JP2677275B2 - Cooling medium - Google Patents

Cooling medium

Info

Publication number
JP2677275B2
JP2677275B2 JP1320596A JP32059689A JP2677275B2 JP 2677275 B2 JP2677275 B2 JP 2677275B2 JP 1320596 A JP1320596 A JP 1320596A JP 32059689 A JP32059689 A JP 32059689A JP 2677275 B2 JP2677275 B2 JP 2677275B2
Authority
JP
Japan
Prior art keywords
cooling
liquid
refrigerant liquid
heat
main refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1320596A
Other languages
Japanese (ja)
Other versions
JPH03183156A (en
Inventor
貴志男 横内
光隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1320596A priority Critical patent/JP2677275B2/en
Publication of JPH03183156A publication Critical patent/JPH03183156A/en
Application granted granted Critical
Publication of JP2677275B2 publication Critical patent/JP2677275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔概 要〕 発熱量の大きな半導体装置の冷却、特にVLSIを高密度
に実装した高発熱量回路基板を冷却する冷媒液体に関
し、 冷媒液体の熱移送力の向上を目的とし、 主冷媒液体に、該主冷媒液体よりも比熱の大きい液
体,ゲル,固体,あるいはこれらの混合物を内包するマ
イクロカプセルを分散,混合して成るように構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] Cooling of a semiconductor device having a large amount of heat generation, particularly a refrigerant liquid for cooling a high-heat-generation circuit board in which VLSI is mounted at a high density, and an object thereof is to improve the heat transfer power of the refrigerant liquid. Then, microcapsules containing a liquid, a gel, a solid, or a mixture thereof having a larger specific heat than the main refrigerant liquid are dispersed and mixed in the main refrigerant liquid.

〔産業上の利用分野〕 本発明は発熱量の大きな半導体装置の冷却、特にVLSI
を高密度に実装した高発熱量回路基板を冷却する冷媒液
体に関する。
[Field of Industrial Application] The present invention relates to cooling a semiconductor device having a large amount of heat generation, particularly VLSI.
The present invention relates to a refrigerant liquid for cooling a circuit board having a high heat generation and having a high density.

大型コンピュータおよびスーパーコンピュータに使用
される半導体素子の高性能化に伴う消費電力の増大は著
しく、また、素子の高速性能を活かすための高密度実装
により、回路基板の発熱密度の上昇は止まるところを知
らない。このため、素子を直接冷媒液体に浸漬する浸漬
液冷のような液体を使用した高効率の冷却方式を適用し
て冷却能力の大幅拡大を行う必要がある。
The power consumption of semiconductor devices used in large-scale computers and supercomputers has increased remarkably as the performance of semiconductor devices has increased. Also, the high-density mounting to take advantage of the high-speed performance of the devices has stopped the rise in the heat generation density of circuit boards. Do not know. Therefore, it is necessary to apply a high-efficiency cooling method using a liquid such as immersion liquid cooling in which the element is directly immersed in the refrigerant liquid to significantly expand the cooling capacity.

〔従来の技術〕[Conventional technology]

液体冷媒を使用した冷却方式には第3図(a)に示す
ように間接的に冷却する伝導冷却方式と同図(b)に示
すように直接的に冷却する浸漬冷却方式とがある。
(a)図に示す伝導冷却方式は基板1に搭載された半導
体装置2にベローズ3又はピストンにより冷却板4を接
触させ、該ベローズ3内に冷媒5を流して半導体装置2
を冷却するようになっている。また(b)図に示す浸漬
冷却方式は密閉容器6の中に満たした化学的に不活性な
フルオロカーボン等の冷媒液体5の中に直接半導体素子
7を浸漬し、水冷熱交換器8で冷却された液体をポンプ
9で強制的に循環させ、冷媒を蒸発させないで半導体素
子7を冷却するようになっている。
Cooling methods using a liquid refrigerant include a conduction cooling method of indirectly cooling as shown in FIG. 3 (a) and an immersion cooling method of directly cooling as shown in FIG. 3 (b).
In the conduction cooling method shown in FIG. 1A, a cooling plate 4 is brought into contact with a semiconductor device 2 mounted on a substrate 1 by a bellows 3 or a piston, and a cooling medium 5 is caused to flow in the bellows 3 so that the semiconductor device 2
It is designed to cool down. Further, in the immersion cooling system shown in FIG. 2B, the semiconductor element 7 is directly immersed in the coolant liquid 5 such as chemically inert fluorocarbon filled in the closed container 6 and cooled by the water cooling heat exchanger 8. The liquid is forcedly circulated by the pump 9, and the semiconductor element 7 is cooled without evaporating the refrigerant.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の化学的に不活性なフルオロカーボン等を冷
媒とした浸漬液冷方式は、素子7と冷媒液体5を直接接
触させることができるため、間接的に水を循環させる伝
導冷却方式に比べて熱抵抗が低く、高い冷却能力を得る
ことができる。しかし冷媒そのものの熱移送能力、熱交
換効率は、水の1/2以下と小さく、冷却能力向上に限界
があった。
The conventional immersion liquid cooling method using a chemically inert fluorocarbon or the like as a refrigerant can heat the element 7 and the refrigerant liquid 5 directly, and therefore, the heat of the immersion liquid cooling method is higher than that of the conduction cooling method of indirectly circulating water. Low resistance and high cooling capacity can be obtained. However, the heat transfer capacity and heat exchange efficiency of the refrigerant itself were as small as 1/2 or less of water, and there was a limit to improving the cooling capacity.

本発明は上記従来の問題点に鑑み、熱移送能力を向上
した冷媒液体を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a refrigerant liquid having an improved heat transfer capability.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明の冷却媒体では、主
冷媒液体10に、該主冷媒液体10よりも比熱の大きい液
体,ゲル,固体,あるいはこれらの混合物11を内包する
マイクロカプセル12を分散,混合して成ることを特徴と
する。
To achieve the above object, in the cooling medium of the present invention, in the main refrigerant liquid 10, a liquid having a larger specific heat than the main refrigerant liquid 10, a gel, a solid, or a microcapsule 12 containing a mixture 11 thereof is dispersed, It is characterized by being mixed.

〔作 用〕(Operation)

主冷媒液体に分散した個々のマイクロカプセルは、微
小であるため熱容量が小さく、主冷媒液体の温度変化に
速やかに追従するため、見掛け上は均質な冷媒と同じ挙
動を示す。しかもマイクロカプセル内には比熱の高い物
質が充填されているので全体として、主冷媒より高い熱
移送能力と熱交換効率を持つ冷媒となる。しかも、カプ
セル内の充填物質は、直接、主冷媒と接触しないので冷
媒の化学的不活性は、マイクロカプセル混合前と変わら
ない。マイクロカプセル内の充填物質は自由に選択でき
るので水溶液の濃度で比重調整も可能である。
The individual microcapsules dispersed in the main refrigerant liquid have a small heat capacity because they are minute, and quickly follow the temperature change of the main refrigerant liquid, so that they apparently behave like a homogeneous refrigerant. Moreover, since the microcapsules are filled with a substance having a high specific heat, the refrigerant as a whole has a higher heat transfer capacity and higher heat exchange efficiency than the main refrigerant. Moreover, since the filling material in the capsule does not directly contact the main refrigerant, the chemical inertness of the refrigerant is the same as that before the microcapsule mixing. Since the filling material in the microcapsule can be freely selected, the specific gravity can be adjusted by the concentration of the aqueous solution.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す図である。 FIG. 1 is a diagram showing an embodiment of the present invention.

本実施例は同図に示すように主冷媒液体10に、該主冷
媒液体10より比熱の大きい液体又はゲル又は固体、ある
いはこれらの混合物11を内包したマイクロカプセル12を
分散、混合したものである。なお主冷媒液体10としては
炭素数5から9のフルオロカーボンを用いた場合、マイ
クロカプセル12は水ないしは水溶液を内包するものが好
適である。
In this embodiment, as shown in the figure, the main refrigerant liquid 10 is a liquid or gel or solid having a larger specific heat than the main refrigerant liquid 10, or microcapsules 12 containing a mixture 11 thereof are dispersed and mixed. . When a fluorocarbon having 5 to 9 carbon atoms is used as the main refrigerant liquid 10, the microcapsules 12 preferably contain water or an aqueous solution.

本実施例によれば、主冷媒液体に分散した個々のマイ
クロカプセルが、微少であるため熱容量が小さく、主冷
媒液体の温度変化に速やかに追従するため、見掛け上は
均質な冷媒と同じ挙動を示す。しかもマイクロカプセル
内には比熱の高い物質が充填されているので全体とし
て、主冷媒より高い熱移送能力と熱交換効率を持つ冷媒
となる。しかも、カプセル内の充填物質は、直接、主冷
媒と接触しないので冷媒の化学的不活性は、マイクロカ
プセル混合前と変わらない。マイクロカプセル内の充填
物質は自由に選択できるので水溶液の濃度で比重調整も
可能である。
According to the present embodiment, the individual microcapsules dispersed in the main refrigerant liquid have a small heat capacity because they are minute, and quickly follow the temperature change of the main refrigerant liquid. Show. Moreover, since the microcapsules are filled with a substance having a high specific heat, the refrigerant as a whole has a higher heat transfer capacity and higher heat exchange efficiency than the main refrigerant. Moreover, since the filling material in the capsule does not directly contact the main refrigerant, the chemical inertness of the refrigerant is the same as that before the microcapsule mixing. Since the filling material in the microcapsule can be freely selected, the specific gravity can be adjusted by the concentration of the aqueous solution.

次に実際例について説明する。 Next, a practical example will be described.

in−situ法により、40wt%のグルコース水溶液を含有
し、直径が10〜100μmのマイクロカプセルを作成し、
これを沸点が約100℃のフルオロカーボン(C8F16O)に5
0wt%混合して冷媒液体を作成した。
By the in-situ method, a 40 wt% glucose aqueous solution was contained, and a microcapsule with a diameter of 10 to 100 μm was prepared.
Add this to fluorocarbon (C 8 F 16 O) with a boiling point of about 100 ° C.
A refrigerant liquid was prepared by mixing 0 wt%.

この冷媒液体を用い、第2図に示す冷却槽13、熱交換
器14、循環ポンプ15、配管16を有する装置によりLSI17
を冷却した。LSI17のチップは10mm角であり、回路基板1
8に5×5個搭載(図は1個のみ示す)し、個々のチッ
プ17はそれぞれに対向したノズル19(直径3φ)からの
冷媒液体の噴流(流速1m/s)により冷却した。
Using this refrigerant liquid, an LSI 17 is provided by a device having a cooling tank 13, a heat exchanger 14, a circulation pump 15, and a pipe 16 shown in FIG.
Was cooled. The chip of LSI17 is 10mm square and the circuit board 1
5 × 5 pieces were mounted on 8 (only one piece is shown in the figure), and each chip 17 was cooled by a jet of a refrigerant liquid (flow rate 1 m / s) from a nozzle 19 (diameter 3φ) facing each other.

本実際例によれば、従来の素子の周囲に流路を設け、
素子に平行に冷媒を強制循環させる方式の強制対流沸騰
冷却装置では素子の単位あたりの冷却能力が50w/cm2
あったものが本発明では約2倍の80w/cm2に向上した。
According to this practical example, a flow path is provided around the conventional element,
In the forced convection boiling cooling device of the type in which the refrigerant is forcedly circulated in parallel to the element, the cooling capacity per unit of the element was 50 w / cm 2 , but in the present invention, it was improved to about 80 times that of 80 w / cm 2 .

〔発明の効果〕〔The invention's effect〕

以上説明した様に本発明によれば、主冷媒液体に該主
冷媒液体より比熱の大きい物質を内包したマイクロカプ
セルを分散、混合したことにより主冷媒液体より比熱の
大きい冷媒液体が得られ、主冷媒液体より熱移送能力が
向上し、浸漬冷却装置に用いて冷却能力の向上が可能と
なる。
As described above, according to the present invention, a microcapsule containing a substance having a larger specific heat than the main refrigerant liquid is dispersed and mixed in the main refrigerant liquid to obtain a refrigerant liquid having a larger specific heat than the main refrigerant liquid. The heat transfer capacity is higher than that of the refrigerant liquid, and the cooling capacity can be improved by using it in the immersion cooling device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の実際例を説明するための図、 第3図は従来の冷却方式を示す図である。 図において、 10は主冷媒液体、 11は液体,ゲル,固体,あるいはこれらの混合物、 12はマイクロカプセル を示す。 FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram for explaining an actual example of the present invention, and FIG. 3 is a diagram showing a conventional cooling system. In the figure, 10 is a main refrigerant liquid, 11 is a liquid, gel, solid, or a mixture thereof, and 12 is a microcapsule.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主冷媒液体(10)に、該主冷媒液体(10)
よりも比熱の大きい液体,ゲル,固体,あるいはこれら
の混合物(11)を内包するマイクロカプセル(12)を分
散,混合して成ることを特徴とする冷却媒体。
1. A main refrigerant liquid (10), wherein the main refrigerant liquid (10)
A cooling medium comprising a microcapsule (12) containing a liquid, gel, solid, or a mixture (11) thereof having a higher specific heat than that dispersed and mixed.
JP1320596A 1989-12-12 1989-12-12 Cooling medium Expired - Fee Related JP2677275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320596A JP2677275B2 (en) 1989-12-12 1989-12-12 Cooling medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320596A JP2677275B2 (en) 1989-12-12 1989-12-12 Cooling medium

Publications (2)

Publication Number Publication Date
JPH03183156A JPH03183156A (en) 1991-08-09
JP2677275B2 true JP2677275B2 (en) 1997-11-17

Family

ID=18123182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320596A Expired - Fee Related JP2677275B2 (en) 1989-12-12 1989-12-12 Cooling medium

Country Status (1)

Country Link
JP (1) JP2677275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230031815A1 (en) * 2016-08-26 2023-02-02 Inertech Ip Llc Cooling systems and methods using single-phase fluid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283880A (en) * 1992-04-03 1993-10-29 Nec Corp Device cooling method
JP4679475B2 (en) * 2006-08-31 2011-04-27 富士通株式会社 Cooling device, electronic device and cooling medium
WO2008117459A1 (en) 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Fuel injection valve
JP5295319B2 (en) 2011-06-24 2013-09-18 三菱電機株式会社 Fuel injection valve
JP6980969B2 (en) * 2016-04-13 2021-12-15 富士通株式会社 Data center and data center control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230031815A1 (en) * 2016-08-26 2023-02-02 Inertech Ip Llc Cooling systems and methods using single-phase fluid
US11940227B2 (en) * 2016-08-26 2024-03-26 Inertech Ip Llc Cooling systems and methods using single-phase fluid

Also Published As

Publication number Publication date
JPH03183156A (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US5007478A (en) Microencapsulated phase change material slurry heat sinks
US20130139998A1 (en) Cooling system, electronic equipment, and method for cooling heating element
JP2677275B2 (en) Cooling medium
US6911231B2 (en) Method for producing a heat transfer medium and device
CN102548361A (en) Heat dissipation device using latent heat functional fluid and heat dissipation method thereof
US20220087050A1 (en) Heat dissipation apparatus and processor
CN110913658B (en) Cabinet based on coupling of pulsating heat pipe and phase-change material
CN109686710B (en) Heat dissipation device based on liquid metal multiphase fluid
JPH02114597A (en) Method of cooling electronic device
US20220104397A1 (en) Liquid cooling radiator based on a working medium capable of liquid-liquid phase separation
KR20000010243A (en) Encapsulated phase change material(pcm) and heat storage and transport method using the pcm
CN211476819U (en) Spallation target
JP2874100B2 (en) Electronic equipment cooling system
JPH0317222B2 (en)
CN104216490A (en) Liquid cooling system for computer chip
CHEBI et al. Heat dissipation in microelectronic systems using phase change materials with natural convection
CN202488944U (en) Heat radiation apparatus applying latent heat functional fluid
JPH05215369A (en) Cooling or heating method utilizing latent heat
JPH0533015Y2 (en)
CN111118579A (en) Micro LED arrangement method based on electrophoresis robot
TWI307262B (en)
JPH02115693A (en) Latent heat accumulation system
Goel et al. The performance of liquid heat sinks with phase change material suspensions
JPH0442931Y2 (en)
JPH0258296A (en) Cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees