WO2012025981A1 - Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body - Google Patents

Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body Download PDF

Info

Publication number
WO2012025981A1
WO2012025981A1 PCT/JP2010/064197 JP2010064197W WO2012025981A1 WO 2012025981 A1 WO2012025981 A1 WO 2012025981A1 JP 2010064197 W JP2010064197 W JP 2010064197W WO 2012025981 A1 WO2012025981 A1 WO 2012025981A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant liquid
cooling
unit
joint
supplies
Prior art date
Application number
PCT/JP2010/064197
Other languages
French (fr)
Japanese (ja)
Inventor
林 信幸
米田 泰博
中西 輝
将 森田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/064197 priority Critical patent/WO2012025981A1/en
Priority to JP2012530437A priority patent/JP5590128B2/en
Publication of WO2012025981A1 publication Critical patent/WO2012025981A1/en
Priority to US13/751,564 priority patent/US20130139998A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a cooling device, an electronic device having a cooling device, and a method for cooling a heating element.
  • FIG. 1A As a technique for cooling a semiconductor device, for example, as shown in FIG. 1A, a jet cooling method in which a pressurized refrigerant liquid 103 is sprayed from a nozzle 105 onto a semiconductor element 121 or a package 120 (see, for example, Patent Documents 1 and 2) is known. ing.
  • FIG. 1B an immersion boiling cooling method in which the semiconductor element 121 is immersed in an insulating refrigerant liquid 104 having a low boiling point is known.
  • the semiconductor element 121 that is a high heating element can be cooled by utilizing the boiling and vaporization of the refrigerant liquids 103 and 104.
  • the refrigerant liquids 103 and 104 are circulated by the pump 108 and radiated by the radiator 106.
  • a fan 107 is used to increase the heat dissipation efficiency.
  • Patent Document 3 A technique for forming an air curtain around a chip when performing a jet cooling method has also been proposed (see, for example, Patent Document 3).
  • the chip is held downward, the coolant is sprayed from the lower nozzle to the chip, and an air curtain is formed by flowing air from the periphery of the chip in the direction opposite to the coolant spraying direction. This prevents the coolant from flowing into the region other than the cooling surface.
  • the joint 125 is a place that is responsible for electrical connection, cooling is performed directly using the aqueous coolant 103 from the viewpoint of maintaining insulation between different wirings. Is not preferred.
  • the cooling capacity is limited.
  • the semiconductor element 121 generates a large amount of heat, a large amount of boiling bubbles are generated, so that the cooling efficiency of the semiconductor element 121 decreases.
  • the semiconductor element 121 is immersed in the insulating refrigerant liquid 104, so that the joint 125 can be directly cooled.
  • the refrigerant liquid 104 has an insulating property, for example, when a fluorine-based refrigerant liquid such as chlorofluorocarbon is used, there is a problem that an environmental load increases.
  • the present invention relates to a cooling device, an electronic device having a cooling device, and a method for cooling a heating element capable of efficiently and stably cooling a heating element having a high calorific value such as a semiconductor element while minimizing environmental burden.
  • the issue is to provide.
  • the first cooling section that cools the joint portion of the heat generating body including the joint section with the substrate with the first coolant liquid having insulation properties is different from the joint section of the heat generating body.
  • a cooling device having a second cooling section that cools the portion with a second refrigerant liquid.
  • a semiconductor device having a junction with a substrate, a first cooling unit that cools the junction of the semiconductor device with a first coolant liquid having insulation, and the semiconductor
  • An electronic apparatus includes a second cooling unit that cools a portion of the apparatus that is different from the bonding unit with a second refrigerant liquid.
  • the joining portion of the heating element including the joining portion with the substrate is cooled with the first coolant liquid having insulation, and a portion different from the joining portion of the heating element is provided.
  • a method for cooling a heating element characterized by cooling with a second refrigerant liquid.
  • FIG. 1 is a schematic diagram of an electronic device having a cooling device of Example 1.
  • FIG. It is the schematic plan view and side view of a board
  • FIG. It is the schematic which shows the structure of the cooling device in the case of cooling the board
  • FIG. It is the schematic of the experimental model used in order to measure the cooling effect of the cooling device of Example 1.
  • FIG. It is a graph which shows the cooling effect of the cooling device of Example 1 compared with the conventional jet cooling system. It is a table
  • FIG. 6 is a schematic diagram of a semiconductor device using a cooling device of Example 2.
  • FIG. It is the schematic of the experimental model used in order to measure the cooling effect of the cooling device of Example 2.
  • FIG. It is a graph which shows the cooling effect of the cooling device of Example 2 in comparison with the conventional jet cooling method. It is a table
  • the same reference numerals are used for components having the same function, and repeated description is omitted.
  • the cooling device of the present invention is suitable for cooling an arbitrary heating element such as an electronic module, and in particular, an external device. Suitable for cooling a heating element having an electrical connection to
  • the insulating refrigerant liquid and the aqueous refrigerant liquid are used in two layers separated, and the electrical junction having a large calorific value is directly cooled by the insulating refrigerant liquid and other than the electrical junction.
  • the heating element portion is cooled with an aqueous refrigerant liquid.
  • the cooling device is applied to a horizontally arranged semiconductor device
  • the vertical arrangement refers to an arrangement in which semiconductor devices and substrates are placed along the direction of gravity.
  • semiconductor elements semiconductor elements (chips), semiconductor packages, semiconductor modules and the like to be cooled are collectively referred to as “semiconductor devices”, and a circuit board, a relay board, and a system board on which these semiconductor devices are mounted. May be collectively referred to as “substrate”.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the electronic device 10 including the cooling device according to the first embodiment.
  • the horizontal semiconductor package 20 in which the substrate 30 is disposed horizontally (that is, in a direction orthogonal to the direction of gravity) is cooled.
  • the semiconductor package 20 is, for example, one in which a semiconductor element 21 is electrically connected to a circuit board or a relay board 22 by solder bumps 23 and is entirely sealed as one package.
  • the semiconductor package 20 has a joint 24 for electrical connection with the outside, and is electrically connected to a substrate 30 such as a printed wiring board via the joint 24.
  • the heat generated in the semiconductor element 21 is conducted to the circuit board (or relay board) 22 through the solder bumps 23 and the like, and is further transferred to the board 30 through the joints 24 and the like.
  • the joint 24 is a part that generates a higher amount of heat than other parts and requires efficient cooling. However, since the joint portion 24 is a portion that is responsible for electrical connection with the substrate, it is not preferable to cool the joint portion 24 with an aqueous refrigerant liquid.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers in the casing 11, and the insulating cooling liquid 14 is used for cooling the surface including the joint portion 24 of the semiconductor package 20, and the other portions.
  • the aqueous refrigerant liquid 13 is used for cooling.
  • the insulating refrigerant liquid 14 is arranged so that the semiconductor package 20 and the substrate 30 are disposed inside the airtight casing 11, and the joint 24 and the package side surface of the semiconductor package 20 are immersed in the insulating refrigerant liquid 14. Is enclosed in the casing 11.
  • the casing 11 can be made of metal, resin, ceramics, glass, or the like. In the embodiment, a metal having high thermal conductivity such as aluminum is used.
  • the insulating refrigerant liquid 14 is a fluid that is chemically stable, does not corrode, and has electrical insulation.
  • Refrigerant liquids that satisfy this condition include, for example, fluorinated inert liquids (FC-72, etc.), fluorocarbon refrigerants, alternative CFCs (HFC-365mfc, HFE-7000, etc.), halogenated hydrocarbon refrigerants (pentane, etc.) ),
  • a refrigerant liquid mainly composed of insulating oil such as silicone oil can be used.
  • the aqueous refrigerant liquid 13 is supplied to a portion different from the joint portion 24 such as the back surface 26 of the semiconductor package 20.
  • the aqueous refrigerant liquid 13 is, for example, water, pure water or the like, and is sprayed from the nozzle 15 located above the semiconductor package 20 to the back surface 26 of the semiconductor package 20.
  • the specific gravity of the insulating refrigerant liquid 14 is larger than the specific gravity of the aqueous refrigerant liquid 13 (the specific gravity of the insulating refrigerant liquid 14 is 1.68 when FC-72, which is a fluorine-based inert liquid, is used).
  • FC-72 which is a fluorine-based inert liquid
  • the aqueous refrigerant liquid 13 ejected from the nozzle 15 contacts the back surface 26 of the semiconductor package 20 and spreads to the peripheral region of the semiconductor package 20, takes heat of the semiconductor package 20, and moves to the inner wall of the casing 11 on the low temperature side. Spread.
  • the insulating refrigerant liquid 14 having a large specific gravity for immersing the side surface of the semiconductor package 20 and the bonding portion 24 exists below, the aqueous refrigerant liquid 13 is prevented from being mixed into the bonding portion 24.
  • the aqueous refrigerant liquid 13 whose temperature has been increased by removing heat from the back surface 26 of the semiconductor package 20 is discharged to the outside of the casing 11 by the pump 18a, and heat exchange is performed by external cooling means, for example, a radiator 16 and a fan 17. Is done.
  • the low-temperature aqueous refrigerant liquid 13 is supplied to the nozzle 15 by the pump 18b.
  • the pump 18a, 18b, the external cooling means 16, 17, the nozzle 15 and the pipe 19 connecting them constitute a circulation system of the aqueous refrigerant liquid 13. Thereby, the aqueous refrigerant liquid 13 taken out from the casing 11 can be circulated and supplied to a portion different from the joint portion 24.
  • the insulating refrigerant liquid 14 is vaporized by the heat transmitted to the joint portion 24 of the semiconductor package 20 and becomes vapor.
  • the vapor of the insulating refrigerant liquid 14 dissolves in the aqueous refrigerant liquid 13, but when the temperature of the aqueous refrigerant liquid 13 is lower than the boiling point of the insulating refrigerant liquid 14, the vapor of the insulating refrigerant liquid 14 enters the aqueous refrigerant liquid 13. It contacts and aggregates to form a liquid phase and naturally circulate into the insulating refrigerant liquid 14.
  • FC-72 which is a fluorine-based inert liquid
  • the insulating refrigerant liquid 14 can be naturally circulated in the casing inside 11. Volatilization of the low boiling point fluorine-based liquid 14 is suppressed by the shield of the aqueous refrigerant liquid 13.
  • a second circulation system that mechanically circulates the insulating refrigerant liquid 14 may be provided in addition to the circulation system for the aqueous refrigerant liquid 13.
  • FIG. 2 shows an example in which a single semiconductor package 20 is cooled for simplification.
  • the cooling device described above includes a multi-CPU in which a plurality of semiconductor packages 20 and electronic modules are mounted on a system boat 30. It can also be applied to cooling.
  • FIG. 3 is a top view of the substrate 30 on which the multi-CPU is mounted and a cross-sectional view taken along the line AA ′.
  • a plurality of CPUs (semiconductor packages) 20 a, 20 b, 20 c, and 20 d are arranged together with other modules 32.
  • the other modules are, for example, a memory module, a switch, a power module, etc., but are represented by the memory module 32.
  • heat is generated from each of the semiconductor packages 20a to 20d and the memory module 32. Therefore, when cooling the multi CPU in a horizontal arrangement, it is desirable to supply the aqueous refrigerant liquid 13 by arranging the nozzle 15 for each of the semiconductor packages 20a and 20b and the memory module 32.
  • FIG. 4 is a schematic diagram showing a configuration of a semiconductor device 40 with a cooling device for cooling the multi CPU.
  • the substrate 30 on which the semiconductor packages 20a and 20b and the memory module 32 are mounted is disposed in a hermetically sealed casing 11.
  • the insulating refrigerant liquid 14 that immerses the side surfaces of the semiconductor packages 20 a and 20 b and the joint portion 24 and the memory module 32 is enclosed.
  • the nozzles 15a, 15b, 15c are arranged above the semiconductor packages 20a, 20b and the memory module 32, and the aqueous refrigerant liquid 13 is directed toward the back surfaces 26a, 26b, 36 of the corresponding semiconductor devices (modules) 20a, 20b, 32. Be injected.
  • the joint portions 24 of the semiconductor packages 20a and 20b that generate a large amount of heat and the joint portion (not shown) to the substrate 30 of the memory module 32 are immersed in the insulating coolant 14 and directly cooled.
  • the aqueous refrigerant liquid 13 is circulated through a pipe 19 connecting the pumps 18a and 18b and the cooling means 16 and 17, and the aqueous refrigerant liquid 13 having a low temperature is supplied to the nozzles 15a to 15c.
  • the same size semiconductor packages 20a to 20d are arranged on the substrate 30.
  • cooling can be performed in the same manner.
  • a configuration may be adopted in which one nozzle 15 is provided for a plurality of semiconductor packages 20 by controlling the jetting direction of the nozzles 15 shown in FIG.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers by using the difference in specific gravity, and the junction 24 of the semiconductor package 20 is immersed and cooled by the insulating refrigerant liquid 14.
  • the aqueous refrigerant liquid 13 performs jet cooling on a portion different from the joint portion 24, such as the package back surface (surface opposite to the joint portion) 26. Since the semiconductor package 20 is cooled from the entire periphery with the main cooling means being water-cooled while ensuring the insulation with respect to the joint portion 24 responsible for electrical connection, the environmental load is minimized, and the semiconductor element 21 and the semiconductor package 20 Can be efficiently and stably cooled.
  • Example 1 since the whole semiconductor package 20 is immersed, it does not touch external air. Therefore, there is no risk of condensation and migration of the joint can be prevented.
  • FIG. 5 is a schematic diagram of an experimental model used to measure the effect of Example 1.
  • a CPU (CORE 2 QUAD 3 GHz) 20a manufactured by INTEL and peripheral parts 32 were used.
  • FC-72 which is a fluorine-based inert liquid, was used as the insulating refrigerant liquid 14 and water was used as the aqueous refrigerant liquid 13 to cool by two-layer separation.
  • the joint portion 24 of the CPU 20a is immersed in the insulating refrigerant liquid 14 having a high specific gravity.
  • the aqueous refrigerant liquid 13 having a lower specific gravity was circulated by the pump 18 at a flow rate of 3 liters / minute, heat was exchanged by the radiator 16 at a heat release amount of 80 W ⁇ h, and then supplied to the nozzle 15.
  • the temperature of the CPU 20 was measured when the CPU usage rate was 100%.
  • the measured temperature of the CPU 20 was the monitoring temperature inside the CPU.
  • the same CPU 20 and peripheral part 32 were used, and the CPU temperature when the CPU usage rate was 100% was measured in the same manner by the jet cooling method using only the aqueous refrigerant liquid 13 as shown in FIG. 1A.
  • FIG. 6A is a graph showing actual measurement results
  • FIG. 6B is a table comparing the CPU temperature and calorific value conversion of the experimental model of Example 1 and the conventional model by averaging the actual measurement results of FIG. 6A.
  • the CPU core temperature exceeds 60 ° C. several minutes after the CPU usage rate reaches 100%, and the average CPU temperature under cooling is 61 ° C.
  • the average CPU temperature when the CPU usage rate is 100% is 53 ° C.
  • the conventional model is 180 W
  • the experimental model of Example 1 is 140 W.
  • Example 1 With the configuration of Example 1, it is possible to achieve a 40 W reduction in terms of calorific value and an 8 ° C. reduction in average CPU temperature.
  • a slight amplitude is seen in the CPU core temperature. This is due to the influence of the operation of the CPU, and the stability of the cooling function is ensured.
  • the cooling function can be further improved by controlling the radiator heat radiation amount, the pump flow rate, the nozzle arrangement, the jet direction, and the like.
  • FIG. 7 is a schematic diagram illustrating a configuration example of an electronic device 70 including the cooling device according to the second embodiment.
  • the vertical semiconductor package 20 in which the substrate 30 is arranged vertically that is, along the direction of gravity
  • the configuration of the semiconductor package 20 and the bonding configuration to the substrate 30 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the joint portion 24 of the semiconductor package 20 is directly cooled by the insulating refrigerant liquid 14, and the back surface (surface opposite to the joint portion 24) 26 of the semiconductor package, etc.
  • a portion different from the joint portion 24 is cooled by the aqueous refrigerant liquid 13.
  • the first nozzle 75 is arranged above the substrate 30 on which the semiconductor package 20 is mounted, and the insulating refrigerant liquid 14 is supplied from the upper end side of the substrate 30. Supply toward the joint 24.
  • the second nozzle 15 is disposed on the side of the vertically standing semiconductor package 20 to supply the aqueous coolant 13 toward the back surface 26 of the semiconductor package.
  • Insulating refrigerant 14 is a fluid that is chemically stable, non-corrosive, and has electrical insulation, as in Example 1.
  • insulation such as fluorinated inert liquids (FC-72, etc.), fluorocarbon refrigerants, alternative CFCs (HFC-365mfc, HFE-7000, etc.), halogenated hydrocarbon refrigerants (pentane, etc.), silicone oil, etc.
  • a refrigerant liquid mainly composed of oil can be used.
  • the second nozzle 15 injects the aqueous refrigerant liquid 13 to a portion different from the bonding portion 24 such as a surface (back surface) 26 opposite to the bonding portion 24 of the semiconductor package 20.
  • a portion different from the bonding portion 24 such as a surface (back surface) 26 opposite to the bonding portion 24 of the semiconductor package 20.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 whose temperature has increased due to heat exchange with the semiconductor package 20 are accumulated at the bottom of the casing 11.
  • the fluorine-based inert liquid FC-72 is used as the insulating refrigerant liquid 14
  • the specific gravity is larger than the specific gravity of the aqueous refrigerant liquid 13.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 flow down from above to the bottom of the casing 11, they are partially mixed at the bottom of the casing 11.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 that have reached a high temperature are discharged from the bottom of the casing 11 through the first pipe 19 a and are heat-exchanged by the radiator 16 and the fan 17.
  • the refrigerant liquid that has undergone heat exchange and has reached a low temperature is sent to the refrigerant liquid separation tank 79.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers by the difference in specific gravity.
  • the insulating refrigerant liquid 14 is supplied to the first nozzle 75 via the pump 78a and the second pipe 19b.
  • the aqueous refrigerant liquid 13 is supplied to the second nozzle 15 via the pump 78b and the third pipe 19c.
  • the two-layer separation of the refrigerant liquid can be utilized to circulate the aqueous refrigerant liquid 13 and the insulating refrigerant liquid 14 that have become low temperature to the corresponding nozzles 15 and 75, respectively.
  • the semiconductor package 20 can be cooled efficiently and stably even in the vertical arrangement.
  • the configuration of the second embodiment can also be applied when the multi-CPU board 30 of FIG. 3 is arranged vertically.
  • the nozzles 75 for forming the curtain flow 76 are preferably provided for each row of the semiconductor packages 20 arranged in the direction of gravity on the substrate 30.
  • the number of nozzles 75 can be set as appropriate in accordance with the size, shape, and configuration of the opening of the nozzle, the flow rate of the insulating refrigerant liquid 14 to be jetted, the size of the substrate 30, and the like.
  • FIG. 8 is a schematic diagram of an experimental model used to measure the effect of Example 2.
  • a CPU (CORE 2 QUAD 3 GHz) 20 and peripheral parts 32 manufactured by INTEL were used as a cooling target.
  • FC-72 which is a fluorine-based inert liquid, was used as the insulating refrigerant liquid 14
  • water was used as the aqueous refrigerant liquid 13
  • cooling was performed by two-layer separation in the direction of gravity.
  • the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 were discharged from the bottom of the casing 11, and heat was exchanged by the radiator 16 at a heat release amount of 80 W ⁇ h, and then two layers were separated in the horizontal direction by the refrigerant liquid separation tank 79.
  • the insulating refrigerant liquid was supplied to the nozzle 715 by the pump 78a, and the aqueous refrigerant liquid was supplied to the nozzle 15 by the pump 78b.
  • the temperature of the CPU 20 was measured when the CPU usage rate was 100%.
  • the measured temperature of the CPU 20 was the monitoring temperature inside the CPU.
  • the same CPU 20 and peripheral part 32 were used, and the CPU temperature when the CPU usage rate was 100% was measured in the same manner by the jet cooling method using only the aqueous refrigerant liquid 13 as shown in FIG. 1A.
  • FIG. 9A is a graph showing actual measurement results
  • FIG. 9B is a table comparing the CPU temperature and calorific value conversion of the experimental model of Example 2 and the conventional model by averaging the actual measurement results of FIG. 9A.
  • the CPU core temperature exceeds 60 ° C. several minutes after the CPU usage rate reaches 100%, and the average CPU temperature under cooling is 61 ° C.
  • the average CPU temperature when the CPU usage rate is 100% is 49 ° C.
  • the conventional model is 180 W
  • the experimental model of Example 1 is 120 W.
  • a reduction of 60 W in terms of calorific value and a reduction of 12 ° C. in the average CPU temperature can be achieved.
  • the configuration of the second embodiment has higher cooling efficiency than that of the first embodiment and can realize stable cooling. This is because the insulating refrigerant liquid 14 is supplied as a curtain flow to the joint portion 24 (see FIG. 7) of the semiconductor package 20. High cooling efficiency can be obtained by supplying and cooling the insulating refrigerant liquid 14 that is always kept at a low temperature to the joint portion 24 that generates a large amount of heat.
  • High-efficiency cooling Direct cooling of the entire circumference of the semiconductor device is realized by water cooling by using a jet cooling with an aqueous coolant and a cooling of the joint with an insulating coolant.
  • Large area cooling The entire system board including the memory, switch, power module, etc. can be integrally cooled.
  • Low environmental load Highly efficient cooling can be realized while reducing the load on the environment by minimizing the amount of fluorine-based refrigerant and water cooling the main cooling means.
  • High reliability Since the substrate does not come into contact with outside air, it is possible to prevent condensation due to a temperature difference and to prevent migration.
  • Cost reduction Since it is possible to cool together, it is not necessary to provide a thermal module for each CPU. In addition, it is possible to reduce the number of parts and power consumption, such as eliminating the need for a heater for preventing condensation.
  • ⁇ It can be used for cooling of heating elements and electronic equipment with cooling equipment. It can also be applied to a rack in which a large number of system boards are arranged vertically and a stack structure in which multiple system boards are stacked.

Abstract

Provided is a cooling apparatus which has: a first cooling section, which cools, with a first refrigerant liquid having insulating characteristics, a bonding portion of a heat generating body which is provided with the bonding portion bonding to a substrate; and a second cooling section, which cools, with a second refrigerant liquid, a heat generating body portion different from the bonding portion.

Description

冷却機器、冷却機器を有する電子機器及び発熱体の冷却方法Cooling device, electronic device having cooling device, and cooling method of heating element
 本発明は、冷却機器、冷却機器を有する電子機器及び発熱体の冷却方法に関する。 The present invention relates to a cooling device, an electronic device having a cooling device, and a method for cooling a heating element.
 近年、例えばサーバやコンピュータ等の情報機器の処理速度の向上に伴って、半導体装置の高性能化が進められている。半導体装置が高性能化するに従い、半導体装置に用いられている半導体素子(チップ)が大型化し、動作時の発熱量も増大している。このため、半導体装置を効率良く冷却する技術の開発が進められている。 In recent years, as the processing speed of information devices such as servers and computers has improved, the performance of semiconductor devices has been improved. As the performance of semiconductor devices increases, the size of semiconductor elements (chips) used in the semiconductor devices increases and the amount of heat generated during operation also increases. For this reason, development of a technique for efficiently cooling a semiconductor device is underway.
 半導体装置を冷却する技術として、例えば図1Aに示すように、加圧した冷媒液103をノズル105から半導体素子121又はパッケージ120に吹き付ける噴流冷却方式(例えば、特許文献1及び2参照)が知られている。また、例えば図1Bに示すように、半導体素子121を低沸点の絶縁性冷媒液104に浸漬させる浸漬沸騰冷却方式が知られている。 As a technique for cooling a semiconductor device, for example, as shown in FIG. 1A, a jet cooling method in which a pressurized refrigerant liquid 103 is sprayed from a nozzle 105 onto a semiconductor element 121 or a package 120 (see, for example, Patent Documents 1 and 2) is known. ing. For example, as shown in FIG. 1B, an immersion boiling cooling method in which the semiconductor element 121 is immersed in an insulating refrigerant liquid 104 having a low boiling point is known.
 いずれの冷却方式においても、冷媒液103、104の沸騰、気化を利用することにより、高発熱体である半導体素子121を冷却することができる。冷媒液103、104はポンプ108により循環され、ラジエータ106で放熱される。放熱効率を高めるためにファン107が用いられる。 In any of the cooling methods, the semiconductor element 121 that is a high heating element can be cooled by utilizing the boiling and vaporization of the refrigerant liquids 103 and 104. The refrigerant liquids 103 and 104 are circulated by the pump 108 and radiated by the radiator 106. A fan 107 is used to increase the heat dissipation efficiency.
 噴流冷却方式を行う際に、チップの周りにエアカーテンを形成する技術も提案されている(例えば、特許文献3参照)。この技術は、チップを下向きに保持し、下方のノズルからチップに冷却液を噴射するとともに、チップの周囲から冷却液の噴射方向と逆の方向に空気を流すことによってエアカーテンを形成し、チップの冷却面以外の領域に冷却液が流れ込むのを防止するものである。 A technique for forming an air curtain around a chip when performing a jet cooling method has also been proposed (see, for example, Patent Document 3). In this technology, the chip is held downward, the coolant is sprayed from the lower nozzle to the chip, and an air curtain is formed by flowing air from the periphery of the chip in the direction opposite to the coolant spraying direction. This prevents the coolant from flowing into the region other than the cooling surface.
特開平5-160313号公報JP-A-5-160313 特開平5-136305号公報JP-A-5-136305 特開平1-025447号公報Japanese Laid-Open Patent Publication No. 1-025447
 しかし、図1Aに示す噴流冷却方式では、接合部125は電気的な接続を担う箇所であるため、異なる配線間の絶縁性を維持する観点から、水性の冷媒液103を用いて直接冷却することは好ましくない。接合部125を避けるように噴流冷却を行った場合、冷却能力に限界がある。また、半導体素子121の発熱量が大きい場合は、沸騰気泡が多量に発生するため、半導体素子121の冷却効率が低下する。 However, in the jet cooling method shown in FIG. 1A, since the joint 125 is a place that is responsible for electrical connection, cooling is performed directly using the aqueous coolant 103 from the viewpoint of maintaining insulation between different wirings. Is not preferred. When jet cooling is performed so as to avoid the joint 125, the cooling capacity is limited. In addition, when the semiconductor element 121 generates a large amount of heat, a large amount of boiling bubbles are generated, so that the cooling efficiency of the semiconductor element 121 decreases.
 他方、図1Bに示す浸漬沸騰冷却方式では、半導体素子121を絶縁性冷媒液104に浸漬させるため、接合部125を直接冷却することができる。しかし、冷媒液104は絶縁性を有することが好ましいため、例えばフロン等のフッ素系冷媒液を用いた場合、環境負荷が大きくなる問題を有している。 On the other hand, in the immersion boiling cooling system shown in FIG. 1B, the semiconductor element 121 is immersed in the insulating refrigerant liquid 104, so that the joint 125 can be directly cooled. However, since it is preferable that the refrigerant liquid 104 has an insulating property, for example, when a fluorine-based refrigerant liquid such as chlorofluorocarbon is used, there is a problem that an environmental load increases.
 本発明は、環境負荷を最小限に抑えつつ、半導体素子などの高発熱量の発熱体を効率よく安定して冷却することのできる冷却機器、冷却機器を有する電子機器及び発熱体の冷却方法を提供することを課題とする。 The present invention relates to a cooling device, an electronic device having a cooling device, and a method for cooling a heating element capable of efficiently and stably cooling a heating element having a high calorific value such as a semiconductor element while minimizing environmental burden. The issue is to provide.
 発明の一観点によれば、基板との接合部を備える発熱体の前記接合部を、絶縁性を有する第1の冷媒液で冷却する第1冷却部と、前記発熱体の前記接合部と異なる部分を、第2の冷媒液で冷却する第2冷却部と、を有する冷却機器が提供される。 According to one aspect of the invention, the first cooling section that cools the joint portion of the heat generating body including the joint section with the substrate with the first coolant liquid having insulation properties is different from the joint section of the heat generating body. There is provided a cooling device having a second cooling section that cools the portion with a second refrigerant liquid.
 発明の別の一観点によれば、基板との接合部を備える半導体装置と、前記半導体装置の前記接合部を、絶縁性を有する第1の冷媒液で冷却する第1冷却部と、前記半導体装置の前記接合部と異なる部分を、第2の冷媒液で冷却する第2冷却部と、を有する電子機器が提供される。 According to another aspect of the invention, a semiconductor device having a junction with a substrate, a first cooling unit that cools the junction of the semiconductor device with a first coolant liquid having insulation, and the semiconductor An electronic apparatus is provided that includes a second cooling unit that cools a portion of the apparatus that is different from the bonding unit with a second refrigerant liquid.
 発明の別の一観点によれば、基板との接合部を備える発熱体の前記接合部を、絶縁性を有する第1の冷媒液で冷却するとともに、前記発熱体の前記接合部と異なる部分を、第2の冷媒液で冷却することを特徴とする発熱体の冷却方法が提供される。 According to another aspect of the invention, the joining portion of the heating element including the joining portion with the substrate is cooled with the first coolant liquid having insulation, and a portion different from the joining portion of the heating element is provided. There is provided a method for cooling a heating element, characterized by cooling with a second refrigerant liquid.
 上述の観点によれば、環境負荷を最小限に抑えて、半導体素子などの発熱体を効率よく安定して冷却することができる。 According to the above viewpoint, it is possible to efficiently and stably cool a heating element such as a semiconductor element while minimizing environmental burden.
従来の噴流冷却方式の冷却機器を示す概略図である。It is the schematic which shows the cooling device of the conventional jet cooling system. 従来の浸漬沸騰冷却方式の冷却機器を示す概略図である。It is the schematic which shows the cooling device of the conventional immersion boiling cooling system. 実施例1の冷却機器を有する電子機器の概略図である。1 is a schematic diagram of an electronic device having a cooling device of Example 1. FIG. 複数の半導体素子を他のモジュールとともに搭載した基板の概略平面図と側面図である。It is the schematic plan view and side view of a board | substrate which mounted the some semiconductor element with the other module. 図3の基板を冷却する場合の冷却機器の構成を示す概略図である。It is the schematic which shows the structure of the cooling device in the case of cooling the board | substrate of FIG. 実施例1の冷却機器の冷却効果を測定するために用いた実験モデルの概略図である。It is the schematic of the experimental model used in order to measure the cooling effect of the cooling device of Example 1. FIG. 実施例1の冷却機器の冷却効果を従来の噴流冷却方式と比較して示すグラフである。It is a graph which shows the cooling effect of the cooling device of Example 1 compared with the conventional jet cooling system. 実施例1の冷却機器の冷却効果を従来の噴流冷却方式と比較して示す表である。It is a table | surface which shows the cooling effect of the cooling device of Example 1 compared with the conventional jet cooling system. 実施例2の冷却機器を用いた半導体装置の概略図である。6 is a schematic diagram of a semiconductor device using a cooling device of Example 2. FIG. 実施例2の冷却機器の冷却効果を測定するために用いた実験モデルの概略図である。It is the schematic of the experimental model used in order to measure the cooling effect of the cooling device of Example 2. FIG. 実施例2の冷却機器の冷却効果を従来の噴流冷却方式と比較して示すグラフである。It is a graph which shows the cooling effect of the cooling device of Example 2 in comparison with the conventional jet cooling method. 実施例2の冷却機器の冷却効果を従来の噴流冷却方式と比較して示す表である。It is a table | surface which shows the cooling effect of the cooling device of Example 2 compared with the conventional jet cooling system.
 以下、図面を参照して本発明の実施例を説明する。図において同一機能を有するものには同一符号を用い、繰り返しの説明は省略する。各実施例では、基板に実装された半導体パッケージを冷却する構成を例に挙げて説明するが、本発明の冷却機器は、電子モジュール等、任意の発熱体の冷却に適しており、特に、外部への電気的な接合部を有する発熱体の冷却に適している。 Embodiments of the present invention will be described below with reference to the drawings. In the figure, the same reference numerals are used for components having the same function, and repeated description is omitted. In each embodiment, a configuration for cooling a semiconductor package mounted on a substrate will be described as an example. However, the cooling device of the present invention is suitable for cooling an arbitrary heating element such as an electronic module, and in particular, an external device. Suitable for cooling a heating element having an electrical connection to
 各実施例では、絶縁性の冷媒液と水性の冷媒液とを2層分離して使用し、発熱量の大きな電気的接合部を絶縁性の冷媒液で直接冷却するとともに、電気的接合部以外の発熱体部分を水性の冷媒液で冷却する。これにより、環境負荷を最小限に抑えつつ、効率的で安定した冷却が可能になる。2層分離による冷却機器は、半導体パッケージや基板を水平に配置した横型の半導体装置だけではなく、基板を垂直にしてラック状に並べた縦型の半導体装置にも適用することができる。 In each embodiment, the insulating refrigerant liquid and the aqueous refrigerant liquid are used in two layers separated, and the electrical junction having a large calorific value is directly cooled by the insulating refrigerant liquid and other than the electrical junction. The heating element portion is cooled with an aqueous refrigerant liquid. This enables efficient and stable cooling while minimizing the environmental load. The cooling device by two-layer separation can be applied not only to a horizontal semiconductor device in which semiconductor packages and substrates are horizontally arranged, but also to a vertical semiconductor device in which substrates are arranged vertically in a rack shape.
 そこで、実施例1では水平配置の半導体デバイスに冷却機器を適用した構成例について説明し、実施例2では縦型の配置に冷却機器を適用した構成例を示す。ここで、水平配置とは、重力方向と直交する方向に半導体デバイスや基板が置かれている配置をいう。縦型配置とは、重力方向に沿って半導体デバイスや基板が置かれている配置をいう。なお、以下の説明において、冷却対象となる半導体素子(チップ)、半導体パッケージ、半導体モジュール等をまとめて「半導体デバイス」と総称し、これらの半導体デバイスが実装される回路基板、中継基板、システムボード等をまとめて「基板」と総称する場合がある。 Therefore, in the first embodiment, a configuration example in which the cooling device is applied to a horizontally arranged semiconductor device will be described, and in the second embodiment, a configuration example in which the cooling device is applied to a vertical arrangement will be shown. Here, the horizontal arrangement refers to an arrangement in which semiconductor devices and substrates are placed in a direction orthogonal to the direction of gravity. Vertical arrangement refers to an arrangement in which semiconductor devices and substrates are placed along the direction of gravity. In the following description, semiconductor elements (chips), semiconductor packages, semiconductor modules and the like to be cooled are collectively referred to as “semiconductor devices”, and a circuit board, a relay board, and a system board on which these semiconductor devices are mounted. May be collectively referred to as “substrate”.
 図2は、実施例1の冷却機器を備えた電子機器10の構成例を示す概略図である。実施例1では、基板30が水平(すなわち重力方向と直交する方向)に配置された水平型の半導体パッケージ20を冷却する。 FIG. 2 is a schematic diagram illustrating a configuration example of the electronic device 10 including the cooling device according to the first embodiment. In the first embodiment, the horizontal semiconductor package 20 in which the substrate 30 is disposed horizontally (that is, in a direction orthogonal to the direction of gravity) is cooled.
 半導体パッケージ20は、例えば、半導体素子21がはんだバンプ23により回路基板又は中継基板22に電気的に接続され、全体が1つのパッケージとして封止されたものである。半導体パッケージ20は外部との電気的接続をとるための接合部24を有し、接合部24を介して、プリント配線板などの基板30に電気的に接続されている。半導体素子21で発生した熱は、はんだバンプ23等を介して回路基板(又は中継基板)22に伝導し、さらに接合部24等を介して基板30に伝熱する。接合部24は他の部位に比べて発熱量が高く、効率的な冷却が求められる部位である。しかし、接合部24は、基板との電気的な接続を担う箇所であるため、水性冷媒液で冷却することは好ましくない。 The semiconductor package 20 is, for example, one in which a semiconductor element 21 is electrically connected to a circuit board or a relay board 22 by solder bumps 23 and is entirely sealed as one package. The semiconductor package 20 has a joint 24 for electrical connection with the outside, and is electrically connected to a substrate 30 such as a printed wiring board via the joint 24. The heat generated in the semiconductor element 21 is conducted to the circuit board (or relay board) 22 through the solder bumps 23 and the like, and is further transferred to the board 30 through the joints 24 and the like. The joint 24 is a part that generates a higher amount of heat than other parts and requires efficient cooling. However, since the joint portion 24 is a portion that is responsible for electrical connection with the substrate, it is not preferable to cool the joint portion 24 with an aqueous refrigerant liquid.
 そこで、絶縁性冷媒液14と水性冷媒液13とをケーシング11の中で2層分離させ、半導体パッケージ20の接合部24を含む面の冷却には絶縁性冷却液14を用い、それ以外の部分の冷却には水性冷媒液13を用いる。具体的には、半導体パッケージ20及び基板30を密閉性のあるケーシング11内部に配置し、半導体パッケージ20の接合部24とパッケージ側面とが絶縁性冷媒液14に浸るように、絶縁性冷媒液14をケーシング11内に封入する。ケーシング11は、金属、樹脂、セラミックス、ガラス等を用いることができるが、実施例ではアルミ等の熱伝導率の高い金属を用いる。絶縁性冷媒液14は、化学的に安定であり腐食性がなく、かつ電気絶縁性を有する流体である。この条件を満たす冷媒液として、例えばフッ素系不活性液体(FC-72など)、フッ化炭素系冷媒液、代替フロン(HFC-365mfc、HFE-7000など)、ハロゲン化炭化水素系冷媒(ペンタンなど)、シリコーンオイルなどの絶縁油を主成分とする冷媒液などを使用することができる。 Therefore, the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers in the casing 11, and the insulating cooling liquid 14 is used for cooling the surface including the joint portion 24 of the semiconductor package 20, and the other portions. The aqueous refrigerant liquid 13 is used for cooling. Specifically, the insulating refrigerant liquid 14 is arranged so that the semiconductor package 20 and the substrate 30 are disposed inside the airtight casing 11, and the joint 24 and the package side surface of the semiconductor package 20 are immersed in the insulating refrigerant liquid 14. Is enclosed in the casing 11. The casing 11 can be made of metal, resin, ceramics, glass, or the like. In the embodiment, a metal having high thermal conductivity such as aluminum is used. The insulating refrigerant liquid 14 is a fluid that is chemically stable, does not corrode, and has electrical insulation. Refrigerant liquids that satisfy this condition include, for example, fluorinated inert liquids (FC-72, etc.), fluorocarbon refrigerants, alternative CFCs (HFC-365mfc, HFE-7000, etc.), halogenated hydrocarbon refrigerants (pentane, etc.) ), A refrigerant liquid mainly composed of insulating oil such as silicone oil can be used.
 他方、半導体パッケージ20の裏面26等、接合部24と異なる部分には水性冷媒液13を供給する。水性冷媒液13は、例えば水、純水などであり、半導体パッケージ20の上方に位置するノズル15から半導体パッケージ20の裏面26に噴射される。この場合、絶縁性冷媒液14の比重のほうが水性冷媒液13の比重よりも大きいので(フッ素系不活性液体であるFC-72を用いた場合、絶縁性冷媒液14の比重は1.68)、この比重差を利用して絶縁性冷媒液14と水性冷媒液13を2層分離することができる。 On the other hand, the aqueous refrigerant liquid 13 is supplied to a portion different from the joint portion 24 such as the back surface 26 of the semiconductor package 20. The aqueous refrigerant liquid 13 is, for example, water, pure water or the like, and is sprayed from the nozzle 15 located above the semiconductor package 20 to the back surface 26 of the semiconductor package 20. In this case, the specific gravity of the insulating refrigerant liquid 14 is larger than the specific gravity of the aqueous refrigerant liquid 13 (the specific gravity of the insulating refrigerant liquid 14 is 1.68 when FC-72, which is a fluorine-based inert liquid, is used). By utilizing this specific gravity difference, the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 can be separated into two layers.
 ノズル15から噴射される水性冷媒液13は、半導体パッケージ20の裏面26に接触して半導体パッケージ20の周辺領域へ広がり、半導体パッケージ20の熱を奪って、低温側であるケーシング11の内壁へと拡散する。このとき、下方には半導体パッケージ20の側面及び接合部24を浸漬する比重の大きい絶縁性冷媒液14が存在するので、水性冷媒液13が接合部24へ混入することは防止される。半導体パッケージ20の裏面26から熱を奪って温度が上昇した水性冷媒液13は、ポンプ18aによりケーシング11の外部へ排出され、外部の冷却手段、例えば放熱器(ラジエータ)16及びファン17により熱交換される。低温となった水性冷媒液13は、ポンプ18bによりノズル15へと供給される。ポンプ18a、18b、外部冷却手段16、17、ノズル15及びこれらを接続する配管19で、水性冷媒液13の循環系を構成する。これにより、ケーシング11から取り出した水性冷媒液13を、接合部24と異なる部分に循環させて供給することができる。 The aqueous refrigerant liquid 13 ejected from the nozzle 15 contacts the back surface 26 of the semiconductor package 20 and spreads to the peripheral region of the semiconductor package 20, takes heat of the semiconductor package 20, and moves to the inner wall of the casing 11 on the low temperature side. Spread. At this time, since the insulating refrigerant liquid 14 having a large specific gravity for immersing the side surface of the semiconductor package 20 and the bonding portion 24 exists below, the aqueous refrigerant liquid 13 is prevented from being mixed into the bonding portion 24. The aqueous refrigerant liquid 13 whose temperature has been increased by removing heat from the back surface 26 of the semiconductor package 20 is discharged to the outside of the casing 11 by the pump 18a, and heat exchange is performed by external cooling means, for example, a radiator 16 and a fan 17. Is done. The low-temperature aqueous refrigerant liquid 13 is supplied to the nozzle 15 by the pump 18b. The pump 18a, 18b, the external cooling means 16, 17, the nozzle 15 and the pipe 19 connecting them constitute a circulation system of the aqueous refrigerant liquid 13. Thereby, the aqueous refrigerant liquid 13 taken out from the casing 11 can be circulated and supplied to a portion different from the joint portion 24.
 絶縁性冷媒液14は、半導体パッケージ20の接合部24に伝わる熱により気化して蒸気となる。絶縁性冷媒液14の蒸気は水性冷媒液13中に溶け込むが、水性冷媒液13の温度が絶縁性冷媒液14の沸点よりも低い場合は、絶縁性冷媒液14の蒸気が水性冷媒液13に接して凝集し、液相となって絶縁性冷媒液14中へと自然循環する。例えば、絶縁性冷媒液14として、フッ素系不活性液体であるFC-72を用いた場合、沸点は56℃である。水性冷媒液13を冷却循環させてケーシング11内の水性冷媒液13の温度を56℃より低く維持できる場合は、絶縁性冷媒液14をケーシング内部11で自然循環させることができる。低沸点フッ素系液体14の揮発は水性冷媒液13のシールドにより抑制される。 The insulating refrigerant liquid 14 is vaporized by the heat transmitted to the joint portion 24 of the semiconductor package 20 and becomes vapor. The vapor of the insulating refrigerant liquid 14 dissolves in the aqueous refrigerant liquid 13, but when the temperature of the aqueous refrigerant liquid 13 is lower than the boiling point of the insulating refrigerant liquid 14, the vapor of the insulating refrigerant liquid 14 enters the aqueous refrigerant liquid 13. It contacts and aggregates to form a liquid phase and naturally circulate into the insulating refrigerant liquid 14. For example, when FC-72, which is a fluorine-based inert liquid, is used as the insulating refrigerant liquid 14, the boiling point is 56 ° C. When the aqueous refrigerant liquid 13 is cooled and circulated to maintain the temperature of the aqueous refrigerant liquid 13 in the casing 11 lower than 56 ° C., the insulating refrigerant liquid 14 can be naturally circulated in the casing inside 11. Volatilization of the low boiling point fluorine-based liquid 14 is suppressed by the shield of the aqueous refrigerant liquid 13.
 なお、図示はしないが、水性冷媒液13のための循環系に加えて、絶縁性冷媒液14を機械的に循環させる第2の循環系を設けてもよい。 Although not shown, a second circulation system that mechanically circulates the insulating refrigerant liquid 14 may be provided in addition to the circulation system for the aqueous refrigerant liquid 13.
 図2では、簡略化のために単一の半導体パッケージ20を冷却する例を示したが、上述した冷却機器は、システムボート30上に複数の半導体パッケージ20や電子モジュールが搭載されたマルチCPUを冷却する場合にも適用可能である。 FIG. 2 shows an example in which a single semiconductor package 20 is cooled for simplification. However, the cooling device described above includes a multi-CPU in which a plurality of semiconductor packages 20 and electronic modules are mounted on a system boat 30. It can also be applied to cooling.
 図3は、マルチCPUを搭載する基板30の上面図と、そのA-A'断面図である。基板30上には、複数のCPU(半導体パッケージ)20a、20b、20c、20dが他のモジュール32とともに並べられている。他のモジュールは、例えばメモリモジュール、スイッチ、パワーモジュール等であるが、メモリモジュール32で代表する。動作時には半導体パッケージ20a~20d及びメモリモジュール32の各々から熱が発生する。そこで、水平型の配置でマルチCPUを冷却する場合は、ノズル15を半導体パッケージ20a、20b、メモリモジュール32の各々に対して配置して、水性冷媒液13を供給するのが望ましい。 FIG. 3 is a top view of the substrate 30 on which the multi-CPU is mounted and a cross-sectional view taken along the line AA ′. On the substrate 30, a plurality of CPUs (semiconductor packages) 20 a, 20 b, 20 c, and 20 d are arranged together with other modules 32. The other modules are, for example, a memory module, a switch, a power module, etc., but are represented by the memory module 32. During operation, heat is generated from each of the semiconductor packages 20a to 20d and the memory module 32. Therefore, when cooling the multi CPU in a horizontal arrangement, it is desirable to supply the aqueous refrigerant liquid 13 by arranging the nozzle 15 for each of the semiconductor packages 20a and 20b and the memory module 32.
 図4は、マルチCPUを冷却する冷却機器付きの半導体装置40の構成を示す概略図である。半導体パッケージ20a、20b、及びメモリモジュール32が搭載された基板30は、密閉性のあるケーシング11内に配置されている。ケーシング11内には、半導体パッケージ20a、20bの側面及び接合部24とメモリモジュール32を浸漬する絶縁性冷媒液14が封入されている。半導体パッケージ20a、20b、及びメモリモジュール32の上方にノズル15a、15b、15cが配置され、対応する半導体デバイス(モジュール)20a、20b、32の裏面26a、26b、36に向けて水性冷媒液13が噴射される。他方、発熱量の大きい半導体パッケージ20a、20bの接合部24や、メモリモジュール32の基板30への接合部(不図示)は絶縁性冷媒液14に浸漬され、直接冷却されている。水性冷媒液13は、ポンプ18a、18b及び冷却手段16,17を接続する配管19により循環され、低温になった水性冷媒液13がノズル15a~15cに供給される。 FIG. 4 is a schematic diagram showing a configuration of a semiconductor device 40 with a cooling device for cooling the multi CPU. The substrate 30 on which the semiconductor packages 20a and 20b and the memory module 32 are mounted is disposed in a hermetically sealed casing 11. In the casing 11, the insulating refrigerant liquid 14 that immerses the side surfaces of the semiconductor packages 20 a and 20 b and the joint portion 24 and the memory module 32 is enclosed. The nozzles 15a, 15b, 15c are arranged above the semiconductor packages 20a, 20b and the memory module 32, and the aqueous refrigerant liquid 13 is directed toward the back surfaces 26a, 26b, 36 of the corresponding semiconductor devices (modules) 20a, 20b, 32. Be injected. On the other hand, the joint portions 24 of the semiconductor packages 20a and 20b that generate a large amount of heat and the joint portion (not shown) to the substrate 30 of the memory module 32 are immersed in the insulating coolant 14 and directly cooled. The aqueous refrigerant liquid 13 is circulated through a pipe 19 connecting the pumps 18a and 18b and the cooling means 16 and 17, and the aqueous refrigerant liquid 13 having a low temperature is supplied to the nozzles 15a to 15c.
 図3及び図4の例では、同サイズの半導体パッケージ20a~20dが基板30上に配置されているが、異なるサイズの半導体パッケージが配置される場合も同様にして冷却することができる。また、図2に示す、ノズル15の噴射の方向を制御することによって、複数の半導体パッケージ20に対して1つのノズル15を設ける構成としてもよい。 3 and 4, the same size semiconductor packages 20a to 20d are arranged on the substrate 30. However, when different size semiconductor packages are arranged, cooling can be performed in the same manner. Also, a configuration may be adopted in which one nozzle 15 is provided for a plurality of semiconductor packages 20 by controlling the jetting direction of the nozzles 15 shown in FIG.
 このように、実施例1では、絶縁性冷媒液14と水性冷媒液13とを、比重差を利用して2層分離し、絶縁性冷媒液14により半導体パッケージ20の接合部24を浸漬冷却するとともに、水性冷媒液13により、パッケージ裏面(接合部と反対側の面)26等の、接合部24と異なる部分に対して噴流冷却を行なう。電気的接続を担う接合部24に対する絶縁性を担保しつつ、主たる冷却手段を水冷として、半導体パッケージ20を全周囲から冷却するので、環境負荷を最小限に抑えて、半導体素子21や半導体パッケージ20を効率良く安定して冷却することができる。また、実施例1では半導体パッケージ20の全体が浸漬されているため、外気に触れることがない。したがって結露の心配がなく、接合部のマイグレーションを防止することができる。 As described above, in the first embodiment, the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers by using the difference in specific gravity, and the junction 24 of the semiconductor package 20 is immersed and cooled by the insulating refrigerant liquid 14. At the same time, the aqueous refrigerant liquid 13 performs jet cooling on a portion different from the joint portion 24, such as the package back surface (surface opposite to the joint portion) 26. Since the semiconductor package 20 is cooled from the entire periphery with the main cooling means being water-cooled while ensuring the insulation with respect to the joint portion 24 responsible for electrical connection, the environmental load is minimized, and the semiconductor element 21 and the semiconductor package 20 Can be efficiently and stably cooled. Moreover, in Example 1, since the whole semiconductor package 20 is immersed, it does not touch external air. Therefore, there is no risk of condensation and migration of the joint can be prevented.
 図5は、実施例1の効果を測定するために用いた実験モデルの概略図である。冷却対象として、INTEL社製のCPU(CORE 2 QUAD 3GHz)20aと周辺パーツ32を使用した。絶縁性冷媒液14としてフッ素系不活性液体であるFC-72を使用し、水性冷媒液13として水を使用して2層分離により冷却した。CPU20aの接合部24は、比重が重い絶縁性冷媒液14に浸漬されている。比重が低い方の水性冷媒液13をポンプ18により3リットル/分の流量で循環させ、ラジエータ16により放熱量80W・hで熱交換してからノズル15に供給した。CPU使用率100%時でCPU20の温度を計測した。CPU20の計測温度はCPU内部のモニタリング温度とした。比較例として、同じCPU20及び周辺パーツ32を用い、図1Aのように水性冷媒液13のみを用いた噴流冷却方式で、同様にしてCPU使用率100%時のCPU温度を計測した。 FIG. 5 is a schematic diagram of an experimental model used to measure the effect of Example 1. As a cooling target, a CPU (CORE 2 QUAD 3 GHz) 20a manufactured by INTEL and peripheral parts 32 were used. FC-72, which is a fluorine-based inert liquid, was used as the insulating refrigerant liquid 14 and water was used as the aqueous refrigerant liquid 13 to cool by two-layer separation. The joint portion 24 of the CPU 20a is immersed in the insulating refrigerant liquid 14 having a high specific gravity. The aqueous refrigerant liquid 13 having a lower specific gravity was circulated by the pump 18 at a flow rate of 3 liters / minute, heat was exchanged by the radiator 16 at a heat release amount of 80 W · h, and then supplied to the nozzle 15. The temperature of the CPU 20 was measured when the CPU usage rate was 100%. The measured temperature of the CPU 20 was the monitoring temperature inside the CPU. As a comparative example, the same CPU 20 and peripheral part 32 were used, and the CPU temperature when the CPU usage rate was 100% was measured in the same manner by the jet cooling method using only the aqueous refrigerant liquid 13 as shown in FIG. 1A.
 図6Aは実測結果を示すグラフ、図6Bは図6Aの実測結果を平均化して実施例1の実験モデルと従来モデルとのCPU温度と発熱量換算とを比較した表である。図6A及び図6Bに示すように、図1Aの従来モデルでは、CPU使用率100%になった数分後にCPUコア温度が60℃を超え、冷却下での平均CPU温度は61℃である。他方、実施例1の実験モデルでは、CPU使用率100%時の平均CPU温度は53℃である。発熱量に換算すると従来モデルでは180W、実施例1の実験モデルでは140Wである。このように、実施例1の構成では、発熱量換算で40Wの低減、平均CPU温度で8℃の低減を達成することができる。なお、図6Aの実測グラフではCPUコア温度に多少の振幅が見られるが、これはCPUの動作の影響によるものであり、冷却機能の安定性は確保されている。ラジエータ放熱量、ポンプ流量、ノズル配置、噴流の向き等を制御することによって、冷却機能をさらに向上することも可能である。 FIG. 6A is a graph showing actual measurement results, and FIG. 6B is a table comparing the CPU temperature and calorific value conversion of the experimental model of Example 1 and the conventional model by averaging the actual measurement results of FIG. 6A. As shown in FIGS. 6A and 6B, in the conventional model of FIG. 1A, the CPU core temperature exceeds 60 ° C. several minutes after the CPU usage rate reaches 100%, and the average CPU temperature under cooling is 61 ° C. On the other hand, in the experimental model of Example 1, the average CPU temperature when the CPU usage rate is 100% is 53 ° C. In terms of calorific value, the conventional model is 180 W, and the experimental model of Example 1 is 140 W. Thus, with the configuration of Example 1, it is possible to achieve a 40 W reduction in terms of calorific value and an 8 ° C. reduction in average CPU temperature. In the actual measurement graph of FIG. 6A, a slight amplitude is seen in the CPU core temperature. This is due to the influence of the operation of the CPU, and the stability of the cooling function is ensured. The cooling function can be further improved by controlling the radiator heat radiation amount, the pump flow rate, the nozzle arrangement, the jet direction, and the like.
 図7は、実施例2の冷却機器を備えた電子機器70の構成例を示す概略図である。実施例2では、基板30が垂直に(すなわち重力方向に沿って)配置された縦型の半導体パッケージ20を冷却する。半導体パッケージ20の構成や基板30への接合構成は実施例1と同様であり、説明を省略する。 FIG. 7 is a schematic diagram illustrating a configuration example of an electronic device 70 including the cooling device according to the second embodiment. In the second embodiment, the vertical semiconductor package 20 in which the substrate 30 is arranged vertically (that is, along the direction of gravity) is cooled. The configuration of the semiconductor package 20 and the bonding configuration to the substrate 30 are the same as those in the first embodiment, and a description thereof will be omitted.
 実施例2においても、実施例1と同様に、半導体パッケージ20の接合部24を絶縁性冷媒液14で直接冷却するとともに、半導体パッケージの裏面(接合部24と反対側の面)26等の、接合部24と異なる部分を水性冷媒液13で冷却する。この構成を縦型配置で実現するために、実施例2では、半導体パッケージ20を搭載する基板30の上方に、第1のノズル75を配置し、基板30の上端側から絶縁性冷媒液14を接合部24に向けて供給する。他方、垂直に立てられた半導体パッケージ20の側方に、第2のノズル15を配置して、水性冷媒液13を半導体パッケージの裏面26に向けて供給する。 Also in the second embodiment, as in the first embodiment, the joint portion 24 of the semiconductor package 20 is directly cooled by the insulating refrigerant liquid 14, and the back surface (surface opposite to the joint portion 24) 26 of the semiconductor package, etc. A portion different from the joint portion 24 is cooled by the aqueous refrigerant liquid 13. In order to realize this configuration in the vertical arrangement, in the second embodiment, the first nozzle 75 is arranged above the substrate 30 on which the semiconductor package 20 is mounted, and the insulating refrigerant liquid 14 is supplied from the upper end side of the substrate 30. Supply toward the joint 24. On the other hand, the second nozzle 15 is disposed on the side of the vertically standing semiconductor package 20 to supply the aqueous coolant 13 toward the back surface 26 of the semiconductor package.
 第1のノズル75は、半導体パッケージ20の端面及び接合部24の全体が絶縁性冷媒液14で覆われるように、カーテン流76を形成する。絶縁性冷媒14は実施例1と同様に、化学的に安定であり腐食性がなく、かつ電気絶縁性を有する流体である。例えば、フッ素系不活性液体(FC-72など)、フッ化炭素系冷媒液、代替フロン(HFC-365mfc、HFE-7000など)、ハロゲン化炭化水素系冷媒(ペンタンなど)、シリコーンオイルなどの絶縁油を主成分とする冷媒液などを用いることができる。 The first nozzle 75 forms the curtain flow 76 so that the end face of the semiconductor package 20 and the entire joint portion 24 are covered with the insulating refrigerant liquid 14. Insulating refrigerant 14 is a fluid that is chemically stable, non-corrosive, and has electrical insulation, as in Example 1. For example, insulation such as fluorinated inert liquids (FC-72, etc.), fluorocarbon refrigerants, alternative CFCs (HFC-365mfc, HFE-7000, etc.), halogenated hydrocarbon refrigerants (pentane, etc.), silicone oil, etc. A refrigerant liquid mainly composed of oil can be used.
 第2のノズル15は、半導体パッケージ20の接合部24と反対側の面(裏面)26等、接合部24と異なる部分に対して水性冷媒液13を噴射する。このとき、接合部24は絶縁性冷媒液14のカーテン流76で覆われているため、水性冷媒液13が接合部24に入り込むのを防止することができる。このように、絶縁性冷媒液14と水性冷媒液13は重力方向に2層分離される。 The second nozzle 15 injects the aqueous refrigerant liquid 13 to a portion different from the bonding portion 24 such as a surface (back surface) 26 opposite to the bonding portion 24 of the semiconductor package 20. At this time, since the joint portion 24 is covered with the curtain flow 76 of the insulating refrigerant liquid 14, the aqueous refrigerant liquid 13 can be prevented from entering the joint portion 24. Thus, the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers in the direction of gravity.
 半導体パッケージ20と熱交換して温度が上昇した絶縁性冷媒液14と水性冷媒液13は、ケーシング11の底部に溜まる。絶縁性冷媒液14としてフッ素系の不活性液体のFC-72を用いた場合、その比重は水性冷媒液13の比重よりも大きい。もっとも、絶縁性冷媒液14と水性冷媒液13は上方からケーシング11の底部へ流れ落ちるため、ケーシング11の底部で一部混合する。 The insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 whose temperature has increased due to heat exchange with the semiconductor package 20 are accumulated at the bottom of the casing 11. When the fluorine-based inert liquid FC-72 is used as the insulating refrigerant liquid 14, the specific gravity is larger than the specific gravity of the aqueous refrigerant liquid 13. However, since the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 flow down from above to the bottom of the casing 11, they are partially mixed at the bottom of the casing 11.
 高温になった絶縁性冷媒液14と水性冷媒液13は、第1の配管19aによりケーシング11の底部から排出され、ラジエータ16及びファン17によって熱交換される。熱交換されて低温になった冷媒液は、冷媒液分離タンク79に送られる。冷媒液分離タンク79内では、絶縁性冷媒液14と水性冷媒液13は、その比重差によって2層に分離する。分離した冷媒液のうち、絶縁性冷媒液14は、ポンプ78a及び第2の配管19bを介して、第1のノズル75に供給される。水性冷媒液13は、ポンプ78b及び第3の配管19cを介して、第2のノズル15に供給される。このように、冷媒液の2層分離を利用して、低温になった水性冷媒液13および絶縁性冷媒液14を、それぞれ対応するノズル15、75へと循環させることができる。その結果、縦型配置であっても効率よく安定して半導体パッケージ20を冷却することができる。なお、必要に応じて、第1の配管19aにポンプを設けてもよい。 The insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 that have reached a high temperature are discharged from the bottom of the casing 11 through the first pipe 19 a and are heat-exchanged by the radiator 16 and the fan 17. The refrigerant liquid that has undergone heat exchange and has reached a low temperature is sent to the refrigerant liquid separation tank 79. In the refrigerant liquid separation tank 79, the insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 are separated into two layers by the difference in specific gravity. Of the separated refrigerant liquid, the insulating refrigerant liquid 14 is supplied to the first nozzle 75 via the pump 78a and the second pipe 19b. The aqueous refrigerant liquid 13 is supplied to the second nozzle 15 via the pump 78b and the third pipe 19c. As described above, the two-layer separation of the refrigerant liquid can be utilized to circulate the aqueous refrigerant liquid 13 and the insulating refrigerant liquid 14 that have become low temperature to the corresponding nozzles 15 and 75, respectively. As a result, the semiconductor package 20 can be cooled efficiently and stably even in the vertical arrangement. In addition, you may provide a pump in the 1st piping 19a as needed.
 実施例2の構成は、図3のマルチCPUの基板30が縦型配置された場合にも、適用可能である。この場合、カーテン流76を形成するためのノズル75は、基板30上で、重力方向に並べられた半導体パッケージ20の列ごとに設けるのが望ましい。あるいは、ノズルの開口部の大きさ、形状、構成、噴射される絶縁性冷媒液14の流量、基板30の大きさ等に応じて、ノズル75の数は適宜設定することができる。 The configuration of the second embodiment can also be applied when the multi-CPU board 30 of FIG. 3 is arranged vertically. In this case, the nozzles 75 for forming the curtain flow 76 are preferably provided for each row of the semiconductor packages 20 arranged in the direction of gravity on the substrate 30. Alternatively, the number of nozzles 75 can be set as appropriate in accordance with the size, shape, and configuration of the opening of the nozzle, the flow rate of the insulating refrigerant liquid 14 to be jetted, the size of the substrate 30, and the like.
 図8は、実施例2の効果を測定するために用いた実験モデルの概略図である。冷却対象として、INTEL社製のCPU(CORE 2 QUAD 3GHz)20と周辺パーツ32を使用した。絶縁性冷媒液14としてフッ素系不活性液体であるFC-72を使用し、水性冷媒液13として水を使用し、重力方向の2層分離により冷却した。ケーシング11の底部から絶縁性冷媒液14と水性冷媒液13を排出し、ラジエータ16により放熱量80W・hで熱交換してから、冷媒液分離タンク79で水平方向に2層分離した。絶縁性冷媒液をポンプ78aによりノズル715に供給し、水性冷媒液をポンプ78bによりノズル15に供給した。CPU使用率100%時でCPU20の温度を計測した。CPU20の計測温度はCPU内部のモニタリング温度とした。比較例として、同じCPU20及び周辺パーツ32を用い、図1Aのように水性冷媒液13のみを用いた噴流冷却方式で、同様にしてCPU使用率100%時のCPU温度を計測した。 FIG. 8 is a schematic diagram of an experimental model used to measure the effect of Example 2. As a cooling target, a CPU (CORE 2 QUAD 3 GHz) 20 and peripheral parts 32 manufactured by INTEL were used. FC-72, which is a fluorine-based inert liquid, was used as the insulating refrigerant liquid 14, water was used as the aqueous refrigerant liquid 13, and cooling was performed by two-layer separation in the direction of gravity. The insulating refrigerant liquid 14 and the aqueous refrigerant liquid 13 were discharged from the bottom of the casing 11, and heat was exchanged by the radiator 16 at a heat release amount of 80 W · h, and then two layers were separated in the horizontal direction by the refrigerant liquid separation tank 79. The insulating refrigerant liquid was supplied to the nozzle 715 by the pump 78a, and the aqueous refrigerant liquid was supplied to the nozzle 15 by the pump 78b. The temperature of the CPU 20 was measured when the CPU usage rate was 100%. The measured temperature of the CPU 20 was the monitoring temperature inside the CPU. As a comparative example, the same CPU 20 and peripheral part 32 were used, and the CPU temperature when the CPU usage rate was 100% was measured in the same manner by the jet cooling method using only the aqueous refrigerant liquid 13 as shown in FIG. 1A.
 図9Aは実測結果を示すグラフ、図9Bは図9Aの実測結果を平均化して実施例2の実験モデルと従来モデルとのCPU温度と発熱量換算とを比較した表である。図9A及び図9Bに示すように、図1Aの従来モデルでは、CPU使用率100%になった数分後にCPUコア温度が60℃を超え、冷却下での平均CPU温度は61℃である。他方、実施例2の実験モデルでは、CPU使用率100%時の平均CPU温度は49℃である。発熱量に換算すると従来モデルでは180W、実施例1の実験モデルでは120Wである。このように、実施例1の構成では、発熱量換算で60Wの低減、平均CPU温度で12℃の低減を達成することができる。 FIG. 9A is a graph showing actual measurement results, and FIG. 9B is a table comparing the CPU temperature and calorific value conversion of the experimental model of Example 2 and the conventional model by averaging the actual measurement results of FIG. 9A. As shown in FIGS. 9A and 9B, in the conventional model of FIG. 1A, the CPU core temperature exceeds 60 ° C. several minutes after the CPU usage rate reaches 100%, and the average CPU temperature under cooling is 61 ° C. On the other hand, in the experimental model of Example 2, the average CPU temperature when the CPU usage rate is 100% is 49 ° C. In terms of calorific value, the conventional model is 180 W, and the experimental model of Example 1 is 120 W. Thus, in the configuration of the first embodiment, a reduction of 60 W in terms of calorific value and a reduction of 12 ° C. in the average CPU temperature can be achieved.
 実施例2の構成は、実施例1の場合よりも、冷却効率が高く安定した冷却を実現することができる。これは、半導体パッケージ20の接合部24(図7参照)に対して絶縁性冷媒液14をカーテン流として供給するからである。発熱量の大きい接合部24に、常に低温にされた絶縁性冷媒液14を供給して冷却することにより、高い冷却効率を得ることができる。 The configuration of the second embodiment has higher cooling efficiency than that of the first embodiment and can realize stable cooling. This is because the insulating refrigerant liquid 14 is supplied as a curtain flow to the joint portion 24 (see FIG. 7) of the semiconductor package 20. High cooling efficiency can be obtained by supplying and cooling the insulating refrigerant liquid 14 that is always kept at a low temperature to the joint portion 24 that generates a large amount of heat.
 このように、本発明によれば、例えば以下の効果が得られる。
(1)高効率冷却:水性冷媒液による噴流冷却と、絶縁性冷媒液による接合部の冷却の併用により、半導体デバイス全周の直接冷却が水冷で実現される。
(2)大面積冷却:メモリ、スイッチ、パワーモジュール等を含めたシステムボード全体の一体冷却が可能になる。
(3)低環境負荷:フッ素系冷媒を最小限に抑さえ、主たる冷却手段を水冷とすることにより、環境への負荷を低減しつつ高効率冷却と実現できる。
(4)高信頼性:基板が外気に触れることがないため、温度差による結露を防止し、マイグレーションの発生を防止することができる。
(5)低コスト化:一体冷却できるので、CPU毎にサーマルモジュールを設ける必要がない。また、結露対策のヒータを不要にするなど、部品点数の削減と消費電力の低減を図ることができる。
Thus, according to the present invention, for example, the following effects can be obtained.
(1) High-efficiency cooling: Direct cooling of the entire circumference of the semiconductor device is realized by water cooling by using a jet cooling with an aqueous coolant and a cooling of the joint with an insulating coolant.
(2) Large area cooling: The entire system board including the memory, switch, power module, etc. can be integrally cooled.
(3) Low environmental load: Highly efficient cooling can be realized while reducing the load on the environment by minimizing the amount of fluorine-based refrigerant and water cooling the main cooling means.
(4) High reliability: Since the substrate does not come into contact with outside air, it is possible to prevent condensation due to a temperature difference and to prevent migration.
(5) Cost reduction: Since it is possible to cool together, it is not necessary to provide a thermal module for each CPU. In addition, it is possible to reduce the number of parts and power consumption, such as eliminating the need for a heater for preventing condensation.
 発熱体の冷却と、冷却機器を有する電子機器に利用することができる。多数のシステムボードを縦型に配置したラックや、多段に重ねたスタック構造にも適用できる。 ¡It can be used for cooling of heating elements and electronic equipment with cooling equipment. It can also be applied to a rack in which a large number of system boards are arranged vertically and a stack structure in which multiple system boards are stacked.
10、40、70 半導体装置
11 ケーシング(ハウジング)
13 水性冷媒液
14 絶縁性冷媒液
15、15a、15b、75 ノズル(冷媒液供給手段)
18a、18b、78a、78b ポンプ
19 配管
19a 第1の配管
19b 第2の配管
19c 第3の配管
20、20a、20b 半導体パッケージ(半導体モジュール)
21 半導体素子
24 接合部
30 基板
76 カーテン流
79 冷媒液分離タンク
10, 40, 70 Semiconductor device 11 Casing (housing)
13 Aqueous refrigerant liquid 14 Insulating refrigerant liquid 15, 15a, 15b, 75 Nozzle (refrigerant liquid supply means)
18a, 18b, 78a, 78b Pump 19 Pipe 19a First pipe 19b Second pipe 19c Third pipe 20, 20a, 20b Semiconductor package (semiconductor module)
21 Semiconductor element 24 Junction 30 Substrate 76 Curtain flow 79 Refrigerant liquid separation tank

Claims (20)

  1.  基板との接合部を備える発熱体の前記接合部を、絶縁性を有する第1の冷媒液で冷却する第1冷却部と、
     前記発熱体の前記接合部と異なる部分を、第2の冷媒液で冷却する第2冷却部と、
    を有することを特徴とする冷却機器。
    A first cooling section that cools the joint section of the heating element including the joint section with the substrate with a first coolant liquid having insulation;
    A second cooling section that cools a portion of the heating element that is different from the joining section with a second refrigerant liquid;
    A cooling device characterized by comprising:
  2.  前記第1冷却部は、前記接合部を前記第1の冷媒液に浸漬し、
     前記第2冷却部は、前記接合部と異なる部分に前記第2の冷媒液を供給することを特徴とする請求項1に記載の冷却機器。
    The first cooling unit immerses the joint in the first refrigerant liquid,
    The cooling device according to claim 1, wherein the second cooling unit supplies the second refrigerant liquid to a portion different from the joint.
  3.  前記第1の冷媒液の比重は、前記第2の冷媒液の比重よりも大きく、
     前記冷却機器は、前記第1の冷媒液と、前記第2の冷媒液とを収めるケーシングをさらに備え、
     前記第2冷却部は、前記ケーシングから取り出した前記第2の冷媒液を、前記接合部と異なる部分に供給する第1の供給部を含むことを特徴とする請求項2に記載の冷却機器。
    The specific gravity of the first refrigerant liquid is greater than the specific gravity of the second refrigerant liquid,
    The cooling device further includes a casing for storing the first refrigerant liquid and the second refrigerant liquid,
    The cooling device according to claim 2, wherein the second cooling unit includes a first supply unit that supplies the second refrigerant liquid taken out from the casing to a portion different from the joint.
  4.  前記発熱体を冷却した前記第2の冷媒液を循環させる循環部と、
     前記循環部の途中に設けられ、前記第2の冷媒液から放熱させる放熱部と、
    をさらに備え、
     前記循環部は、放熱後の前記第2の冷媒液を前記第1の供給部に供給することを特徴とする請求項3に記載の冷却機器。
    A circulation part for circulating the second refrigerant liquid that has cooled the heating element;
    A heat dissipating part which is provided in the middle of the circulation part and dissipates heat from the second refrigerant liquid;
    Further comprising
    4. The cooling device according to claim 3, wherein the circulation unit supplies the second refrigerant liquid after heat dissipation to the first supply unit. 5.
  5.  前記第1冷却部は、前記接合部に前記第1の冷媒液を供給し、
     前記第2冷却部は、前記接合部と異なる部分に前記第2の冷媒液を供給することを特徴とする請求項1に記載の冷却機器。
    The first cooling unit supplies the first refrigerant liquid to the joint,
    The cooling device according to claim 1, wherein the second cooling unit supplies the second refrigerant liquid to a portion different from the joint.
  6.  前記第1の冷媒液の比重は、前記第2の冷媒液の比重よりも大きく、
     前記冷却機器は、前記第1の冷媒液と、前記第2の冷媒液とを収める収容部をさらに備え、
     前記第1冷却部は、前記収納部から取り出した前記第1の冷媒液を、前記接合部に供給する第2の供給部を含み、
     前記第2冷却部は、前記収納部から取り出した前記第2の冷媒液を、前記接合部と異なる部分に供給する第3の供給部を含むことを特徴とする請求項5に記載の冷却機器。
    The specific gravity of the first refrigerant liquid is greater than the specific gravity of the second refrigerant liquid,
    The cooling device further includes an accommodating portion for storing the first refrigerant liquid and the second refrigerant liquid,
    The first cooling unit includes a second supply unit that supplies the first refrigerant liquid taken out from the storage unit to the joint unit,
    The cooling device according to claim 5, wherein the second cooling unit includes a third supply unit that supplies the second refrigerant liquid taken out from the storage unit to a portion different from the joint unit. .
  7.  前記第2の供給部は、前記接合部を前記第1の冷媒液で覆うカーテン流を形成することを特徴とする請求項5に記載の冷却機器。 The cooling device according to claim 5, wherein the second supply unit forms a curtain flow that covers the joint with the first refrigerant liquid.
  8.  前記発熱体に供給した前記第1の冷媒液と前記第2の冷媒液とを、前記収納部に供給する第1の配管と、
     前記第1の配管に接続され、前記絶縁性冷媒液と前記水性冷媒液とを分離する手段と、
     前記第1の冷媒液を、前記収納部から前記第2の供給部に供給する第2の配管と、
     前記第2の冷媒液を、前記収納部から前記第3の供給部に供給する第3の配管と、
    をさらに備えることを特徴とする請求項5に記載の冷却機器。
    A first pipe for supplying the first refrigerant liquid and the second refrigerant liquid supplied to the heating element to the storage unit;
    Means for connecting the first refrigerant and separating the insulating refrigerant liquid and the aqueous refrigerant liquid;
    A second pipe for supplying the first refrigerant liquid from the storage unit to the second supply unit;
    A third pipe for supplying the second refrigerant liquid from the storage unit to the third supply unit;
    The cooling device according to claim 5, further comprising:
  9.  前記第1の冷媒液は、フッ化炭素、ハロゲン化炭化水素、絶縁油のいずれかを含むことを特徴とする請求項1~8のいずれか1項に記載の冷却機器。 The cooling device according to any one of claims 1 to 8, wherein the first refrigerant liquid contains one of fluorocarbon, halogenated hydrocarbon, and insulating oil.
  10.  前記第2の冷媒液は、水又は純水を主成分とすることを特徴とする請求項1~8のいずれか1項に記載の冷却機器。 The cooling device according to any one of claims 1 to 8, wherein the second refrigerant liquid contains water or pure water as a main component.
  11.  基板との接合部を備える半導体装置と、
     前記半導体装置の前記接合部を、絶縁性を有する第1の冷媒液で冷却する第1冷却部と、
     前記半導体装置の前記接合部と異なる部分を、第2の冷媒液で冷却する第2冷却部と、
    を有することを特徴とする電子機器。
    A semiconductor device comprising a junction with the substrate;
    A first cooling section that cools the joint portion of the semiconductor device with a first coolant liquid having insulation;
    A second cooling section that cools a portion of the semiconductor device that is different from the bonding section with a second refrigerant liquid;
    An electronic device comprising:
  12.  前記第1冷却部は、前記接合部を前記第1の冷媒液に浸漬し、
     前記第2冷却部は、前記接合部と異なる部分に前記第2の冷媒液を供給することを特徴とする請求項11に記載の電子機器。
    The first cooling unit immerses the joint in the first refrigerant liquid,
    The electronic device according to claim 11, wherein the second cooling unit supplies the second refrigerant liquid to a portion different from the joint.
  13.  前記第1の冷媒液の比重は、前記第2の冷媒液の比重よりも大きく、
     前記冷却機器は、前記第1の冷媒液と、前記第2の冷媒液とを収めるケーシングをさらに備え、
     前記第2冷却部は、前記ケーシングから取り出した前記第2の冷媒液を、前記接合部と異なる部分に供給する第1の供給部を含むことを特徴とする請求項12に記載の電子機器。
    The specific gravity of the first refrigerant liquid is greater than the specific gravity of the second refrigerant liquid,
    The cooling device further includes a casing for storing the first refrigerant liquid and the second refrigerant liquid,
    The electronic device according to claim 12, wherein the second cooling unit includes a first supply unit that supplies the second refrigerant liquid taken out from the casing to a portion different from the joint unit.
  14.  前記半導体装置を冷却した前記第2の冷媒液を循環させる循環部と、
     前記循環部の途中に設けられ、前記第2の冷媒液から放熱させる放熱部と、
    をさらに備え、
     前記循環部は、放熱後の前記第2の冷媒液を前記第1の供給部に供給することを特徴とする請求項13に記載の電子機器。
    A circulation unit for circulating the second refrigerant liquid that has cooled the semiconductor device;
    A heat dissipating part which is provided in the middle of the circulation part and dissipates heat from the second refrigerant liquid;
    Further comprising
    The electronic device according to claim 13, wherein the circulation unit supplies the second refrigerant liquid after heat dissipation to the first supply unit.
  15.  前記第1冷却部は、前記接合部に前記第1の冷媒液を供給し、
     前記第2冷却部は、前記接合部と異なる部分に前記第2の冷媒液を供給することを特徴とする請求項11に記載の電子機器。
    The first cooling unit supplies the first refrigerant liquid to the joint,
    The electronic device according to claim 11, wherein the second cooling unit supplies the second refrigerant liquid to a portion different from the joint.
  16.  前記第1の冷媒液の比重は、前記第2の冷媒液の比重よりも大きく、
     前記冷却機器は、前記第1の冷媒液と、前記第2の冷媒液とを収める収容部をさらに備え、
     前記第1冷却部は、前記収納部から取り出した前記第1の冷媒液を、前記接合部に供給する第2の供給部を含み、
     前記第2冷却部は、前記収納部から取り出した前記第2の冷媒液を、前記接合部と異なる部分に供給する第3の供給部を含むことを特徴とする請求項14に記載の電子機器。
    The specific gravity of the first refrigerant liquid is greater than the specific gravity of the second refrigerant liquid,
    The cooling device further includes an accommodating portion for storing the first refrigerant liquid and the second refrigerant liquid,
    The first cooling unit includes a second supply unit that supplies the first refrigerant liquid taken out from the storage unit to the joint unit,
    The electronic device according to claim 14, wherein the second cooling unit includes a third supply unit that supplies the second refrigerant liquid taken out from the storage unit to a portion different from the joint unit. .
  17.  前記第2の供給部は、前記接合部を前記第1の冷媒液で覆うカーテン流を形成することを特徴とする請求項15に記載の電子機器。 16. The electronic apparatus according to claim 15, wherein the second supply unit forms a curtain flow that covers the joint with the first refrigerant liquid.
  18.  前記発熱体に供給した前記第1の冷媒液と前記第2の冷媒液とを前記収納部に供給する第1の配管と、
     前記第1の冷媒液を、前記収納部から前記第2の供給手段に供給する第2の配管と、
     前記第2の冷媒液を、前記収納部から前記第3の供給手段に供給する第3の配管と、
    とさらに備えることを特徴とする請求項15に記載の電子機器。
    A first pipe for supplying the first refrigerant liquid and the second refrigerant liquid supplied to the heating element to the storage unit;
    A second pipe for supplying the first refrigerant liquid from the storage unit to the second supply means;
    A third pipe for supplying the second refrigerant liquid from the storage unit to the third supply means;
    The electronic device according to claim 15, further comprising:
  19.  前記第1の冷媒液は、フッ化炭素、ハロゲン化炭化水素、絶縁油のいずれかを含むことを特徴とする請求項11~18のいずれか1項に記載の電子機器。 The electronic device according to any one of claims 11 to 18, wherein the first refrigerant liquid contains any of fluorocarbon, halogenated hydrocarbon, and insulating oil.
  20.  基板との接合部を備える発熱体の前記接合部を、絶縁性を有する第1の冷媒液で冷却するとともに、前記発熱体の前記接合部と異なる部分を、第2の冷媒液で冷却することを特徴とする発熱体の冷却方法。 Cooling the joining portion of the heating element having a joining portion with the substrate with a first coolant liquid having insulation properties, and cooling a portion different from the joining portion of the heating body with a second coolant liquid. A method for cooling a heating element.
PCT/JP2010/064197 2010-08-23 2010-08-23 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body WO2012025981A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/064197 WO2012025981A1 (en) 2010-08-23 2010-08-23 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body
JP2012530437A JP5590128B2 (en) 2010-08-23 2010-08-23 Cooling device, electronic device having cooling device, and cooling method of heating element
US13/751,564 US20130139998A1 (en) 2010-08-23 2013-01-28 Cooling system, electronic equipment, and method for cooling heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064197 WO2012025981A1 (en) 2010-08-23 2010-08-23 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/751,564 Continuation US20130139998A1 (en) 2010-08-23 2013-01-28 Cooling system, electronic equipment, and method for cooling heating element

Publications (1)

Publication Number Publication Date
WO2012025981A1 true WO2012025981A1 (en) 2012-03-01

Family

ID=45723011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064197 WO2012025981A1 (en) 2010-08-23 2010-08-23 Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body

Country Status (3)

Country Link
US (1) US20130139998A1 (en)
JP (1) JP5590128B2 (en)
WO (1) WO2012025981A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037860A1 (en) * 2015-08-31 2017-03-09 株式会社ExaScaler Cooling system for electronic device
JP2017191431A (en) * 2016-04-13 2017-10-19 富士通株式会社 Data center and control method of data center
JP2019061439A (en) * 2017-09-26 2019-04-18 富士通株式会社 Immersion server
WO2022030464A1 (en) * 2020-08-07 2022-02-10 ダイキン工業株式会社 Immersion cooling device, heat pipe, and cold plate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9832913B2 (en) 2011-06-27 2017-11-28 Ebullient, Inc. Method of operating a cooling apparatus to provide stable two-phase flow
US9854715B2 (en) 2011-06-27 2017-12-26 Ebullient, Inc. Flexible two-phase cooling system
US9901013B2 (en) 2011-06-27 2018-02-20 Ebullient, Inc. Method of cooling series-connected heat sink modules
US9901008B2 (en) 2014-10-27 2018-02-20 Ebullient, Inc. Redundant heat sink module
US9848509B2 (en) 2011-06-27 2017-12-19 Ebullient, Inc. Heat sink module
US9854714B2 (en) 2011-06-27 2017-12-26 Ebullient, Inc. Method of absorbing sensible and latent heat with series-connected heat sinks
US9835363B2 (en) * 2013-01-14 2017-12-05 Massachusetts Institute Of Technology Evaporative heat transfer system
US20140318741A1 (en) * 2013-04-29 2014-10-30 Nicholas Jeffers Cooling With Liquid Coolant And Bubble Heat Removal
EP2994809B1 (en) * 2013-05-06 2019-08-28 Green Revolution Cooling, Inc. System and method of packaging computing resources for space and fire-resistance
US9852963B2 (en) 2014-10-27 2017-12-26 Ebullient, Inc. Microprocessor assembly adapted for fluid cooling
US20160120059A1 (en) 2014-10-27 2016-04-28 Ebullient, Llc Two-phase cooling system
US10184699B2 (en) 2014-10-27 2019-01-22 Ebullient, Inc. Fluid distribution unit for two-phase cooling system
US9891002B2 (en) 2014-10-27 2018-02-13 Ebullient, Llc Heat exchanger with interconnected fluid transfer members
WO2016069313A1 (en) * 2014-10-27 2016-05-06 Ebullient, Llc Two-phase cooling system component
EP3177125B1 (en) * 2015-12-01 2019-12-11 Aselsan Elektronik Sanayi ve Ticaret Anonim Sirketi A hybrid cooling device
JP6642088B2 (en) * 2016-02-18 2020-02-05 株式会社オートネットワーク技術研究所 Electrical equipment
US10028409B1 (en) * 2017-01-06 2018-07-17 Hamilton Sundstrand Corporation Immersion cooling arrangements
CN111918527A (en) * 2017-07-17 2020-11-10 华为技术有限公司 Liquid cooling device and server including the same
US10356950B2 (en) * 2017-12-18 2019-07-16 Ge Aviation Systems, Llc Avionics heat exchanger
RU181944U1 (en) * 2017-12-26 2018-07-30 Евгений Александрович Белов INSTALLATION FOR IMMERSION LIQUID SINGLE-PHASE COOLING DEVICES FOR Cryptocurrency Mining
WO2020257923A1 (en) 2019-06-27 2020-12-30 Hypertechnologie Ciara Inc. Microgap system for cooling electronics with direct contact
CN113645799A (en) * 2020-04-27 2021-11-12 富泰华工业(深圳)有限公司 Heat dissipation structure for electronic device and electronic device
CN114531819A (en) * 2020-11-09 2022-05-24 富联精密电子(天津)有限公司 Liquid cooling heat dissipation system and server system
CN112708398A (en) * 2020-12-30 2021-04-27 兰洋(宁波)科技有限公司 Cooling liquid for cooling integrated chip circuit board
US11412636B2 (en) * 2021-01-12 2022-08-09 Cooler Master Co., Ltd. Single-phase immersion cooling system and method of the same
CN115209675A (en) * 2021-04-14 2022-10-18 台达电子工业股份有限公司 Immersive cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216981A (en) * 1975-07-31 1977-02-08 Toshiba Corp Integrate circuit unit
JPH04151860A (en) * 1990-10-16 1992-05-25 Fujitsu Ltd Cooling equipment of electronic device
JP2008041806A (en) * 2006-08-03 2008-02-21 Mitsubishi Materials Corp Cooling structure of power module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417814A (en) * 1967-06-26 1968-12-24 Ibm Air cooled multiliquid heat transfer unit
US6744136B2 (en) * 2001-10-29 2004-06-01 International Rectifier Corporation Sealed liquid cooled electronic device
US6992888B1 (en) * 2004-03-08 2006-01-31 Lockheed Martin Corporation Parallel cooling of heat source mounted on a heat sink by means of liquid coolant
US7284389B2 (en) * 2005-01-21 2007-10-23 Hewlett-Packard Development Company, L.P. Two-fluid spray cooling system
US7307841B2 (en) * 2005-07-28 2007-12-11 Delphi Technologies, Inc. Electronic package and method of cooling electronics
US7787248B2 (en) * 2006-06-26 2010-08-31 International Business Machines Corporation Multi-fluid cooling system, cooled electronics module, and methods of fabrication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216981A (en) * 1975-07-31 1977-02-08 Toshiba Corp Integrate circuit unit
JPH04151860A (en) * 1990-10-16 1992-05-25 Fujitsu Ltd Cooling equipment of electronic device
JP2008041806A (en) * 2006-08-03 2008-02-21 Mitsubishi Materials Corp Cooling structure of power module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037860A1 (en) * 2015-08-31 2017-03-09 株式会社ExaScaler Cooling system for electronic device
JP2017191431A (en) * 2016-04-13 2017-10-19 富士通株式会社 Data center and control method of data center
JP2019061439A (en) * 2017-09-26 2019-04-18 富士通株式会社 Immersion server
US10517191B2 (en) 2017-09-26 2019-12-24 Fujitsu Limited Liquid immersion server
WO2022030464A1 (en) * 2020-08-07 2022-02-10 ダイキン工業株式会社 Immersion cooling device, heat pipe, and cold plate
JP2022030744A (en) * 2020-08-07 2022-02-18 ダイキン工業株式会社 Immersion cooling device

Also Published As

Publication number Publication date
US20130139998A1 (en) 2013-06-06
JPWO2012025981A1 (en) 2013-10-28
JP5590128B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590128B2 (en) Cooling device, electronic device having cooling device, and cooling method of heating element
JP6588654B2 (en) Working medium contact cooling system for high power components and method of operating the same
Tuma The merits of open bath immersion cooling of datacom equipment
US7284389B2 (en) Two-fluid spray cooling system
US10888032B2 (en) Apparatus for liquid immersion cooling, system for liquid immersion cooling, and method of cooling electronic device
US7477513B1 (en) Dual sided board thermal management system
US7289326B2 (en) Direct contact cooling liquid embedded package for a central processor unit
US20160330868A1 (en) Cooling module, water-cooled cooling module and cooling system
US20140124174A1 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US7134289B2 (en) Multi-state spray cooling system
US7078803B2 (en) Integrated circuit heat dissipation system
US20110315355A1 (en) Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
KR20100045376A (en) Open flow cold plate for liquid cooled electronic packages
JP2019501439A (en) Computer apparatus comprising a cooled power supply unit
US20220418156A1 (en) Cold plate and system for cooling electronic devices
EP3089210A1 (en) Cooling module, water-cooled cooling module and cooling system
US11664291B2 (en) Semiconductor assemblies including vertically integrated circuits and methods of manufacturing the same
US9439331B1 (en) Cost-effective cooling method for computer system
EP3457829B1 (en) Cooling system of working medium contact type for heat dissipation of computer and data centre
JP2023503012A (en) heatsink for liquid cooling
JPWO2019043835A1 (en) Electronic device
JP5018555B2 (en) Cooling module and composite mounting board
US11910562B2 (en) Localized thermal accelerator in an immersion environment
JP7126279B2 (en) Electronic device with bubble release device
JPH037960Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530437

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856390

Country of ref document: EP

Kind code of ref document: A1