JPS62105496A - Heat transmission apparatus - Google Patents

Heat transmission apparatus

Info

Publication number
JPS62105496A
JPS62105496A JP24393885A JP24393885A JPS62105496A JP S62105496 A JPS62105496 A JP S62105496A JP 24393885 A JP24393885 A JP 24393885A JP 24393885 A JP24393885 A JP 24393885A JP S62105496 A JPS62105496 A JP S62105496A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer body
liquid
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24393885A
Other languages
Japanese (ja)
Inventor
繁男 大橋
忠克 中島
中山 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24393885A priority Critical patent/JPS62105496A/en
Publication of JPS62105496A publication Critical patent/JPS62105496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子計算機集積回路、サイタリスタなどのパ
ワー半導体、起電密コイル等、高発熱密度部材の沸騰冷
却に適した熱伝達装置を提供することにある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a heat transfer device suitable for boiling cooling of high heat generation density members such as computer integrated circuits, power semiconductors such as citristors, and electromotive density coils. There is a particular thing.

〔発明の背景〕[Background of the invention]

集積回路チップの沸騰冷却を保進する従事の方法として
、米国特許3706127号がある。この例では、配線
基板上に搭載されたチップの背面に針状の金属(デンド
ライト)が冶金過程により多数形成されている。デンド
ライトの集合は集積回路チップが不電導性の液に浸漬さ
れて用いられる際、集積回路チップの発熱により高41
.!どなり、不電導性流体の蒸気泡を発生するのに必要
な多数の気泡発生核を内蔵している。このため集積回路
チップの発熱を沸騰によって速やかに除去することがで
き、チップの温度−1−昇は抑制される。しかし、この
面構造は、微細なため熱負イ1rが小さい場合には効果
が大きいが、発熱面の熱流束が大きくなると蒸気の発生
が活発になり過ぎて而が蒸気膜で覆われる結果、面の温
度が急激に上昇してしまういわゆるバーンアウト現象を
起しやすく、発熱許容量が小さいという欠点がある。
US Pat. No. 3,706,127 describes a method for promoting evaporative cooling of integrated circuit chips. In this example, a large number of needle-shaped metals (dendrites) are formed by a metallurgical process on the back surface of a chip mounted on a wiring board. When an integrated circuit chip is immersed in a non-conducting liquid, dendrite aggregation can occur due to the heat generated by the integrated circuit chip.
.. ! It contains a large number of bubble-generating nuclei necessary to generate vapor bubbles of non-conductive fluid. Therefore, the heat generated by the integrated circuit chip can be quickly removed by boiling, and an increase in the temperature of the chip can be suppressed. However, since this surface structure is fine, it is effective when the heat negative 1r is small, but when the heat flux of the heating surface becomes large, steam generation becomes too active and the surface is covered with a vapor film. It has the disadvantage that it is prone to the so-called burnout phenomenon in which the surface temperature rises rapidly, and that the allowable amount of heat generation is small.

他の例として、特開昭55−12798号公報のように
発熱素子にトンネル状の貫通する空洞を有する板片を取
り付は媒体液に浸漬するものが知られており、上方の開
孔からの気泡離脱に伴うポンプ作用により、下方から液
を吸い込むため、発熱量がかなり大きくなっても伝熱面
全体が蒸気膜で覆われることなく、従ってバーンアウト
熱負荷は向上する。しかし、この方法では空洞内に蒸気
を保持する場所が殆んど無いため、低熱負荷において性
能が悪いという欠点がある。さらに、素子と板片の熱膨
張の差により素子に応力が加わり素子の信頼性を低下さ
せてしまう恐れがある。また、応力を緩和するため板片
の材質としてシリコン、モリブテン等を使用することが
できるが加工が容易でないという欠点がある。
As another example, it is known that a plate piece having a tunnel-like cavity passing through the heating element is attached to the heat generating element as in Japanese Patent Application Laid-Open No. 55-12798, and is immersed in a medium liquid, and the plate piece is immersed in the medium liquid. The liquid is sucked in from below by the pumping action accompanying the bubble separation, so even if the amount of heat generated is considerably large, the entire heat transfer surface is not covered with a vapor film, thus improving the burnout heat load. However, this method has the disadvantage of poor performance at low heat loads because there is almost no place to hold steam within the cavity. Furthermore, the difference in thermal expansion between the element and the plate piece may cause stress to be applied to the element, reducing the reliability of the element. Furthermore, silicon, molybdenum, or the like can be used as the material of the plate piece in order to relieve stress, but there is a drawback that processing is not easy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は集積回路チップその他の高発熱密度の発
熱素子の冷却において、発熱量の多少に拘わらず、発生
熱を沸1111する媒体に伝えるのに必要な温度差を小
さく保つ熱伝達装置を提供することにある。
The object of the present invention is to provide a heat transfer device that keeps the temperature difference required to transfer generated heat to a boiling medium small, regardless of the amount of heat generated, in cooling integrated circuit chips and other heat generating elements with high heat generation density. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明は、液を吸収あるいけ内部で発生した蒸気を脱出
させる空洞ならびに開l−1,および、蒸気発生核を安
定に保持する空洞とが多数設けられた構造から成る熱伝
導部材に伝熱性能を向」ユさせるための液導入部を設け
たことを特徴とする。
The present invention provides heat transfer to a heat conductive member having a structure in which a large number of cavities and openings 1-1 are provided for absorbing liquid and escaping steam generated inside the tank, and cavities for stably holding a steam generation core. It is characterized by the provision of a liquid introduction part to improve performance.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図により説明する。第1A図、第
1 B図に示すように伝熱体]は集積回路チップ5の背
面に取り付けられる。伝熱体1は内部にトンネル群が形
成される微細構造部材2と集積回路から発生する熱を微
細構造部へ伝える熱伝導部材3により構成され、集積回
路4チツプ5と微細構造部材2の間に熱伝導部材3がは
さまれるような形になる。熱伝導部材3の微細構造部へ
の取り付は面積は微細構造部材2の底面投影面積より小
さく、したがって伝熱体1の集積回路チップ5への取り
付は後伝熱体底面液導入部4としての間隙が形成される
。このようにして伝熱体の取り付けられた集積回路チッ
プの冷却システムを第2図に示す。伝熱体1の取り付け
られた多数の集積回路チップ5が搭載された配線基板6
が、バックボード7に垂直に取り付けられ、密閉容器8
内に組み込まれている。配線基板6は不電導性液9に浸
漬されており、集積回路チップ5での発熱により不電導
性液9は沸騰9発泡1oする。沸騰した不電導性液9の
蒸気は容器8の上部に設けられた凝縮器11で凝縮、液
化にし再び容器下部の液部へ戻る。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1A and 1B, a heat transfer body] is attached to the back surface of the integrated circuit chip 5. As shown in FIGS. The heat transfer body 1 is composed of a microstructure member 2 in which a group of tunnels are formed, and a heat conduction member 3 that transmits heat generated from the integrated circuit to the microstructure, and between the integrated circuit 4 chip 5 and the microstructure member 2. The heat conductive member 3 is sandwiched between the two. The area for attaching the heat conductive member 3 to the microstructure is smaller than the bottom projected area of the microstructure member 2, and therefore the heat transfer member 1 is attached to the integrated circuit chip 5 after the heat transfer body bottom surface liquid introduction section 4. A gap is formed. A cooling system for an integrated circuit chip with a heat transfer body attached in this manner is shown in FIG. A wiring board 6 on which a large number of integrated circuit chips 5 to which a heat transfer body 1 is attached is mounted.
is vertically attached to the backboard 7, and the airtight container 8
incorporated within. The wiring board 6 is immersed in a non-conductive liquid 9, and the non-conductive liquid 9 boils and foams due to the heat generated by the integrated circuit chip 5. The vapor of the boiled non-conductive liquid 9 is condensed and liquefied in a condenser 11 provided at the top of the container 8, and then returned to the liquid section at the bottom of the container.

伝熱体1の微細構造部は、第3図に示した微細フィン付
孔あき板31を複数枚積層して作られる。
The fine structure of the heat transfer body 1 is made by laminating a plurality of fine fin perforated plates 31 shown in FIG.

微細フィン付孔あき板の微細フィン32.33は熱伝導
性の薄板の表裏両側より互いに交差する方向に溝34−
,35を設けることによって作る。溝34.35の深さ
の和は薄板の肉厚よりも大きく、したがって、それぞれ
の溝の交差点には、それぞれの溝を連通させる開孔3 
Gが形成されている。
The fine fins 32 and 33 of the perforated plate with fine fins form grooves 34- in the direction crossing each other from both the front and back sides of the thermally conductive thin plate.
, 35. The sum of the depths of the grooves 34, 35 is greater than the wall thickness of the sheet, so that at the intersection of each groove there is an opening 3 that communicates the respective grooves.
G is formed.

薄板の形状は第1図において円形の場合を示したが方形
であってもよい。また、溝形状は、方形。
Although the shape of the thin plate is circular in FIG. 1, it may be rectangular. Also, the groove shape is square.

円形、三角形などいずれの形状であってもよい。It may be of any shape such as circular or triangular.

また材質は、銅アルミニウムなど高熱伝導性材が望まし
い。微細フィン付孔あき板31を複数枚重ね合せたもの
と熱伝導部材3とをそれぞれ接合したものを第4図に示
す。第3図に示す溝34および35がトンネル状の空洞
41および42を形成し、それぞれのトンネル状の空洞
は開孔36により連通している。熱伝導部材3には特に
微細構造は設けない。
Further, the material is preferably a highly thermally conductive material such as copper aluminum. FIG. 4 shows a structure in which a plurality of perforated plates 31 with fine fins are stacked one on top of the other and a heat conductive member 3 is bonded to each other. Grooves 34 and 35 shown in FIG. 3 form tunnel-like cavities 41 and 42, each of which is communicated by an aperture 36. As shown in FIG. The thermally conductive member 3 is not provided with any particular fine structure.

熱伝導部材3の材質は熱伝導にすぐれ、集積回路チップ
の材質であるシリコンと同程度の熱膨張係数をもつもの
で、高熱伝應シリコンカーパイ1〜。
The material of the thermally conductive member 3 has excellent thermal conductivity and has a coefficient of thermal expansion comparable to that of silicon, which is the material of the integrated circuit chip.

モリブテンなどが適している。なお、微細構造部の材質
で異ったものでも差しつかえない。また、微細構造部の
微細フィン付孔あき板の積層枚数および溝の大きさ、熱
伝導部材の取り付は面積の大きさおよび厚さは、集積回
路チップの発熱量、不電導性液の物質値によって最適値
が存在し、その値に加工されるのが望ましい。
Molybdenum is suitable. Note that the fine structure may be made of different materials. In addition, the number of layers and the size of the grooves of the perforated plate with fine fins in the microstructure, the size and thickness of the mounting area of the heat conductive member, the amount of heat generated by the integrated circuit chip, the material of the nonconductive liquid, etc. It is desirable that an optimum value exists depending on the value, and that processing is performed to that value.

本実施例における伝熱体の機能を第5図を用いて説明す
る。第5図(a)は鉛直の向きに実装された集積回路チ
ップ5に伝熱体1を取り付けた場合を、第5図(b)は
、水平に実装された集積回路チップに伝熱体を取り付け
た場合をそれぞれ示したものである。第5図(a)、(
b)において、実線の矢印は液の移動を、破線矢印は蒸
気の抜ける方向をそれぞれ示している。第5図(、)に
おいて、トンネル壁で蒸発した蒸気は、鉛直方向に向く
1〜ンネル41を通して外部へ抜ける。そして、液は、
伝熱体外表面につながるトンネル入口から、及び、集積
回路チップとの接合部に設けられた液導入部4を通して
伝熱体底面から伝熱体内部に取り込まれ、水平方向に向
くトンネル42及びトンネル4Jとトンネル42をつな
ぐ開孔36を通して伝熱体内部全領域に供給される。さ
らに、水平1〜ンネル42は壁で発生する蒸気の一部を
保持することができ、これが次の発泡のおる核として働
き、発泡を連続的に起こさせる。第5図(b)において
は、トンネルとトンネルをつなぐ開孔36が鉛直方向に
連なることになり、前記(a)で説明した鉛直方向のト
ンネルの役割を果たし、そして、前記(a)1こおいて
鉛直方向のトンネルの働きをしていたものは、逆に、水
平方向のトンネルの働きをすることになり、伝熱体とし
ての機能はまったく同様になされる。
The function of the heat transfer body in this example will be explained using FIG. 5. Fig. 5(a) shows the case where the heat transfer body 1 is attached to the integrated circuit chip 5 mounted vertically, and Fig. 5(b) shows the case where the heat transfer body 1 is attached to the integrated circuit chip 5 mounted horizontally. The figures show the respective cases in which they are installed. Figure 5(a), (
In b), solid arrows indicate the movement of liquid, and dashed arrows indicate the direction in which vapor escapes. In FIG. 5(,), steam evaporated on the tunnel wall escapes to the outside through vertically oriented tunnels 1 to 41. And the liquid is
A tunnel 42 and a tunnel 4J that are introduced into the heat transfer body from the bottom surface of the heat transfer body through the tunnel entrance connected to the outer surface of the heat transfer body and through the liquid introduction part 4 provided at the joint with the integrated circuit chip, and are oriented in the horizontal direction. It is supplied to the entire interior area of the heat transfer body through the opening 36 that connects the tunnel 42 with the heat exchanger. Additionally, the horizontal channels 42 can retain some of the steam generated at the walls, which acts as a nucleus for subsequent foaming, causing foaming to occur continuously. In FIG. 5(b), the openings 36 that connect the tunnels are continuous in the vertical direction, and play the role of the vertical tunnel described in (a) above. What previously functioned as a vertical tunnel now functions as a horizontal tunnel, and functions as a heat transfer body in exactly the same way.

集積回路チップと伝熱体の接合部分に液導入部4を設け
たことにより、第1に、伝熱体の姿勢にかかわらず、従
来、液供給が十分なされなかった根元中心部にも液を十
分供給することができ、伝熱体の全域にわたってスムー
ズに液を供給することが可能となり、鉛直方向、水平方
向のそれぞれのトンネルとトンネルをつなぐ開孔の働き
が効率よくなされる。第2に、高発熱時において問題と
なる伝熱体根元近傍中心部の乾きによる伝熱性能の低下
を抑制することができる。すなわち、高発熱時には、伝
熱体の温度は伝熱体根元近傍中心部において最も高く、
液供給量が蒸発量においつがないことに及び伝熱体が蒸
気に覆われてしまうことによりバーアウトし易くなる。
By providing the liquid introduction part 4 at the joint between the integrated circuit chip and the heat transfer body, firstly, regardless of the orientation of the heat transfer body, liquid can be supplied to the center of the root, where liquid has not been sufficiently supplied in the past. It is possible to supply a sufficient amount of liquid, making it possible to smoothly supply the liquid over the entire area of the heat transfer body, and the openings that connect each tunnel in the vertical and horizontal directions to work efficiently. Second, it is possible to suppress the deterioration of heat transfer performance due to dryness of the center near the base of the heat transfer body, which is a problem during high heat generation. In other words, during high heat generation, the temperature of the heat transfer body is highest at the center near the base of the heat transfer body;
If the amount of liquid supplied does not match the amount of evaporation, and the heat transfer body is covered with steam, bar-out is likely to occur.

しかし、液導入部が上記の最も乾き易い部分に設けられ
ていることによって液供給が十分なされ、さらに、この
領域での液の流れが導入部である伝熱体根元周辺部から
中心部の方向に生じ、その慣性力によって伝熱体根元近
傍が蒸気で覆われにくくなる。上記の効果により、液の
沸騰が極めて安定に起こり、1ヘンネル内の液の激しい
運動、蒸発によって高い熱伝達率が得られ、かつ、バー
ンアウトしにくくなる。
However, by providing the liquid introduction part in the part that dries most easily, the liquid is supplied sufficiently, and furthermore, the liquid flow in this area is directed from the introduction part, around the base of the heat transfer body, to the center. This occurs due to the inertial force, which makes it difficult for the vicinity of the base of the heat transfer body to be covered with steam. Due to the above effects, boiling of the liquid occurs extremely stably, a high heat transfer coefficient is obtained due to the intense movement and evaporation of the liquid within one hemnel, and burnout is difficult to occur.

第6図に本発明の他の実施例を示す。伝熱体1の底部に
液導入部4を形成するための熱伝導部材3が伝熱体微細
構造部材2の内側にまで達している。微細構造部を形成
するトンネル群の構造は高い冷却性能をもつ反面、中実
部分が少ないため、発熱体表面から離れた伝熱体先端部
分への熱伝導が十分なされない。また、微細構造部材心
は周辺はど液供給が活発になされない。そこで、この微
細構造中心部分にまで達するように熱伝導用部材3をの
ばすことによって上記の欠点は解決される。
FIG. 6 shows another embodiment of the invention. A heat conductive member 3 for forming a liquid introduction part 4 at the bottom of the heat transfer body 1 reaches inside the heat transfer body microstructure member 2. Although the structure of the tunnel group forming the microstructure has high cooling performance, since there are few solid parts, heat conduction is not sufficient from the surface of the heating element to the tip of the heat transfer element. In addition, liquid is not actively supplied to the periphery of the microstructured core. Therefore, the above drawbacks can be solved by extending the heat conducting member 3 so as to reach the central portion of this fine structure.

また、熱伝導用部材3の材質に集積回路チップ5の材質
であるシリコンと熱膨張係数の近いものを選べば、集積
回路チップの温度上昇に伴う集積回路チップ5と熱伝導
部材:3との間に熱膨張差による応力は生じない。一方
、微細構造部材2の材質として熱伝導部材3と異なる熱
膨張係数をもつものを選んでも熱膨張差による応力目熱
伝導部材の微細構造部内に達つしている部分に吸収され
ることになり、熱伝導部材と微細構造部材との接合部分
に対する信頼性を高めることができる。したがって、加
工の複雑な微細構造部材の材質は高熱伝導度のものであ
りさえすれば加工の容易なものを任意に選ぶことができ
る。また、熱伝導用部材を用い中実部分を増やしても熱
伝導用部材の材質がシリコンと熱膨張係数の近い材質ゆ
え軽量であるため伝熱体全体は軽量化され、集積回路チ
ップと配線基板との半田接合部分に対する荷重が軽減さ
れる。熱伝導部材の微細構造部に対して占める割合、熱
伝導部材の微細構造部に対して占める鉄台、熱伝導部材
の形状は、発熱量、液の物性値によって最適なものを選
ぶことができる。
Furthermore, if a material with a coefficient of thermal expansion similar to that of silicon, which is the material of the integrated circuit chip 5, is selected as the material of the heat conduction member 3, it is possible to prevent the temperature of the integrated circuit chip 5 and the heat conduction member 3 from increasing as the temperature of the integrated circuit chip increases. No stress is generated between them due to the difference in thermal expansion. On the other hand, even if a material with a thermal expansion coefficient different from that of the thermally conductive member 3 is selected as the material for the microstructure member 2, stress due to the difference in thermal expansion will be absorbed by the portion of the thermally conductive member that reaches into the microstructure. Therefore, the reliability of the joint between the heat conductive member and the microstructure member can be improved. Therefore, the material of the microstructured member that is complicated to process can be arbitrarily selected from any material that is easy to process as long as it has high thermal conductivity. In addition, even if the number of solid parts is increased by using a heat conduction member, the heat conduction member is light because it is a material with a coefficient of thermal expansion similar to that of silicon, so the overall weight of the heat transfer body is reduced, and the integrated circuit chip and wiring board This reduces the load on the solder joints. The ratio of the heat conduction member to the microstructure, the iron base to the heat conduction member's microstructure, and the shape of the heat conduction member can be selected depending on the amount of heat generated and the physical properties of the liquid. .

第7図に本発明の他の実施例を示す。第6図に示した実
施例において、微細構造部の中央部にも伝熱体根元部と
同様液導入部4−bを設ける。この場合、微細構造部の
発熱体表面から離れた領域2−bへの液供給、及び、蒸
気の微細構造部からの逸脱をスムーズにする。さらに、
温度の高くなる微細構造部の発熱体表面に近い領域2a
への液供給は、2つの液導入部4−a及び4.− bの
両側から十分な量なされる。このため、高い熱伝達率が
得られ、バーンアウト熱流束は大きくなる。
FIG. 7 shows another embodiment of the present invention. In the embodiment shown in FIG. 6, a liquid introduction part 4-b is provided in the center of the microstructure as well as in the base of the heat transfer body. In this case, the liquid is supplied to the region 2-b of the fine structure part away from the heating element surface, and the vapor is smoothly deviated from the fine structure part. moreover,
Region 2a near the heating element surface of the fine structure where the temperature increases
The liquid is supplied to the two liquid introduction parts 4-a and 4. - A sufficient amount is made from both sides of b. Therefore, a high heat transfer coefficient can be obtained, and the burnout heat flux can be increased.

なお、微細構造部に設けられる液導入部は、どの部分に
設けてもよい。また、複数個設けてもよい。
Note that the liquid introduction part provided in the microstructure may be provided in any part. Also, a plurality of them may be provided.

第8図に本発明の他の実施例を示す。本実施例において
は、伝熱体微細構造部は、熱伝導性の薄板8]の片面の
みに溝82を設けたものをそれぞれの薄板の溝が交互に
直交するように重ね接合し、それぞれの溝が溝底部に空
けられた孔83によって互いに連通ずる構造をもつ。
FIG. 8 shows another embodiment of the present invention. In this embodiment, the heat transfer body microstructure is formed by stacking and joining a thermally conductive thin plate 8 having grooves 82 on only one side so that the grooves of each thin plate are alternately orthogonal to each other. The grooves have a structure in which they communicate with each other through holes 83 formed at the bottom of the grooves.

〔発明の効果〕〔Effect of the invention〕

本発明によ九ば、液体を沸騰さ仕ることによって発熱を
除去し発熱素子の温Jα゛を制限値以下に保つ伝熱体に
おいて、伝熱体内部への液供給がスムーズに行われ、伝
熱体の作動効率が−1−がること、及び、バーンアウト
しにくくなることによって、発熱体根元温度を低く抑え
ることができる。
According to the present invention, in the heat transfer body that removes heat generation by boiling the liquid and maintains the temperature Jα of the heating element below a limit value, the liquid is smoothly supplied into the heat transfer body, The temperature at the base of the heating element can be kept low by lowering the operating efficiency of the heat transfer element and by making it difficult to burn out.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は伝熱体の縦断面図、第18図は第1A図のA
−A線横断面図、第2図は本発明を適用した集積回路冷
却システムの斜視断面図、第3図は伝熱体を構成する要
素の斜視断面図、第4図は伝熱体の細部構造を示す斜視
断面図、第5図は(a)、(b)は伝熱体の機能を説明
するための図、第6図は本発明の他の実施例の断面図、
第7図は本発明の他の実施例の断面図、第8図は微細構
造部を構成する他の実施例の余1視断面である。 1・・・伝熱体、2・・・伝熱体微細構造部、3・・・
熱伝導部材、4・・・液導入部、5・・・集積回路チッ
プ、10・・・沸騰気泡、31・・・微細フィン付孔あ
き板、36・・・開孔、41.42・・・トンネル。 Y I A図 第 IF3 図 A−A  軸〇図 不 Z 図 第 3 図 第  4  図 −(七− 第 5 図 Cb) 第 乙 図 第 7  図 4−久  d−b
Figure 1A is a longitudinal cross-sectional view of the heat transfer body, and Figure 18 is A of Figure 1A.
-A-line cross-sectional view, Figure 2 is a perspective sectional view of an integrated circuit cooling system to which the present invention is applied, Figure 3 is a perspective sectional view of elements constituting the heat transfer body, and Figure 4 is a detail of the heat transfer body. A perspective sectional view showing the structure; FIGS. 5(a) and 5(b) are views for explaining the function of the heat transfer body; FIG. 6 is a sectional view of another embodiment of the present invention
FIG. 7 is a sectional view of another embodiment of the present invention, and FIG. 8 is a sectional view of another embodiment constituting a fine structure section. DESCRIPTION OF SYMBOLS 1... Heat transfer body, 2... Heat transfer body fine structure part, 3...
Heat conductive member, 4...Liquid introduction part, 5...Integrated circuit chip, 10...Boiling bubble, 31...Perforated plate with fine fins, 36...Opening hole, 41.42... ·tunnel. Y I Figure A Figure IF3 Figure A-A Axis ○ Not shown Z Figure 3 Figure 4 Figure - (7- Figure 5 Cb) Figure B Figure 7 Figure 4-H d-b

Claims (1)

【特許請求の範囲】 1、伝熱体内に外部と通ずる細長く平行に延びる空洞群
が三次元状に複数形成され、前期空洞群が互いに連通し
合う構造を有する伝熱体を、発熱体に取り付けて発熱体
を冷却する装置において、前記伝熱体より小さな断面積
の熱伝導部材により前記発熱体と前期伝熱体とをつなぎ
、前記発熱体と伝熱体との間に空間を形成し、伝熱体内
に形成された空洞群が前記空間と連通させたことを特徴
とする熱伝達装置。 2、特許請求の範囲第1項の熱伝達装置において、熱伝
導部材を伝熱体内部まで埋め込んだことを特徴とする熱
伝達装置。 3、特許請求の範囲第1項または第2項の熱伝達装置に
おいて、伝熱体を複数に分割し、空間を形成し、空洞群
と分割空間とを連通させたことを特徴とする熱伝達装置
[Claims] 1. A heat transfer body having a structure in which a plurality of elongated, parallel-extending cavities communicating with the outside are formed in a three-dimensional shape within the heat transfer body, and the first cavity groups communicate with each other is attached to a heat generating body. In the apparatus for cooling a heating element, the heating element and the first heat transfer element are connected by a heat conductive member having a cross-sectional area smaller than the heat transfer element, and a space is formed between the heating element and the heat transfer element, A heat transfer device characterized in that a group of cavities formed within the heat transfer body communicate with the space. 2. A heat transfer device according to claim 1, characterized in that a heat conductive member is embedded inside the heat transfer body. 3. The heat transfer device according to claim 1 or 2, characterized in that the heat transfer body is divided into a plurality of parts to form a space, and the cavity group and the divided space are communicated with each other. Device.
JP24393885A 1985-11-01 1985-11-01 Heat transmission apparatus Pending JPS62105496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24393885A JPS62105496A (en) 1985-11-01 1985-11-01 Heat transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24393885A JPS62105496A (en) 1985-11-01 1985-11-01 Heat transmission apparatus

Publications (1)

Publication Number Publication Date
JPS62105496A true JPS62105496A (en) 1987-05-15

Family

ID=17111265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24393885A Pending JPS62105496A (en) 1985-11-01 1985-11-01 Heat transmission apparatus

Country Status (1)

Country Link
JP (1) JPS62105496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037928A1 (en) * 2007-09-20 2009-03-26 Sony Corporation Phase change type heat spreader, channel structure, electronic apparatus and method for manufacturing phase change type heat spreader
JP2014163615A (en) * 2013-02-26 2014-09-08 Welcon:Kk Heat pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037928A1 (en) * 2007-09-20 2009-03-26 Sony Corporation Phase change type heat spreader, channel structure, electronic apparatus and method for manufacturing phase change type heat spreader
JP2009076650A (en) * 2007-09-20 2009-04-09 Sony Corp Phase change type heat spreader, passage structure, electronic device, and method of manufacturing phase transformation type heat spreader
JP2014163615A (en) * 2013-02-26 2014-09-08 Welcon:Kk Heat pipe

Similar Documents

Publication Publication Date Title
EP0159722B1 (en) Heat transfer apparatus
US6263959B1 (en) Plate type heat pipe and cooling structure using it
JP4095674B2 (en) Thin planar heat spreader
TW495660B (en) Micro cooling device
JPH11502300A (en) Cooling system for electronics
US9875953B2 (en) Interlayer chip cooling apparatus
JP2008522129A (en) Steam chamber with boil-enhancing multi-wick structure
JPH0563119B2 (en)
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
US20220187023A1 (en) Shrouded powder patch
JP2014072265A (en) Cooling system, and electronic device using the same
EP0207012A2 (en) Method to ensure the cooling of electronic components fixed on a multilayer for printed circuits and multilayer realized according to said method
KR20020093897A (en) Cooling device for cooling components of the power electronics, said device comprising a micro heat exchanger
JP3941537B2 (en) Heat transport equipment
CN209119079U (en) High-power hot superconductive plate wing combined radiator
CN109244050A (en) High-power hot superconductive plate wing combined radiator
JPS62105496A (en) Heat transmission apparatus
JPH02114597A (en) Method of cooling electronic device
JP5018555B2 (en) Cooling module and composite mounting board
JP2550162B2 (en) Boiling cooler
JPS61176141A (en) Cooling device of solid state integrated circuit part
CN219761411U (en) PCB and power electronic equipment
JPS60133290A (en) Heat pipe
JPH0442931Y2 (en)