JP7126279B2 - Electronic device with bubble release device - Google Patents

Electronic device with bubble release device Download PDF

Info

Publication number
JP7126279B2
JP7126279B2 JP2020555683A JP2020555683A JP7126279B2 JP 7126279 B2 JP7126279 B2 JP 7126279B2 JP 2020555683 A JP2020555683 A JP 2020555683A JP 2020555683 A JP2020555683 A JP 2020555683A JP 7126279 B2 JP7126279 B2 JP 7126279B2
Authority
JP
Japan
Prior art keywords
electronic device
refrigerant
bubble
cpu
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020555683A
Other languages
Japanese (ja)
Other versions
JPWO2020100816A1 (en
Inventor
茂登 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of JPWO2020100816A1 publication Critical patent/JPWO2020100816A1/en
Application granted granted Critical
Publication of JP7126279B2 publication Critical patent/JP7126279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、CPUなどの発熱体を含む電子部品を効率的に冷却することが可能な電子機器に関するものである。 TECHNICAL FIELD The present invention relates to an electronic device capable of efficiently cooling an electronic component including a heating element such as a CPU.

スパコンを含むデータセンターでは、近年急速に高密度化が進んでいる。従来、データセンターのサーバー機器の冷却には空調技術が主に用いられてきたが、空調だけではそのような発熱量の大きな高密度サーバーの熱を効率的に取り去ることは困難である。そのため、高密度サーバーの適用に起因する高発熱の問題を解決できる冷却技術が提案されている。 Data centers containing supercomputers have rapidly increased in density in recent years. Conventionally, air-conditioning technology has mainly been used to cool server equipment in data centers, but it is difficult to efficiently remove the heat from such high-density servers that generate a large amount of heat with air-conditioning alone. Therefore, cooling techniques have been proposed that can solve the problem of high heat generation resulting from the application of high-density servers.

その代表例が液体湿潤方式である。冷媒に高発熱ボードを直接湿潤させ、冷媒をポンプやファンで強制的に対流させ、CPUをはじめとする高い発熱を冷却する方式(強制対流方式)が知られている(非特許文献1)。しかし、冷媒を強制対流させるためにはポンプやファンなどが必要となり、そのための電力がシステム全体の使用電力を上昇させてしまうという欠点があった。 A typical example is the liquid wetting method. A system (forced convection system) is known in which a high heat generation board is directly wetted with a coolant, and the coolant is forcibly convected by a pump or fan to cool the high heat generation such as the CPU (non-patent document 1). However, the forced convection of the refrigerant requires a pump and a fan, which has the drawback of increasing the power consumption of the entire system.

その点を解決する方法として、ファンやポンプを使わない自然対流方式が提案されている。この方式では、CPUなどの発熱だけを起源とする自然対流によって冷媒を循環させるため、システム全体の使用電力が小さいという利点があるものの、冷却できる熱の上限が制限されるという欠点があった。 As a method for solving this problem, a natural convection system that does not use fans or pumps has been proposed. In this method, the coolant is circulated by natural convection caused only by the heat generated by the CPU, so it has the advantage that the power consumption of the entire system is small, but has the disadvantage that the upper limit of the heat that can be cooled is limited.

これに対して、冷媒をCPUなどの発熱部分にのみ滴下して冷却する方法も提案されている。しかし、この方式では、冷媒を落下地点から上に持ち上げるためのポンプが必要となり、システム全体の電力効率に限界がある。 On the other hand, there is also proposed a method of dripping a coolant only on a heat-generating part such as a CPU to cool it. However, this method requires a pump to lift the refrigerant from the drop point, which limits the power efficiency of the entire system.

一方で、冷媒の気化を利用した沸騰式冷却方式も提案されている(特許文献1)。これは、沸点がCPUなどの発熱温度以下である冷媒を選択することにより、その気化熱でCPUなどの表面を冷却する方式である。しかし、この方式では、冷媒の沸騰現象を利用しているため、沸騰気化した冷媒を冷却して液相に戻す必要があり、冷却装置のみならず容器の厳密な密閉が必要であるなど大掛かりな構成が必要となる。さらには、沸騰現象に伴い超音波が発生し電子機器に悪影響を及ぼすこと、複数のCPUが配置された場合の冷却性能にばらつきがあることなど、実用的な観点で解決すべき課題が多い。 On the other hand, a boiling cooling method using vaporization of a refrigerant has also been proposed (Patent Document 1). This is a method of selecting a coolant whose boiling point is lower than the heat generation temperature of a CPU or the like, and cooling the surface of the CPU or the like with the heat of vaporization. However, since this method utilizes the boiling phenomenon of the refrigerant, it is necessary to cool the vaporized refrigerant to return it to the liquid phase. Configuration required. Furthermore, there are many problems to be solved from a practical point of view, such as the generation of ultrasonic waves due to the boiling phenomenon, which adversely affects electronic devices, and the variation in cooling performance when a plurality of CPUs are arranged.

特開2017-150715号公報JP 2017-150715 A

富士通株式会社発行 Webマガジン「FUJITSU JOURNAL」2016年8月15日Web magazine "FUJITSU JOURNAL" published by Fujitsu Ltd. August 15, 2016

本発明は、上記事情に鑑みてなされたものであり、CPUなどの発熱体を含む電子部品を効率的に冷却することが可能な電子機器を提供することを課題とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an electronic device capable of efficiently cooling an electronic component including a heating element such as a CPU.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、冷媒と、冷媒に浸漬している電子部品と、冷媒に浸漬している気泡放出装置とを有し、該気泡放出装置から放出される気泡が平均長径0.1mm以上である電子機器によれば効率的な冷却が可能であることを見出して、本発明を完成した。 As a result of intensive research to solve the above problems, the present inventors have found a refrigerant, an electronic component immersed in the refrigerant, and a bubble discharge device immersed in the refrigerant, and the bubble discharge device The inventors have found that efficient cooling is possible with an electronic device in which air bubbles emitted from the device have an average length of 0.1 mm or more, and completed the present invention.

上記課題を達成し得た本発明の気泡放出装置を備えた電子機器は、以下の点に要旨を有する。
[1]冷媒と、該冷媒に浸漬している電子部品と、該冷媒に浸漬している気泡放出装置とが筐体に収められた電子機器であって、
前記気泡放出装置から放出された気泡の以下の測定方法で測定した平均長径が0.1mm以上であることを特徴とする電子機器。
<測定方法>
前記気泡放出装置の気泡放出口から上方30mmの地点を中心として50mm×50mmの領域をカメラで撮影して得られた画像において、合焦の範囲内にある10個の気泡(長径が0.05mm未満のものを除く)の長径を測定し、その平均値を平均長径とする。
[2]前記冷媒の沸点が70℃以上である[1]に記載の電子機器。
[3]前記冷媒の25℃における粘度が0.0008kg/m・s以上0.05kg/m・s以下である[1]又は[2]に記載の電子機器。
[4]前記気泡放出装置から放出された気泡は前記冷媒の液面まで到達し、前記気泡放出装置から前記冷媒の液面までの距離が200mm以上である[1]~[3]のいずれかに記載の電子機器。
[5]前記筐体の上部に配置された気体回収口と、前記気体回収口より回収された気体を前記気泡放出装置まで循環させる経路と前記気体を循環させるポンプとを有し、前記冷媒を循環させるポンプは有さない[1]~[4]のいずれかに記載の電子機器。
[6]前記筐体の底部には前記気泡放出装置の設置領域と非設置領域とがある[1]~[5]のいずれかに記載の電子機器。
[7]前記気泡放出装置が、孔を有する管状体又は多孔質体を含む[1]~[6]のいずれかに記載の電子機器。
[8]内部に水が循環している冷却盤が前記筐体に収められている[1]~[7]のいずれかに記載の電子機器。
[9]前記電子機器がCPUパッケージを有するボードを含む[1]~[8]のいずれかに記載の電子機器。
An electronic device equipped with the bubble ejection device of the present invention, which has achieved the above objects, has the following points.
[1] An electronic device in which a refrigerant, an electronic component immersed in the refrigerant, and a bubble discharge device immersed in the refrigerant are housed in a housing,
An electronic device, wherein an average major axis of air bubbles emitted from the air bubble ejection device measured by the following measuring method is 0.1 mm or more.
<Measurement method>
In the image obtained by photographing an area of 50 mm × 50 mm with a camera centered at a point 30 mm above the bubble discharge port of the bubble discharge device, 10 bubbles (long diameter of 0.05 mm) within the range of focus (excluding those less than 1) are measured, and the average value is taken as the average major diameter.
[2] The electronic device according to [1], wherein the refrigerant has a boiling point of 70°C or higher.
[3] The electronic device according to [1] or [2], wherein the refrigerant has a viscosity of 0.0008 kg/m·s or more and 0.05 kg/m·s or less at 25°C.
[4] Any one of [1] to [3], wherein the air bubbles released from the air bubble ejection device reach the liquid surface of the refrigerant, and the distance from the air bubble ejection device to the liquid surface of the refrigerant is 200 mm or more. The electronic device described in .
[5] A gas recovery port arranged in the upper part of the housing, a path for circulating the gas recovered from the gas recovery port to the bubble discharging device, and a pump for circulating the gas, wherein the refrigerant is supplied. The electronic device according to any one of [1] to [4], which does not have a circulating pump.
[6] The electronic device according to any one of [1] to [5], wherein the bottom of the housing has an installation area and a non-installation area for the bubble ejection device.
[7] The electronic device according to any one of [1] to [6], wherein the bubble ejection device includes a tubular body or porous body having holes.
[8] The electronic device according to any one of [1] to [7], wherein a cooling plate in which water is circulated is housed in the housing.
[9] The electronic device according to any one of [1] to [8], wherein the electronic device includes a board having a CPU package.

本発明は、従来技術の欠点を解消し、高い発熱に対して高効率な冷却能力を有した電子機器を提供するものであり、強制対流方式の高い発熱対応と、自然対流方式の高い電力使用効率とを実現できる。 The present invention overcomes the drawbacks of the prior art and provides an electronic device that has a highly efficient cooling capacity against high heat generation. efficiency and efficiency.

本発明の電子機器は、気泡発生装置から発生した所定の大きさの気泡の上昇を利用して冷媒の対流を促進させること(泡流支援)によって、発熱したCPUなどを効率的に冷却する。この泡流支援方式によれば、自然対流に加えて、気泡発生装置に空気を送る簡便な機構を追加するだけで、強制対流方式と同等レベルの冷却性能を実現できる上に、空気を送るための機構に必要な電力は冷媒を循環させるためのポンプやファンに比べて極めて小さいことから、冷却効率及び電力効率ともに優れた電子機器を提供することができる。 The electronic device of the present invention efficiently cools a heat-generating CPU or the like by promoting the convection of the coolant by utilizing the rise of air bubbles of a predetermined size generated from the air bubble generator (bubble flow support). According to this bubble flow support method, in addition to natural convection, by simply adding a simple mechanism to send air to the bubble generator, it is possible to achieve the same level of cooling performance as the forced convection method. Since the electric power required for this mechanism is much smaller than that of a pump or fan for circulating the coolant, it is possible to provide an electronic device that is excellent in both cooling efficiency and electric power efficiency.

気泡の平均長径とCPUパッケージの表面温度との関係を示すグラフである。5 is a graph showing the relationship between the average major diameter of bubbles and the surface temperature of the CPU package; 本発明の一実施形態に係る電子機器の上面図である。1 is a top view of an electronic device according to an embodiment of the invention; FIG. 図2に示した電子機器のx-x断面図である。3 is an xx cross-sectional view of the electronic device shown in FIG. 2; FIG. 図2に示した電子機器のy-y断面図である。3 is a yy sectional view of the electronic device shown in FIG. 2; FIG. 図2に示した電子機器のx-x断面図の他の一例を示す断面図である。3 is a cross-sectional view showing another example of the xx cross-sectional view of the electronic device shown in FIG. 2; FIG. 気泡流量とCPUパッケージの表面温度との関係を示すグラフである。4 is a graph showing the relationship between the air bubble flow rate and the surface temperature of the CPU package; 図7(a)~図7(d)はそれぞれ別の実施形態に係る電子機器の模式図である。7A to 7D are schematic diagrams of electronic devices according to different embodiments. CPUパッケージ表面における冷媒流速とPUEとの関係を示すグラフである。4 is a graph showing the relationship between coolant flow velocity and PUE on the surface of a CPU package; CPUパッケージの表面温度とPUEとの関係を示すグラフである。4 is a graph showing the relationship between the surface temperature of a CPU package and PUE; 冷却水温度とCPU接合温度との関係を示すグラフである。4 is a graph showing the relationship between cooling water temperature and CPU junction temperature; 冷却水温度とCPU接合温度との関係を示すグラフである。4 is a graph showing the relationship between cooling water temperature and CPU junction temperature; CPU投入電力とCPU接合温度との関係を示すグラフである。5 is a graph showing the relationship between CPU input power and CPU junction temperature; CPU投入電力とシステム総電力との関係を示すグラフである。4 is a graph showing the relationship between CPU input power and total system power; 気泡流量とCPU接合温度との関係を示すグラフである。5 is a graph showing the relationship between bubble flow rate and CPU junction temperature;

以下、実施の形態に基づき本発明を説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 Hereinafter, the present invention will be described based on the embodiments, but the present invention is not limited by the following embodiments, and can be implemented by making appropriate changes within the scope that can conform to the gist of the preceding and following descriptions. are also possible, and all of them are included in the technical scope of the present invention. In each drawing, for the sake of convenience, hatching, member numbers, etc. may be omitted. In such cases, the specification and other drawings shall be referred to. In addition, the dimensions of various members in the drawings may differ from the actual dimensions, since priority is given to helping to understand the features of the present invention.

本発明の実施形態に係る電子機器は、稼働時に発熱する発熱体を含んだ電子部品と気泡放出装置とが冷媒に浸漬され筐体に収められている。該気泡放出装置から放出された気泡の平均長径は0.1mm以上である。平均長径は以下に記載の方法で測定する。 In an electronic device according to an embodiment of the present invention, an electronic component including a heating element that generates heat during operation and a bubble discharge device are immersed in a coolant and housed in a housing. The average length of the air bubbles released from the air bubble ejection device is 0.1 mm or more. The average length is measured by the method described below.

<測定方法>
気泡放出装置の気泡放出口から上方30mmの地点を中心として、50mm×50mmの領域を高速度カメラなどの撮像装置で撮影する。得られた画像において、合焦の範囲内にある気泡のうち、長径が0.05mm未満のものを除いた10個の長径を測定し、その平均値を平均長径とする。
<Measurement method>
A 50 mm×50 mm area centered on a point 30 mm above the bubble ejection port of the bubble ejection device is photographed with an imaging device such as a high-speed camera. In the obtained image, the major diameters of 10 bubbles excluding those having a major diameter of less than 0.05 mm are measured, and the average value is taken as the average major diameter.

気泡放出装置から気泡が放出されると、冷媒中に上昇方向の泡流が生じ、この泡流によって冷媒自体も上昇方向に流動する。電子部品に含まれる発熱体が発熱した際には、その熱による冷媒の自然対流に加えて泡流に支援された冷媒の上昇対流が生じる。この泡流支援の対流により、効率的に電子部品を冷却することができる。 When bubbles are discharged from the bubble discharge device, an upward bubble flow is generated in the refrigerant, and the refrigerant itself also flows upward due to the bubble flow. When a heating element included in an electronic component generates heat, the heat causes natural convection of the coolant and upward convection of the coolant supported by bubbly flow. This bubble-assisted convection can efficiently cool electronic components.

本発明者の試算による気泡の平均長径とCPUパッケージの表面温度との関係を図1に示す。 FIG. 1 shows the relationship between the average major diameter of bubbles and the surface temperature of the CPU package, which is calculated by the inventor.

図1より、気泡放出装置から放出される気泡の平均長径が0.1mm以上であれば、冷媒中に発生する泡流により冷媒が対流し、CPUパッケージを冷却することができる。気泡の平均長径は、0.3mm以上が好ましく、0.6mm以上がより好ましい。さらに気泡の平均長径は、0.8mm以上であってもよく、1.0mm以上であってもよい。気泡が小さすぎると上昇流を生じないため、泡流によって冷媒を対流させることができない。また、気泡の平均長径は、20mm以下が好ましく、15mm以下がより好ましく、10mm以下が特に好ましい。気泡が大きすぎると、冷媒の対流支援効果が低下するだけでなく、熱伝導率の低い空気の体積が増えるために好ましくない。上記範囲の平均長径を有する気泡であれば、冷媒中に発生する泡流が冷媒を対流させることができ、CPUパッケージ表面を冷却するために有効である。 As shown in FIG. 1, if the average major diameter of the air bubbles released from the air bubble ejection device is 0.1 mm or more, the bubble flow generated in the coolant convects the coolant, and the CPU package can be cooled. The average length of the bubbles is preferably 0.3 mm or more, more preferably 0.6 mm or more. Furthermore, the average length of the air bubbles may be 0.8 mm or more, or may be 1.0 mm or more. If the bubbles are too small, they will not generate an upward flow, so the bubbly flow cannot convect the refrigerant. Also, the average length of the bubbles is preferably 20 mm or less, more preferably 15 mm or less, and particularly preferably 10 mm or less. If the bubbles are too large, not only is the convection assisting effect of the refrigerant reduced, but also the volume of air with low thermal conductivity increases, which is not preferable. Bubbles having an average major diameter within the above range are effective in cooling the surface of the CPU package because the bubbles generated in the coolant can convect the coolant.

本発明の実施形態に係る電子機器に含まれる気泡放出装置は、気体を液体中に放出する機構を有する。気泡放出が可能なものであれば構成は特に制限されないが、例えば小さな孔を設けた管状体又は多孔質体に空気などの気体を送るポンプを接続した構成を用いることができる。 A bubble ejection device included in an electronic device according to an embodiment of the present invention has a mechanism for ejecting gas into liquid. The structure is not particularly limited as long as it can release air bubbles, but for example, a structure in which a pump for sending a gas such as air is connected to a tubular body or porous body provided with small holes can be used.

本発明の実施形態に係る電子機器に含まれる冷媒は液体であり、気泡を含む構成を有する。冷媒の種類は電気絶縁性及び熱的化学的安定性に優れた不活性液体であれば特に制限されないが、シリコーンオイル、フッ素系不活性液体、エチレングリコール水溶液などが好適に用いられる。一般に、フッ素系不活性液体であるフロリナートFC3283等は高い冷却効果を有し、KF-96A-6cs等のシリコーンオイルは比較的低い冷却効果を有しているが、本発明の泡流支援方式によれば、気泡長径や気泡流量等を調節することにより、冷却効果の低い冷媒であっても冷却効果の高い冷媒と同等の冷却を行うことが可能となる。 The coolant contained in the electronic device according to the embodiment of the present invention is a liquid and has a structure including air bubbles. The type of coolant is not particularly limited as long as it is an inert liquid with excellent electrical insulation and thermal and chemical stability, but silicone oil, fluorine-based inert liquid, ethylene glycol aqueous solution and the like are preferably used. In general, Fluorinert FC3283, which is a fluorine-based inert liquid, has a high cooling effect, and silicone oil such as KF-96A-6cs has a relatively low cooling effect. According to this, by adjusting the bubble length, the bubble flow rate, and the like, even a refrigerant with a low cooling effect can be cooled in the same manner as a refrigerant with a high cooling effect.

本発明の実施形態に係る電子機器に含まれる冷媒に浸漬している電子部品は、通電による所定の動作をする部品を総称するものであり、筐体内において冷媒に浸漬し得る大きさのものでればどのような部品でも該当する。例えば、電子部品の例としてCPUチップが挙げられるが、CPUチップ自体、樹脂等でモールドしたCPUチップ、CPUチップがパッケージ内に納められたCPUパッケージ、CPUパッケージを搭載したマザーボード、またCPUのほか、メモリーチップ、ハードディスクなど、筐体内において冷媒に浸漬し得る限りあらゆる部品が該当し得る。 The electronic component immersed in the coolant included in the electronic device according to the embodiment of the present invention is a general term for components that operate in a predetermined manner when energized, and has a size that allows it to be immersed in the coolant within the housing. Any part is applicable. For example, an example of an electronic component is a CPU chip. The CPU chip itself, a CPU chip molded with resin or the like, a CPU package in which the CPU chip is housed in a package, a motherboard on which the CPU package is mounted, a CPU, Any parts, such as memory chips and hard disks, can be applied as long as they can be immersed in the coolant inside the housing.

このような本発明の実施形態に係る電子機器であれば、近年電力密度が上昇している高発熱の高密度サーバーやスーパーコンピュータにおいても、冷却効率及びエネルギー効率ともに効率的に動作させることができる。また、本発明の実施形態に係る電子機器は、気泡放出装置を加える簡便な構成であることから、その設置に必要とされるスペースは空調を基本としたシステムに比べて極めて小さくてすみ、電子機器を含むデータセンターの省スペース化が実現可能である。 With such an electronic device according to the embodiment of the present invention, even high-density servers and supercomputers with high heat generation, whose power density has been increasing in recent years, can be efficiently operated in both cooling efficiency and energy efficiency. . In addition, since the electronic device according to the embodiment of the present invention has a simple structure in which a bubble discharge device is added, the space required for its installation can be extremely small compared to a system based on air conditioning. It is possible to save the space of the data center including the equipment.

以下、本発明の一実施形態に係る電子機器を、図2~図5を参照しつつ詳細に説明する。 An electronic device according to an embodiment of the present invention will now be described in detail with reference to FIGS. 2 to 5. FIG.

本発明の一実施形態に係る電子機器1は、図2~図5に示すように、冷媒20と、冷媒20に浸漬している電子部品30と、冷媒20に浸漬している気泡放出装置40とが筐体10に収められている。気泡放出装置40は電子部品30の下方に配置されていてもよく、電子部品30は、CPUパッケージ33とメモリー32とを有するボード31であってもよい。電子機器1は複数のボード31を有することができ、複数のボード31はそれぞれ平行に直立させて筐体10に収めることができる。また、電子機器1は、気泡放出装置40から発生した気泡が上昇して生じる泡流を妨げないように配置される冷却盤50を備えていてもよい。 As shown in FIGS. 2 to 5, an electronic device 1 according to an embodiment of the present invention includes a coolant 20, an electronic component 30 immersed in the coolant 20, and a bubble discharge device 40 immersed in the coolant 20. are housed in the housing 10 . The bubble release device 40 may be placed below the electronic component 30 , which may be a board 31 with a CPU package 33 and a memory 32 . The electronic device 1 can have a plurality of boards 31 , and the plurality of boards 31 can be erected in parallel and housed in the housing 10 . In addition, the electronic device 1 may include a cooling plate 50 arranged so as not to interfere with the flow of bubbles generated by the rising air bubbles generated by the air bubble ejection device 40 .

筐体10は、密閉できてもよいし、密閉できなくてもよい。冷媒20が気化によって消失するロスを防ぐという観点からは密閉してもかまわないが、従来の沸騰式冷却方式のように沸騰した冷媒が漏れ出さないようにするための厳密な密閉はする必要がない。したがって、電子部品30として例えばCPUパッケージ33を有するボード31を複数枚筐体10に収める場合、一枚のボード31に取り換えやケーブルの交換などのメンテナンスが必要になった際、槽全体を停止して厳密な密閉を解除する必要はなく、一枚ずつのボード31を容易に取り出してメンテナンスを施すことができる。 The enclosure 10 may or may not be hermetically sealed. From the viewpoint of preventing the loss of the coolant 20 due to evaporation, it may be sealed. do not have. Therefore, when a plurality of boards 31 having, for example, a CPU package 33 as electronic components 30 are housed in the housing 10, when maintenance such as replacement of one board 31 or replacement of cables becomes necessary, the entire tank must be stopped. It is not necessary to release the strict sealing by means of a squeegee, and the boards 31 can be easily taken out one by one for maintenance.

電子機器1は、従来の沸騰式冷却方式でみられる沸騰現象に伴う超音波の発生が抑えられるため、電子部品30に対する悪影響がない上に、例えば一枚のボード31上に二個のCPUパッケージ33が縦に配置された場合に、下のCPUの動作状態が上のCPUの冷却性能に影響を及ぼすこともない。そのため、図3~図5に示したように、CPUパッケージ33を縦に並べて配置することもできるなど高い配置の自由度を有する。 Since the electronic device 1 suppresses the generation of ultrasonic waves due to the boiling phenomenon seen in the conventional boiling cooling method, there is no adverse effect on the electronic components 30, and for example, two CPU packages can be mounted on one board 31. 33 are arranged vertically, the operating state of the lower CPU does not affect the cooling performance of the upper CPU. Therefore, as shown in FIGS. 3 to 5, the CPU packages 33 can be arranged vertically, thus providing a high degree of freedom in arrangement.

気泡放出装置40からは上記測定方法で測定した平均長径が0.1mm以上の気泡が放出され、該気泡の泡流により冷媒20が上方に対流する。これにより冷媒20には、電子部品30が発熱した際に生じる自然対流に加えて、泡流に支援された上方への対流が生じ、電子部品30表面の熱が取り去られる。 Bubbles having an average major diameter of 0.1 mm or more measured by the above measuring method are discharged from the bubble discharging device 40, and the refrigerant 20 convects upward due to the bubble flow of the bubbles. As a result, in addition to the natural convection that occurs when the electronic components 30 generate heat, the coolant 20 also undergoes upward convection supported by the bubbly flow, removing heat from the surfaces of the electronic components 30 .

電子機器1は、気泡放出装置40から発生した気泡が上昇して生じる泡流を妨げないように配置される冷却盤50を備えていてもよく、例えば冷却盤50内に水が循環していてもよい。冷媒20と冷却盤50との間の熱交換で電子部品30を冷却することができる。冷却盤50は、図2~図5に示すようにボード31と平行に配置されてもよい。或いは図示していないが、例えば筐体10が外側壁と内側壁を有しており該外側壁と該内側壁との間に形成される空間に水が循環している構成など、筐体10が冷却盤50を兼ねる形態であってもよい。冷却盤50内に循環する水の温度は低いほど冷却効果が高くなるが、本発明の泡流支援によれば、泡流支援がない場合に比べて、冷却盤50内に循環する水の温度が高くても同等の冷却効果を実現することが可能となる。 The electronic device 1 may include a cooling plate 50 arranged so as not to interfere with the bubble flow generated by rising bubbles generated from the bubble ejection device 40. For example, water is circulated in the cooling plate 50. good too. The electronic component 30 can be cooled by heat exchange between the coolant 20 and the cooling plate 50 . The cooling platen 50 may be arranged parallel to the board 31 as shown in FIGS. 2-5. Alternatively, although not shown, for example, the housing 10 has an outer wall and an inner wall, and water is circulated in a space formed between the outer wall and the inner wall. may also serve as the cooling plate 50 . The lower the temperature of the water circulating in the cooling plate 50, the higher the cooling effect. It becomes possible to achieve the same cooling effect even if the .DELTA.

本発明者の試算による各種冷媒を用いたときのCPUパッケージの表面温度を、各種冷媒の沸点や粘度などの物性と併せて表1に示す。CPU1個当たりの投入電力は90W(以降、CPU投入電力と記載する場合の投入電力は、CPU1個当たりの投入電力を指す)、冷却盤に流す冷却水の温度は20℃として試算した。 Table 1 shows the surface temperature of the CPU package when using various refrigerants according to trial calculations by the present inventor, together with physical properties such as the boiling points and viscosities of the various refrigerants. Trial calculations were made assuming that the input power per CPU is 90 W (hereafter, the input power when described as CPU input power refers to the input power per CPU) and the temperature of the cooling water flowing through the cooling plate is 20°C.

Figure 0007126279000001
Figure 0007126279000001

冷媒20は、電子部品30の表面で沸騰しないように、また、気化することによって消失するロスが抑えられるよう、電子部品30の表面温度よりも高い沸点を有していることが好ましく、具体的には沸点が70℃以上であることが好ましい。より好ましくは90℃以上、さらに好ましくは110℃以上である。 The coolant 20 preferably has a boiling point higher than the surface temperature of the electronic component 30 so as not to boil on the surface of the electronic component 30 and to suppress loss due to evaporation. preferably has a boiling point of 70° C. or higher. It is more preferably 90° C. or higher, still more preferably 110° C. or higher.

冷媒20は、25℃における粘度が0.0008kg/m・s以上であることが好ましく、より好ましくは0.001kg/m・s以上、さらに好ましくは0.0012kg/m・s以上である。粘度が低すぎるとCPU表面から熱を取り去る効果が低下する。また、0.05kg/m・s以下であることが好ましく、より好ましくは0.045kg/m・s以下、さらに好ましくは0.04kg/m・s以下である。粘度が高すぎると、泡流が生じにくく、熱伝導が悪くなるため好ましくない。冷媒20の粘度の上限及び下限が上記の範囲であれば、気泡放出装置40から放出された気泡による泡流支援により冷媒20が対流し、効果的に電子部品30を冷却することができる。 The refrigerant 20 preferably has a viscosity at 25° C. of 0.0008 kg/m·s or more, more preferably 0.001 kg/m·s or more, and even more preferably 0.0012 kg/m·s or more. If the viscosity is too low, it will be less effective at removing heat from the CPU surface. Also, it is preferably 0.05 kg/m·s or less, more preferably 0.045 kg/m·s or less, and still more preferably 0.04 kg/m·s or less. If the viscosity is too high, it is not preferable because it is difficult to generate a bubbly flow and the heat conduction is deteriorated. If the upper and lower limits of the viscosity of the coolant 20 are within the above ranges, the coolant 20 convects due to the support of bubble flow by the bubbles released from the bubble ejection device 40, and the electronic component 30 can be cooled effectively.

気泡放出装置40から放出された気泡は、泡流となって上昇し、冷媒20の液面まで到達する。気泡放出装置40から冷媒20の液面までの距離は200mm以上であることが好ましい。200mm以上であれば、上昇する気泡による泡流が冷媒を対流させることができる。 The bubbles released from the bubble release device 40 rise as a bubble flow and reach the liquid surface of the coolant 20 . It is preferable that the distance from the bubble discharging device 40 to the liquid surface of the refrigerant 20 is 200 mm or more. If it is 200 mm or more, a bubble flow caused by rising bubbles can convect the refrigerant.

冷媒20は、1種類のみを用いてもよいし、2種類以上を用いてもよい。例えば、図5に示すように、CPU等の高発熱部位が浸潤する部分までは、蒸気圧が高く、比重が高い、冷却効率の高い第1冷媒21を充填し、高発熱部位がない部分には、蒸気圧が低く、比重が低い第2冷媒22を重ねて充填することも可能である。その場合、第1冷媒21と第2冷媒22は、水と油のように相互に混ざらないことが好ましい。このように第1冷媒21と第2冷媒22とを使用すれば、第1冷媒21として使用される冷却効率の高い冷媒は一般に沸点が低く、蒸発損が高く、かつコストも高い場合が多いが、そのような第1冷媒21の上に蒸気圧の低い第2冷媒22が充填されるため、冷媒の蒸発(損失)を防ぎつつより少ない泡流でより高い冷却能力を低コストで実現することが可能となる。上記の例としては、第1冷媒21としてFC-3283等のフロリナートを、第2冷媒22としてKF-96A-6cs等のシリコーンオイルを選択することができ、冷媒20がFC-3283等のフロリナートだけの場合と比べて冷媒コストは1/2で、また冷媒20がKF-96A-6cs等のシリコーンオイルだけの場合と比べて泡流は1/10で同等の冷却効果を達成することができる。また、第1冷媒21と第2冷媒22とを使用する態様では、第1冷媒21として地球温暖化係数の高い冷媒を用いた場合でも、蒸発の割合を劇的に抑制することができるため好ましい。 Only one type of refrigerant 20 may be used, or two or more types may be used. For example, as shown in FIG. 5, the first refrigerant 21 with high vapor pressure, high specific gravity, and high cooling efficiency is filled up to the part where the high heat generating part such as the CPU infiltrates, and the part without the high heat generating part is filled with the first refrigerant 21. can be filled with the second refrigerant 22 having a low vapor pressure and a low specific gravity. In that case, the first refrigerant 21 and the second refrigerant 22 preferably do not mix with each other like water and oil. When the first refrigerant 21 and the second refrigerant 22 are used in this way, the refrigerant with high cooling efficiency used as the first refrigerant 21 generally has a low boiling point, high evaporation loss, and high cost. Since the second refrigerant 22 having a low vapor pressure is filled on top of the first refrigerant 21, evaporation (loss) of the refrigerant is prevented, and a higher cooling capacity can be realized with less bubbles and at a lower cost. becomes possible. In the above example, Fluorinert such as FC-3283 can be selected as the first refrigerant 21, silicone oil such as KF-96A-6cs can be selected as the second refrigerant 22, and only Fluorinert such as FC-3283 can be used as the refrigerant 20. The cost of the refrigerant is 1/2 compared to the case of , and the bubble flow is 1/10 compared to the case where the refrigerant 20 is only silicone oil such as KF-96A-6cs, and the same cooling effect can be achieved. In addition, in the aspect using the first refrigerant 21 and the second refrigerant 22, even when a refrigerant with a high global warming potential is used as the first refrigerant 21, the rate of evaporation can be dramatically suppressed, which is preferable. .

図示していないが、冷媒20の液面まで到達した気泡は、閉じた筐体10の上部に配置された気体回収口から回収されてもよい。回収された気体は、ポンプによって気体回収口から気泡放出装置40までの経路を通って循環されてもよい。筐体10を閉じることで気化による冷媒20の消失を防ぐことができ、回収した気体を気体放出装置に供給できる。このように、本発明の実施形態に係る電子機器は、回収された気体を循環させるポンプを有していてもよいが、冷媒20を循環させるポンプは有さなくてもよい。冷媒を循環させるポンプに比べて、気体を循環させるポンプの消費電力は少ないため、気泡放出装置40に空気を送り込むためのポンプを考慮に入れても、従来の冷媒自体を循環させるポンプを有する強制対流方式に比べて高エネルギー効率を実現できる。気泡放出装置40に空気を送り込むためのポンプ及び気泡が冷媒20の液面まで到達して回収された気体を循環させるポンプには、例えばマイクロDCモーターのような小型モーターを用いることができる。 Although not shown, bubbles that have reached the liquid surface of the coolant 20 may be recovered from a gas recovery port arranged at the top of the closed housing 10 . The recovered gas may be circulated through the path from the gas recovery port to the bubble release device 40 by a pump. By closing the housing 10, the coolant 20 can be prevented from disappearing due to vaporization, and the recovered gas can be supplied to the gas release device. As described above, the electronic device according to the embodiment of the present invention may have a pump for circulating the collected gas, but may not have a pump for circulating the coolant 20 . Compared to a pump that circulates the refrigerant, a pump that circulates the gas consumes less power. High energy efficiency can be achieved compared to the convection method. A small motor such as a micro DC motor can be used for the pump for sending air into the air bubble releasing device 40 and the pump for circulating the collected gas when the air bubbles reach the liquid surface of the coolant 20.

気泡放出装置40は、一つ以上配置されていてもよく、図3~図5に示すように筐体10の底部に配置されていてもよい。この場合、図3及び図5に示すように、筐体10の底部には気泡放出装置40の設置領域と非設置領域とがあることが好ましい。設置領域の上方には泡流が生じて冷媒20が上方に対流し、非設置領域の上方では冷媒20が下方に対流することで冷媒が循環し、効率的に電子部品30を冷却することができる。 One or more bubble ejection devices 40 may be arranged, and may be arranged at the bottom of the housing 10 as shown in FIGS. 3-5. In this case, as shown in FIGS. 3 and 5, it is preferable that the bottom of the housing 10 has an installation area and a non-installation area for the bubble ejection device 40 . A bubbly flow is generated above the installation area, causing the coolant 20 to convect upward, and the coolant 20 convects downward above the non-installation area, thereby circulating the coolant and efficiently cooling the electronic component 30. can.

気泡放出装置40は孔を有する管状体又は多孔質体を含んでいてもよいが、気泡放出装置40が孔を有する管状体である場合、孔は単一であってもよく複数であってもよい。各孔の長径は、平均長径が0.1mm以上の気泡を放出できればよく、例えば0.05mm以上が好ましく、0.07mm以上がより好ましい。また、各孔の長径は、0.3mm以上であってもよく、0.5mm以上であってもよい。また、気泡の平均長径の上限を20mm以下、より好ましくは15mm以下、特に好ましくは10mm以下とするために、気泡放出装置の各孔の長径は15mm以下が好ましく、10mm以下がより好ましく、8mm以下が特に好ましい。気泡放出装置40から放出される気泡の長径は、気泡放出装置40に送り込まれる空気の流量にもよるが一般に気泡放出装置40が有する孔の長径よりも大きく、一旦放出された気泡は上昇するにしたがって合体して大きくなる傾向があるため、気泡放出装置40の有する孔の長径は、望ましい気泡の長径よりも小さいことが好ましい。 The bubble releasing device 40 may include a tubular body having holes or a porous body. When the bubble releasing device 40 is a tubular body having holes, the hole may be single or plural. good. The long diameter of each hole is sufficient as long as it can release air bubbles having an average long diameter of 0.1 mm or more, for example, 0.05 mm or more is preferable, and 0.07 mm or more is more preferable. Moreover, the long diameter of each hole may be 0.3 mm or more, or may be 0.5 mm or more. Further, in order to set the upper limit of the average long diameter of bubbles to 20 mm or less, more preferably 15 mm or less, and particularly preferably 10 mm or less, the long diameter of each hole of the bubble release device is preferably 15 mm or less, more preferably 10 mm or less, and 8 mm or less. is particularly preferred. The long diameter of the air bubbles released from the air bubble ejection device 40 depends on the flow rate of the air sent into the air bubble ejection device 40, but generally it is larger than the long diameter of the hole of the air bubble ejection device 40. Therefore, since there is a tendency for the air bubbles to coalesce and become larger, the long diameter of the holes of the air bubble discharge device 40 is preferably smaller than the desired long diameter of the air bubbles.

気泡を構成する気体の種類は特に限定されず、空気以外の気体でもかまわないが、環境に通常存在する空気が好ましく、その流量の好ましい下限は、例えば0.05L/分以上、0.07L/分以上、0.09L/分以上、0.1L/分以上、0.5L/分以上、1L/分以上、及び1.2L/分以上である。気泡流量が少なすぎると十分な泡流を得ることができない。一方、気泡流量が多くなり過ぎると、冷媒中に熱伝導率の低い気泡が増え過ぎて冷却効率が落ちるため、流量の上限は12L/分が好ましく、10L/分がより好ましく、9L/分がさらに好ましく、8L/分が特に好ましい。また、冷媒自体が有する冷却効果によって、気泡流量を選択することができる。例えば、冷却効果の高いフロリナートFC3283のような冷媒を用いる場合は気泡流量を0.1L/分とし、冷却効果が比較的低いシリコーンオイルKF-96A-6csのような冷媒を用いる場合は気泡流量を1L/分、2L/分、4L/分、又は7L/分とするなど、冷媒によって気泡流量を調節することが可能である。 The type of gas that constitutes the bubbles is not particularly limited, and it may be a gas other than air, but air that normally exists in the environment is preferable. min or more, 0.09 L/min or more, 0.1 L/min or more, 0.5 L/min or more, 1 L/min or more, and 1.2 L/min or more. If the bubble flow rate is too low, sufficient bubble flow cannot be obtained. On the other hand, if the air bubble flow rate is too large, the number of air bubbles with low thermal conductivity in the refrigerant will increase and the cooling efficiency will decrease. More preferably, 8 L/min is particularly preferred. Also, the air bubble flow rate can be selected according to the cooling effect of the refrigerant itself. For example, when using a refrigerant with a high cooling effect such as Fluorinert FC3283, the bubble flow rate is set to 0.1 L / min, and when using a refrigerant with a relatively low cooling effect such as silicone oil KF-96A-6cs, the bubble flow rate is set to 0.1 L / min. The bubble flow rate can be adjusted by the refrigerant, such as 1 L/min, 2 L/min, 4 L/min, or 7 L/min.

本発明の実施形態に係る電子機器を使用しているデータセンターにおいて、電子機器のうちICT機器の使用する電力(ICT機器の電力)とデータセンターが全体で使用する電力(全体の電力)の比PUE(Power Usage Effectiveness)が1.1未満である(全体の電力/ICT機器の電力<1.1)ことが好ましい。PUEは、データセンターにおけるICT機器の稼働効率を表す指標である。冷却電力はICT機器の電力ではなく全体の電力に含まれるので、PUEが1.0に近づくほど全体の電力に占める冷却電力の割合が低いことを意味している。本発明の実施形態に係る電子機器は、使用電力の少ない泡流支援によって冷媒が対流するため、高効率の指標とされてきたPUE=1.1未満を達成できる。また、1.05以下、さらには1.02以下の低いPUEも実現可能である。 In a data center using the electronic equipment according to the embodiment of the present invention, the ratio of the power used by the ICT equipment among the electronic equipment (the power of the ICT equipment) to the power used by the entire data center (total power) PUE (Power Usage Effectiveness) is preferably less than 1.1 (total power/ICT device power <1.1). PUE is an index representing the operating efficiency of ICT equipment in a data center. Since the cooling power is included in the total power, not the power of the ICT equipment, it means that the closer the PUE is to 1.0, the lower the proportion of the cooling power in the total power. The electronic device according to the embodiment of the present invention can achieve a PUE of less than 1.1, which has been regarded as an index of high efficiency, because the refrigerant convects with the help of bubble flow that uses less power. Also, a low PUE of 1.05 or less, or even 1.02 or less can be realized.

電子部品30に例えばCPUパッケージ33が含まれている場合、CPUの可動制限温度以上になってしまうと素子として正常に動作しなくなるため、可動制限温度以下となるよう投入電力を抑える必要がある。例えばCPUでは、CPU接合温度Tjが一定温度以下である必要がある。このように、電子部品30に投入できる電力は可動制限温度によって制限されるが、本発明の実施形態に係る電子機器は、電子部品30に含まれるCPUパッケージ33などの発熱体を効率的に冷却できるので、同じ投入電力であっても発熱体の温度を低く抑えることができる。したがって、自然対流方式に比べて本発明の実施形態に係る電子機器は投入電力の上限を引き上げることが可能となり、高電力密度の電子機器を実現できる。また、本発明の実施形態に係る電子機器と強制対流方式とを比べると、電子部品30への最大投入電力は同等であるが、その際のPUE値が本発明の実施形態に係る電子機器では小さくなり、エネルギー効率の観点で優れている。本発明の実施形態に係る電子機器(泡流支援方式)と、強制対流方式及び自然対流方式の電子機器において、CPUに最大投入できる電力とその投入電力における最良PUEの値を表2に示す。強制対流方式は本発明と同等のCPU最大投入電力を投入できるがPUEは高くなる。一方で、自然対流方式は本発明と同等のPUEを実現できるが、CPUに投入できる最大投入電力は小さくなる。If the electronic component 30 includes, for example, a CPU package 33, it will not operate normally as a device if the temperature rises above the limit of movement of the CPU. For example, in a CPU, the CPU junction temperature T j needs to be below a certain temperature. As described above, the power that can be supplied to the electronic component 30 is limited by the movable limit temperature, but the electronic device according to the embodiment of the present invention efficiently cools the heat generating element such as the CPU package 33 included in the electronic component 30. Therefore, the temperature of the heating element can be kept low even with the same input power. Therefore, the electronic device according to the embodiment of the present invention can raise the upper limit of input power as compared with the natural convection system, and can realize an electronic device with high power density. Further, when the electronic device according to the embodiment of the present invention and the forced convection system are compared, the maximum input power to the electronic component 30 is the same, but the PUE value at that time is Smaller and more energy efficient. Table 2 shows the maximum power that can be input to the CPU and the best PUE values for the input power in the electronic device (bubble flow support method) according to the embodiment of the present invention and the electronic device of the forced convection method and the natural convection method. The forced convection method can apply the same maximum CPU power as the present invention, but the PUE is higher. On the other hand, the natural convection system can achieve a PUE equivalent to that of the present invention, but the maximum input power that can be input to the CPU is smaller.

さらに、本発明の泡流支援方式によれば、冷媒20の冷却効果が異なっていても気泡長径や気泡流量等を調節することにより同等の冷却効果が期待できるため、例えば冷却効果の比較的低いKF-96A-6cs等のシリコーンオイルを冷媒20として使用した場合であっても、冷却効果の高いフロリナートFC3283等を冷媒20として使用した場合とほぼ同様にCPU接合温度Tjを一定以下の温度とすることができる。その結果、冷媒20の種類にかかわらずCPU投入電力を高くすることができ、低いPUE値を保ちつつシステム総電力も高くすることが可能となる。Furthermore, according to the bubble flow support system of the present invention, even if the cooling effect of the refrigerant 20 is different, the same cooling effect can be expected by adjusting the bubble length, the bubble flow rate, etc. Therefore, for example, the cooling effect is relatively low. Even if a silicone oil such as KF-96A-6cs is used as the coolant 20, the CPU junction temperature T j will be kept below a certain temperature in substantially the same way as when Fluorinert FC3283 or the like, which has a high cooling effect, is used as the coolant 20. can do. As a result, the power input to the CPU can be increased regardless of the type of refrigerant 20, and the total system power can be increased while maintaining a low PUE value.

Figure 0007126279000002
Figure 0007126279000002

本願は、2018年11月13日に出願された日本国特許出願第2018-213141号に基づく優先権の利益を主張するものである。2018年11月13日に出願された日本国特許出願第2018-213141号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2018-213141 filed on November 13, 2018. The entire contents of the specification of Japanese Patent Application No. 2018-213141 filed on November 13, 2018 are incorporated herein by reference.

以下に実施例を示し、本発明を具体的に説明する。 EXAMPLES The present invention will be specifically described below with reference to Examples.

<実施例1:気泡流量とCPUパッケージ表面温度>
本発明の実施例に係る電子機器において、冷媒としてフッ素系不活性液体フロリナートFC-3283、CPUパッケージを含む電子機器を用い、CPU投入電力が145Wの時の気泡流量とCPUパッケージ表面温度との関係を調べた。冷却盤に流す水の温度を10℃及び25℃として測定した結果を図6に示す。図6において、気泡流量が0L/分とは、泡流支援なし、すなわち自然対流方式であることを意味する。泡流支援ありの場合は泡流支援なしの場合に比べてCPUパッケージの表面温度が低くなり、気泡流量が0.1L/分~7L/分の範囲で増加すると、CPUパッケージの表面温度は単調減少することがわかった。
<Example 1: Air bubble flow rate and CPU package surface temperature>
In the electronic device according to the embodiment of the present invention, an electronic device including a fluorine-based inert liquid Fluorinert FC-3283 as a coolant and a CPU package is used, and the relationship between the bubble flow rate and the CPU package surface temperature when the CPU input power is 145 W. examined. FIG. 6 shows the results of measuring the temperatures of the water flowing through the cooling plate at 10° C. and 25° C. FIG. In FIG. 6, a bubble flow rate of 0 L/min means that there is no bubble flow support, that is, a natural convection system. With bubble flow support, the surface temperature of the CPU package is lower than without bubble flow support, and when the bubble flow rate increases in the range of 0.1 L/min to 7 L/min, the surface temperature of the CPU package becomes monotonic. found to decrease.

<実施例2:気泡放出装置の形状とCPUパッケージ表面温度>
本発明の実施例に係る電子機器において、下記の条件で気泡放出装置が有する孔の直径と孔の個数を変えたときのCPUパッケージ表面温度を調べた。
CPU投入電力:90W
冷媒:フロリナートFC-3283
気泡流量:0.1L/分
冷却盤に流す冷却水の温度:25℃
電子機器の模式図を図7(a)~図7(d)に、結果を表3に示す。孔径が1mmの場合、孔が1個(気泡放出装置a)、4個(気泡放出装置c)、及び多孔形状(気泡放出装置d)の場合それぞれ同様にCPUパッケージが冷却されていることがわかった。また、孔径が7mmの場合(気泡放出装置b)も孔径が1mmの場合と同様にCPUパッケージが冷却されていることがわかった。
<Example 2: Shape of Bubble Ejecting Device and Surface Temperature of CPU Package>
In the electronic device according to the embodiment of the present invention, the surface temperature of the CPU package was examined when the diameter of the hole and the number of holes of the bubble ejection device were changed under the following conditions.
CPU input power: 90W
Refrigerant: Fluorinert FC-3283
Air bubble flow rate: 0.1 L/min Cooling water temperature: 25°C
Schematic diagrams of the electronic device are shown in FIGS. 7(a) to 7(d), and the results are shown in Table 3. It can be seen that the CPU package is cooled in the same way when the hole diameter is 1 mm, when there are one hole (bubble discharging device a), when there are four holes (bubble discharging device c), and when there are multiple holes (bubble discharging device d). rice field. It was also found that the CPU package was cooled in the case of the hole diameter of 7 mm (bubble discharge device b) as well as in the case of the hole diameter of 1 mm.

Figure 0007126279000003
Figure 0007126279000003

<実施例3:CPUパッケージ表面の冷媒流速とPUE>
自然対流に加えて、本発明の実施例に係る電子機器を用いた泡流支援方式の場合と強制対流方式を用いた場合の対流において、CPUパッケージ表面の冷媒流速とPUEとの関係を調べた。CPU投入電力は90Wとし、冷媒はフッ素系不活性液体フロリナートFC-3283を用いた。結果を図8に示す。本発明の泡流支援方式では、強制対流方式と同等のCPUパッケージ表面の冷媒流速であっても自然対流方式と同等の低いPUEを実現していることがわかった。
<Example 3: Coolant flow velocity on the surface of the CPU package and PUE>
In addition to the natural convection, the relationship between the coolant flow velocity on the surface of the CPU package and the PUE was investigated in the case of the bubble flow support system using the electronic device according to the embodiment of the present invention and the convection in the case of the forced convection system. . The power applied to the CPU was 90 W, and the refrigerant used was fluorine-based inert liquid Fluorinert FC-3283. The results are shown in FIG. It was found that the bubble flow support system of the present invention achieves a low PUE equivalent to that of the natural convection system even at the same coolant flow velocity on the surface of the CPU package as that of the forced convection system.

<実施例4:CPUパッケージの表面温度とPUE>
本発明の実施例に係る電子機器を用いた泡流支援方式と、強制対流方式及び自然対流方式におけるCPUパッケージの表面温度とPUEとの関係を調べた。CPU投入電力は90Wとし、冷媒はフッ素系不活性液体フロリナートFC-3283を用いた。結果を図9に示す。本発明の泡流支援方式は、強制対流方式と同レベルまでCPUパッケージの表面温度を下げられる上に、自然対流方式と同等の低いPUEを実現していることがわかった。
<Example 4: CPU package surface temperature and PUE>
The relationship between the surface temperature of the CPU package and the PUE was investigated in the bubble flow support method using the electronic device according to the embodiment of the present invention, the forced convection method, and the natural convection method. The power applied to the CPU was 90 W, and the refrigerant used was fluorine-based inert liquid Fluorinert FC-3283. The results are shown in FIG. It was found that the bubble flow support system of the present invention can reduce the surface temperature of the CPU package to the same level as the forced convection system, and also realizes a low PUE equivalent to that of the natural convection system.

<実施例5:冷媒の種類による冷却水温度とCPU接合温度>
冷却効果の高い冷媒としてフロリナートFC3283を、冷却効果の低い冷媒としてシリコーンオイルKF-96A-6csを用いて、本発明の実施例に係る電子機器を用いた泡流支援方式(泡流支援あり)及び自然対流方式(泡流支援なし)における冷却水温度とCPU接合温度Tjとの関係を調べた。CPU投入電力は125Wとし、冷却水流量は39L/分とした。結果を図10及び図11に示す。図10より、冷却効果が高いフロリナートFC3283の場合は、泡流支援なしでは冷却水温度が46℃で、また泡流支援ありでは51℃で、CPU接合温度Tjを93℃未満とできることがわかった。すなわち、泡流支援により、CPU接合温度Tjを93℃未満とするための冷却水の温度を46℃から51℃にすることができた。一方で、図11より、冷却効果の低いシリコーンオイルKF-96A-6csの場合は、泡流支援なしでは冷却水温度が34℃と低くなければCPU接合温度Tjを93℃未満とすることはできなかったのに対し、泡流支援ありでは冷却水温度が49℃でもCPU接合温度Tjを93℃未満とすることができることがわかった。すなわち、泡流支援により、CPU接合温度Tjを93℃未満とするための冷却水の温度を34℃から49℃にすることができた。これは、泡流支援を行うことで、冷却水温度が高くてもCPU接合温度を一定以下にできることを示しているが、特に、冷却効果が低いシリコーンオイルKF-96A-6csのような冷媒であっても、泡流支援を行えば、冷却効果が高いフロリナートFC3283と同等まで冷却水温度の許容範囲を高くできることを意味している。
<Example 5: Cooling water temperature and CPU junction temperature depending on the type of refrigerant>
Using Fluorinert FC3283 as a refrigerant with a high cooling effect and silicone oil KF-96A-6cs as a refrigerant with a low cooling effect, a bubble flow support system (with bubble flow support) using the electronic device according to the embodiment of the present invention and The relationship between the cooling water temperature and the CPU junction temperature T j in the natural convection system (without bubble flow support) was investigated. The CPU input power was 125 W, and the cooling water flow rate was 39 L/min. The results are shown in FIGS. 10 and 11. FIG. From FIG. 10, it can be seen that in the case of Fluorinert FC3283, which has a high cooling effect, the cooling water temperature is 46° C. without bubble flow support, and 51° C. with bubble flow support, and the CPU junction temperature T j can be less than 93° C. rice field. That is, with the help of bubble flow, the cooling water temperature was able to be reduced from 46°C to 51°C to keep the CPU junction temperature T j below 93°C. On the other hand, from FIG. 11, in the case of silicone oil KF-96A-6cs, which has a low cooling effect, the CPU junction temperature T j cannot be set to less than 93° C. unless the cooling water temperature is as low as 34° C. without bubble flow support. In contrast, it was found that the CPU junction temperature T j can be made less than 93° C. even if the cooling water temperature is 49° C. with bubble flow support. That is, with the aid of bubbly flow, the cooling water temperature was able to be reduced from 34°C to 49°C to keep the CPU junction temperature T j below 93°C. This shows that the bubble flow support can keep the CPU junction temperature below a certain level even if the cooling water temperature is high. Even if there is, it means that the permissible range of the cooling water temperature can be increased to the same level as that of Fluorinert FC3283, which has a high cooling effect, if bubble flow support is performed.

<実施例6:冷媒の種類によるCPU投入電力とCPU接合温度>
冷却効果の高い冷媒としてフロリナートFC3283を、冷却効果の低い冷媒としてシリコーンオイルKF-96A-6csを用いて、本発明の実施例に係る電子機器を用いた泡流支援方式を用いた場合のCPU投入電力とCPU接合温度との関係を調べた。冷却水温度は20℃とし、冷却水流量は39L/分とした。結果を図12に示す。図12より、冷却効果の高いフロリナートFC3283では、泡流支援方式を用いればCPU投入電力を257Wまで上げてもCPU接合温度Tjを93℃未満とできることがわかった。さらに、冷却効果の低いシリコーンオイルKF-96A-6csであっても、泡流支援方式を用いればCPU投入電力を238Wまで上げられることがわかった。
<Example 6: CPU input power and CPU junction temperature depending on the type of refrigerant>
Fluorinert FC3283 is used as a coolant with a high cooling effect, silicone oil KF-96A-6cs is used as a coolant with a low cooling effect, and CPU input when the bubble flow support system using the electronic device according to the embodiment of the present invention is used. The relationship between power and CPU junction temperature was investigated. The cooling water temperature was set to 20° C., and the cooling water flow rate was set to 39 L/min. The results are shown in FIG. From FIG. 12, it was found that with the Fluorinert FC3283, which has a high cooling effect, the CPU junction temperature T j can be kept below 93° C. even if the CPU input power is increased to 257 W by using the bubbly flow support method. Furthermore, it was found that even with silicone oil KF-96A-6cs, which has a low cooling effect, the power supplied to the CPU can be increased to 238 W by using the bubbly flow support method.

<冷媒の種類によるCPU投入電力とシステム総電力>
実施例6におけるCPU投入電力とシステム総電力との関係を図13に示す。冷却効果の高いフロリナートFC3283では、泡流支援方式を用いればCPU投入電力を257Wまで上げられるため、システム総電力を16.6kWとすることができた。また、冷却効果の低いシリコーンオイルKF-96A-6csであっても、泡流支援方式を用いればCPU投入電力を238Wまで上げられるため、システム総電力を16kWとすることができ、冷媒の冷却効果による違いを殆ど相殺することができた。これより、泡流支援方式を用いることにより、冷媒の選択肢を広げられることがわかった。
<CPU input power and total system power depending on the type of refrigerant>
FIG. 13 shows the relationship between the CPU input power and the total system power in the sixth embodiment. With the Fluorinert FC3283, which has a high cooling effect, the total system power could be reduced to 16.6 kW because the CPU input power could be increased to 257 W if the bubbling support system was used. In addition, even with silicone oil KF-96A-6cs, which has a low cooling effect, if the bubble flow support system is used, the power input to the CPU can be increased to 238 W, so the total system power can be reduced to 16 kW. We were able to almost cancel out the differences due to From this, it was found that the choice of refrigerant can be expanded by using the bubble flow support method.

<実施例7:冷媒の種類による気泡流量とCPU接合温度>
冷却効果の高い冷媒としてフロリナートFC3283を、冷却効果の低い冷媒としてシリコーンオイルKF-96A-6csを用いて、気泡流量とCPU接合温度Tjとの関係を調べた。CPU投入電力は125W、冷却水温度は20℃、冷却水流量は39L/分とした。結果を図14に示す。ここで気泡流量が0/分とは、泡流支援なし、すなわち自然対流方式であることを意味し、それ以外は本発明の実施例に係る電子機器を用いて泡流支援を行ったことを意味する。図14より、冷却効果の高いフロリナートFC3283では、気泡流量が0.1L/分から8L/分の範囲でCPU接合温度が単調減少した。一方で、冷却効果の低いシリコーンオイルKF-96A-6csでは、気泡流量が1L/分以上になると、泡流支援なし及び気泡流量が1L/分未満に比べてCPU接合温度が低く抑えられた。これより、泡流支援方式を用いて気泡流量を1L/分以上とすることで、冷却効果の低いシリコーンオイルKF-96A-6csを冷媒として用いてもCPU接合温度を低くできることがわかった。
<Example 7: Bubble flow rate and CPU junction temperature depending on the type of refrigerant>
Using Fluorinert FC3283 as a coolant with a high cooling effect and silicone oil KF-96A-6cs as a coolant with a low cooling effect, the relationship between the bubble flow rate and the CPU junction temperature T j was investigated. The CPU input power was 125 W, the cooling water temperature was 20° C., and the cooling water flow rate was 39 L/min. The results are shown in FIG. Here, the bubble flow rate of 0/min means that there is no bubble flow support, that is, the natural convection system is used. means. From FIG. 14, with Fluorinert FC3283, which has a high cooling effect, the CPU junction temperature monotonically decreased when the air bubble flow rate ranged from 0.1 L/min to 8 L/min. On the other hand, with silicone oil KF-96A-6cs, which has a low cooling effect, when the air bubble flow rate is 1 L/min or more, the CPU junction temperature is kept lower than when there is no bubble flow support and when the air bubble flow rate is less than 1 L/min. From this, it was found that the CPU junction temperature can be lowered by using the bubbly flow support method and setting the bubble flow rate to 1 L/min or more, even if silicone oil KF-96A-6cs, which has a low cooling effect, is used as the coolant.

1:電子機器
10:筐体
20:冷媒
21:第1冷媒
22:第2冷媒
30:電子部品
31:ボード
32:メモリー
33:CPUパッケージ
40:気泡放出装置
50:冷却盤
1: Electronic Device 10: Housing 20: Refrigerant 21: First Refrigerant 22: Second Refrigerant 30: Electronic Component 31: Board 32: Memory 33: CPU Package 40: Bubble Ejector 50: Cooling Panel

Claims (8)

冷媒と、該冷媒に浸漬している電子部品と、該冷媒に浸漬している気泡放出装置とが筐体に収められた電子機器であって、前記冷媒の沸点が70℃以上であり、前記気泡放出装置から放出された気泡の以下の測定方法で測定した平均長径が0.1mm以上であることを特徴とする電子機器。
<測定方法>
前記気泡放出装置の気泡放出口から上方30mmの地点を中心として50mm×50mmの領域をカメラで撮影して得られた画像において、合焦の範囲内にある10個の気泡(長径が0.05mm未満のものを除く)の長径を測定し、その平均値を平均長径とする。
An electronic device in which a refrigerant, an electronic component immersed in the refrigerant, and a bubble discharge device immersed in the refrigerant are housed in a housing, wherein the boiling point of the refrigerant is 70° C. or higher, and the 1. An electronic device characterized in that the average major axis of air bubbles released from a bubble ejection device measured by the following measuring method is 0.1 mm or more.
<Measurement method>
In the image obtained by photographing an area of 50 mm × 50 mm with a camera centered at a point 30 mm above the bubble discharge port of the bubble discharge device, 10 bubbles (long diameter of 0.05 mm) within the range of focus (excluding those less than 1) are measured, and the average value is taken as the average major diameter.
前記冷媒の25℃における粘度が0.0008kg/m・s以上0.05kg/m・s以下である請求項1に記載の電子機器。 The electronic device according to claim 1, wherein the refrigerant has a viscosity of 0.0008 kg/m·s or more and 0.05 kg/m·s or less at 25°C. 前記気泡放出装置から放出された気泡は前記冷媒の液面まで到達し、前記気泡放出装置から前記冷媒の液面までの距離が200mm以上である請求項1又は2に記載の電子機器。 3. The electronic device according to claim 1, wherein the air bubbles released from the air bubble ejection device reach the liquid surface of the coolant, and the distance from the air bubble ejection device to the liquid surface of the coolant is 200 mm or more. 前記筐体の上部に配置された気体回収口と、前記気体回収口より回収された気体を前記気泡放出装置まで循環させる経路と前記気体を循環させるポンプとを有し、前記冷媒を循環させるポンプは有さない請求項1~のいずれかに記載の電子機器。 A pump for circulating the refrigerant, having a gas recovery port arranged in the upper part of the housing, a path for circulating the gas recovered from the gas recovery port to the bubble discharging device, and a pump for circulating the gas. The electronic device according to any one of claims 1 to 3 , which does not have 前記筐体の底部には前記気泡放出装置の設置領域と非設置領域とがある請求項1~のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 4 , wherein the bottom of the housing has an installation area and a non-installation area for the bubble ejection device. 前記気泡放出装置が、孔を有する管状体又は多孔質体を含む請求項1~のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 5 , wherein the bubble ejection device includes a tubular body or porous body having holes. 内部に水が循環している冷却盤が前記筐体に収められている請求項1~のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 6 , wherein a cooling plate in which water is circulated is housed in the housing. 前記電子機器がCPUパッケージを有するボードを含む請求項1~のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 7 , wherein the electronic device includes a board having a CPU package.
JP2020555683A 2018-11-13 2019-11-11 Electronic device with bubble release device Active JP7126279B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018213141 2018-11-13
JP2018213141 2018-11-13
PCT/JP2019/044149 WO2020100816A1 (en) 2018-11-13 2019-11-11 Electronic apparatus including bubble discharge device

Publications (2)

Publication Number Publication Date
JPWO2020100816A1 JPWO2020100816A1 (en) 2021-10-07
JP7126279B2 true JP7126279B2 (en) 2022-08-26

Family

ID=70732087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020555683A Active JP7126279B2 (en) 2018-11-13 2019-11-11 Electronic device with bubble release device

Country Status (2)

Country Link
JP (1) JP7126279B2 (en)
WO (1) WO2020100816A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267494B1 (en) 2022-09-29 2023-05-01 Kddi株式会社 Server system
WO2024095653A1 (en) * 2022-11-02 2024-05-10 ジヤトコ株式会社 Cooling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250262A (en) 2001-11-26 2003-09-05 Sony Corp Method and apparatus for converting dissipated heat to work energy
JP2018200945A (en) 2017-05-26 2018-12-20 富士通株式会社 Cooler and electronic system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332275A (en) * 1986-07-25 1988-02-10 富士電機株式会社 Expansion tank for cooling water feeder
JP2995590B2 (en) * 1991-06-26 1999-12-27 株式会社日立製作所 Semiconductor cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250262A (en) 2001-11-26 2003-09-05 Sony Corp Method and apparatus for converting dissipated heat to work energy
JP2018200945A (en) 2017-05-26 2018-12-20 富士通株式会社 Cooler and electronic system

Also Published As

Publication number Publication date
WO2020100816A1 (en) 2020-05-22
JPWO2020100816A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Kheirabadi et al. Cooling of server electronics: A design review of existing technology
JP6588654B2 (en) Working medium contact cooling system for high power components and method of operating the same
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
JP5757086B2 (en) COOLING STRUCTURE, ELECTRONIC DEVICE, AND COOLING METHOD
JP6866816B2 (en) Immersion server
KR100866918B1 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP5853072B1 (en) Electronic equipment cooling system
US9313920B2 (en) Direct coolant contact vapor condensing
JP5956099B1 (en) Electronic equipment cooling system
WO2012025981A1 (en) Cooling apparatus, electronic apparatus having cooling apparatus, and method for cooling heat generating body
WO2016075838A1 (en) Cooling system and cooling method for electronic apparatus
JP2011047616A (en) Cooling system and electronic device using the same
JP2019501439A (en) Computer apparatus comprising a cooled power supply unit
JP5664397B2 (en) Cooling unit
JP7126279B2 (en) Electronic device with bubble release device
US10874034B1 (en) Pump driven liquid cooling module with tower fins
JP5760796B2 (en) Cooling unit
US8230901B2 (en) Electronic device cooling apparatus
Gess et al. Impact of surface enhancements upon boiling heat transfer in a liquid immersion cooled high performance small form factor server model
JP5760797B2 (en) Cooling unit
CN116321931A (en) Cooling plate, soaking box and server system
Kulkarni et al. Compact liquid enhanced air cooling thermal solution for high power processors in existing air-cooled platforms
JP4731366B2 (en) Cooling system
JP2015065187A (en) Cooling device and electronic equipment mounting the same
CN219225465U (en) Two-phase immersion cooling device and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7126279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150