JPS60249351A - Boil-cooled type circuit board - Google Patents

Boil-cooled type circuit board

Info

Publication number
JPS60249351A
JPS60249351A JP10588984A JP10588984A JPS60249351A JP S60249351 A JPS60249351 A JP S60249351A JP 10588984 A JP10588984 A JP 10588984A JP 10588984 A JP10588984 A JP 10588984A JP S60249351 A JPS60249351 A JP S60249351A
Authority
JP
Japan
Prior art keywords
circuit board
circuit
board
semiconductor element
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10588984A
Other languages
Japanese (ja)
Other versions
JPH038587B2 (en
Inventor
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10588984A priority Critical patent/JPS60249351A/en
Publication of JPS60249351A publication Critical patent/JPS60249351A/en
Publication of JPH038587B2 publication Critical patent/JPH038587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve the cooling efficiency by a method wherein a gap is provided between a circuit element and a circuit board by recessing the circuit board surface opposed to the circuit element surface, and the recess is provided with through-holes. CONSTITUTION:Electrode pads 6p to which the semiconductor element 6 has been connected was excluded. The surface of the circuit board 10 opposed to the element 6 is recessed 11: e.g. the gap between the element and the board is made about 3mm. or so, and the recess 11 provided in the board is provided with e.g. many through-holes 12 of approx. 2mm.phi. Such a formation of the board 10 allows rising air-bubbles to be separated off from the surface of the element 6 opposed to the board 10, to come up from the recess 11 through the through- holes 12, and to cool the elements by stirring and circulating the coolant. Therefore, the element 6 comes to be cooled by boil-stirring from both of the back and opposed surfaces, and the cooling efficiency becomes about double.

Description

【発明の詳細な説明】 +al 発明の技術分野 本発明は半導体素子やその他の発熱素子等の回路素子が
搭載される沸騰冷却型回路基板に関する。
DETAILED DESCRIPTION OF THE INVENTION +al Technical Field of the Invention The present invention relates to an evaporative cooling type circuit board on which circuit elements such as semiconductor elements and other heat generating elements are mounted.

(bl 技術の背景 周知のように、半導体素子はIC,LSIとなって著し
く高密度化、高集積化されてきたが、そのため、半導体
素子はその集積度に比例して単位面積当たりの発熱量が
増加してきた。また、同じ集積度の半導体素子であって
も、高速動作する型式の半導体素子は、電流を多く消費
して発生熱量が大きい傾向にある。例えば、バイポーラ
型素子はモス型素子よりも発熱量が大きくなる。更に、
抵抗素子なども小型化して単位面積当たりの発生熱量が
増加している。
(bl Background of Technology As is well known, semiconductor devices have become extremely dense and highly integrated in the form of ICs and LSIs, and for this reason, the amount of heat generated per unit area of semiconductor devices is proportional to the degree of integration. In addition, even if semiconductor devices have the same degree of integration, semiconductor devices that operate at high speed tend to consume more current and generate a larger amount of heat.For example, bipolar devices tend to be more expensive than MOS devices. The amount of heat generated is greater than that of
Resistance elements and the like are also becoming smaller, and the amount of heat generated per unit area is increasing.

このような電子回路において、従前からも半導体素子や
その他の回路素子、並びにその実装回路基板の発生熱を
放散して冷却する手段が考えられており、例えば強制的
に空気を送り込む強制空冷法がある。この冷却の必要な
理由は、例えばシリコン素子の場合には85℃以上に加
熱されると、素子の特性が不安定になり、更には熱暴走
して、素子が破壊されて動作が不能になるからである。
In such electronic circuits, methods have been devised to dissipate and cool the heat generated by semiconductor elements, other circuit elements, and the circuit boards on which they are mounted. be. The reason why this cooling is necessary is that, for example, in the case of a silicon device, if it is heated above 85 degrees Celsius, the characteristics of the device become unstable, and even thermal runaway occurs, destroying the device and rendering it inoperable. It is from.

しかし、空冷には限界があって、半導体素子の高集積化
と共にfワンド/−以上の発熱量がある半導体素子には
適用が困難である。
However, there are limits to air cooling, and as semiconductor devices become more highly integrated, it is difficult to apply it to semiconductor devices that generate heat of f/wand or more.

一方、効率の良い冷却法として古くから液冷法が知られ
ているが、半導体素子の液冷は構造が複雑になるために
、従前は余り使用されていなかった。ところが、上記の
ように、空冷法の限界から液冷法が注目されはじめ、ま
た、半導体素子も液冷以外では冷却が不可能な程、高集
積化されてきた。
On the other hand, liquid cooling has long been known as an efficient cooling method, but liquid cooling of semiconductor devices has not been used much in the past because it requires a complicated structure. However, as mentioned above, the liquid cooling method has begun to attract attention due to the limitations of the air cooling method, and semiconductor devices have also become highly integrated to the extent that they cannot be cooled by anything other than liquid cooling.

且つ、液冷法には、半導体素子から熱伝導体に熱を伝導
させて、これを冷却する間接冷却法や、半導体素子に水
を流す直接水冷法等があるが、本発明に係わりのある液
冷法は、フレオンのような沸点の低い冷媒に半導体素子
を実装した回路基板を浸漬し、沸騰循環させて冷却する
方式、所謂沸騰冷却型(方式)であり、その回路基板の
実装構造に関している。
In addition, liquid cooling methods include an indirect cooling method in which heat is conducted from a semiconductor element to a thermal conductor to cool it, and a direct water cooling method in which water is passed through a semiconductor element, but these methods are not related to the present invention. The liquid cooling method is a so-called boiling cooling method in which a circuit board on which semiconductor elements are mounted is immersed in a low boiling point refrigerant such as Freon and cooled by boiling circulation. There is.

このような沸騰冷却型は液体が蒸発する潜熱を利用する
ため、最も冷却効率が良くて、15〜20ワット/cI
a程度の発熱量がある半導体素子にも適用できる。且つ
、最近に開発されたHEMTは液体窒素(−196℃)
の中で、その高速動作が約束されるトランジスタであり
、このHEMTにも沸騰冷却型が応用される。
This kind of boiling cooling type uses the latent heat of evaporation of the liquid, so it has the highest cooling efficiency and has a cooling efficiency of 15 to 20 watts/cI.
This method can also be applied to semiconductor elements that generate a heat amount of approximately . Moreover, the recently developed HEMT uses liquid nitrogen (-196℃)
Among these, it is a transistor that promises high-speed operation, and the boiling cooling type is also applied to this HEMT.

(C1従来技術と問題点 第1図は半導体素子を実装した沸騰冷却型電子回路装置
の概要断面図を例示しており、1は回路基板収容容器、
2は冷媒液、3は同容器の空間。
(C1 Prior Art and Problems Figure 1 illustrates a schematic cross-sectional view of a boiling-cooled electronic circuit device in which a semiconductor element is mounted. 1 is a circuit board storage container;
2 is the refrigerant liquid, and 3 is the space in the same container.

4は冷却器、5は回路基板、6は半導体素子(あるいは
その他の回路素子)である。このような回路基板の冷却
原理は、まず、回路をスイッチオンすると半導体素子が
発熱して、そのために液温か上昇し、沸点の低い冷媒(
例えば沸点47.6℃のフレオン)は沸騰して泡立つ。
4 is a cooler, 5 is a circuit board, and 6 is a semiconductor element (or other circuit element). The principle of cooling such a circuit board is that when the circuit is switched on, the semiconductor element generates heat, which causes the temperature of the liquid to rise, and a refrigerant with a low boiling point (
For example, Freon (which has a boiling point of 47.6°C) boils and foams.

そうすると、冷媒の攪拌作用が起こり、又、空間3に蒸
発した冷媒は冷却器4で冷やされて液体に還えり、液中
に戻される。かくして、冷媒の沸点温度以上に半導体素
子が昇温されるのが抑止されるのである。
This causes a stirring action of the refrigerant, and the refrigerant evaporated in the space 3 is cooled by the cooler 4 and returned to liquid, and is returned to the liquid. In this way, the temperature of the semiconductor element is prevented from rising above the boiling point temperature of the refrigerant.

第2FXJは1つの回路基板の斜視図を示しており、回
路基板5はセラt7り製が多く、且つ、高密度に実装さ
れる多数の回路素子は殆んどが半導体素子6である。第
3図は半導体素子6を装着した回路基板の部分断面図を
示しており、半導体素子6は通常、電極パッド6pによ
って回路基板5に接続されているから、半導体素子6と
回路基板5との間隔は極めて狭<、0.1〜0.3鶴程
度の間隙しか設けられていない。
2nd FXJ shows a perspective view of one circuit board, and the circuit board 5 is often made of ceramic T7 resin, and most of the many circuit elements mounted at high density are semiconductor elements 6. FIG. 3 shows a partial cross-sectional view of the circuit board on which the semiconductor element 6 is mounted, and since the semiconductor element 6 is normally connected to the circuit board 5 by an electrode pad 6p, the relationship between the semiconductor element 6 and the circuit board 5 is The spacing is extremely narrow, with only a gap of about 0.1 to 0.3 mm.

一方、泡立つ気泡は0.5flないし1111φの大き
さであるため、上記した半導体素子と回路基板との対向
面の間隙からは泡立つこと(気泡処理)ができず、この
対向面からの冷却は行なわれていない。そのため、半導
体素子6は背面からのみ沸騰し泡立って冷却されており
、それでは半導体素子6の冷却効率は不十分で、冷却効
率は半導体素子の両面が冷却される場合の50%位に過
ぎない。
On the other hand, since the bubbles that bubble up have a size of 0.5fl to 1111φ, they cannot bubble (bubble treatment) from the gap between the opposing surfaces of the semiconductor element and the circuit board, and cooling is not performed from this opposing surface. Not yet. Therefore, the semiconductor element 6 is cooled by boiling and bubbling only from the back side, and the cooling efficiency of the semiconductor element 6 is insufficient, and the cooling efficiency is only about 50% of that when both sides of the semiconductor element are cooled.

現在、この片面だけの冷却による発熱量は15ワッl−
/ell!位に制限されており、それ以上の熱量が発生
しないように設計されている。即ち、それは回路基板5
上に半導体素子6を粗に配置し、又、半導体素子から1
5ワット/aI+以上の発熱がないように、その高集積
化を制限する設計としている。
Currently, the amount of heat generated by cooling only one side is 15 watts.
/ell! The design is such that no more heat is generated. That is, it is the circuit board 5
Semiconductor elements 6 are arranged roughly on top, and 1
The design limits high integration so as not to generate more than 5 watts/aI+.

(dl 発明の目的 本発明は、このような冷却効率を是正する沸騰冷却型回
路基板を提案するものである。
Object of the Invention The present invention proposes a boiling-cooled circuit board that corrects such cooling efficiency.

tel 発明の構成 その目的は、回路素子と回路基板とが接続する電極バッ
ド部を除いた、回路素子面に対向する回路基板面を凹部
状にして、該回路素子と回路基板との間に間隙(例えば
、0.5鶴以上の間隙)を設け、且つ該回路基板の凹部
に貫通孔を設けた沸騰冷却型回路基板によって達成する
ことができる。
tel Structure of the Invention The purpose of the invention is to form a recess in the circuit board surface facing the circuit element surface, excluding the electrode pad portion where the circuit element and the circuit board are connected, and to create a gap between the circuit element and the circuit board. This can be achieved by using an evaporative cooling type circuit board in which a gap of 0.5 mm or more is provided and a through hole is provided in the recessed portion of the circuit board.

(f) 発明の実施例 以下9図面を参照して実施例によって詳細に説明する。(f) Examples of the invention Examples will be described in detail below with reference to nine drawings.

第4図は本発明にかかる実装した回路基板の部分断面図
を示しており、半導体素子6を接続した電極パッド6p
部を除いた、半導体素子6に対向する回路基板10の面
を凹部11に形成して、半導体素子と回路基板との間の
間隙を約311m前後にしてあり、且つ回路基板10に
設けた凹部11に多数の2mmφ程度の貫通孔12を設
けている。
FIG. 4 shows a partial cross-sectional view of a mounted circuit board according to the present invention, and shows electrode pads 6p to which semiconductor elements 6 are connected.
A recess 11 is formed on the surface of the circuit board 10 facing the semiconductor element 6, excluding the part, so that the gap between the semiconductor element and the circuit board is approximately 311 m, and the recess provided in the circuit board 10 11 is provided with a large number of through holes 12 having a diameter of approximately 2 mm.

本例は回路基板10の厚さが10fl、半導体素子は厚
さ0.5in、大きさ10m角程度のものであるが、図
示のような回路基板10の形状にすると、回路基板10
に対向した半導体素子6の面からも、泡立った気泡(直
径0.5〜1fiφ)が素子から分離されて、凹部11
より貫通孔12を通って浮き上り、冷媒を攪拌し循環さ
せて、素子を冷却させる。そうすれば、半導体素子6は
背面と対向面の両面から沸騰攪拌され冷却されることに
なり、冷却効率は約2倍になる。
In this example, the circuit board 10 has a thickness of 10 fl, and the semiconductor element has a thickness of 0.5 inches and a size of about 10 m square.
Also from the surface of the semiconductor element 6 facing the surface of the semiconductor element 6, bubbling air bubbles (diameter 0.5 to 1 fiφ) are separated from the element and formed in the recess 11.
The refrigerant floats up through the through hole 12, stirs and circulates the refrigerant, and cools the element. In this way, the semiconductor element 6 will be boiled and stirred and cooled from both the back surface and the opposing surface, and the cooling efficiency will be approximately doubled.

凹部11の間隙は気泡が動ける幅、即ちQ、5m+m以
上あれば良く、貫通孔12の直径も同程度以上あれば気
泡が放出される。第5図fa)は凹部11の平面図で、
5個の貫通孔が作成されているが、貫通孔は円孔だけで
なく、同図(blに示す他の例のように気泡が通れる許
容幅を持った長方形の貫通孔12′、又はその他の形状
に形成してもよい。
The gap between the recesses 11 should have a width that allows bubbles to move, that is, Q, 5 m+m or more, and the diameter of the through hole 12 should be about the same or larger so that bubbles can be released. FIG. 5 fa) is a plan view of the recess 11,
Five through-holes have been created, but the through-holes are not only circular holes, but also rectangular through-holes 12' with an allowable width that allows air bubbles to pass through, as shown in the other example shown in the same figure (bl), or other holes. It may be formed in the shape of

このような形状の回路基板10は、グリーンシート(生
シート)の工程で予め整形し、それを焼成して得られる
。第6図には本発明にかかる回路基板10の実装構造の
斜視図を示している。
The circuit board 10 having such a shape is obtained by shaping the green sheet (raw sheet) in advance and firing it. FIG. 6 shows a perspective view of the mounting structure of the circuit board 10 according to the present invention.

(沿 発明の効果 以上の実施例から明らかなように、本発明によれば冷媒
液の沸騰攪拌による冷却が半導体素子の両面で生じて、
冷却効率が倍化する。実施結果によれば、従来構造では
発熱量の制限が15ワット/−であったのに対し、本発
明の構造では35ワツト/dまで緩和することができた
(Along with the effects of the invention) As is clear from the above embodiments, according to the present invention, cooling by boiling and stirring of the refrigerant liquid occurs on both sides of the semiconductor element.
Cooling efficiency is doubled. According to the results, while the conventional structure had a limit of 15 watts/d on the amount of heat generated, the structure of the present invention was able to reduce the limit to 35 watts/d.

従って、本発明を適用すれば、半導体素子を回路基板に
一層高密度に実装でき、又、半導体素子自体も更に高集
積化できて、電子回路の密度が倍化され、その性能を著
しく向上する効果があるものである。
Therefore, by applying the present invention, semiconductor elements can be mounted on circuit boards with higher density, and the semiconductor elements themselves can also be more highly integrated, doubling the density of electronic circuits and significantly improving their performance. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰冷却型の電子回路装置の概要断面図、第2
図は従来の回路基板の斜視図、第3図はその部分断面図
、第4図は本発明にかかる回路基板の部分断面図、第5
図fan、 Tblはその凹部の平面図、第6図は本発
明にかかる回路基板の斜視図である。 図中、1は回路基板収容容器、2は冷媒液、3は同容器
の空間、4は冷却器、5は従来のり路基板、6は半導体
素子(またはその他の回路素子)。 6pは接続パッド、10は本発明にかかる回路基板。 11は凹部、 12.12’は貫通孔を示している。 第1市 第2囮 第 3図
Figure 1 is a schematic cross-sectional view of a boiling-cooled electronic circuit device;
The figure is a perspective view of a conventional circuit board, FIG. 3 is a partial sectional view thereof, FIG. 4 is a partial sectional view of a circuit board according to the present invention, and FIG.
Figures FAN and TBL are a plan view of the recessed portion, and FIG. 6 is a perspective view of the circuit board according to the present invention. In the figure, 1 is a circuit board storage container, 2 is a refrigerant liquid, 3 is a space in the container, 4 is a cooler, 5 is a conventional path board, and 6 is a semiconductor element (or other circuit element). 6p is a connection pad, and 10 is a circuit board according to the present invention. 11 indicates a recess, and 12.12' indicates a through hole. 1st city, 2nd decoy, Figure 3

Claims (1)

【特許請求の範囲】 ill 回路素子と回路基板とが接続する電極パッド部
を除いた、回路素子面に対向する回路基板面を凹部状に
して、該回路素子と回路基板との間に間隙を設け、且つ
該回路基板の凹部に貫通孔を設けたことを特徴とする沸
騰冷却型回路基板。 (2) 上記の回路素子と回路基板との間に設けた間隙
を0.5f1以上にしたことを特徴とする特許請求の範
囲第1項記載の沸騰冷却型回路基板。
[Claims] ill The surface of the circuit board opposite to the surface of the circuit element, excluding the electrode pad portion where the circuit element and the circuit board are connected, is formed into a concave shape to create a gap between the circuit element and the circuit board. What is claimed is: 1. A boiling-cooled circuit board, characterized in that a through hole is provided in a recessed portion of the circuit board. (2) The evaporative cooling type circuit board according to claim 1, characterized in that the gap provided between the circuit element and the circuit board is 0.5f1 or more.
JP10588984A 1984-05-24 1984-05-24 Boil-cooled type circuit board Granted JPS60249351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10588984A JPS60249351A (en) 1984-05-24 1984-05-24 Boil-cooled type circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588984A JPS60249351A (en) 1984-05-24 1984-05-24 Boil-cooled type circuit board

Publications (2)

Publication Number Publication Date
JPS60249351A true JPS60249351A (en) 1985-12-10
JPH038587B2 JPH038587B2 (en) 1991-02-06

Family

ID=14419483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588984A Granted JPS60249351A (en) 1984-05-24 1984-05-24 Boil-cooled type circuit board

Country Status (1)

Country Link
JP (1) JPS60249351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175971A (en) * 2018-03-28 2019-10-10 日本電気株式会社 Mounting substrate, electronic apparatus, and element cooling method
WO2022004400A1 (en) * 2020-07-03 2022-01-06 株式会社オートネットワーク技術研究所 Electric device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141462U (en) * 1975-05-07 1976-11-15
JPS52114271A (en) * 1976-03-22 1977-09-24 Hitachi Ltd Semiconductor pellet mounting structure for substrate
JPS5887836A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Substrate and pellet bonding using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141462U (en) * 1975-05-07 1976-11-15
JPS52114271A (en) * 1976-03-22 1977-09-24 Hitachi Ltd Semiconductor pellet mounting structure for substrate
JPS5887836A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Substrate and pellet bonding using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175971A (en) * 2018-03-28 2019-10-10 日本電気株式会社 Mounting substrate, electronic apparatus, and element cooling method
WO2022004400A1 (en) * 2020-07-03 2022-01-06 株式会社オートネットワーク技術研究所 Electric device
JP2022013081A (en) * 2020-07-03 2022-01-18 株式会社オートネットワーク技術研究所 Electric device

Also Published As

Publication number Publication date
JPH038587B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JP3415648B2 (en) Heat sink device and method for dissipating heat from electronic device package using the same
KR20050081814A (en) Cooling system of electronic device and electronic device using the same
JPH088421B2 (en) Heat dissipation device
US6867974B2 (en) Heat-dissipating device
US20220187023A1 (en) Shrouded powder patch
JPH09213851A (en) Heat radiation method and heat radiation means for ic device
WO2002054490A1 (en) Heat sink and electronic device with heat sink
US5734554A (en) Heat sink and fan for cooling CPU chip
JPS60249351A (en) Boil-cooled type circuit board
JPS6281735A (en) Package integral with radiator fin
JPH02114597A (en) Method of cooling electronic device
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
US20050072563A1 (en) Heat sink structure
JPS60249353A (en) Mounting structure of vapor cooling circuit board
JPS6154654A (en) Liquid cooling device
JPH1187586A (en) Cooling structure for multi-chip module
JPH06204368A (en) Cooling structure of ceramic substrate
JPS60198848A (en) Cooler
JPS61176141A (en) Cooling device of solid state integrated circuit part
JPS61128598A (en) Cooler
JPS60249352A (en) Mounting structure of vapor cooling circuit board
JPH06188342A (en) Cooling device for semiconductor element
JPH0536873A (en) Semiconductor package
JPS62105496A (en) Heat transmission apparatus
JPH0715959B2 (en) Heat dissipation fin