element attached to the opposite side wall portion, and the housing portion heats the first heating body. A first partition that partitions the first heat receiving surface that receives the liquid refrigerant and the supply passage; and a second partition that separates the second heat receiving surface and the supply passage from which the liquid refrigerant receives heat from the second heating element. The upper side of the gap between the first heat receiving surface of the first partition portion and the first heat receiving surface and the gap between the second heat receiving surface of the second partition portion and the second heat receiving surface are widened on the upper side. It is preferable that

収容部の対向する両側壁部に発熱体を有し、各々の発熱体の熱を液体冷媒が受熱する各受熱面と各仕切部の受熱面と対向する面との間隙は上方側が拡幅されているので、より熱伝達を向上することが出来、伝熱促進を図ることが出来る。これは沸騰伝熱が狭い間隙で行うと沸騰熱伝達が向上することにも起因する。また発熱体が両側壁部に取り付けられていることによって、より多くの発熱体を冷却することが出来、効率が良い。   There are heating elements on the opposite side walls of the housing part, and the upper side of the gap between each heat receiving surface where the liquid refrigerant receives the heat of each heating element and the surface facing the heat receiving surface of each partition is widened. Therefore, heat transfer can be further improved and heat transfer can be promoted. This is because boiling heat transfer is improved when boiling heat transfer is performed in a narrow gap. Further, since the heating elements are attached to both side walls, more heating elements can be cooled, and the efficiency is good.

また発熱体は収容部の側壁部に上下方向に複数取り付けられていてもよい。複数の発熱体が収容部の側壁部に上下方向に取り付けられていても上方下方にかかわらず熱効率良く発熱体を冷却することが出来る。また発熱密度の異なる発熱体を上下に並べて取り付けることも可能である。   A plurality of heating elements may be attached to the side wall portion of the housing portion in the vertical direction. Even if a plurality of heating elements are attached to the side wall portion of the housing portion in the vertical direction, the heating elements can be cooled efficiently regardless of whether the heating element is above or below. It is also possible to mount heating elements with different heating densities side by side.

また仕切部の受熱面と対向する面と受熱面との間隙が幅5mm以下であることが好ましい。沸騰伝熱は、少ない体積の冷媒を沸騰させ気化することによって効率よく熱伝達出来るため、狭い間隙で行うことが好ましい。仕切部の受熱面と対向する面と受熱面との間隙は上方側の拡幅されている場所において5mm以下が好ましく、更に好ましくは3mm以下が好ましい。また下方側で1〜2mmであることが好ましい。   Moreover, it is preferable that the clearance gap between the surface facing the heat receiving surface of a partition part, and a heat receiving surface is 5 mm or less in width. Boiling heat transfer is preferably performed in a narrow gap because heat transfer can be efficiently performed by boiling and vaporizing a small volume of refrigerant. The gap between the heat receiving surface and the surface facing the heat receiving surface of the partitioning portion is preferably 5 mm or less, more preferably 3 mm or less, in the widened area on the upper side. Moreover, it is preferable that it is 1-2 mm on the downward side.

本発明の沸騰冷却装置によれば、良好な沸騰伝熱を行うことができる。   According to the boiling cooling device of the present invention, good boiling heat transfer can be performed.

次に、実施形態を挙げ、本発明をより詳しく説明する。下記に示した実施形態では、収容部の上方に凝縮部を取り付け、凝縮部で凝縮された液体冷媒を供給通路に供給する構造としたが、これに限定されるものではない。
(第1実施形態)
第1実施形態では沸騰冷却装置10を例に挙げる。以下、沸騰冷却装置10について図1を参照して説明する。図1は、沸騰冷却装置10の模式断面図である。
Next, the present invention will be described in more detail with reference to embodiments. In the embodiment shown below, a condensing part is attached above the accommodating part, and the liquid refrigerant condensed in the condensing part is supplied to the supply passage. However, the present invention is not limited to this.
(First embodiment)
In the first embodiment, the boiling cooling device 10 is taken as an example. Hereinafter, the boiling cooling apparatus 10 will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the boiling cooling device 10.

図1に示すように、沸騰冷却装置10は、収容部1と、凝縮部2とを備えている。   As shown in FIG. 1, the boiling cooling device 10 includes a storage unit 1 and a condensing unit 2.

収容部1は、断面が直方体形状の金属製の容器であり、内部に冷媒(例えば水、フロン類など)が貯留されている。収容部1は受熱通路100と、供給通路110と、仕切部400とを備えている。   The accommodating part 1 is a metal container having a rectangular parallelepiped cross section, in which refrigerant (for example, water, chlorofluorocarbons, etc.) is stored. The accommodating portion 1 includes a heat receiving passage 100, a supply passage 110, and a partition portion 400.

凝縮部2は、断面が直方体形状の金属製の容器であり、内部に凝縮パイプ部3を備えている。収容部1の鉛直方向上方に凝縮部2が連なっている。収容部1には鉛直方向側壁部の外面に発熱体Zが取り付けられている。図1において発熱体Zは収容部1の外側に取り付けてあるが、収容部1の内側に取り付けてあっても良い。   The condensing part 2 is a metal container having a rectangular parallelepiped section, and includes a condensing pipe part 3 inside. The condensing part 2 is continued in the vertical direction of the accommodating part 1. A heating element Z is attached to the housing 1 on the outer surface of the vertical side wall. In FIG. 1, the heating element Z is attached to the outside of the housing portion 1, but may be attached to the inside of the housing portion 1.

冷媒循環は、以下のとおりである。受熱面50において発熱体Zから受熱して沸騰した冷媒蒸気が、受熱通路100を上方に向かって流れ、凝縮部2で凝縮され、その凝縮液が供給通路110に流入し、供給通路110が受熱通路100に冷媒を戻す。   The refrigerant circulation is as follows. The refrigerant vapor boiled by receiving heat from the heating element Z on the heat receiving surface 50 flows upward in the heat receiving passage 100, is condensed in the condensing unit 2, and the condensed liquid flows into the supply passage 110, and the supply passage 110 receives heat. The refrigerant is returned to the passage 100.

本第1実施形態において、受熱通路100は、図1に示すように、およそ収容部1の発熱体Zが取り付けられた鉛直方向側壁面と仕切部400とを含む側壁面(4面)で囲まれた部位である。発熱体Zは、例えば半導体素子等である。   In the first embodiment, as shown in FIG. 1, the heat receiving passage 100 is surrounded by a side wall surface (four surfaces) including a vertical side wall surface to which the heating element Z of the housing portion 1 is attached and a partition portion 400. It is a part that was. The heating element Z is, for example, a semiconductor element.

ここで、図1に示す状態を直立状態と称す。つまり、収容部1の発熱体Zが取り付けられた鉛直方向側壁面は、直立状態において、水平面に対して垂直となる。なお、発熱体Zの取付位置は、収容部1の底面よりも上方となっている。以下、図1に基づいて説明する。   Here, the state shown in FIG. 1 is referred to as an upright state. That is, the vertical side wall surface to which the heating element Z of the housing part 1 is attached is perpendicular to the horizontal plane in the upright state. Note that the mounting position of the heating element Z is higher than the bottom surface of the housing portion 1. Hereinafter, a description will be given based on FIG.

収容部1の内部に設けられた仕切部400は、受熱通路100の側面を形成し、収容部1の内部空間を受熱通路100と供給通路110とに仕切っている。仕切部400については後述する。   The partition part 400 provided inside the housing part 1 forms the side surface of the heat receiving passage 100 and partitions the internal space of the housing part 1 into the heat receiving passage 100 and the supply passage 110. The partition part 400 will be described later.

受熱通路100は、発熱体Zの熱を受け、その熱によって受熱通路100内部の冷媒が沸騰する。沸騰した冷媒蒸気は、図1に示す矢印Y1に示すように上昇し、凝縮部2に入る。凝縮部2については後述する。   The heat receiving passage 100 receives heat from the heating element Z, and the heat causes the refrigerant in the heat receiving passage 100 to boil. The boiling refrigerant vapor rises as shown by an arrow Y1 shown in FIG. The condensation unit 2 will be described later.

供給通路110は、収容部1の内部で仕切部400によって仕切られた一方側であり、発熱体Zの取り付けられた側壁面とは反対側に位置している。供給通路110は、受熱通路100に連なり且つ並列的に配置されている。供給通路110は、下方が受熱通路100に連通している。これによれば、沸騰により受熱通路100の液面が低下すると、供給通路110内部の冷媒が圧力差により受熱通路100に供給される。従って供給通路110において矢印Y2の方向に冷媒が流れる。   The supply passage 110 is one side partitioned by the partition portion 400 inside the housing portion 1 and is located on the opposite side to the side wall surface to which the heating element Z is attached. The supply passage 110 is connected to the heat receiving passage 100 and arranged in parallel. The supply passage 110 communicates with the heat receiving passage 100 at the bottom. According to this, when the liquid level of the heat receiving passage 100 decreases due to boiling, the refrigerant in the supply passage 110 is supplied to the heat receiving passage 100 due to the pressure difference. Accordingly, the refrigerant flows in the direction of the arrow Y2 in the supply passage 110.

凝縮部2は、収容部1の鉛直方向上方にある。凝縮部2の内部は、図1において、右方で収容部1の受熱通路100及び左方で供給通路110に連通している。本第1実施形態において、凝縮部2は収容部1の上方に収容部1の断面直方体形状よりも幅が広い断面直方体形状になっており、収容部1が凝縮部2の幅方向の中央下方に位置しているが、これに限らない。   The condensing part 2 is above the accommodating part 1 in the vertical direction. In FIG. 1, the inside of the condensing unit 2 communicates with the heat receiving passage 100 of the housing unit 1 on the right side and the supply passage 110 on the left side. In the first embodiment, the condensing part 2 has a rectangular parallelepiped shape that is wider than the rectangular parallelepiped shape of the accommodating part 1 above the accommodating part 1, and the accommodating part 1 is below the center in the width direction of the condensing part 2. Although it is located in, it is not restricted to this.

凝縮パイプ部3は、凝縮部2を貫通し、凝縮部2の内部に位置する部位が複数の偏平管の集合体で構成されている。凝縮パイプ部3の内部には、冷媒が流通しており、図示しないヘッダーを介して各偏平管内部に冷媒(冷却水等)が流れている。つまり、凝縮パイプ部3は、凝縮部2に収容され、受熱通路100で沸騰した冷媒蒸気を凝縮する。   The condensing pipe part 3 penetrates the condensing part 2, and the site | part located inside the condensing part 2 is comprised by the aggregate | assembly of several flat tubes. A refrigerant flows through the inside of the condensing pipe portion 3, and a refrigerant (cooling water or the like) flows through each flat tube via a header (not shown). That is, the condensing pipe unit 3 is accommodated in the condensing unit 2 and condenses the refrigerant vapor boiled in the heat receiving passage 100.

凝縮パイプ部3は、収容部1の上方に位置している。凝縮パイプ部3で凝縮された冷媒は、重力により下方へ向かうため、凝縮部2の内底面上または直接収容部1に流入する。
内底面上に落ちた冷媒も、その後収容部1に流入する。
The condensing pipe part 3 is located above the accommodating part 1. The refrigerant condensed in the condensing pipe part 3 flows downward due to gravity and therefore flows into the inner bottom surface of the condensing part 2 or directly into the accommodating part 1.
The refrigerant that has fallen on the inner bottom surface then flows into the accommodating portion 1.

また、仕切部400は板状であり、収容部1の鉛直方向側壁面に平行に延在する上方仕切部と、上方仕切部の下端から収容部1の鉛直方向側面に向かって垂直にある一定距離突き出し、さらに下方に直角に折れて鉛直方向側面に平行に延在する下方仕切部とからなっている。   The partition 400 is plate-shaped and has an upper partition that extends in parallel to the vertical side wall surface of the housing 1 and a constant portion that is perpendicular to the vertical side of the housing 1 from the lower end of the upper partition. It consists of a lower partition portion protruding at a distance and further bent downward at a right angle and extending parallel to the side surface in the vertical direction.

本第1実施形態において仕切部400の上方仕切部の受熱面50と対向する面と受熱面50との間隙の幅a1は仕切部400の下方仕切部の受熱面50と対向する面と受熱面50との間隙の幅b1よりも大きく、仕切部400の受熱面50と対向する面は受熱面50との間隙が受熱面50の上方側が拡幅されている。幅a1は5mm以下が好ましい。特に幅a1は2〜3mm程度が好ましく、幅b1は1〜2mm程度が好ましい。   In the first embodiment, the width a1 of the gap between the heat receiving surface 50 and the surface facing the heat receiving surface 50 of the upper partition portion of the partition portion 400 is the surface and the heat receiving surface facing the heat receiving surface 50 of the lower partition portion of the partition 400. The surface of the partition 400 facing the heat receiving surface 50 is wider than the width b1 of the gap between the heat receiving surface 50 and the upper side of the heat receiving surface 50. The width a1 is preferably 5 mm or less. In particular, the width a1 is preferably about 2 to 3 mm, and the width b1 is preferably about 1 to 2 mm.

仕切部400の受熱面50と対向する面と受熱面50との間隙が受熱面50の上方側が拡幅されていることにより、受熱面50の下方で発生した気泡が仕切部400の拡幅された上方仕切部面に沿って上昇出来るため、受熱面50の上方で発生した気泡と干渉しにくくなり、出来た気泡が受熱面50の上部に溜まることによる受熱面50の上部の伝熱不良が起こることを抑制出来る。これにより発熱体のバーンアウト(温度急上昇)の抑制が出来る。   The gap between the heat receiving surface 50 and the surface facing the heat receiving surface 50 of the partition portion 400 is widened on the upper side of the heat receiving surface 50, so that bubbles generated below the heat receiving surface 50 are expanded above the partition portion 400. Since it can rise along the partition surface, it becomes difficult to interfere with bubbles generated above the heat receiving surface 50, and heat transfer failure of the upper portion of the heat receiving surface 50 occurs due to the generated bubbles collecting on the upper portion of the heat receiving surface 50. Can be suppressed. As a result, it is possible to suppress burnout (rapid increase in temperature) of the heating element.

またバーンアウトは、離脱、合体する気泡の動きと、気泡に代わって発熱体面または発熱体に接する受熱面に向かう液体流との流体力学的不安定によって生じると考えられている。そして発熱体面または受熱面に加わる加速度が大きいほどバーンアウトが発生しにくくなることが経験的に求められている。従って受熱面50と仕切部400の受熱面50と対向する面との間の間隙を狭くして液体流の圧力を高め、受熱面に向かう液体流の加速度を大きくすると良い。   Burnout is considered to be caused by hydrodynamic instability between the movement of bubbles that separate and merge and the liquid flow toward the heat generating surface or the heat receiving surface in contact with the heat generating body instead of the bubbles. Further, it is empirically required that burnout is less likely to occur as the acceleration applied to the heating element surface or the heat receiving surface increases. Therefore, the gap between the heat receiving surface 50 and the surface of the partition 400 facing the heat receiving surface 50 should be narrowed to increase the pressure of the liquid flow and increase the acceleration of the liquid flow toward the heat receiving surface.

さらに、気泡の量に合わせ、仕切部の受熱面と対向する面と受熱面との距離を、上方側及び下方側共に気泡を適切に保持することが出来る適切な距離にすることで、沸騰伝熱を向上させることが出来る。   Furthermore, according to the amount of bubbles, the distance between the surface opposite to the heat receiving surface of the partition and the heat receiving surface is set to an appropriate distance that can appropriately hold the bubbles on both the upper side and the lower side. Heat can be improved.

このように、本第1実施形態に記載の沸騰冷却装置10によれば、良好な沸騰伝熱を行うことができる。   Thus, according to the boiling cooling device 10 described in the first embodiment, good boiling heat transfer can be performed.

(第2実施形態)
第2実施形態では沸騰冷却装置11を例に挙げる。以下、沸騰冷却装置11について図2を参照して説明する。図2は、沸騰冷却装置11の模式断面図である。沸騰冷却装置11は、仕切部401の形状が異なるだけで後は第1実施形態で説明した沸騰冷却装置10と同様のものである。そのため第1実施形態で説明したものと同じものは説明を省略し、異なる部分を以下に説明する。
(Second Embodiment)
In the second embodiment, the boiling cooling device 11 is taken as an example. Hereinafter, the boiling cooling device 11 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of the boiling cooling device 11. The boiling cooling device 11 is the same as the boiling cooling device 10 described in the first embodiment except that the shape of the partition 401 is different. Therefore, the description of the same components as those described in the first embodiment will be omitted, and different portions will be described below.

図2に示すように沸騰冷却装置11は、収容部1と、凝縮部2とを備えている。収容部1は受熱通路101と、供給通路111と、仕切部401とを備えている。   As shown in FIG. 2, the boiling cooling device 11 includes a storage unit 1 and a condensing unit 2. The accommodating portion 1 includes a heat receiving passage 101, a supply passage 111, and a partition portion 401.

仕切部401は板状であり、鉛直方向に対して傾斜している。傾斜角は特に限定されないが、仕切部401の受熱面51と対向する面は、受熱面51との間隙が受熱面51の上方側が拡幅されている方向に傾斜される。本第2実施形態において仕切部401の受熱面51と対向する面の上方側と受熱面51との間隙の幅a2は仕切部401の受熱面51と対向する面の下方側と受熱面51との間隙の幅b2よりも大きく、幅a2は5mm以下が好ましい。特に幅a2は2〜3mm程度が好ましく、幅b2は1〜2mm程度が好ましい。   The partition part 401 is plate-shaped and is inclined with respect to the vertical direction. Although the inclination angle is not particularly limited, the surface of the partitioning portion 401 facing the heat receiving surface 51 is inclined such that the gap with the heat receiving surface 51 is widened on the upper side of the heat receiving surface 51. In the second embodiment, the gap width a2 between the upper side of the surface of the partition 401 facing the heat receiving surface 51 and the heat receiving surface 51 is the lower side of the surface of the partition 401 facing the heat receiving surface 51 and the heat receiving surface 51. The width a2 is preferably 5 mm or less. In particular, the width a2 is preferably about 2 to 3 mm, and the width b2 is preferably about 1 to 2 mm.

仕切部401の受熱面51と対向する面と受熱面51との間隙が受熱面51の上方側が拡幅されるように傾斜していることにより、受熱面51の下方で発生した気泡が仕切部401の傾斜面に沿って上昇出来るため、受熱面51の上方で発生した気泡と干渉しにくくなり、出来た気泡が受熱面51の上部に溜まることによって受熱面51の上部の伝熱不良が起こることを抑制出来る。これにより発熱体のバーンアウト(温度急上昇)の抑制が出来る。   The gap between the heat receiving surface 51 and the surface of the partition portion 401 facing the heat receiving surface 51 is inclined so that the upper side of the heat receiving surface 51 is widened, so that bubbles generated below the heat receiving surface 51 are separated from the partition portion 401. Since it can rise along the inclined surface, it becomes difficult to interfere with bubbles generated above the heat receiving surface 51, and the generated bubbles accumulate on the upper surface of the heat receiving surface 51, resulting in poor heat transfer on the upper surface of the heat receiving surface 51. Can be suppressed. As a result, it is possible to suppress burnout (rapid increase in temperature) of the heating element.

このように、本第2実施形態に記載の沸騰冷却装置11によれば、良好な沸騰伝熱を行うことができる。   Thus, according to the boiling cooling device 11 described in the second embodiment, good boiling heat transfer can be performed.

またこの第2実施形態では、仕切部401が傾斜しているが、受熱面が形成される収容部1の側壁部が、仕切部の受熱面と対向する面と受熱面との間隙が上方側において拡幅するように傾斜していてもよい。また発熱体Zは収容部1の側壁面の内側に配置される構成としてもよく、その場合発熱体Zの表面に受熱面が形成されることになる。その際、発熱体Zの受熱面の形状が、仕切部の受熱面と対向する面と受熱面との間隙が上方側において拡幅するように傾斜している形状となっていても良い。   Moreover, in this 2nd Embodiment, although the partition part 401 inclines, the side wall part of the accommodating part 1 in which a heat receiving surface is formed, the clearance gap between the surface facing a heat receiving surface of a partition part, and a heat receiving surface is an upper side. It may be inclined so as to widen. Further, the heating element Z may be arranged inside the side wall surface of the housing portion 1, and in this case, a heat receiving surface is formed on the surface of the heating element Z. At that time, the shape of the heat receiving surface of the heat generating element Z may be a shape that is inclined so that the gap between the surface facing the heat receiving surface of the partitioning portion and the heat receiving surface is widened on the upper side.

(第3実施形態)
第3実施形態では沸騰冷却装置12を例に挙げる。以下、沸騰冷却装置12について図3を参照して説明する。図3は、沸騰冷却装置12の模式断面図である。沸騰冷却装置12は、第1発熱体Z1及び第2発熱体Z2が収容部1の相対する側壁面に各々取り付けられている。
(Third embodiment)
In the third embodiment, the boiling cooling device 12 is taken as an example. Hereinafter, the boiling cooling device 12 will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view of the boiling cooling device 12. In the boiling cooling device 12, the first heating element Z <b> 1 and the second heating element Z <b> 2 are respectively attached to the opposing side wall surfaces of the housing portion 1.

図3に示すように沸騰冷却装置12は、収容部1と、凝縮部2とを備えている。収容部1は第1受熱通路102と、第2受熱通路103と、供給通路112と、第1仕切部410及び第2仕切部420とを備えている。   As shown in FIG. 3, the boiling cooling device 12 includes a storage unit 1 and a condensing unit 2. The accommodating portion 1 includes a first heat receiving passage 102, a second heat receiving passage 103, a supply passage 112, a first partition portion 410 and a second partition portion 420.

収容部1には一方の側壁面及びその対向する面に第1発熱体Z1及び第2発熱体Z2が取り付けられている。図3において第1発熱体Z1及び第2発熱体Z2は収容部1の外側に取り付けてあるが、収容部1の内側に取り付けてあっても良い。   The first heating element Z1 and the second heating element Z2 are attached to the housing portion 1 on one side wall surface and the surface facing the side wall surface. In FIG. 3, the first heating element Z <b> 1 and the second heating element Z <b> 2 are attached to the outside of the housing part 1, but may be attached to the inside of the housing part 1.

冷媒循環は、以下のとおりである。第1受熱通路102において第1発熱体Z1から受熱して沸騰した冷媒蒸気及び第2受熱通路103において第2発熱体Z2から受熱して沸騰した冷媒蒸気が、凝縮部2で凝縮され、その凝縮液が供給通路112に流入し、供給通路112が第1受熱通路102及び第2受熱通路103に冷媒を戻す。   The refrigerant circulation is as follows. The refrigerant vapor boiled by receiving heat from the first heating element Z1 in the first heat receiving passage 102 and the refrigerant vapor boiled by receiving heat from the second heating element Z2 in the second heat receiving passage 103 are condensed in the condensing unit 2 and condensed. The liquid flows into the supply passage 112, and the supply passage 112 returns the refrigerant to the first heat receiving passage 102 and the second heat receiving passage 103.

本第3実施形態において、第1受熱通路102は、図3に示すように、およそ収容部1の第1発熱体Z1が取り付けられた側壁面と第1仕切部410とを含む側面(4面)で囲まれた部位であり、第2受熱通路103は、図3に示すように、およそ収容部1の第2発熱体Z2が取り付けられた側壁面と第2仕切部420とを含む側面(4面)で囲まれた部位である。   In the third embodiment, as shown in FIG. 3, the first heat receiving passage 102 is a side surface (four surfaces) including a side wall surface to which the first heating element Z <b> 1 of the housing portion 1 is attached and the first partition portion 410. ), And the second heat receiving passage 103 includes, as shown in FIG. 3, a side surface including a side wall surface to which the second heating element Z2 of the housing portion 1 is attached and the second partition portion 420 ( It is a part surrounded by (4 sides).

収容部1の内部に設けられた第1仕切部410は、第1受熱通路102の側面を形成し、収容部1の内部空間を第1受熱通路102と供給通路112とに仕切っている。また第2仕切部420は、第2受熱通路103の側面を形成し、収容部1の内部空間を第2受熱通路103と供給通路112とに仕切っている。仕切部410、420については後述する。   The first partition 410 provided inside the housing 1 forms a side surface of the first heat receiving passage 102 and partitions the internal space of the housing 1 into the first heat receiving passage 102 and the supply passage 112. The second partition 420 forms a side surface of the second heat receiving passage 103 and partitions the internal space of the housing portion 1 into the second heat receiving passage 103 and the supply passage 112. The partitions 410 and 420 will be described later.

第1受熱通路102は、第1発熱体Z1の熱を受け、その熱によって第1受熱通路102内部の冷媒が沸騰する。沸騰した冷媒蒸気は、図3に示す矢印Y1に示すように上昇し、凝縮部2に入る。また第2受熱通路103は、第2発熱体Z2の熱を受け、その熱によって第2受熱通路103内部の冷媒が沸騰する。沸騰した冷媒蒸気は、図3に示す矢印Y3に示すように上昇し、凝縮部2に入る。   The first heat receiving passage 102 receives the heat of the first heat generating element Z1, and the refrigerant in the first heat receiving passage 102 boils due to the heat. The boiling refrigerant vapor rises as shown by an arrow Y1 shown in FIG. The second heat receiving passage 103 receives the heat of the second heating element Z2, and the heat causes the refrigerant in the second heat receiving passage 103 to boil. The boiling refrigerant vapor rises as shown by an arrow Y3 shown in FIG.

供給通路112は、収容部1の内部で第1仕切部410及び第2仕切部420によって仕切られており、第1受熱通路102及び第2受熱通路103に連なり且つ各々に並列的に配置されている。供給通路112の内部は、下方が第1受熱通路102及び第2受熱通路103の内部に連通している。これによれば、沸騰により第1受熱通路102及び第2受熱通路103の液面が低下すると、供給通路112内部の冷媒が圧力差により第1受熱通路102及び第2受熱通路103に供給される。従って供給通路112において矢印Y2の方向に冷媒が流れる。   The supply passage 112 is partitioned by the first partitioning portion 410 and the second partitioning portion 420 inside the accommodating portion 1, and is connected to the first heat receiving passage 102 and the second heat receiving passage 103 and is arranged in parallel with each other. Yes. The inside of the supply passage 112 communicates with the inside of the first heat receiving passage 102 and the second heat receiving passage 103 at the bottom. According to this, when the liquid level of the first heat receiving passage 102 and the second heat receiving passage 103 decreases due to boiling, the refrigerant in the supply passage 112 is supplied to the first heat receiving passage 102 and the second heat receiving passage 103 due to the pressure difference. . Accordingly, the refrigerant flows in the direction of the arrow Y2 in the supply passage 112.

凝縮部2及び凝縮パイプ3は第1実施形態と同様であるので説明を省略する。   Since the condensing part 2 and the condensing pipe 3 are the same as that of 1st Embodiment, description is abbreviate | omitted.

第1仕切部410及び第2仕切部420は板状であり、鉛直方向に対して傾斜している。傾斜角は特に限定されないが、第1仕切部410は、第1仕切部410の第1受熱面52に対向する面と第1受熱面52との間隙が第1受熱面52の上方側が拡幅されている方向に傾斜される。また第2仕切部420は、第2仕切部420の第2受熱面53に対向する面と第2受熱面53との間隙が、第2受熱面53の上方側が拡幅されている方向に傾斜される。   The 1st partition part 410 and the 2nd partition part 420 are plate shape, and incline with respect to the perpendicular direction. Although the inclination angle is not particularly limited, the first partition 410 has a gap between the surface of the first partition 410 facing the first heat receiving surface 52 and the first heat receiving surface 52 widened above the first heat receiving surface 52. Inclined in the direction that is. The second partition 420 is inclined such that the gap between the surface of the second partition 420 facing the second heat receiving surface 53 and the second heat receiving surface 53 is widened on the upper side of the second heat receiving surface 53. The

本第3実施形態において、第1仕切部410の第1受熱面52に対向する面の上方側と第1受熱面52との間隙の幅a3は、第1仕切部410の第1受熱面52に対向する面の下方側と第1受熱面52との間隙の幅b3よりも大きく、幅a3は5mm以下が好ましい。特に幅a3は2〜3mm程度が好ましく、幅b3は1〜2mm程度が好ましい。図で説明されてはいないが、第2仕切部420の第2受熱面53に対向する面と第2受熱面53との位置関係も第1仕切部410の第1受熱面52に対向する面と第1受熱面52との関係と同様である。   In the third embodiment, the width a3 of the gap between the upper side of the surface facing the first heat receiving surface 52 of the first partition 410 and the first heat receiving surface 52 is the first heat receiving surface 52 of the first partition 410. Is larger than the width b3 of the gap between the lower side of the surface opposite to the first heat receiving surface 52 and the width a3 is preferably 5 mm or less. In particular, the width a3 is preferably about 2 to 3 mm, and the width b3 is preferably about 1 to 2 mm. Although not illustrated in the figure, the positional relationship between the surface facing the second heat receiving surface 53 of the second partition 420 and the second heat receiving surface 53 is also the surface facing the first heat receiving surface 52 of the first partition 410. And the relationship between the first heat receiving surface 52 and the first heat receiving surface 52.

第1仕切部410の第1受熱面52に対向する面と第1受熱面52との間隙が第1受熱面52の上方側が拡幅されるように傾斜していることにより、第1受熱面52の下方で発生した気泡が第1仕切部410の傾斜面に沿って上昇出来るため、第1受熱面52の上方で発生した気泡と干渉しにくくなり、出来た気泡が第1受熱面52の上部に溜まることによって第1受熱面52の上部の伝熱不良が起こることを抑制出来る。これにより発熱体のバーンアウト(温度急上昇)の抑制が出来る。同様のことが第2仕切部420と第2受熱面53とについていえる。   The first heat receiving surface 52 is configured such that the gap between the surface of the first partition 410 facing the first heat receiving surface 52 and the first heat receiving surface 52 is inclined so that the upper side of the first heat receiving surface 52 is widened. Since the bubbles generated below the first partitioning portion 410 can rise along the inclined surface of the first partitioning portion 410, it is difficult to interfere with the bubbles generated above the first heat receiving surface 52, and the generated bubbles are located above the first heat receiving surface 52. It is possible to suppress the occurrence of poor heat transfer in the upper part of the first heat receiving surface 52 by accumulating in. As a result, it is possible to suppress burnout (rapid increase in temperature) of the heating element. The same applies to the second partition 420 and the second heat receiving surface 53.

このように、本第3実施形態に記載の沸騰冷却装置12によれば、収容部の両面に発熱体を取り付けても良好な沸騰伝熱を行うことができる。   Thus, according to the boiling cooling device 12 described in the third embodiment, good boiling heat transfer can be performed even if the heating elements are attached to both surfaces of the housing portion.

(第4実施形態)
第4実施形態では沸騰冷却装置13を例に挙げる。以下、沸騰冷却装置13について図4を参照して説明する。図4は、沸騰冷却装置13の模式断面図である。沸騰冷却装置13は、第3発熱体Z11及び第4発熱体Z12が収容部1の一方の側壁面に上下に間隔をあけて各々取り付けられており、第5発熱体Z21及び第6発熱体Z22が収容部1の他方の側壁面に上下に間隔をあけて各々取り付けられている。
(Fourth embodiment)
In the fourth embodiment, the boiling cooling device 13 is taken as an example. Hereinafter, the boiling cooling device 13 will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view of the boiling cooling device 13. In the boiling cooling device 13, a third heating element Z11 and a fourth heating element Z12 are respectively attached to one side wall surface of the housing portion 1 with a vertical space therebetween, and a fifth heating element Z21 and a sixth heating element Z22. Are respectively attached to the other side wall surface of the accommodating portion 1 with an interval in the vertical direction.

図4に示すように沸騰冷却装置13は、収容部1と、凝縮部2とを備えている。収容部1は第3受熱通路104と、第4受熱通路105と、供給通路113と、第3仕切部411及び第4仕切部421とを備えている。   As shown in FIG. 4, the boiling cooling device 13 includes a housing unit 1 and a condensing unit 2. The accommodating portion 1 includes a third heat receiving passage 104, a fourth heat receiving passage 105, a supply passage 113, a third partition portion 411, and a fourth partition portion 421.

収容部1には鉛直方向側面の一方の面に上下に間隔をあけて第3発熱体Z11及び第4発熱体Z12及び他方の面に上下に間隔をあけて第5発熱体Z21及び第6発熱体Z22が取り付けられている。図4において各発熱体は収容部1の外側に取り付けてあるが、収容部1の内側に取り付けてあっても良い。   In the accommodating portion 1, the third heat generating element Z11 and the fourth heat generating element Z12 are spaced apart vertically on one side of the vertical side surface, and the fifth heat generating element Z21 and the sixth heat generating element are spaced apart vertically on the other surface. The body Z22 is attached. In FIG. 4, each heating element is attached to the outside of the housing portion 1, but may be attached to the inside of the housing portion 1.

収容部1の内部に設けられた第3仕切部411は、第3受熱通路104の側面を形成し、収容部1の内部空間を第3受熱通路104と供給通路113とに仕切っている。また第4仕切部421は、第4受熱通路105の側面を形成し、収容部1の内部空間を第4受熱通路105と供給通路113とに仕切っている。   The third partition 411 provided inside the housing part 1 forms a side surface of the third heat receiving passage 104 and partitions the internal space of the housing part 1 into the third heat receiving passage 104 and the supply passage 113. The fourth partition portion 421 forms a side surface of the fourth heat receiving passage 105 and partitions the internal space of the housing portion 1 into the fourth heat receiving passage 105 and the supply passage 113.

第3仕切部411は板状であり、第3受熱面54及び第4受熱面56に面した面が鉛直方向に対して傾斜しており、それ以外は収容部1の側壁面と並行になっている。傾斜角は特に限定されないが、第3仕切部411の第3受熱面54に対向する面は第3受熱面54との間隙が第3受熱面54の上方側が拡幅されている方向に傾斜される。また第3仕切部411の第4受熱面56に対向する面は第4受熱面56との間隙が第4受熱面56の上方側が拡幅されている方向に傾斜される。同様のことが第4仕切部421においても言える。   The third partition portion 411 is plate-shaped, and the surfaces facing the third heat receiving surface 54 and the fourth heat receiving surface 56 are inclined with respect to the vertical direction, and the other portions are parallel to the side wall surface of the housing portion 1. ing. The angle of inclination is not particularly limited, but the surface of the third partition 411 facing the third heat receiving surface 54 is inclined such that the gap with the third heat receiving surface 54 is widened above the third heat receiving surface 54. . Further, the surface of the third partition 411 facing the fourth heat receiving surface 56 is inclined such that the gap with the fourth heat receiving surface 56 is widened on the upper side of the fourth heat receiving surface 56. The same applies to the fourth partition 421.

本第4実施形態において第3仕切部411の第3受熱面54に対向する面の上方側と第3受熱面54との間隙の幅a4は第3仕切部411の第4受熱面56に対向する面の下方側と第4受熱面56との間隙の幅b4よりも大きく、幅a4は5mm以下が好ましい。特に幅a4は2〜3mm程度が好ましく、幅b4は1〜2mm程度が好ましい。図示されていないが、第4仕切部421の第5受熱面55に対向する面と第5受熱面55及び第4仕切部421の第6受熱面57に対向する面と第6受熱面57との位置関係も、第3仕切部411の第3受熱面54に対向する面と第3受熱面54及び第3仕切部411の第4受熱面56に対向する面と第4受熱面56との関係と同様である。   In the fourth embodiment, the width a4 of the gap between the upper side of the third partition 411 facing the third heat receiving surface 54 and the third heat receiving surface 54 is opposed to the fourth heat receiving surface 56 of the third partition 411. It is larger than the width b4 of the gap between the lower side of the surface and the fourth heat receiving surface 56, and the width a4 is preferably 5 mm or less. In particular, the width a4 is preferably about 2 to 3 mm, and the width b4 is preferably about 1 to 2 mm. Although not shown in the drawing, the surface facing the fifth heat receiving surface 55 of the fourth partition portion 421, the surface facing the fifth heat receiving surface 55 and the sixth heat receiving surface 57 of the fourth partition portion 421, and the sixth heat receiving surface 57 The positional relationship between the surface of the third partition 411 facing the third heat receiving surface 54, the surface of the third heat receiving surface 54 and the surface of the third partition 411 facing the fourth heat receiving surface 56, and the fourth heat receiving surface 56. Same as relationship.

第3仕切部411の第3受熱面54に対向する面の上方側と第3受熱面54との間隙が第3受熱面54の上方側が拡幅されるように傾斜していることにより、第4受熱面56の下方で発生した気泡が第3仕切部411の傾斜面に沿って上昇出来るため、第3受熱面54の上方で発生した気泡と干渉しにくくなり、出来た気泡が第3受熱面54の上部に溜まることによる第3発熱体Z11の上部の伝熱不良が起こることを抑制出来る。これにより発熱体のバーンアウト(温度急上昇)の抑制が出来る。同様のことが第4仕切部421と第5発熱体Z21とについていえる。   The gap between the upper side of the surface of the third partitioning portion 411 facing the third heat receiving surface 54 and the third heat receiving surface 54 is inclined so that the upper side of the third heat receiving surface 54 is widened. Since the bubbles generated below the heat receiving surface 56 can rise along the inclined surface of the third partitioning portion 411, it is difficult to interfere with the bubbles generated above the third heat receiving surface 54, and the generated bubbles are the third heat receiving surface. It is possible to suppress the occurrence of heat transfer failure at the upper part of the third heating element Z11 due to the accumulation at the upper part of 54. As a result, it is possible to suppress burnout (rapid increase in temperature) of the heating element. The same applies to the fourth partition 421 and the fifth heating element Z21.

また本第4実施形態では、発熱体が収容部の側壁部に上下方向に複数取り付けられている。そして発熱体に面した仕切部の面が鉛直方向に傾斜しており、それ以外の仕切部の面が鉛直方向に収容部側面と並行になっているため、各発熱体の取り付けられた間隔が上下方向に離れていても各発熱体に対して適正な斜度を設定することが出来る。このように、本第4実施形態に記載の沸騰冷却装置13によれば、複数の発熱体が上下方向に間隔を開けて取り付けられていても良好な沸騰伝熱を行うことができる。   In the fourth embodiment, a plurality of heating elements are attached in the vertical direction to the side wall of the housing. And the surface of the partition facing the heating element is inclined in the vertical direction, and the other partition surface is parallel to the side surface of the accommodating section in the vertical direction. Even if they are separated in the vertical direction, an appropriate inclination can be set for each heating element. As described above, according to the boiling cooling device 13 described in the fourth embodiment, good boiling heat transfer can be performed even when a plurality of heating elements are attached at intervals in the vertical direction.

また、各実施形態において発熱体Zを受熱通路内に配置する構成としてもよい(浸漬方式)。この場合でも、上記同様の効果を得ることができる。なお、発熱体Zが半導体素子のような電子部品である場合は、絶縁性の冷媒を用いることが好ましい。   Moreover, it is good also as a structure which arrange | positions the heat generating body Z in a heat receiving path in each embodiment (immersion method). Even in this case, the same effect as described above can be obtained. In addition, when the heat generating body Z is an electronic component such as a semiconductor element, it is preferable to use an insulating refrigerant.

本発明の第1実施形態である沸騰冷却装置10の模式断面図である。It is a schematic cross section of the boiling cooling device 10 which is 1st Embodiment of this invention. 本発明の第2実施形態である沸騰冷却装置11の模式断面図である。It is a schematic cross section of the boiling cooling device 11 which is 2nd Embodiment of this invention. 本発明の第3実施形態である沸騰冷却装置12の模式断面図である。It is a schematic cross section of the boiling cooling device 12 which is 3rd Embodiment of this invention. 本発明の第4実施形態である沸騰冷却装置13の模式断面図である。It is a schematic cross section of the boiling cooling device 13 which is 4th Embodiment of this invention. 沸騰伝熱の説明図である。It is explanatory drawing of boiling heat transfer.

符号の説明Explanation of symbols

1:収容部、2:凝縮部、3:凝縮パイプ部、
100:受熱通路、110:供給通路、400:仕切部、Z:発熱体
1: accommodating part, 2: condensing part, 3: condensing pipe part,
100: heat receiving passage, 110: supply passage, 400: partition, Z: heating element

Claims (5)

上下方向に延在し発熱体の熱を液体冷媒が受熱する受熱面を有し、内部に液体冷媒を収容する収容部を備え、
前記収容部は、前記液体冷媒が下方から上方に向かって流れると共に、前記受熱面が配置される受熱通路と、前記液体冷媒が供給される供給通路と、前記収容部の内部空間を前記受熱通路と前記供給通路とに仕切る仕切部と、を有する沸騰冷却装置であって、
前記仕切部の前記受熱面と対向する面と前記受熱面との間隙は上方側が拡幅されていることを特徴とする沸騰冷却装置。
It has a heat receiving surface that extends in the vertical direction and receives the heat of the heating element by the liquid refrigerant, and includes an accommodating portion that accommodates the liquid refrigerant inside,
The housing portion includes a heat receiving passage in which the liquid refrigerant flows from below to above and the heat receiving surface is disposed, a supply passage to which the liquid refrigerant is supplied, and an internal space of the housing portion through the heat receiving passage. A boiling cooling device having a partition section that partitions into the supply passage,
The boiling cooling device characterized in that the upper side of the gap between the surface of the partition portion facing the heat receiving surface and the heat receiving surface is widened.
前記仕切部の前記受熱面と対向する面は前記受熱面との間隙が上方側において拡幅するように傾斜している請求項1に記載の沸騰冷却装置。   2. The boiling cooling device according to claim 1, wherein a surface of the partition portion facing the heat receiving surface is inclined such that a gap with the heat receiving surface is widened on an upper side. 前記発熱体は前記収容部の一方の側壁部に取り付けられた第1発熱体と、対向する他方の側壁部に取り付けられた第2発熱体とからなり、
前記収容部は、第1発熱体の熱を液体冷媒が受熱する第1受熱面と前記供給通路とを仕切る第1仕切部と、第2発熱体の熱を液体冷媒が受熱する第2受熱面と前記供給通路とを仕切る第2仕切部とを有し、
前記第1仕切部の前記第1受熱面と対向する面と前記第1受熱面との間隙及び前記第2仕切部の前記第2受熱面と対向する面と前記第2受熱面との間隙は共に上方側が拡幅されている請求項1または2に記載の沸騰冷却装置。
The heating element consists of a first heating element attached to one side wall of the housing part and a second heating element attached to the other opposite side wall,
The accommodating portion includes a first partition for partitioning the supply passage from a first heat receiving surface where the liquid refrigerant receives heat from the first heating element, and a second heat receiving surface where the liquid refrigerant receives heat from the second heating element. And a second partition that partitions the supply passage,
The gap between the first heat receiving surface of the first partition part and the first heat receiving surface and the gap between the second heat receiving surface of the second partition part and the second heat receiving surface are as follows: The boiling cooling device according to claim 1 or 2, wherein both upper sides are widened.
前記発熱体は前記収容部の側壁部に上下方向に複数取り付けられている請求項1〜3の何れか一項に記載の沸騰冷却装置。   The boiling cooling device according to any one of claims 1 to 3, wherein a plurality of the heating elements are attached to a side wall portion of the housing portion in a vertical direction. 前記仕切部の前記受熱面と対向する面と前記受熱面との間隙が幅5mm以下である請求項1〜4の何れか一項に記載の沸騰冷却装置。   The boiling cooling device according to any one of claims 1 to 4, wherein a gap between a surface of the partition portion facing the heat receiving surface and the heat receiving surface is 5 mm or less.
JP2008164712A 2008-06-24 2008-06-24 Boiling cooler Expired - Fee Related JP5092931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164712A JP5092931B2 (en) 2008-06-24 2008-06-24 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164712A JP5092931B2 (en) 2008-06-24 2008-06-24 Boiling cooler

Publications (2)

Publication Number Publication Date
JP2010007893A true JP2010007893A (en) 2010-01-14
JP5092931B2 JP5092931B2 (en) 2012-12-05

Family

ID=41588619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164712A Expired - Fee Related JP5092931B2 (en) 2008-06-24 2008-06-24 Boiling cooler

Country Status (1)

Country Link
JP (1) JP5092931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095373A1 (en) * 2009-02-23 2010-08-26 株式会社豊田自動織機 Ebullient cooling apparatus
WO2012161002A1 (en) * 2011-05-20 2012-11-29 日本電気株式会社 Flat plate cooling device, and method for using same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
US11467637B2 (en) 2018-07-31 2022-10-11 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Modular computer cooling system
US11606880B2 (en) 2016-03-03 2023-03-14 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Self-organizing thermodynamic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121373U (en) * 1985-01-09 1986-07-31
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121373U (en) * 1985-01-09 1986-07-31
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095373A1 (en) * 2009-02-23 2010-08-26 株式会社豊田自動織機 Ebullient cooling apparatus
WO2012161002A1 (en) * 2011-05-20 2012-11-29 日本電気株式会社 Flat plate cooling device, and method for using same
JPWO2012161002A1 (en) * 2011-05-20 2014-07-31 日本電気株式会社 Flat plate cooling device and method of using the same
JP5874935B2 (en) * 2011-05-20 2016-03-02 日本電気株式会社 Flat plate cooling device and method of using the same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
US11606880B2 (en) 2016-03-03 2023-03-14 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Self-organizing thermodynamic system
US11467637B2 (en) 2018-07-31 2022-10-11 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Modular computer cooling system

Also Published As

Publication number Publication date
JP5092931B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US20140318167A1 (en) Evaporator, cooling device, and electronic apparatus
JP6137167B2 (en) Cooling device and cooling system
US20110000649A1 (en) Heat sink device
US20140165638A1 (en) Cooling device and electronic device made therewith
US9921003B2 (en) Wickless heat pipe and thermal ground plane
JP6358872B2 (en) Boiling cooler for heating element
JP5092931B2 (en) Boiling cooler
JP6505130B2 (en) Cooler
JP2010236792A (en) Ebullient cooling device
JP2013007501A (en) Cooling device
US11754344B2 (en) Boiling cooler
JP2009135142A (en) Ebullient cooling device
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP2010080507A (en) Electronic apparatus
US20180249596A1 (en) Cooler, power conversion apparatus, and cooling system
JP2012237491A (en) Flat cooling device, method for manufacturing the same and method for using the same
JP2009150575A (en) Ebullient cooling device
KR101297046B1 (en) Phase change heat transfer system equipped with vapor fin
JP5163548B2 (en) Boiling cooler
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
JP2024008436A (en) Boiling-cooling device
JP2006269694A (en) Power apparatus
JP2024008426A (en) Boiling-cooling device
JP2022138222A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees