JP2829403B2 - 化合物半導体の製造方法 - Google Patents

化合物半導体の製造方法

Info

Publication number
JP2829403B2
JP2829403B2 JP16226391A JP16226391A JP2829403B2 JP 2829403 B2 JP2829403 B2 JP 2829403B2 JP 16226391 A JP16226391 A JP 16226391A JP 16226391 A JP16226391 A JP 16226391A JP 2829403 B2 JP2829403 B2 JP 2829403B2
Authority
JP
Japan
Prior art keywords
layer
substrate
inp
resistance
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16226391A
Other languages
English (en)
Other versions
JPH04362100A (ja
Inventor
光朗 生和
豊明 今泉
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP16226391A priority Critical patent/JP2829403B2/ja
Publication of JPH04362100A publication Critical patent/JPH04362100A/ja
Application granted granted Critical
Publication of JP2829403B2 publication Critical patent/JP2829403B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電子デバイス、特にO
EIC,HEMT、イオン注入型FETなどに用いる化
合物半導体基板の製造技術に関し、特に半導体基板上に
高い抵抗率を有するInPエピタキシャル層を形成する
場合に利用して好適な方法に関する。
【0002】
【従来の技術】III−V族化合物半導体デバイスにおい
て高抵抗バッファ層は、動作層(能動層)を基板から絶
縁したり集積回路では素子を分離するために形成される
もので、デバイス特性を向上させる上で重要である。従
来、III−V族化合物半導体高抵抗層は気相エピタキシ
ャル成長法により形成されており、その高抵抗化は、気
相成長時にバイパス管から高抵抗化不純物を含むドーピ
ングガスを流したり、気相成長のソース原料に予め高抵
抗化不純物を添加しておいて成長時に基板表面のエピタ
キシャル層にドーピングさせる方法等により行なわれて
いる。
【0003】
【発明が解決しようとする課題】しかしながら、上記第
1の方法にあっては、バイパス管から導入された高抵抗
化不純物の化合物が分解してバイパス管の壁面に析出し
て成長層にドーピングされなかったり、高抵抗化不純物
源とHClとを反応させて塩化物の形で輸送させる場合
には、ドーピング量を多くしようとするとHCl濃度が
高くなって基板そのものがエッチングされて、充分に高
抵抗化された成長層を得ることができないという問題点
があった。一方、上記第2の方法にあっては、ソース原
料に対する高抵抗化不純物源の偏析係数が小さいこと、
必要量の不純物が輸送されないという問題点があった。
そのため、実用化されているのはクロライド法によりG
aソースに鉄を添加して基板上にFeドープGaAs層
を気相成長させる方法のみである。
【0004】また、上記高抵抗化不純物としての鉄やク
ロム、コバルト等は、いわゆる深いアクセプタ不純物で
あり、この種の不純物が能動層に侵入すると基板の電気
的特性が悪くなる。さらに、バッファ半導体層と能動半
導体層との界面に深いアクセプタ不純物の侵入した層が
形成されてしまった半導体基板を用いて例えば電界効果
型トランジスタのようなデバイスを製造した場合には、
バッファ半導体層と能動半導体層との界面にトラップが
生じて能動層を流れる電子を捕獲したり、能動層に電子
を放出したりして雑音発生の原因になっている。
【0005】このように、深い準位を形成する不純物
は、浅い準位を形成する不純物がそれを補償する他の不
純物によって無視できるようになるのと異なり、能動層
への侵入が致命的な悪影響を与える。しかも、深い準位
を形成する不純物はバッファ層におけるキャリアの移動
度を低くしてしまう。以上のように、従来の高抵抗半導
体層の形成方法では、高抵抗化不純物を成長層にドーピ
ングさせるのが困難であり、かつその高抵抗化不純物が
電子デバイスの電気的特性を低下させてしまうという欠
点を有していた。
【0006】本発明は上記のような問題点に着目してな
されたもので、その目的とするところは、高い抵抗率の
InPエピタキシャル層を表面に有する半導体基板の製
造技術を提供することにある。
【0007】
【課題を解決するための手段】従来、電子デバイスに用
いられる半絶縁性のInP単結晶としては、Feドープ
InPが主として用いられている。しかし、Feの含有
濃度が0.2ppmw以下であると、抵抗率が106Ω・cmよ
り低くなってしまい、半絶縁性が低下してしまう。これ
を半絶縁性結晶とするためには、Feのドープ量を一定
量(0.2ppmw)以上にしなければならなかった。
【0008】一般に、化合物半導体でFe,Cr等の含
有濃度が低くなると抵抗率が下がってしまうのは、ドナ
ーとなる不純物がその水準まで残留不純物として結晶中
に存在するためと考えられていた。ところが、本発明者
等は、InP単結晶の半絶縁性化の機構は、ドナーと深
いアクセプターによる補償のみでなく、さらに電気的に
活性な点欠陥も関与していると考え、鋭意研究の結果、
結晶を熱処理することにより点欠陥の濃度を制御するこ
とができ、これにより、従来に比し格段と低い深いアク
セプターの不純物濃度でもInP単結晶を半絶縁性化で
きることを見い出した。
【0009】本発明は上記知見に基づいてなされたもの
で、基板の表面にアンドープのn-型InP層をエピタ
キシャル成長させた後、上記基板をリン蒸気圧下で熱処
理して上記エピタキシャル層を高抵抗化することを提案
するものである。
【0010】
【作用】上記した手段によれば、リン蒸気圧下での熱処
理によってアンドープn-型InPエピタキシャル層内
に深いアクセプタ型欠陥が形成されるため、エピタキシ
ャル層内のドナーが上記アクセプタ型欠陥によって補償
され、エピタキシャル層が高抵抗化される。
【0011】
【実施例】ホットウォール型の横型気相成長装置を用い
て、半絶縁性InP単結晶基板上にクロライド気相成長
法にて不純物を添加することなくInPエピタキシャル
層を2ミクロンに成長させた。成長層のホール測定を行
なったところ、導電型はn-型でキャリア濃度は1×1
15/cm3であった。次に、上記エピタキシャル層付き
InP基板を赤リンとともに石英アンプル内にセット
し、石英アンプル内を1×10-6torrまで真空排気した
後、酸水素バーナーにより石英アンプルの開口部を封止
した。この際、リン蒸気圧は、石英アンプル内のP4
してのリン蒸気圧が熱処理温度で1,3,5,7.5,
15,20kg/cm2(絶対圧)となるように赤リンの量
を調整することで変化させた。次に、この石英アンプル
を横型加熱炉内に設置し、熱処理温度900℃で20時
間加熱保持した後、冷却した。
【0012】得られたエピタキシャル層について、Va
n der Pauw法によって抵抗率および移動度を3
00Kで測定した。その測定結果を図1に示す。図1よ
り、本発明方法の適用により、1×107Ω・cm以上の抵
抗率を有する高抵抗のInP層が形成されていることが
分かる。また、リン蒸気圧6kg/cm2以上では4×107
Ω・cm以上に高抵抗化されている。なお、上記実施例で
はいずれもInP単結晶の熱処理温度を900℃とした
場合について説明したが、他の温度条件下でもリン蒸気
圧下の熱処理によって、300Kでの抵抗率が1×10
7Ω・cm以上である半絶縁性InP成長層が得られた。
【0013】
【発明の効果】基板の表面にアンドープのn-型InP
層をエピタキシャル成長させた後、上記基板をリン蒸気
圧下で熱処理するようにしたので、熱処理によってn-
型エピタキシャル層内に深いアクセプタ型欠陥が形成さ
れるため、エピタキシャル層内のドナーが上記アクセプ
タ型欠陥によって補償され、エピタキシャル層が半絶縁
性化され、高い抵抗率のInPエピタキシャル層を表面
に有する基板が得られるという効果がある。
【図面の簡単な説明】
【図1】本発明方法により得られたInP基板をリン蒸
気圧下で熱処理した後で成長層の抵抗率をリン蒸気圧と
の関係で示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−198095(JP,A) 特開 昭48−20800(JP,A) 特開 昭63−155718(JP,A) 特開 平3−50198(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 H01L 21/208

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 基板の表面にアンドープのn-型InP
    層をエピタキシャル成長させた後、上記基板をリン蒸気
    圧下で熱処理して上記エピタキシャル層を高抵抗化する
    ことを特徴とする化合物半導体の製造方法。
JP16226391A 1991-06-06 1991-06-06 化合物半導体の製造方法 Expired - Lifetime JP2829403B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16226391A JP2829403B2 (ja) 1991-06-06 1991-06-06 化合物半導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16226391A JP2829403B2 (ja) 1991-06-06 1991-06-06 化合物半導体の製造方法

Publications (2)

Publication Number Publication Date
JPH04362100A JPH04362100A (ja) 1992-12-15
JP2829403B2 true JP2829403B2 (ja) 1998-11-25

Family

ID=15751125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16226391A Expired - Lifetime JP2829403B2 (ja) 1991-06-06 1991-06-06 化合物半導体の製造方法

Country Status (1)

Country Link
JP (1) JP2829403B2 (ja)

Also Published As

Publication number Publication date
JPH04362100A (ja) 1992-12-15

Similar Documents

Publication Publication Date Title
US5030580A (en) Method for producing a silicon carbide semiconductor device
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JP2829403B2 (ja) 化合物半導体の製造方法
US5656538A (en) Halide dopant process for producing semi-insulating group III-V regions for semiconductor devices
JP3438116B2 (ja) 化合物半導体装置及びその製造方法
US4028147A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JP3147338B2 (ja) 半導体基板の製造方法
EP0455325B1 (en) Single crystals of semi-insulating indium phosphide and processes for making them
US5426068A (en) Method of manufacturing compound semiconductor wafer
JP2793837B2 (ja) 半導体装置の製造方法およびヘテロ接合バイポーラトランジスタ
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JP2848404B2 (ja) ▲iii▼―▲v▼族化合物半導体層の形成方法
JP2572291B2 (ja) 半絶縁性InP単結晶基板の製造方法
JPS6254424A (ja) GaAs薄膜の気相成長法
JPH0543679B2 (ja)
JP2819244B2 (ja) 半絶縁性InP単結晶の製造方法
US5254507A (en) Semi-insulating InP single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
JPH07116000B2 (ja) 高抵抗化合物半導体基板の製造方法
JPH0597596A (ja) GaAs結晶及びGaAsデバイス
JPH0714840B2 (ja) エピタキシャル膜成長方法
JPH0269307A (ja) リン化インジウムおよびその製造方法
JP3106197B2 (ja) 高抵抗化合物半導体の製造方法
JP2572297B2 (ja) 半絶縁性InP単結晶基板の製造方法
JPH0782092A (ja) 化合物半導体基板の製造方法