JP2783417B2 - Manufacturing method of rutile type titanium oxide sol - Google Patents

Manufacturing method of rutile type titanium oxide sol

Info

Publication number
JP2783417B2
JP2783417B2 JP1078928A JP7892889A JP2783417B2 JP 2783417 B2 JP2783417 B2 JP 2783417B2 JP 1078928 A JP1078928 A JP 1078928A JP 7892889 A JP7892889 A JP 7892889A JP 2783417 B2 JP2783417 B2 JP 2783417B2
Authority
JP
Japan
Prior art keywords
titanium oxide
sol
aqueous solution
rutile
oxide sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1078928A
Other languages
Japanese (ja)
Other versions
JPH02255532A (en
Inventor
博和 田中
秀逸 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
Original Assignee
SHOKUBAI KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP1078928A priority Critical patent/JP2783417B2/en
Publication of JPH02255532A publication Critical patent/JPH02255532A/en
Application granted granted Critical
Publication of JP2783417B2 publication Critical patent/JP2783417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ルチル型酸化チタンゾルの製造法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rutile-type titanium oxide sol.

発明の技術的背景ならびにその問題点 近年、酸化チタン粒子は、その化学的特性を利用した
用途が広がりつつある。たとえば酸化チタンは、酸素と
適当な結合力を有するとともに耐酸性をも有するため、
酸化還元触媒として用いられたり、あるいは紫外線の遮
断力を利用して化粧材料またはプラスチックの表面コー
ト材として用いられたり、また高屈折率を利用して反射
防止コート材として用いられたり、導電性を利用した帯
電防止材として用いられたり、さらにはこれらの効果を
組み合せて機能性ハードコート材などとして用いられて
いる。
Technical Background of the Invention and Problems Thereof In recent years, titanium oxide particles have been widely used in applications utilizing their chemical properties. For example, titanium oxide has an appropriate bonding force with oxygen and also has acid resistance,
Used as an oxidation-reduction catalyst, used as a surface coating material for decorative materials or plastics by using ultraviolet blocking power, used as an anti-reflection coating material using a high refractive index, It is used as an antistatic material used, or is used as a functional hard coat material or the like by combining these effects.

上記のように酸化チタンは多くの用途に用いられてい
るが、いずれの場合であっても酸化チタンには多くの機
能が要求される。たとえば、触媒として酸化チタンを用
いる場合には、主反応に対する活性だけでなく、選択
性、機械的強度、耐熱性、耐酸性あるいは耐久性が求め
られ、また化粧材料として酸化チタンを用いる場合に
は、紫外線の遮蔽効果だけではなく、円滑性、肌ざわ
り、透明性などが求められている。さらにコート材とし
て酸化チタンを用いる場合には、透明性、高屈折率に加
えて、さらに優れた被膜形成性、密着性、被膜硬度、機
械的強度、耐摩耗性などが求められている。
As described above, titanium oxide is used in many applications, but in any case, titanium oxide requires many functions. For example, when using titanium oxide as a catalyst, not only activity to the main reaction, but also selectivity, mechanical strength, heat resistance, acid resistance or durability are required, and when using titanium oxide as a cosmetic material, In addition, not only the effect of blocking ultraviolet rays, but also smoothness, texture, and transparency are required. Further, when titanium oxide is used as a coating material, in addition to transparency and high refractive index, further excellent film forming properties, adhesion, film hardness, mechanical strength, wear resistance, and the like are required.

このように酸化チタン粒子を種々の用途に用いるに
は、酸化チタン粒子は、それぞれの用途に応じて種々の
特性を有することが求められるが、どのような用途に用
いるにしても、超微粒子であることが好ましい。しかも
酸化チタン粒子に透明性が要求される場合には、この粒
子は粒子形状および大きさが揃っているばかりでなく、
配合時に媒体中に高分散することが求められる。これら
の特性を満たすような酸化チタン粒子を製造するには、
高分散したコロイド状酸化チタン(酸化チタンゾル)を
用いることが特に好ましい。
As described above, in order to use titanium oxide particles for various purposes, the titanium oxide particles are required to have various characteristics according to each application. Preferably, there is. Moreover, when transparency is required for the titanium oxide particles, these particles are not only uniform in particle shape and size, but also
It is required to be highly dispersed in a medium during compounding. To produce titanium oxide particles that satisfy these properties,
It is particularly preferable to use highly dispersed colloidal titanium oxide (titanium oxide sol).

ところで酸化チタンにはアナターゼ型とルチル型とが
あるが、アナターゼ型はルチル型に比べて耐光性、耐熱
性、紫外線吸収能等の面で劣ってるため、ルチル型酸化
チタンの方が好ましい。
By the way, titanium oxide is classified into anatase type and rutile type. The anatase type is inferior to the rutile type in light resistance, heat resistance, ultraviolet absorbing ability, and the like. Therefore, rutile type titanium oxide is preferable.

このようなルチル型酸化チタン微粒子が分散したルチ
ル型酸化チタンゾルの製造法としては、チタン塩水溶液
を加水分解して得られる水和酸化チタンを苛性アルカリ
で処理したのち、塩酸中で熟成する方法等が知られてい
る。
As a method for producing such a rutile-type titanium oxide sol in which the rutile-type titanium oxide fine particles are dispersed, a hydrated titanium oxide obtained by hydrolyzing an aqueous solution of a titanium salt is treated with a caustic alkali, and then ripened in hydrochloric acid. It has been known.

これらの方法で得られたルチル型酸化チタンゾルは、
ゾル中にチタン塩に由来する陰イオン、またはアルカリ
に由来する金属イオンが含まれているので、これらを除
去する必要がある。しかし、ゾルからこれらのイオンを
洗浄除去するのはきわめて困難である。また、従来のゾ
ルは酸性領域でしか安定には存在できない等の問題点が
ある。
Rutile-type titanium oxide sol obtained by these methods,
Since the sol contains anions derived from titanium salts or metal ions derived from alkalis, it is necessary to remove these. However, it is extremely difficult to wash and remove these ions from the sol. Further, the conventional sol has a problem that it can stably exist only in an acidic region.

また、特開昭63−210027号公報には、チタン化合物と
スズ化合物の混合ゲルを水熱処理することにより、結晶
質酸化チタン・酸化スズ−ゾルを得ることが開示されて
いる。
JP-A-63-210027 discloses that a mixed gel of a titanium compound and a tin compound is subjected to hydrothermal treatment to obtain a crystalline titanium oxide / tin oxide sol.

ところで本願出願人は、先に水和酸化チタンゲルまた
はゾルを過酸化水素で溶解した後、SiO2等の無機化合物
の共存下で加熱、加水分解することを特徴とするアナタ
ーゼ型酸化チタン粒子が分散した酸化チタンゾルの製造
法につき特許出願した(特開昭63−229139号公報)。
By the way, the applicant of the present application dissolves anatase-type titanium oxide particles characterized in that after hydrated titanium oxide gel or sol is dissolved with hydrogen peroxide, heating and hydrolysis are performed in the presence of an inorganic compound such as SiO 2. A patent application was filed for a method for producing the titanium oxide sol thus obtained (Japanese Patent Application Laid-Open No. 63-229139).

本発明者等は、上記のような技術を基礎に鋭意研究を
重ねた結果、特定の比表面積を有する水和酸化チタンの
ゲルまたはゾルに過酸化水素を加えて水和酸化チタンを
溶解させ、得られた溶液を特定量のSnO2の存在下に加熱
すれば、得られる酸化チタンゾル中の分散粒子がルチル
型酸化チタンとなることを見出し、本発明を完成するに
至った。
The present inventors have conducted intensive studies based on the above-described technology, and as a result, dissolve the hydrated titanium oxide by adding hydrogen peroxide to a gel or sol of hydrated titanium oxide having a specific specific surface area, The inventors have found that if the obtained solution is heated in the presence of a specific amount of SnO 2 , the dispersed particles in the obtained titanium oxide sol will be rutile-type titanium oxide, and have completed the present invention.

発明の目的 本発明は、上記のような問題点を解決しようとするも
のであって、分散性に優れるとともに長期安定性、耐光
性にも優れるようなルチル型酸化チタンゾルの製造方法
を提供することを目的としている。
An object of the present invention is to solve the above problems, and to provide a method for producing a rutile-type titanium oxide sol having excellent dispersibility, long-term stability, and excellent light resistance. It is an object.

発明の概要 本発明に係るルチル型酸化チタンゾルの製造方法は、
比表面積が150m2/g以上である水和酸化チタン粒子を含
む水和酸化チタンのゲルまたはゾルに過酸化水素を加え
て水和酸化チタンを溶解し、次いで得られた溶液を、Ti
O2/SnO2=1.5〜14(重量比)の量のスズ化合物の共存下
で加熱することを特徴としている。
SUMMARY OF THE INVENTION A method for producing a rutile-type titanium oxide sol according to the present invention comprises:
Hydrogen peroxide is added to a gel or sol of hydrated titanium oxide containing hydrated titanium oxide particles having a specific surface area of 150 m 2 / g or more to dissolve the hydrated titanium oxide, and then the obtained solution is
It is characterized by heating in the presence of a tin compound in an amount of O 2 / SnO 2 = 1.5 to 14 (weight ratio).

発明の具体的説明 以下本発明に係るルチル型酸化チタンゾルについて具
体的に説明する。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the rutile-type titanium oxide sol according to the present invention will be specifically described.

本発明ではルチル型酸化チタンゾルを製造するには、
まず、従来公知の方法によって水和酸化チタンのゲルま
たはゾルを調製する。水和酸化チタンゲルは、たとえば
塩化チタン、硫酸チタンなどのチタン塩の水溶液にアル
カリを加えて中和し、洗浄することによって得ることが
できる。また水和酸化チタンゾルは、チタン塩の水溶液
をイオン交換樹脂に通して陰イオンを除去するか、ある
いはチタンアルコキシドを加水分解することによって得
ることができる。
In the present invention, to produce a rutile-type titanium oxide sol,
First, a hydrated titanium oxide gel or sol is prepared by a conventionally known method. The hydrated titanium oxide gel can be obtained, for example, by neutralizing an aqueous solution of a titanium salt such as titanium chloride or titanium sulfate by adding an alkali, and washing the resultant. The hydrated titanium oxide sol can be obtained by passing an aqueous solution of a titanium salt through an ion exchange resin to remove anions, or hydrolyzing a titanium alkoxide.

得られたゲルまたはゾル中の水和酸化チタン粒子は、
非晶質であることが好ましく、さらに、その比表面積が
150m2/g以上好ましくは155m2/g以上であることが、ルチ
ル型の酸化チタンを得るうえで望ましい。
Hydrated titanium oxide particles in the obtained gel or sol,
It is preferably amorphous, and its specific surface area is
It is desirably 150 m 2 / g or more, preferably 155 m 2 / g or more, in order to obtain rutile-type titanium oxide.

ここでいう水和酸化チタンとは、上記のような方法で
得られる酸化チタンの水和物、水酸化チタンまたは含水
チタン酸と呼ばれているものの総称である。
The term “hydrated titanium oxide” as used herein is a general term for what is called a hydrate of titanium oxide, titanium hydroxide or hydrous titanic acid obtained by the above method.

なお、本発明の比表面積は、ゲルまたはゾルを乾燥
し、280℃、160時間焼成後の粉末をBET法で測定した値
である。
The specific surface area according to the present invention is a value obtained by drying a gel or sol and calcining the powder after firing at 280 ° C. for 160 hours by the BET method.

次に上記のようにして得られた水和酸化チタンゾルま
たはゲルあるいはこれらの混合物に、過酸化水素を加え
て水和酸化チタンを溶解して均一な水溶液(以下チタン
酸水溶液ということがある)を調製する。このようなチ
タン酸水溶液を調製するに際して、必要に応じて約50℃
以上に加熱あるいは撹拌することが好ましい。またこの
際、水和酸化チタンの濃度が高くなりすぎると、その溶
解に長時間を必要とし、さらに未溶解状態のゲルが沈澱
したり、あるいは得られる水溶液が粘調になることがあ
る。このためTiO2濃度としては、約10重量%以下好まし
くは約5重量%以下であることが望ましい。
Next, hydrogen peroxide is added to the hydrated titanium oxide sol or gel obtained as described above or a mixture thereof to dissolve the hydrated titanium oxide to form a uniform aqueous solution (hereinafter sometimes referred to as a titanic acid aqueous solution). Prepare. When preparing such an aqueous solution of titanic acid, if necessary, about 50 ° C
It is preferable to heat or stir as described above. At this time, if the concentration of the hydrated titanium oxide is too high, it takes a long time to dissolve the hydrated titanium oxide, and an undissolved gel may precipitate, or the resulting aqueous solution may become viscous. Therefore, the TiO 2 concentration is desirably about 10% by weight or less, preferably about 5% by weight or less.

加えるべき過酸化水素の量は、H2O2/TiO2重量比で1
以上であれば、水和酸化チタンを完全に溶解することが
できる。H2O2/TiO2比が1未満であると、水和酸化チタ
ンが完全に溶解せず、未反応のゲルまたはゾルが残存す
ることがある。またH2O2/TiO2比は大きいほど、水和酸
化チタンの溶解速度は大きく反応は短時間で終了する
が、あまり過剰に過酸化水素を用いても、未反応の過酸
化水素が系内に大量に残存するだけであり、経済的でな
い。このような量で過酸化水素を用いると、水和酸化チ
タンは0.5〜20時間程度で完全に溶解する。
The amount of hydrogen peroxide to be added is 1 in H 2 O 2 / TiO 2 weight ratio.
With the above, the hydrated titanium oxide can be completely dissolved. If the H 2 O 2 / TiO 2 ratio is less than 1, the hydrated titanium oxide may not completely dissolve and unreacted gel or sol may remain. Also, as the H 2 O 2 / TiO 2 ratio increases, the dissolution rate of hydrated titanium oxide increases and the reaction is completed in a short period of time. It only remains in large quantities inside, and is not economical. When hydrogen peroxide is used in such an amount, the hydrated titanium oxide is completely dissolved in about 0.5 to 20 hours.

次いで、得られたチタン酸水溶液にスズ化合物を添加
する。
Next, a tin compound is added to the obtained aqueous solution of titanic acid.

スズ化合物としては、塩化スズ、硝酸スズ等のスズ
塩、スズ酸カリ等のスズ酸塩、または酸化物、水酸化物
が用いられる。
As the tin compound, tin salts such as tin chloride and tin nitrate, stannates such as potassium stannate, or oxides and hydroxides are used.

これらのスズ化合物は、通常、水溶液の形で添加する
が、粉末状を加えてもよい。さらには、酸化スズ水和物
のゲルまたはゾルを加えてもよい。
These tin compounds are usually added in the form of an aqueous solution, but may be added in powder form. Further, a tin oxide hydrate gel or sol may be added.

スズ化合物の添加量は、TiO2/SnO2(重量比)として
1.5〜14好ましくは2〜10の範囲から選ばれる。
The amount of tin compound added is expressed as TiO 2 / SnO 2 (weight ratio)
It is selected from the range of 1.5 to 14, preferably 2 to 10.

スズ化合物の添加量を上記範囲よりも少なくしていく
と、結晶構造がルチル構造からずれて、アナターゼ型の
酸化チタンとなる。また、添加量を上記範囲よりも増し
ていくと、ルチル構造とは異なる結晶構造を示すように
なる。
When the addition amount of the tin compound is made smaller than the above range, the crystal structure shifts from the rutile structure, and anatase-type titanium oxide is obtained. Further, when the addition amount is increased beyond the above range, a crystal structure different from the rutile structure comes to be exhibited.

スズ化合物を添加した混合溶液は、次いで約60℃以上
好ましくは80℃以上の温度に加熱し、加水分解すれば目
的のルチル型酸化チタンゾルが得られる。
The mixed solution to which the tin compound has been added is then heated to a temperature of about 60 ° C. or higher, preferably 80 ° C. or higher, and hydrolyzed to obtain the desired rutile-type titanium oxide sol.

チタン酸水溶液とスズ化合物の混合方法としては、特
に制限はなく、所定量のチタン酸水溶液とスズ化合物と
を一時に混合してもよく、またチタン酸水溶液とスズ化
合物の一部ずつを最初に混合して加熱し、反応が進むに
したがって、両者の残りを加えてもよい。
The method of mixing the aqueous solution of titanic acid and the tin compound is not particularly limited, and a predetermined amount of the aqueous solution of titanic acid and the tin compound may be mixed at a time, or a part of the aqueous solution of titanic acid and a part of the tin compound may be mixed first. The mixture may be heated, and the remainder of the two may be added as the reaction proceeds.

さらには、スズ化合物の全量とチタン酸水溶液の一部
とを最初に混合して加熱し、その後残りのチタン酸水溶
液を加える方法もとり得る。
Further, a method in which the entire amount of the tin compound and a part of the aqueous solution of titanic acid are first mixed and heated, and then the remaining aqueous solution of titanic acid may be added.

また、スズ化合物の混合時期は、必ずしも水和酸化チ
タンが過酸化水素に溶解した後である必要はなく、過酸
化水素に溶解前のゲルまたはゾルの段階で混合してもよ
く、さらには水和酸化チタンのゲルまたはゾルの調製時
に混合してもよい。要するにチタン酸水溶液を加熱加水
分解する際に、前述のスズ化合物が反応系に存在してい
ればよい。
The mixing time of the tin compound does not necessarily need to be after the hydrated titanium oxide is dissolved in the hydrogen peroxide, but may be mixed in a gel or sol stage before being dissolved in the hydrogen peroxide. It may be mixed at the time of preparing the gel or sol of the titanium oxide. In short, when the titanic acid aqueous solution is heated and hydrolyzed, the tin compound described above may be present in the reaction system.

本発明では、チタン酸水溶液とスズ化合物との混合水
溶液に、さらにケイ素化合物を共存させて、加熱、加水
分解すると、得られるルチル型酸化チタンゾルの安定性
を増すことができる。
In the present invention, the stability of the resulting rutile-type titanium oxide sol can be increased by heating and hydrolyzing a mixed aqueous solution of a titanic acid aqueous solution and a tin compound in the presence of a silicon compound.

ケイ素化合物を添加する場合には、ケイ素化合物の添
加量は、SiO2/(TiO2+SnO2)として、0.05〜0.2(重量
比)であることが好ましく、ケイ素化合物としては、水
ガラス等のアルカリ金属ケイ酸塩、あるいはアルカリ金
属ケイ酸塩水溶液を脱アルカリして得られるケイ酸液、
またはシリカゲル、シリカゾル等が用いられる。
When adding a silicon compound, the addition amount of the silicon compound is preferably 0.05 to 0.2 (weight ratio) as SiO 2 / (TiO 2 + SnO 2 ), and the silicon compound may be an alkali such as water glass. Metal silicate, or a silicic acid solution obtained by removing alkali metal silicate aqueous solution,
Alternatively, silica gel, silica sol, or the like is used.

このようにして得られたルチル型酸化チタンゾルの分
散粒子は、約40〜150Å(デバイ・シェラー法)の大き
さの結晶粒子が成長したもの、または結晶粒子の集合し
た多結晶体からなり、平均粒径が約5〜100mμの範囲に
あるきわめて均一な粒子が分散したゾルである。
The dispersed particles of the rutile-type titanium oxide sol thus obtained consist of crystal grains having a size of about 40 to 150 ° (Debye-Scherrer method) grown or polycrystals in which crystal grains are aggregated. It is a sol in which extremely uniform particles having a particle size in the range of about 5 to 100 mμ are dispersed.

このような本発明により得られる酸化チタンゾルは、
そのまま目的の用途に供することができるが、減圧蒸
発、限外濾過など公知の方法で適宜の濃度まで濃縮して
用いることもできる。また、用途によっては、イソプロ
パノール等のアルコール、エチレングリコールノ等のグ
リコール、ジメチルホルムアミド等の有機溶媒と混合ま
たは溶媒置換して有機溶媒分散ゾルとすることもでき
る。また、酸化チタン粒子の表面処理により、トルエ
ン、キシレン等の有機溶媒分散ゾルも得られる。
Such a titanium oxide sol obtained by the present invention,
Although it can be used for the intended use as it is, it can be used after being concentrated to an appropriate concentration by a known method such as evaporation under reduced pressure and ultrafiltration. Further, depending on the application, an organic solvent dispersion sol can be prepared by mixing or solvent replacement with an alcohol such as isopropanol, a glycol such as ethylene glycol, or an organic solvent such as dimethylformamide. Further, by the surface treatment of the titanium oxide particles, an organic solvent dispersion sol such as toluene and xylene can be obtained.

したがって、本発明により得られるルチル型酸化チタ
ンゾルをプラスチックの配合剤として用いれば、プラス
チックの紫外線による変質防止など種々の効果が期待で
き、食品包装用のプラスチックシートに配合すれば、従
来の包装材に比較して長期保存が可能となる。
Therefore, if the rutile-type titanium oxide sol obtained by the present invention is used as a compounding agent for plastics, various effects such as prevention of deterioration of plastics due to ultraviolet rays can be expected. Long-term storage becomes possible in comparison.

さらに、本発明により得られるルチル型酸化チタン微
粒子は、紫外線遮蔽効果とともに従来のルチル(TiO2
とほぼ同じ高屈折率を示し、また導電性を示すことか
ら、ガラス、プラスチック等の基材の表面コート剤とし
て用いれば、透明性、紫外線遮蔽効果に優れた高屈折率
の導電性被膜が得られる。したがって、高屈折率を要求
されるレンズのコーティング剤、あるいは帯電防止機能
が要求されるブラウン管等の前面板コート剤として有用
である。また、合成繊維に配合することによって帯電防
止繊維が得られる。
Further, the rutile-type titanium oxide fine particles obtained by the present invention have the same effect as the conventional rutile (TiO 2 ) with an ultraviolet shielding effect.
Since it has almost the same high refractive index as that of, and exhibits electrical conductivity, it can be used as a surface coating agent for substrates such as glass and plastics to obtain a high refractive index conductive film with excellent transparency and ultraviolet shielding effect. Can be Therefore, it is useful as a coating agent for a lens that requires a high refractive index or a front plate coating agent for a cathode ray tube or the like that requires an antistatic function. In addition, an antistatic fiber can be obtained by blending it with a synthetic fiber.

発明の効果 本発明により得られるルチル型酸化チタンゾルは、分
散性に優れるとともに長期安定性、耐光性にも優れてお
り、また、紫外線遮蔽効果および透明性に関しても、従
来の酸化チタン微粒子分散液と比較して、優れた特性を
備えている。しかも、有機溶媒と混合あるいは溶媒置換
してもゲル化、沈澱を生ずることがない。
Effects of the Invention The rutile-type titanium oxide sol obtained by the present invention has excellent dispersibility and long-term stability, excellent light resistance, and also with respect to the ultraviolet shielding effect and transparency, the conventional titanium oxide fine particle dispersion and In comparison, it has excellent characteristics. Moreover, no gelation or precipitation occurs even when mixed with or replaced with an organic solvent.

以下本発明を実施例により説明するが、本発明はこれ
ら実施例に限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 硫酸チタニル溶液を純水で希釈してTiO2として1.0重
量%含有する水溶液を得た。この水溶液を10℃に維持し
つつ、撹拌しながら15重量%アンモニア水を添加し、pH
=9.5の白色スラリー液を液た。このスラリーを濾過洗
浄し、固型物が10.2重量%である水和酸化チタンゲルの
ケーキを得た。
To obtain an aqueous solution containing 1.0 wt% as TiO 2 by diluting Example 1 of titanyl sulfate solution with pure water. While maintaining the aqueous solution at 10 ° C., 15% by weight aqueous ammonia was added with stirring, and the pH was adjusted.
= 9.5 as a white slurry. This slurry was filtered and washed to obtain a hydrated titanium oxide gel cake having a solid content of 10.2% by weight.

このケーキ882gに35%過酸化水素水771gと純水597gと
を加えた後、83℃で3時間加熱したところ、TiO2として
4.0重量%のチタン酸水溶液2250gが得られた。このチタ
ン酸水溶液は、黄褐色透明でpH=8.8であった。
After adding 771 g of 35% hydrogen peroxide solution and 597 g of pure water to 882 g of the cake, the mixture was heated at 83 ° C. for 3 hours to obtain TiO 2.
2250 g of a 4.0% by weight aqueous solution of titanic acid were obtained. This aqueous solution of titanic acid was yellow-brown and transparent and had a pH of 8.8.

次に、スズ酸カリウム水溶液を陽イオン交換樹脂で脱
アルカリしたSnO2として1.6重量%のスズ酸水溶液626g
と、上記チタン酸水溶液2250gと純水6020gとを混合し
た。さらに平均粒子径が7mμであり、シリカ濃度が15重
量%であるシリカゾル94.6gを上記混合液に混合した
後、150℃で18時間加熱した。溶液は最初黄褐色であっ
たが、18時間後には淡い乳白青色透明なコロイド液とな
った。
Next, 626 g of a 1.6% by weight stannic acid aqueous solution as SnO 2 obtained by dealkalizing the potassium stannate aqueous solution with a cation exchange resin.
And 2250 g of the above titanic acid aqueous solution and 6020 g of pure water were mixed. Further, 94.6 g of a silica sol having an average particle diameter of 7 μm and a silica concentration of 15% by weight was mixed with the above mixed solution, and then heated at 150 ° C. for 18 hours. The solution was initially tan, but after 18 hours became a pale milky-blue, clear colloid.

このようにして得られたコロイド液を真空蒸発法で固
形分濃度25.6重量%まで濃縮して安定な酸化チタンゾル
を得た。このゾルの分散粒子の比表面積、結晶子径(デ
バイ・シェラー法による)およびX線回折図を測定し
た。結果を表1および第1図に示す。
The colloid liquid thus obtained was concentrated to a solid content concentration of 25.6% by weight by a vacuum evaporation method to obtain a stable titanium oxide sol. The specific surface area, crystallite diameter (by the Debye-Scherrer method), and X-ray diffraction pattern of the dispersed particles of the sol were measured. The results are shown in Table 1 and FIG.

なおX線回折は、ゾル分散粒子を110℃で乾燥した
後、理学電機製LAD−II C型、Cu管球、35KV、12.5mAの
条件で測定した。
The X-ray diffraction was measured after drying the sol-dispersed particles at 110 ° C., under the conditions of LAD-II C type manufactured by Rigaku Corporation, Cu bulb, 35 KV, 12.5 mA.

このX線回折から、得られた酸化チタンゾルはルチル
型であることがわかる。
From this X-ray diffraction, it can be seen that the obtained titanium oxide sol is of a rutile type.

実施例2 実施例1のチタン酸水溶液、スズ酸水溶液および純水
を混合し、TiO2/SnO2=2.3(wt/wt)、(TiO2+SnO2
0.5重量%の混合水溶液を調製した。その後は実施例1
と同様にして酸化チタンゾルを得た。結果を表1および
第2図に示す。
Example 2 The aqueous solution of titanic acid, the aqueous solution of stannic acid and pure water of Example 1 were mixed, and TiO 2 / SnO 2 = 2.3 (wt / wt), (TiO 2 + SnO 2 )
A 0.5% by weight mixed aqueous solution was prepared. After that, Example 1
In the same manner as in the above, a titanium oxide sol was obtained. The results are shown in Table 1 and FIG.

実施例3 実施例1のチタン酸水溶液に陽イオン交換樹脂粒子を
加え、pH3.8とした。これにSnO2として3.0重量%のスズ
酸カリウム水溶液を、pHが4.5を超えないように、TiO2/
SnO2=9(wt/wt)になるまで徐々に加えた。その後陽
イオン交換樹脂粒子を分離し、実施例1で用いたシリカ
ゾルおよび純水を加え、SiO2/(TiO2+SnO2)=0.17(w
t/wt)、(SiO2+TiO2+SnO2)濃度2.0重量%の混合水
溶液とした。これを180℃、12時間加熱した。溶液は、
最初黄褐色であったが、12時間後、淡い乳白青色の透明
なコロイド液となった。
Example 3 Cation exchange resin particles were added to the aqueous solution of titanic acid of Example 1 to adjust the pH to 3.8. To this, a 3.0% by weight aqueous solution of potassium stannate as SnO 2 was added, and TiO 2 /
It was gradually added until SnO 2 = 9 (wt / wt). Thereafter, the cation exchange resin particles were separated, and the silica sol and pure water used in Example 1 were added, and SiO 2 / (TiO 2 + SnO 2 ) = 0.17 (w)
t / wt), a mixed aqueous solution having a (SiO 2 + TiO 2 + SnO 2 ) concentration of 2.0% by weight. This was heated at 180 ° C. for 12 hours. The solution is
Initially a tan color, it turned into a pale milky blue transparent colloid after 12 hours.

このコロイド液を実施例1と同様に濃縮して得た酸化
チタンゾルの分散粒子の性状を、表1および第3図に示
す。
The properties of the dispersed particles of titanium oxide sol obtained by concentrating this colloid solution in the same manner as in Example 1 are shown in Table 1 and FIG.

実施例4 四塩化チタンと塩化第2スズとをTiO2/SnO2=9(wt/
wt)、固形分(TiO2+SnO2)濃度4重量%となるよう純
水を加え、混合溶解した。これに5重量%のアンモニア
水を、液温が20℃以上とならないようコントロールし、
pH9.5になるまで添加した。生成したゲルを0.5重量%の
アンモニア水で洗浄した後純水で洗浄し、固形分濃度1
1.4%の混合ゲルを877.2gを得た。これに35重量%の過
酸化水素水1429gと純水2694gとを加えた後、83℃で4時
間加熱し、(TiO2+SnO2)として2.0重量%の溶液5kgを
得た。この溶液は黄褐色透明でpHは9.1であった。
Example 4 Titanium tetrachloride and stannic chloride were combined with TiO 2 / SnO 2 = 9 (wt /
wt) and pure water so as to give a solid content (TiO 2 + SnO 2 ) concentration of 4% by weight, and mixed and dissolved. Add 5% by weight of ammonia water to this so that the liquid temperature does not exceed 20 ° C.
It was added until pH 9.5. The resulting gel is washed with 0.5% by weight of ammonia water and then with pure water to obtain a solid content of 1%.
877.2 g of a 1.4% mixed gel was obtained. After adding 1429 g of 35 wt% hydrogen peroxide solution and 2694 g of pure water, the mixture was heated at 83 ° C. for 4 hours to obtain 5 kg of a 2.0 wt% solution as (TiO 2 + SnO 2 ). This solution was tan transparent and had a pH of 9.1.

次に平均粒子径が5mμであり、シリカ濃度が15重量%
であるシリカゾル111gと上記の黄褐色透明な液5kgと純
水4.5kgとを混合した後、143℃で172時間加熱した。溶
液は最初黄褐色透明な液であったが、172時間後には淡
い乳淡青白色透明なコロイド液となった。
Next, the average particle size is 5mμ, and the silica concentration is 15% by weight.
Was mixed with 5 kg of the above yellow-brown transparent liquid and 4.5 kg of pure water, and heated at 143 ° C. for 172 hours. The solution was initially a tan transparent liquid, but after 172 hours became a pale milky pale white transparent colloid liquid.

このようにして得られたコロイド液を限外膜で固形分
濃度24.5重量%まで濃縮し、安定な酸化チタンゾルを得
た。得られたゾルの分散粒子の性状を表1および第4図
に示す。
The colloid solution thus obtained was concentrated to a solid concentration of 24.5% by weight with an ultramembrane to obtain a stable titanium oxide sol. The properties of the dispersed particles of the obtained sol are shown in Table 1 and FIG.

実施例5 実施例1において、シリカゾルを加えない以外は、実
施例1と同じ方法で酸化チタンゾルを製造した。得られ
たゾルの分散粒子の性状を表1および第5図に示す。
Example 5 A titanium oxide sol was produced in the same manner as in Example 1 except that silica sol was not added. The properties of the dispersed particles of the obtained sol are shown in Table 1 and FIG.

実施例6 TiO2濃度7.4重量%の硫酸チタニル水溶液を用いて、
実施例1と同様の方法でチタン酸水溶液を調製した。次
いで、このチタン酸水溶液を用いて実施例3と同様の方
法で酸化チタンゾルを製造した。得られた酸化チタンゾ
ルの分散粒子の性状を表1および第6図に示す。
Example 6 Using an aqueous solution of titanyl sulfate having a TiO 2 concentration of 7.4% by weight,
An aqueous solution of titanic acid was prepared in the same manner as in Example 1. Next, a titanium oxide sol was produced in the same manner as in Example 3 using this titanic acid aqueous solution. The properties of the resulting titanium oxide sol dispersed particles are shown in Table 1 and FIG.

比較例1 実施例1において、SnO2濃度0.8重量%のスズ酸水溶
液を用いた以外は、実施例1と同様の方法で酸化チタン
ゾルを得た。
Comparative Example 1 A titanium oxide sol was obtained in the same manner as in Example 1 except that a stannic acid aqueous solution having a SnO 2 concentration of 0.8% by weight was used.

比較例2 硫酸チタニル溶液を純水で希釈して、TiO2として5.0
重量%含有する水溶液を得た。この水溶液を撹拌しなが
ら、15%アンモニア水を添加し、pH9.5の白色スラリー
を得た。添加中の液温は約40℃であった。このスラリー
を濾過洗浄し、固形分濃度15.1重量%である水和酸化チ
タンゲルのケーキを得た。
Comparative Example 2 The titanyl sulfate solution was diluted with pure water to obtain TiO 2 of 5.0.
An aqueous solution containing about 10% by weight was obtained. While stirring this aqueous solution, 15% aqueous ammonia was added to obtain a white slurry having a pH of 9.5. The liquid temperature during the addition was about 40 ° C. The slurry was filtered and washed to obtain a hydrated titanium oxide gel cake having a solid content of 15.1% by weight.

このケーキ596gに35%過酸化水素水771gと純水883gと
を加えた後、83℃で3時間加熱し、TiO2として4.0重量
%のチタン酸水溶液2250gを得た。このチタン酸水溶液
は、黄褐色透明でpH=8.7であった。
After adding 771 g of 35% hydrogen peroxide solution and 883 g of pure water to 596 g of the cake, the mixture was heated at 83 ° C. for 3 hours to obtain 2250 g of a 4.0% by weight titanic acid aqueous solution as TiO 2 . This aqueous solution of titanic acid was yellow-brown and transparent and had a pH of 8.7.

このチタン酸水溶液に陽イオン交換樹脂粒子を加えて
pH3.8とした。これ以後の操作および条件は、実施例3
と同様にして酸化チタンゾルを得た。
Add cation exchange resin particles to this titanic acid aqueous solution
The pH was adjusted to 3.8. The subsequent operations and conditions are described in Example 3.
In the same manner as in the above, a titanium oxide sol was obtained.

比較例3 実施例3において、TiO2/SnO2=1(wt/wt)となるよ
うにスズ酸カリウムを添加した以外は、実施例3と同様
の方法で酸化チタンゾルを得た。
Comparative Example 3 A titanium oxide sol was obtained in the same manner as in Example 3, except that potassium stannate was added so that TiO 2 / SnO 2 = 1 (wt / wt).

比較例1〜3で得られた酸化チタンゾルの分散粒子の
性状を、表1、第7図、第8図および第9図に示す。
The properties of the dispersed particles of the titanium oxide sol obtained in Comparative Examples 1 to 3 are shown in Table 1, FIG. 7, FIG. 8, and FIG.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第6図は、本発明により得られたルチル型酸化
チタンゾル中の酸化チタンのX線回析図であり、第7図
〜第9図は比較例で得られた酸化チタンゾル中の酸化チ
タンのX線回析図である。
1 to 6 are X-ray diffraction diagrams of titanium oxide in a rutile-type titanium oxide sol obtained by the present invention, and FIGS. 7 to 9 are graphs of titanium oxide sol obtained in a comparative example. FIG. 3 is an X-ray diffraction diagram of titanium oxide.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】比表面積が150m2/g以上である水和酸化チ
タン粒子を含む水和酸化チタンのゲルまたはゾルに過酸
化水素を加えて水和酸化チタンを溶解し、次いで得られ
た溶液を、TiO2/SnO2=1.5〜14(重量比)の量のスズ化
合物の共存下で加熱することを特徴とするルチル型酸化
チタンゾルの製造方法。
1. Hydrogen peroxide is added to a gel or sol of hydrated titanium oxide containing hydrated titanium oxide particles having a specific surface area of 150 m 2 / g or more to dissolve the hydrated titanium oxide, and then obtain a solution. Is heated in the presence of a tin compound in an amount of TiO 2 / SnO 2 = 1.5 to 14 (weight ratio) in a rutile-type titanium oxide sol.
JP1078928A 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol Expired - Lifetime JP2783417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078928A JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078928A JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Publications (2)

Publication Number Publication Date
JPH02255532A JPH02255532A (en) 1990-10-16
JP2783417B2 true JP2783417B2 (en) 1998-08-06

Family

ID=13675532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078928A Expired - Lifetime JP2783417B2 (en) 1989-03-30 1989-03-30 Manufacturing method of rutile type titanium oxide sol

Country Status (1)

Country Link
JP (1) JP2783417B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
WO2006001487A1 (en) 2004-06-29 2006-01-05 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide
CN101070141B (en) * 2006-05-10 2010-08-11 索尼株式会社 Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and optical material
EP2226352A2 (en) 2009-03-02 2010-09-08 Shin-Etsu Chemical Co., Ltd. UV-shielding silicone coating composition and coated article
WO2012141708A1 (en) 2011-04-14 2012-10-18 Exatec Llc Organic resin laminate
KR20140011959A (en) 2012-07-19 2014-01-29 신에쓰 가가꾸 고교 가부시끼가이샤 Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article
WO2022230864A1 (en) 2021-04-28 2022-11-03 日揮触媒化成株式会社 Coating composition for forming hard coating layer, method for producing same, substrate with hard coating layer, and method for producing same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992456B1 (en) * 1997-03-03 2010-09-08 Nissan Chemical Industries, Ltd. Process for producing composite sols, coating composition, and optical member
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
CN100569656C (en) 2001-10-30 2009-12-16 日挥触媒化成株式会社 Tubular titanium oxide particles and its production and use
JP4698981B2 (en) * 2003-08-01 2011-06-08 日揮触媒化成株式会社 Fibrous titanium oxide particles, method for producing the same, and uses of the particles
CN100345767C (en) * 2004-05-14 2007-10-31 泉耀科技股份有限公司 Method for synthesizing sol of Nano powder of titanium dioxide in visible light type
JP4210785B2 (en) * 2004-09-17 2009-01-21 テイカ株式会社 Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
JP4641212B2 (en) * 2005-04-25 2011-03-02 三井化学株式会社 Composite oxide ultrafine particles and process for producing the same
JP4673664B2 (en) * 2005-04-27 2011-04-20 三井化学株式会社 High refractive index resin composition for coating
WO2007052580A1 (en) * 2005-11-02 2007-05-10 Mitsui Chemicals, Inc. Resin composition containing ultrafine particle of oxide
JP4891021B2 (en) * 2006-09-28 2012-03-07 日揮触媒化成株式会社 Method for producing niobium oxide fine particles
JP4925935B2 (en) * 2007-06-18 2012-05-09 住友大阪セメント株式会社 Composite rutile fine particles, composite rutile fine particle dispersion, high refractive index material, high refractive index member, and method for producing composite rutile fine particles
JP5317486B2 (en) * 2008-01-31 2013-10-16 日揮触媒化成株式会社 Method for producing rutile type titanium oxide fine particles
JP5126783B2 (en) * 2008-03-24 2013-01-23 日揮触媒化成株式会社 Method for producing rutile type titanium oxide fine particles
WO2012046493A1 (en) * 2010-10-08 2012-04-12 信越化学工業株式会社 Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof
CN103380083B (en) 2011-02-15 2016-04-20 日产化学工业株式会社 The manufacture method of rutile-type titanium oxide sol
US8361607B2 (en) 2011-04-14 2013-01-29 Exatec Llc Organic resin laminate
JP5708886B2 (en) 2011-08-26 2015-04-30 エグザテック・リミテッド・ライアビリティー・カンパニーExatec,LLC. ORGANIC RESIN LAMINATE, ITS MANUFACTURING AND USE METHOD, AND ARTICLE CONTAINING ORGANIC RESIN LAMINATE
JP5655827B2 (en) 2011-11-14 2015-01-21 信越化学工業株式会社 Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
CN103958415B (en) * 2011-12-02 2016-11-09 日产化学工业株式会社 The manufacture method of rutile-type titanium oxide sol
US9604198B2 (en) 2012-09-19 2017-03-28 Shin-Etsu Chemical Co., Ltd. Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
JP6237780B2 (en) 2013-10-16 2017-11-29 信越化学工業株式会社 Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface
CN110809561B (en) 2017-03-31 2021-10-29 日挥触媒化成株式会社 Method for producing fine particle dispersion of iron-containing rutile titanium oxide, fine particles of iron-containing rutile titanium oxide, and use thereof
US20230128712A1 (en) 2020-03-31 2023-04-27 Jgc Catalysts And Chemicals Ltd. Method for Producing Zirconia-Coated Titanium Oxide Fine Particles, Zirconia-Coated Titanium Oxide Fine Particles, and Use Thereof
JPWO2022210973A1 (en) * 2021-03-31 2022-10-06
JPWO2023106194A1 (en) * 2021-12-06 2023-06-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
WO2006001487A1 (en) 2004-06-29 2006-01-05 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide
US7575731B2 (en) 2004-06-29 2009-08-18 Mitsui Chemicals, Inc. Fine particles of tin-modified rutile-type titanium dioxide and method of making thereof
CN101070141B (en) * 2006-05-10 2010-08-11 索尼株式会社 Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and optical material
US8178071B2 (en) 2006-05-10 2012-05-15 Sony Corporation Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and optical material
EP2226352A2 (en) 2009-03-02 2010-09-08 Shin-Etsu Chemical Co., Ltd. UV-shielding silicone coating composition and coated article
US8546484B2 (en) 2009-03-02 2013-10-01 Shin-Etsu Chemical Co., Ltd. UV-shielding silicone coating composition and coated article
WO2012141708A1 (en) 2011-04-14 2012-10-18 Exatec Llc Organic resin laminate
KR20140011959A (en) 2012-07-19 2014-01-29 신에쓰 가가꾸 고교 가부시끼가이샤 Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article
EP2708513A1 (en) 2012-07-19 2014-03-19 Shin-Etsu Chemical Co., Ltd. Core/shell type tetragonal titanium oxide particle water dispersion, making method, uv-shielding silicone coating composition and coated article
WO2022230864A1 (en) 2021-04-28 2022-11-03 日揮触媒化成株式会社 Coating composition for forming hard coating layer, method for producing same, substrate with hard coating layer, and method for producing same

Also Published As

Publication number Publication date
JPH02255532A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
US5403513A (en) Titanium oxide sol and process for preparation thereof
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
JP4126788B2 (en) Silica-magnesium fluoride hydrate composite sol and process for producing the same
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP5657197B2 (en) Titanium oxide particles and method for producing the same
JP2009227519A (en) Method for producing rutile-type titanium dioxide fine particles
JP5253095B2 (en) Method for producing zirconia sol
JPH10158015A (en) Production of surface-treated titanium dioxide sol
JP4312299B2 (en) Method for producing titanium oxide fine particles containing brookite-type crystals
JP4891021B2 (en) Method for producing niobium oxide fine particles
JPH0811693B2 (en) Titania sol and method for producing the same
JP3235097B2 (en) Modified metal oxide sol and method for producing the same
JP4851685B2 (en) Method for producing rutile type titanium oxide ultrafine particles
JPH07100611B2 (en) Method for producing modified titania sol
JP4139090B2 (en) Method for producing spherical particles with crystalline titanium oxide coating layer
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP4111701B2 (en) Modified titanium oxide particles
JPH0339017B2 (en)
JPH10245224A (en) Production of titanium oxide-tin oxide composite sol
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JPH0980203A (en) Modified metal oxide sol and its production
KR101517369B1 (en) Process for preparing zirconia sol
JP2820251B2 (en) Titanium oxide sol
TWI572560B (en) Production method of rutile-type titanium oxide sol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

EXPY Cancellation because of completion of term