KR100444892B1 - Synthesis of highly active photocatalytic TiO2-sol containing active metals - Google Patents

Synthesis of highly active photocatalytic TiO2-sol containing active metals Download PDF

Info

Publication number
KR100444892B1
KR100444892B1 KR20010030931A KR20010030931A KR100444892B1 KR 100444892 B1 KR100444892 B1 KR 100444892B1 KR 20010030931 A KR20010030931 A KR 20010030931A KR 20010030931 A KR20010030931 A KR 20010030931A KR 100444892 B1 KR100444892 B1 KR 100444892B1
Authority
KR
South Korea
Prior art keywords
sol
titanium
added
titanium oxide
metal
Prior art date
Application number
KR20010030931A
Other languages
Korean (ko)
Other versions
KR20020092067A (en
Inventor
이창모
Original Assignee
티오켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티오켐 주식회사 filed Critical 티오켐 주식회사
Priority to KR20010030931A priority Critical patent/KR100444892B1/en
Publication of KR20020092067A publication Critical patent/KR20020092067A/en
Application granted granted Critical
Publication of KR100444892B1 publication Critical patent/KR100444892B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 고활성의 광촉매 기능을 가진 산화티탄 졸(sol) 제조에 관한 것으로서, 산화티탄졸 제조시 금속을 첨가하여 제조함으로써 광촉매 활성과 산화티탄 졸의 안정성이 획기적으로 향상될 뿐만 아니라 제조된 산화티탄 졸 용액의 pH가 중성인 것을 특징으로 한다. 이렇게 제조된 산화티탄 졸을 바인더 층을 사용하거나 사용하지 않고 직접 기재에 부착시켜 광촉매로 사용하는 것에 관한 것이다. 첨가되는 금속은 Fe, Al, Si, Cu, Ni, Ce, Ca, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt 및 Rh으로 구성되는 군으로부터 하나 이상 선택되는 것을 특징으로 하고, 중량 백분율로 0.0001 내지 50 의 값을 가진다.The present invention relates to the production of titanium oxide sol having a high activity of the photocatalyst, and to the production of titanium oxide sol by adding a metal to improve the photocatalytic activity and stability of the titanium oxide sol, as well as the prepared oxidation The pH of the titanium sol solution is characterized by being neutral. The titanium oxide sol thus prepared is directly attached to a substrate with or without a binder layer and used as a photocatalyst. Metals added are Fe, Al, Si, Cu, Ni, Ce, Ca, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt and Rh It is characterized by one or more selected from the group consisting of, and has a value of 0.0001 to 50 in weight percentage.

Description

금속이 첨가된 고활성 광촉매 산화티탄-졸 제조 방법{Synthesis of highly active photocatalytic TiO2-sol containing active metals}Synthesis of highly active photocatalytic TiO2-sol containing active metals

본 발명은 산화티탄-졸 (TiO2-sol) 제조에 관한 것으로, 광 화학 반응을 이용한 폐수처리, NOx, SOx와 같은 대기오염 물질 정화, 초 친수성 효과에 의한 김서림 방지, 살균효과, 탈취 및 실내공기 정화를 필요로 하는 시스템의 기재에 부착되어 사용될 수 있는 광촉매 산화티탄-졸의 제조 방법에 관한 것이다.The present invention relates to the production of titanium oxide sol (TiO 2 -sol), the treatment of wastewater by using a photochemical reaction, purification of air pollutants such as NOx, SOx, anti-fog by super hydrophilic effect, sterilization effect, deodorization and indoor A method of making a photocatalyst titanium oxide-sol that can be used to adhere to a substrate of a system requiring air purification.

기존의 광촉매는 분말형이 대부분을 차지하고 현재 약간의 졸 형태의 산화티탄 계가 주류를 이루고 있다. 분말형 광촉매는 처리하고자 하는 용액에 분산시켜 사용할 수 있으나 사용후 용액과 분리하여 회수해야하는 단점이 있다. 따라서 분말형 광촉매를 바인더를 사용하여 기재에 부착하여 사용하고 있다. 그러나 이 경우 분말형 광촉매가 기재로부터 탈리될 뿐 아니라 바인더와 혼합되어 부착될 경우 광촉매 활성이 급격하게 감소되는 단점이 있어 바인더개발 등 선행되어야하는 문제점이 많다. 또한 이러한 분말형 광촉매를 기재에 부착하여 사용하는 경우 가시광선의 투과율이 크게 저하되어 높은 투명도를 요구하는 기재에는 사용을 할 수 없다는 단점을 가지고 있다.Conventional photocatalysts are mostly powdered, and currently, some sol type titanium oxide is the mainstream. The powdered photocatalyst may be used by being dispersed in a solution to be treated, but has a disadvantage in that the powdered photocatalyst is separated from the solution after use and recovered. Therefore, a powder type photocatalyst is attached to a base material using a binder. However, in this case, not only the powder type photocatalyst is detached from the substrate but also has a disadvantage in that the photocatalytic activity is drastically reduced when attached and mixed with a binder. In addition, when the powder type photocatalyst is attached to a substrate, the transmittance of visible light is greatly reduced, and thus it cannot be used for a substrate requiring high transparency.

기존의 광촉매용 산화티탄 졸 제조 방법은 용매에 티타늄알콕사이드나 티타늄클로라이드, 티타늄 나이트레이트, 티타늄 술페이트, 티타늄아미노옥살레이트와 같은 티타늄 원료를 녹이고 질산이나 염산으로 해교(peptization)하여 산화티탄 졸을 제조한다. 그러나 이러한 방법으로 제조한 산화티탄 졸의 경우 용액의 pH가 산성이기 때문에 금속과 같은 부식성이 강한 기재에는 사용하기 어렵고 산성용액이기 때문에 취급이 어려운 문제점이 있다. 더욱이 이와 같은 방법으로 제조한 산화티탄 졸의 경우 기재에 코팅한 후 건조 공정에서 코팅막에 금이 가고, 기재로부터 잘 떨어지기 때문에 안정된 산화티탄 막을 얻기 힘들다.Conventional methods of preparing titanium oxide sol for photocatalyst dissolve titanium raw materials such as titanium alkoxide, titanium chloride, titanium nitrate, titanium sulfate, titanium aminooxalate and peptization with nitric acid or hydrochloric acid to produce titanium oxide sol. do. However, in the case of the titanium oxide sol prepared by this method, since the pH of the solution is acidic, it is difficult to use for highly corrosive substrates such as metals and is difficult to handle because it is an acidic solution. Furthermore, in the case of the titanium oxide sol manufactured by the above method, the coating film is cracked in the drying process after coating on the substrate, and it is difficult to obtain a stable titanium oxide film because it is well separated from the substrate.

또한 대한민국 특허공보 공개번호 특1999-0064064 에 게시된 방법으로 산화티탄 졸을 제조 할 경우 졸의 pH는 중성 영역에 가깝게 나오나 공정 중에 나오는 NH4Cl와 같은 부산물이 많아 이들의 처리가 어렵다. 또한 이렇게 제조된 산화티탄 졸이 거의 무정형에 가깝기 때문에 광활성이 낮아 광활성을 향상시키기 위하여 350℃ 정도의 높은 온도로 결정화시키는 소성 공정이 필요하여 생산 단가가 높아지는 단점이 있다.In addition, when the titanium oxide sol is manufactured by the method disclosed in Korean Patent Laid-Open Publication No. 1999-0064064, the pH of the sol is close to the neutral region, but many by-products such as NH 4 Cl are difficult to process during the process. In addition, since the titanium oxide sol thus prepared is nearly amorphous, a low caloric activity is required, and thus, a calcining process is required to crystallize at a high temperature of about 350 ° C. in order to improve the light activity, resulting in an increase in production cost.

본 발명은 상기 방법들의 결점을 보완하고자 하는 것으로, 즉 제조된 산화티탄-졸의 pH를 중성으로 하고 광활성과 안정성을 획기적으로 향상시키며 제조 후 발생되는 부산물의 양을 크게 줄임으로써 친환경적인 산화티탄-졸 제조공정을 확립하고자 하는 것이다. 또한 본 발명에서 제조된 산화티탄-졸은 바인더와 혼합하여 사용하거나 바인더 없이 사용하여도 기재와 점착성이 우수하며, 아나타이즈(anatase)형 결정을 갖고 있어 고온의 소성 공정이 생략되는 제조공정으로 생산단가가 저렴하다. 본 발명에서는 제조 공정에서 Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh 등과 같은 금속을 하나 이상 첨가함으로써 광촉매 활성과 졸의 안정성이 기존의 제품과 비교하여 획기적으로 향상된 고활성 광촉매용 산화티탄-졸의 제조 공정이 제공된다.The present invention seeks to compensate for the drawbacks of the above methods, namely, by making the pH of the prepared titanium oxide-sol neutral, significantly improving the photoactivity and stability, and greatly reducing the amount of by-products generated after the production of environmentally friendly titanium oxide- It is to establish a sol manufacturing process. In addition, the titanium oxide-sol prepared in the present invention is excellent in adhesion to the substrate even when used in combination with a binder or without a binder, and has an anatase crystal, which is produced by a manufacturing process in which a high temperature firing process is omitted. The unit price is low. In the present invention, Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, The addition of one or more metals such as Rh and the like provides a process for the preparation of titanium oxide-sol for high activity photocatalysts, which dramatically improves photocatalytic activity and sol stability compared to conventional products.

도면 1. 비교예 1에서 시료 A-1에 대한 X선 회절 분석 결과Figure 1. X-ray diffraction analysis of the sample A-1 in Comparative Example 1

도면 2. 비교예 1에서 시료 A-2에 대한 X선 회절 분석 결과2. X-ray diffraction analysis of the sample A-2 in Comparative Example 1

도면 3. 비교예 1에서 시료 B-2에 대한 X선 회절 분석 결과3. X-ray diffraction analysis of the sample B-2 in Comparative Example 1

도면 4. 비교예 5에서 시료 N-3에 대한 X선 회절 분석 결과4. X-ray diffraction analysis of the sample N-3 in Comparative Example 5

도면 5. 비교예 7에서 시료 T-3에 대한 X선 회절 분석 결과5. X-ray diffraction analysis of the sample T-3 in Comparative Example 7

도면 6. 비교에 2에서 시료 A-2의 표면 SEM 사진Figure 6. SEM image of the surface of sample A-2 in comparison to FIG.

도면 7. 비교에 2에서 시료 A-2의 파단면 SEM 사진.Figure 7: Broken SEM image of Sample A-2 in Comparison 2.

도면 8. 비교에 7에서 시료 P-3의 표면 SEM 사진8. SEM image of the surface of sample P-3 in comparison to FIG.

도면 9. 비교예 7에서 시료 P-3의 파단면 SEM 사진9. SEM picture of fracture surface of Sample P-3 in Comparative Example 7

본 발명에 의한 산화티탄-졸은 용액에서 졸 입자의 분산이 균일하고, 졸을 장기간 보관해도 겔화되거나 침전이 일어나지 않아 제품으로서의 안정성이 높을 뿐만 아니라 기재에 코팅하여 사용할 때 광의 투과도가 뛰어나다는 장점이 있다. 또한 자외선 차폐력과 투명성에서도 종래의 산화티탄 미립자 분산액과 비교하여 우수한 특성을 가지고 있다. 또한 졸의 성상 및 입자의 안정성이 우수하기 때문에 사용함에 있어 용매를 치환하거나 유기용매와 혼합을 할 경우에도 겔화를 일으키거나 침전이 일어나지 않아 다양한 용도로 쉽게 사용할 수 있는 장점이 있다.Titanium oxide-sol according to the present invention has the advantage that the dispersion of the sol particles in the solution is uniform, and even if the sol is stored for a long time, it does not gel or precipitate, resulting in high stability as a product and excellent light transmittance when coated on a substrate. have. In addition, UV shielding power and transparency have excellent characteristics compared with the conventional titanium oxide fine particle dispersion. In addition, since the properties of the sol and the stability of the particles are excellent, the gelling or precipitation does not occur even when the solvent is substituted or mixed with the organic solvent, and thus it can be easily used for various purposes.

본 발명에 의한 산화티탄-졸을 도자기에 사용할 경우 장기 보존에 의한 얼룩이 생기지 않고, 플라스틱에 사용할 경우 태양광에 포함된 자외선에 의해 플라스틱의 변질을 막을 수 있어 플라스틱 자체의 수명을 연장할 수 있게 된다.When the titanium oxide sol according to the present invention is used in ceramics, stains due to long-term preservation do not occur, and when used in plastics, plastics can be prevented from being deteriorated by ultraviolet rays contained in sunlight, thereby extending the life of the plastics themselves. .

또 유리나 투명 아크릴, 폴리카보네이트 수지와 같은 투명한 기재의 표면에 코팅재로 사용하여 기재와의 밀착력이 우수하고, 투명성, 자외선 차폐력이 뛰어난 고굴절 도포막을 만들 수 있고, 자외선, 오존, 대기중 산소나 수분 등과 기재의 접촉을 차단할 수 있어 기재의 보호효과도 얻을 수 있다.In addition, it can be used as a coating material on the surface of transparent substrates such as glass, transparent acrylic, and polycarbonate resins, and it can make a high refractive coating film with excellent adhesion to substrates and excellent transparency and ultraviolet shielding ability. The contact between the back and the substrate can be interrupted and the protective effect of the substrate can be obtained.

위에서 언급한 기재 외에도 다양한 기재에 적용이 가능하여 기재 적용시 위에서 언급한 효과 이외에도 광촉매 반응에 의한 항균성과 친수성에 의한 김서림 방지, 오염물질 제거 등 다양한 효과를 얻을 수 있어 광범위한 사용이 기대된다.In addition to the above-mentioned substrates can be applied to a variety of substrates in addition to the above-mentioned effects when applying the substrate can be expected to use a wide range of effects, such as antibacterial by the photocatalytic reaction and anti-fog due to hydrophilicity, removal of contaminants.

본 발명에 대해 간략하게 설명하자면, 본 발명의 일 실시예는 티타늄 알콕사이드를 산으로 해교하고 금속염을 첨가하여 산화티타늄과 금속이 균일하게 분산된 졸을 얻는 공정; 상기 공정에서 얻은 산성 졸을 염기로 중화하여 금속이 첨가된 산화티타늄 케이크를 얻는 공정; 상기 공정에서 얻은 산화티타늄 케이크를 용매에 넣고 과산화수소수를 가한 후 가열하거나 염기를 첨가하여 산화티탄-졸을 얻는 공정을 포함하는 금속이 첨가된 산화티탄-졸의 제조방법에 관한 것이다.본 발명의 또 다른 실시예는 티타늄알콕사이드, 티타늄클로라이드, 티타늄 나이트레이트, 티타늄 술페이트, 티타늄아미노옥살레이트 중에서 선택된 티타늄 원료를 용매에 용해시키고 금속염을 가한 후 과산화수소수를 첨가하여 TiO(OH)(OOH) 형태의 졸을 얻는 공정; 상기 공정에서 얻은 TiO(OH)(OOH) 졸에 열을 가하거나 염기를 첨가하여 과산화티탄-졸을 제조하는 공정을 포함하는 금속이 첨가된 산화티탄-졸의 제조방법에 관한 것이다.이때 염기를 사용하는 것 보다는 가열하는 것이 보다 바람직하며, 가열은 상온에서 500℃까지, 바람직하게는 60℃ 내지 250℃의 온도로 하여 아나타제 (anatase)형태로 결정을 성장시켜 과산화티탄-졸을 제조한다.상기 용매로는. 증류수, 알코올류(에틸알코올, 이소프로필알코올, n-프로필알코올, n-부틸알코올), 케톤류(메틸에틸케톤, 디에틸케톤, 이소프로필메틸케톤, 이소부틸메틸케톤, 메틸부틸케톤, 메틸n-프로필케톤) 중에서 선택된 단일용매 또는 혼합용매 등이 사용될 수 있다.Briefly describing the present invention, an embodiment of the present invention comprises the steps of obtaining a sol in which titanium oxide and a metal are uniformly dispersed by bridging the titanium alkoxide with an acid and adding a metal salt; Neutralizing the acidic sol obtained in the above step with a base to obtain a titanium oxide cake to which a metal is added; The present invention relates to a method for producing a titanium oxide-sol with a metal comprising the step of adding a titanium oxide cake obtained in the above step into a solvent, adding hydrogen peroxide and then heating or adding a base to obtain a titanium oxide-sol. In another embodiment, a titanium raw material selected from titanium alkoxide, titanium chloride, titanium nitrate, titanium sulfate, and titanium aminooxalate is dissolved in a solvent, a metal salt is added, and hydrogen peroxide is added to form a TiO (OH) (OOH). Obtaining a sol; The present invention relates to a method for preparing a metal oxide-titanium-sol, including a process of preparing a titanium peroxide-sol by applying heat or adding a base to the TiO (OH) (OOH) sol obtained in the above process. Titanium peroxide-sol is prepared by heating crystals in the form of anatase at a temperature from room temperature to 500 ° C., preferably from 60 ° C. to 250 ° C., rather than using it. As a solvent. Distilled water, alcohols (ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol), ketones (methyl ethyl ketone, diethyl ketone, isopropyl methyl ketone, isobutyl methyl ketone, methyl butyl ketone, methyl n- Propyl ketone) may be used, such as a single solvent or a mixed solvent.

이하, 본 발명을 상세히 설명한다.본 발명의 일 실시예에 따르면, 티타늄 알콕사이드를 산으로 해교 한 후 금속염을 첨가하고 이를 중화시켜 산화티탄케이크를 얻은 다음 이 케이크를 과산화수소수와 반응시켜 다양한 금속염이 첨가된 pH가 6내지 8의 중성인 아나타이즈 형태의 산화티탄-졸을 얻는다.본 발명에서 해교제로는 질산, 염산, 황산으로 구성되는 군으로부터 하나 이상이 선택될 수 있으며, 해교제의 양은 산/티타늄 비율로 0.0001 내지 4이고 바람직하게는 0.01 내지 1이다.중화에 사용되는 중화제로는 무기 금속 수산화물류(수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬), 암모니아, 아민류(트리에틸아민, 디에틸아민, n-프로필아민, 부틸아민, 디프로필아민)으로 구성되는 군에서 하나 이상이 선택될 수 있으며, 중화 반응을 거친 후 용액의 pH는 5 내지 9이고, 바람직하게는 6 내지 7이다.본 발명에서 산화티탄-졸에 첨가되는 금속으로는, Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh, W, Mo, Zr, Th, Nb, Ta 등이 하나 이상 사용될 수 있다. 금속 첨가량은 금속/티타늄 비율로 0.000001 내지 0.5이고 바람직하게는 0.00001 내지 0.3이다.해교반응은 일반적으로 온도가 올라갈수록 해교반응이 완결되는데 걸리는 시간은 단축되지만 어느 일정 온도 이상 가열하게 되면 오히려 해교된 용액이 겔(Gel)로 변하게 된다. 해교 반응에 적당한 온도로는 20℃ 내지 100℃이고 보다 바람직하게는 40℃ 내지 80℃ 이다.Hereinafter, the present invention will be described in detail. According to an embodiment of the present invention, titanium alkoxide is peptized with an acid, a metal salt is added and neutralized to obtain a titanium oxide cake, and the cake is then reacted with hydrogen peroxide solution to produce various metal salts. Anatase-type titanium oxide-sol having an added pH of 6 to 8 is obtained. The peptizing agent may be selected from the group consisting of nitric acid, hydrochloric acid, and sulfuric acid, and the amount of peptizing agent is acid. The neutralizing agent used for neutralization includes inorganic metal hydroxides (sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide), ammonia and amines (triethylamine, diethyl). Amine, n-propylamine, butylamine, dipropylamine) may be selected from one or more, and the pH of the solution after the neutralization reaction Is 5 to 9, preferably 6 to 7. The metal added to the titanium oxide-sol in the present invention is Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh, W, Mo, Zr, Th, Nb, Ta and the like may be used. The amount of metal added is 0.000001 to 0.5 in the metal / titanium ratio, and preferably 0.00001 to 0.3. The peptizing reaction is generally shortened as the temperature rises, but the time required to complete the peptizing reaction is shortened. It turns into gel. The temperature suitable for the peptizing reaction is 20 ° C to 100 ° C, more preferably 40 ° C to 80 ° C.

무기나 유기 산 중에서 하이드로퍼옥사이드기(-O-O-H)를 가진 것은 일반적으로 강력한 산화제가 된다. 특히 과산화수소의 경우 H-O-O-H로 표시할 수 있는 구조를 가지고 있기 때문에 만일 이것이 전리하여 프로톤(H+)과 하이드로퍼옥사이드기(-O-O-H)기로 되면, 과산화수소도 그만큼 강력한 산화제가 된다. 실제로 과산화수소는 알칼리성에서 그 프로톤(H+)이 중화될 수 있으므로 쉽게 하이드로퍼옥사이드기(-O-O-H)가 형성되어 강력한 산화제가 될 수 있다. 알려진 바와 같이 S2O3 2-- → SO4 2-, ASO3 3-- →ASO4 3-등과 같은 산화 반응은 산성용액에서 과산화수소로 산화시킬 때는 촉매가 있어야 하지만, 알칼리성 용액에서는 촉매 없이 쉽게 과산화수소로 산화시킬 수 있다. 이때 사용하는 알칼리도 암모니아수보다는 수산화나트륨, 수산화칼륨이 훨씬 그 힘이 크다.Inorganic or organic acids having hydroperoxide groups (-OOH) are generally strong oxidants. In particular, hydrogen peroxide has a structure that can be expressed as HOOH, so if it is ionized to be a proton (H + ) and a hydroperoxide group (-OOH), hydrogen peroxide is a powerful oxidant. In fact, hydrogen peroxide can be neutralized in its proton (H + ), so that the hydroperoxide group (-OOH) is easily formed can be a powerful oxidizing agent. S 2 O 3 2-, as is known - → SO 4 2-, ASO 3 3- - → oxidation such as ASO 4 3- is but have when oxidized with hydrogen peroxide in an acidic solution, the catalyst, the alkaline solution easily without catalyst Can be oxidized with hydrogen peroxide. At this time, sodium hydroxide and potassium hydroxide are much stronger than alkalinity water used.

이러한 과산화수소와 알칼리와의 반응에 의한 강력한 산화제인 하이드로퍼옥사이드기(-O-O-H)기의 생성에 의해 여러 가지 금속들을 검출할 수 있는데 대표적인 금속은 몰리브데늄, 텅스텐, 바나듐, 지르코늄, 토리윰, 티타늄, 뉴비듐, 탄탈륨 등이 있다. 즉 과산화수소와 알칼리인 암모니아수가 혼합된 수용액에 이들 금속들을 첨가하면 과산화수소가 이들 금속이온들과 작용하여 하이드로퍼옥사이드기(-O-O-H)기가 형성되고, 이것이 강력한 산화제 구실을 한 까닭이라고 생각된다. 광촉매로 이용되고 있는 Ti의 경우 이와 같은 방법으로 착색하여 420㎛∼430㎛에서 흡광도를 측정하여 Ti이온을 검출하기도 한다.Various metals can be detected by the formation of a hydroperoxide group (-OOH) group, which is a powerful oxidant by the reaction between hydrogen peroxide and alkali. Representative metals include molybdenum, tungsten, vanadium, zirconium, toribium, titanium , New vidium, tantalum and the like. That is, when these metals are added to an aqueous solution in which hydrogen peroxide and alkali ammonia water are mixed, hydrogen peroxide acts with these metal ions to form a hydroperoxide group (-O-O-H), which is considered to be a powerful oxidant. In the case of Ti used as a photocatalyst, Ti ion may be detected by coloring in this manner and measuring absorbance at 420 µm to 430 µm.

하지만 과산화수소수는 가열에 의해서 분해가 촉진되며 분해된 과산화수소수는 상기 언급한 것과 같이 하이드로퍼옥사이드기(-O-O-H)가 형성되어 이 역시 강력한 산화제 구실을 할 수 있다. 이에 본 발명의 일 실시예에서는 친환경적인 공정 개발을 위하여 염기를 사용하지 않고 가열 반응을 통하여 과산화티탄-졸을 제조하였다. 그러나 상기 언급한 염기를 이용하여 과산화수소수를 분해하여 과산화티탄-졸을 제조하는 공정 또한 본 발명의 범주에 속한다.However, the hydrogen peroxide solution is accelerated by heating and the decomposed hydrogen peroxide solution forms a hydroperoxide group (-O-O-H) as mentioned above, which can also serve as a powerful oxidant. Thus, in one embodiment of the present invention, titanium peroxide-sol was prepared through a heating reaction without using a base to develop an environmentally friendly process. However, the process of producing titanium peroxide-sol by decomposing hydrogen peroxide using the above-mentioned base is also within the scope of the present invention.

이러한 과산화수소수의 성질을 이용하여 본 발명에서는 투명하고, 코팅 후 기재와의 부착력이 뛰어난 산화티탄-졸에 여러 가지 금속류를 첨가하여 광촉매의 활성을 높이는 방법을 고안하였다. 여기서 첨가되는 금속류로는 Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh, W, Mo, Zr, Th, Nb, Ta 등이 하나 이상 사용될 수 있고, 이들 금속은 모두 수용액에 녹을 수 있는 나이트레이트(nitrate)나, 아세테이트(acetate), 클로라이드(chloride), 술페이트(sulfate), 하이드록사이드(hydroxide), 또는 알콕사이드(alkoxide), 암모늄 옥살레이트(ammonium oxalate) 등의 형태를 갖는 금속염으로서 졸 용액에 혼합되고, 이를 반응시켜 금속염이 첨가된 산화티탄-졸을 제조하게 된다.By using the properties of the hydrogen peroxide solution, the present invention devised a method of increasing the activity of the photocatalyst by adding various metals to the titanium oxide-sol which is transparent and has excellent adhesion to the substrate after coating. Metals added here include Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, One or more of Rh, W, Mo, Zr, Th, Nb, Ta, etc. may be used, and all of these metals may be nitrate, acetate, chloride or sulfate (soluble in aqueous solution). sulfate, hydroxide, or alkoxide, ammonium oxalate, or the like, as a metal salt, mixed in a sol solution and reacted to prepare a titanium oxide-sol with added metal salt. do.

본 발명에서는 중성의 산화티탄-졸을 얻기 위하여 강력한 산화제 구실을 하는 과산화수소를 이용하여 티타늄 원료를 녹인 후, 이를 가열 처리하여 수 나노 또는 수십 나노 크기의 아나타이즈형 산화티탄 입자가 분산된 용액을 제조한다. 이때 Fe, Mn, Mg, Ni, Cu, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Si, Al, Pd, Pt, Rh 등의 금속을 첨가함으로서 광촉매 활성을 증대시킬 뿐만 아니라 입자의 결정 성장을 돕고 분산성 우수한 고활성산화티탄 졸을 얻을 수 있다In the present invention, a titanium raw material is dissolved using hydrogen peroxide, which serves as a powerful oxidant, to obtain a neutral titanium oxide-sol, and then heated to prepare a solution in which anatase-type titanium oxide particles of several nanos or tens of nanometers are dispersed. do. At this time, by adding a metal such as Fe, Mn, Mg, Ni, Cu, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Si, Al, Pd, Pt, Rh, not only increase the photocatalytic activity, but also particles Highly active titanium oxide sol with excellent dispersibility

본 발명은 티타늄 유기 화합물을 원료로 하여 이를 가수분해시킨 후 이를 해교하고 여기에 다양한 종류의 금속염을 녹인 후 반응시켜 균일상의 졸 용액을 얻는다. 이렇게 제조된 금속이 함유된 산화티탄-졸을 중화반응을 통하여 중화한 후 여과하고 세척하여 금속이 첨가된 산화티타늄 케이크를 얻게 된다. 여기에서 여과공정을 통하여 졸 제조 시 첨가되는 이온(산기-NO3 -, Cl-, SO4 2-, 염기 - NH3 +, Na+, Li+, Ca+등)들을 제거할 수 있게 된다. 그러나 여과공정 시 제거되는 이온이 폐수 문제를 야기하므로, 본 발명의 또 다른 실시예에서는 첨가된 이온을 제거하지 않고 광촉매 졸 용액에 포함되게 제조한다. 이때는 중화 및 여과 공정이 필요 없게 되어 경제적인 공정이 되며 제품의 생산 원가를 절감할 수 있다.The present invention uses a titanium organic compound as a raw material to hydrolyze it, then peptize it, and dissolve and react various metal salts therein to obtain a uniform sol solution. The titanium oxide-sol containing the metal thus prepared was neutralized by neutralization reaction, filtered and washed to obtain a titanium oxide cake to which metal was added. Ion is added thereto during the sol prepared by a filtration process in it is possible to remove the (acid group -NO 3 -, Cl - -, SO 4 2-, base NH 3 +, Na +, Li +, Ca + , etc). However, since the ions removed during the filtration process causes a waste water problem, another embodiment of the present invention is prepared to be included in the photocatalyst sol solution without removing the added ions. In this case, the neutralization and filtration processes are not required, which makes the process economical and reduces the production cost of the product.

위의 공정을 통하여 얻어진 케이크를 재 분산시키기 위하여 과산화수소를 이용한다. 재분산을 위해 사용되는 용매는 증류수나 유기용매, 특히 알코올 류 등 다양한 용매를 사용해도 무방하다. 용매에 함수 티탄산 케이크를 넣고 여기에 과산화 수소를 첨가한다.과산화수소는 상기 언급한 바와 같이 가열을 통하여 프로톤(H+)이 분리되어 하이드로퍼옥사이드기 (-O-OH)가 생성되면서 강력한 산화제 구실을 하게 된다. 이때 과산화수소의 첨가량은 과산화수소/산화티탄 비율로 0.01 내지 20 정도를 사용할 수 있으며 바람직하게는 1 내지 10 정도, 더욱 바람직하게는 2 내지 6이 바람직하다.이때 과산화 수소의 분해 반응을 촉진하기 위해 가열 공정이 필요하며 이때 온도는 60℃ 내지 250℃ 이내가 바람직하다. 이때 가열방법으로는 대기압 또는 오토클레이브를 이용한 고압 상태에서 가열 할 수 있다.또한 본 발명에서는 가열하는 대신 상기에서 설명한 바와 같이 염기를 첨가하여 과산화수소의 분해를 촉진시키고 티타늄의 산화 반응을 도울 수 있다. 이때 첨가하는 염기는 무기 금속수산화물류(NaOH, KOH, LiOH, Ca(OH)2등), 암모늄계(NH4OH 등), 아민계(n-ethylamine, di-ethylamine, tri-ethylamine, n-propylamine, di-propylamine, tri-propylamine, n-butylamine, cyclo-hexylamine 등) 등이 사용될 수 있다. 첨가되는 염기의 양은 과산화수소의 양의 0.0002내지 2의 범위 내에서 첨가하는 것이 바람직하다. 하지만 염기를 첨가할 경우 반응이 완결된 후 염기성분이 제조된 타이타니아-졸에 남아 있어 과산화수소수의 분해반응을 지속시킬 뿐만 아니라 생성된 하이드로퍼옥사이드기도 지속적으로 파괴되어 산화티탄-졸의 성상이 변하게 된다. 이러한 문제점을 고려하여 염기를 첨가하지 않고 적절한 가열온도로 과산화수소수를 열분해 시켜 제조하는 것이 보다 바람직하다.Hydrogen peroxide is used to redisperse the cake obtained through the above process. The solvent used for redispersion may use various solvents, such as distilled water, an organic solvent, especially alcohols. The hydrous titanate cake is added to the solvent and hydrogen peroxide is added thereto. As mentioned above, hydrogen peroxide separates protons (H + ) through heating to form a hydroperoxide group (-O-OH), which provides a strong oxidant excretion. Done. In this case, the amount of hydrogen peroxide added may be about 0.01 to about 20 in the ratio of hydrogen peroxide / titanium oxide, preferably about 1 to 10, more preferably about 2 to 6. At this time, a heating process to promote the decomposition reaction of hydrogen peroxide. In this case, the temperature is preferably within 60 ℃ to 250 ℃. In this case, the heating method may be performed at atmospheric pressure or at a high pressure state using an autoclave. In addition, in the present invention, a base may be added instead of heating to promote decomposition of hydrogen peroxide and help oxidation reaction of titanium. The base added at this time is inorganic metal hydroxides (NaOH, KOH, LiOH, Ca (OH) 2, etc.), ammonium (NH 4 OH, etc.), amines (n-ethylamine, di-ethylamine, tri-ethylamine, n- propylamine, di-propylamine, tri-propylamine, n-butylamine, cyclo-hexylamine, etc.) may be used. The amount of base to be added is preferably added within the range of 0.0002 to 2 of the amount of hydrogen peroxide. However, when the base is added, the base component remains in the prepared titania-sol after completion of the reaction, so that not only the decomposition reaction of hydrogen peroxide can be continued but also the produced hydroperoxide groups are continuously destroyed to change the properties of the titanium oxide-sol. . In consideration of such a problem, it is more preferable to prepare by thermally decomposing hydrogen peroxide at an appropriate heating temperature without adding a base.

이하 실시예 및 비교예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

그러나 이들은 본 발명을 좀더 상세히 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다.However, these are intended to explain the present invention in more detail, but do not limit the scope of the present invention.

[실시예 1]Example 1

증류수 500㎖에 티타늄 에톡사이드를 100㎖를 넣고 여기에 60 wt% 질산을 5 ㎖ 첨가하고 50℃에서 24시간 교반한다. 이렇게 제조된 산화티탄 졸에 28 wt% NH4OH 수용액을 첨가하여 pH를 7이 되게 한 후 얻어진 슬러리를 여과하고 슬러리의 저항이 10 MΩ이 될 때까지 증류수로 세척한다. 세척한 후 얻어진 산화티탄-겔을 취하여 증류수 1500㎖와 혼합한 후 30 wt% 과산화수소를 500 ㎖를 취하여 혼합한 후 95℃에서 20시간 반응시키면 연노란색의 반투명 산화티탄 졸이 된다. 이를 35℃에서 감압증류하여 10wt%의 산화티탄 졸(시료 A)을 얻을 수 있으며 그 물성치는 아래의 표 1과 같다.100 ml of titanium ethoxide was added to 500 ml of distilled water, and 5 ml of 60 wt% nitric acid was added thereto, followed by stirring at 50 ° C for 24 hours. 28 wt% NH 4 OH aqueous solution was added to the titanium oxide sol thus prepared so that the pH was 7, and the resulting slurry was filtered and washed with distilled water until the slurry had a resistance of 10 MΩ. After washing, the obtained titanium oxide-gel was taken and mixed with 1500 ml of distilled water, 500 ml of 30 wt% hydrogen peroxide was mixed and reacted at 95 ° C. for 20 hours to give a pale yellow translucent titanium oxide sol. It was distilled under reduced pressure at 35 ℃ to obtain a titanium oxide sol (Sample A) of 10wt% and the physical properties are shown in Table 1 below.

[실시예 2]Example 2

증류수 500 ㎖에 티타늄 에톡사이드를 100㎖를 넣고 여기에 60 wt% 질산을 5㎖ 첨가하고 50℃에서 24시간 교반한다. 여기에 Fe(NO3)3·9H2O를 5g 첨가하고 50℃에서 30분 동안 교반하여 해교 반응을 진행시킨다. 해교 과정이 완료된 후 제조된 산화티탄-졸에 28 wt% NH4OH수용액을 첨가하여 pH를 7이 되게 한 후 얻어진 산화티탄-겔의 슬러리를 여과하고 슬러리의 저항이 10 MΩ이 될 때까지 증류수로 세척한다. 세척한 후 얻어진 산화티탄-겔을 취하여 증류수 1500 ㎖와 혼합한 후 30 wt% 과산화수소를 500 ㎖를 혼합하고 80℃에서 24시간 반응시키면 연 노란색의 투명한 산화티탄 졸이 된다. 이를 35℃에서 진공도 30 mmHg의 상태에서 감압증류하여 15 wt%의 산화티탄 졸(시료 B)을 얻을 수 있고 그 물성치는 아래의 표 1과 같다.100 ml of titanium ethoxide was added to 500 ml of distilled water, and 5 ml of 60 wt% nitric acid was added thereto, followed by stirring at 50 ° C for 24 hours. 5 g of Fe (NO 3 ) 3 .9H 2 O was added thereto and stirred at 50 ° C. for 30 minutes to proceed with the peptizing reaction. After the peptizing process, 28 wt% NH 4 OH aqueous solution was added to the prepared titanium oxide-sol to obtain a pH of 7. The slurry of the obtained titanium oxide-gel was filtered and distilled water until the resistance of the slurry became 10 MΩ. Wash with. After washing, the obtained titanium oxide-gel was taken and mixed with 1500 ml of distilled water, and 500 ml of 30 wt% hydrogen peroxide was mixed and reacted at 80 ° C. for 24 hours to give a pale yellow transparent titanium oxide sol. It was distilled under reduced pressure at 35 ° C. under a vacuum of 30 mmHg to obtain 15 wt% of titanium oxide sol (Sample B), and the physical properties thereof are shown in Table 1 below.

[실시예 3]Example 3

상기의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Al(NO3)2.5H2O를 7.6g 첨가하고 나머지 공정은 실시예 1과 동일하게 반응시키면 18 wt%의 산화티탄 졸(시료 C)을 얻을 수 있고 그 물성치는 아래의 표 1과 같다.Instead of the addition of Fe (NO 3) 3 · 9H 2 O in the above embodiment 2 Al (NO 3) 2 when added to .5H 2 O 7.6g and the other process is the same reaction as in Example 1 18 wt% of Titanium oxide sol (Sample C) can be obtained and its physical properties are shown in Table 1 below.

[실시예 4]Example 4

상기의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Cu(NO3)2·5H2O를2.5g 첨가하고 나머지 공정은 실시예 1과 동일하게 반응시키면 20wt%의 산화티탄 졸(시료 D)을 얻을 수 있고 그 물성치는 아래의 표 1과 같다.If the addition of Cu (NO 3) 2 · 5H 2 O 2.5g instead of the addition of Fe (NO 3) 3 · 9H 2 O in the above embodiment 2, and the rest process is the same reaction as in Example 1, oxidation of a 20wt% Titanium sol (Sample D) can be obtained and its physical properties are shown in Table 1 below.

[실시예 5]Example 5

상기의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Ni(NO3)2·5H2O를 3.5 g 첨가하고 나머지 공정은 실시예 1과 동일하게 반응시키면 15wt%의 산화티탄 졸(시료 E)을 얻을 수 있으며 그 물성치는 아래 표1과 같다.Instead of the addition of Fe (NO 3) 3 · 9H 2 O in the above embodiment 2 Ni (NO 3) 2 · When the 5H 2 O 3.5 g was added and the remaining process is the same reaction as in Example 1, oxidation of a 15wt% Titanium sol (Sample E) can be obtained and its physical properties are shown in Table 1 below.

[비교예 1]Comparative Example 1

상기의 실시예를 통하여 제조된 시료들을 라임소다글라스에 코팅한 후 코팅 물성을 측정하였다. 코팅방법은 딥코터를 이용하여 라임소다글라스 (25mm×75mm)를 타이타니아 졸에 담지한 후 1 cm/min의 속도로 상승시킨다. 이러한 과정을 3회 반복하고 난 후 상온, 150℃ 250℃에서 각각 30분씩 건조한 후 코팅된 기재의 물성을조사하면 표2와 같다.Samples prepared through the above Examples were coated on lime soda glass and the coating properties were measured. The coating method uses a dip coater to immerse the lime soda glass (25 mm x 75 mm) in the titania sol and then increase the speed at 1 cm / min. After repeating this process three times and dried for 30 minutes each at room temperature, 150 ℃ 250 ℃ and the physical properties of the coated substrate is shown in Table 2.

[비교예 2]Comparative Example 2

상기 비교예에서 수득한 시료(A-1 ∼ E-3)의 광촉매 활성을 다음과 같은 방법으로 평가한다. 직경 30 cm이고 용량이 30 ㎖인 석영용기에 100 ppm의 페놀용액을 20 ㎖넣은 후 타이타니아가 코팅된 라임소다 글라스를 세워 놓는다. 여기에 주파장이 365 nm인 UV 램프를 조사강도가 2 mW/㎠이 되게 조사한 후 시간별 페놀의분해율을 측정하면 표3과 같다.The photocatalytic activity of the samples (A-1 to E-3) obtained in the comparative example is evaluated by the following method. 20 ml of 100 ppm phenol solution is placed in a 30 cm diameter, 30 ml quartz vessel, and then a Titania-coated lime soda glass is placed upright. Here, after irradiating a UV lamp having a dominant wavelength of 365 nm to have an irradiation intensity of 2 mW / cm 2, the decomposition rate of phenol by time is measured.

[실시예 6]Example 6

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Fe(NO3)3·9H2O를 10 g 첨가하고 나머지 공정은 실시예 2와 동일하게 반응시켜 20 wt%의 산화티탄졸(시료 F)을 얻는다.In Example 2 above, Fe (NO 3) 3 · instead of Fe (NO 3) 3 · an 9H 2 O 10 g was added and the rest of the process to add 9H 2 O are to the same reaction as in Example 2 in 20 wt% Titanium oxide sol (Sample F) is obtained.

[실시예 7]Example 7

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Al(NO3)2·5H2O를 15.2g 첨가하고 나머지 공정은 실시예 2와 동일하게 반응시켜 10 wt%의 산화티탄졸(시료 G)을 얻는다.In Example 2 above, Fe (NO 3) 3 · instead of the addition of 9H 2 O Al (NO 3) 2 · 5H 2 O was added to 15.2g and the other process was the same reaction as in Example 2, 10 wt% of Titanium oxide sol (sample G) is obtained.

[실시예 8]Example 8

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Cu(NO3)2·5H2O를 5g 첨가하고 나머지공정은 실시예 2와 동일하게 반응시켜 13 wt%의 산화티탄졸(시료 H)을 얻는다.Instead of adding Fe (NO 3 ) 3 · 9H 2 O in Example 2 above , 5 g of Cu (NO 3 ) 2 · 5H 2 O was added and the rest of the reaction was carried out in the same manner as in Example 2, thereby reacting with 13 wt% of oxidation. Titanium sol (sample H) is obtained.

[실시예 9]Example 9

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Ni(NO3)2·5H2O를 7g 첨가하고 나머지공정은 실시예 2와 동일하게 반응시켜 15 wt%의 산화티탄졸(시료 1)을 얻는다.In Example 2 above, Fe (NO 3) 3 · Ni instead of the addition of 9H 2 O (NO 3) 2 · oxide added to 5H 2 O 7g and the other process was the same reaction as in Example 2 in 15 wt% A titanium sol (sample 1) is obtained.

실시예 7부터 실시예 9을 통하여 제조된 각각의 물성은 아래 표4와 같다.The physical properties of each of Examples 7 through 9 are shown in Table 4 below.

[비교예 3]Comparative Example 3

각각의 실시예를 통하여 제조된 시료를 라임소다글라스에 코팅한 후 코팅 물성을 측정하였다. 코팅방법은 딥코터를 이용하여 라임소다글라스(25mm×75mm)를 타이타니아 졸에 담지한 후 1cm/min의 속도로 상승시킨다. 이러한 과정을 3회 반복하고 난 후 250℃에서 30분간 건조한 후 코팅된 기재의 물성을 조사하면 다음 표5와 같다.Samples prepared through each example were coated on lime soda glass, and then coating properties were measured. In the coating method, the lime soda glass (25 mm x 75 mm) is immersed in a titania sol using a dip coater and then raised at a rate of 1 cm / min. After repeating this process three times and dried at 250 ℃ for 30 minutes, the physical properties of the coated substrate is investigated as shown in Table 5.

[비교예 4][Comparative Example 4]

상기 비교 예에서 수득한 시료(F-3 ∼ 1-3)의 광촉매 활성을 하기 방법으로 평가한다.The photocatalytic activity of the samples (F-3 to 1-3) obtained in the comparative example is evaluated by the following method.

직경 30 cm이고 용량이 30 ㎖인 석영용기에 100 ppm의 페놀용액을 20 ㎖넣은 후 타이타니아가 코팅된 라임소다 글라스를 세워 놓는다. 여기에 주파장이 365 nm인 Uv 램프를 조사강도가 2 mW/㎠이 되게 조사 한 후 시간별 페놀의 분해 정도를 측정하면 표 6과 같다.20 ml of 100 ppm phenol solution is placed in a 30 cm diameter, 30 ml quartz vessel, and then a Titania-coated lime soda glass is placed upright. Here, after irradiating a Uv lamp having a dominant wavelength of 365 nm to have an irradiation intensity of 2 mW / cm 2, the degree of decomposition of phenol by time is measured.

[실시예 10]Example 10

증류수 500 ㎖에 티타늄 에톡사이드를 30 ㎖ 첨가한 후 30 wt% 과산화수소수를 200 ㎖를 첨가하고 200℃에서 6 시간 반응시켜 연노란색 반투명한 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35 mmHg에서 감압증류하여 15 wt%의 산화티탄 졸(시료 J)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide was added to 500 ml of distilled water, followed by 200 ml of 30 wt% hydrogen peroxide solution, and the mixture was reacted at 200 ° C for 6 hours to give a pale yellow translucent anatase titanium oxide sol. The resultant was distilled under reduced pressure at 35 ° C. and a vacuum degree of 35 mmHg to obtain 15 wt% of titanium oxide sol (sample J).

[실시예 11]Example 11

증류수 500 ㎖에 티타늄 에톡사이드를 30 ㎖ 첨가한 후 30 wt% 과산화수소수를 200 ㎖를 첨가한 후 수열합성법을 이용하여 150℃에서 36 시간 반응시켜 연노랑색 반투명한 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35 mmHg 감압증류하여 20 wt%의 산화티탄 졸(시료 K)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide was added to 500 ml of distilled water, followed by 200 ml of 30 wt% hydrogen peroxide solution, followed by 36 hours of reaction using hydrothermal synthesis to obtain a pale yellow translucent anatase titanium oxide sol. This was obtained by distillation under reduced pressure of 35 ° C. and vacuum degree of 35 mmHg to obtain 20 wt% of titanium oxide sol (sample K).

[실시예 12]Example 12

증류수 500 ㎖에 티타늄 에톡사이드를 30 ㎖ 첨가한다. 여기에 Fe(NO3)3·9H2O를 약 10 g을 첨가한 후 30 wt% 과산화수소수를 200 ㎖를 첨가한 후 200℃에서 4 시간 반응시켜 연노랑색의 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35 mmHg 감압증류하여 15 wt%의 산화티탄 졸(시료 L)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide is added to 500 ml of distilled water. About 10 g of Fe (NO 3 ) 3 9H 2 O was added thereto, followed by 200 ml of 30 wt% hydrogen peroxide solution, followed by reaction at 200 ° C. for 4 hours to form a pale yellow anatase titanium oxide sol. . 15 ° C. of titanium oxide sol (Sample L) was obtained by distillation under reduced pressure at 35 ° C. and 35 mmHg vacuum degree.

[실시예 13]Example 13

증류수 500㎖에 티타늄 에톡사이드를 30㎖첨가한다. 여기에 Al(NO3)2·5H2O를 15.2g을 첨가한 후 30 wt% 과산화수소수를 200㎖를 첨가한 후 150℃에서 12시간 반응시켜 연노랑색 반투명한 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35mmHg 감압증류하여 20wt%의 산화티탄 졸(시료 M)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide is added to 500 ml of distilled water. To this, 15.2 g of Al (NO 3 ) 2 H 5 O was added, followed by 200 ml of 30 wt% hydrogen peroxide solution, followed by reaction at 150 ° C. for 12 hours to form a pale yellow translucent anatase titanium oxide sol. . This was obtained by distilling under reduced pressure at 35 ° C. and vacuum at 35 mmHg to obtain 20 wt% of titanium oxide sol (sample M).

[실시예 14]Example 14

증류수 500㎖에 티타늄 에톡사이드를 30㎖첨가한다. 여기에 Cu(NO3)2·5H2O를 5g을 첨가한후 30 wt% 과산화수소수를 200㎖를 첨가한 후 120℃에서 18시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35mmHg 감압증류하여 20wt%의 산화티탄(시료 N)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide is added to 500 ml of distilled water. 5 g of Cu (NO 3 ) 2 H 5 O was added thereto, followed by 200 ml of 30 wt% hydrogen peroxide solution, followed by reaction at 120 ° C. for 18 hours to form a pale yellow anatase titanium oxide sol. This was obtained by distillation under reduced pressure of 35 ° C. and vacuum degree of 35 mmHg to obtain 20 wt% of titanium oxide (sample N).

[실시예 15]Example 15

증류수 500㎖에 티타늄 에톡사이드를 30㎖첨가한다. 여기에 Ni(NO3)2·5H2O를 7g을 첨가한후 30 wt% 과산화수소수를 200㎖를 첨가한 후 150℃에서 12시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 35℃, 진공도 35mmHg 감압증류하여 20wt%의 산화티탄졸(시료 O)을 얻었으며 그물성은 아래 표 7과 같다.30 ml of titanium ethoxide is added to 500 ml of distilled water. 7 g of Ni (NO 3 ) 2 H 2 O was added thereto, followed by 200 ml of 30 wt% hydrogen peroxide solution, followed by reaction at 150 ° C. for 12 hours to form a pale yellow anatase titanium oxide sol. This was obtained by distilling under reduced pressure at 35 ° C. and vacuum degree of 35 mmHg to obtain 20 wt% of titanium oxide sol (Sample O).

실시예 11부터 실시예 15을 통하여 제조된 각각의 시료의 물성은 표 7과 같다.Physical properties of each sample prepared in Example 11 to Example 15 are shown in Table 7.

[비교예 5][Comparative Example 5]

실시예 11부터 실시예 15을 통하여 제조된 시료를 라임소다글라스에 코팅한 후 코팅 물성을 측정하였다. 코팅방법은 딥코터를 이용하여 라임소다글라스(25mm×75mm)를 타이타니아졸에 담지한 후 1cm/min의 속도로 상승시킨다. 이러한 과정을 3회 반복하고 난 후 250℃에서 30분간 건조한 후 코팅된 기재의 물성을 조사하면 표 8과 같다.Samples prepared in Examples 11 to 15 were coated on lime soda glass, and then coating properties thereof were measured. The coating method uses a dip coater to raise the lime soda glass (25mm × 75mm) in the titania sol and then increase it at a speed of 1 cm / min. After repeating this process three times and dried at 250 ℃ for 30 minutes, the properties of the coated substrate is investigated as shown in Table 8.

[비교예 6]Comparative Example 6

상기 비교예에서 수득한 시료(J-3 ∼ O-3)의 광촉매 활성을 하기 방법으로 평가한다.The photocatalytic activity of the samples (J-3 to O-3) obtained in the comparative example is evaluated by the following method.

직경 30 cm이고 용량이 30 ㎖인 석영용기에 100 ppm의 페놀용액을 20 ㎖넣은 후 타이타니아가 코팅된 라임소다 글라스를 세워 놓는다. 여기에 주파장이 365 nm인 UV 램프를 조사강도가 2 mW/㎠이 되게 조사 한 후 시간별 페놀의 분해 정도를측정하면 표 9와 같다.20 ml of 100 ppm phenol solution is placed in a 30 cm diameter, 30 ml quartz vessel, and then a Titania-coated lime soda glass is placed upright. Here, after irradiating a UV lamp having a dominant wavelength of 365 nm to have an irradiation intensity of 2 mW / cm 2, the degree of decomposition of phenol by time is measured.

[실시예 16]Example 16

에탄올 500 ㎖에 티타늄 에톡사이드를 30 ㎖ 첨가하고 증류수를 2 ㎖를 첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 30 wt% 과산화수소수를 200 ㎖를 첨가하고 200℃에서 6시간 반응시켜 연노랑색 반투명한 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 15 wt%의 산화티탄 졸(시료 P)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium ethoxide is added to 500 ml of ethanol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. 200 ml of 30 wt% hydrogen peroxide solution was added thereto and reacted at 200 ° C. for 6 hours to give a pale yellow translucent anatase titanium oxide sol. This was distilled under reduced pressure to obtain 15 wt% of titanium oxide sol (Sample P).

[실시예 17]Example 17

이소프로필알코올 500 ㎖에 티타늄 이소프로폭사이드를 30 ㎖ 첨가하고 증류수를 2㎖를 첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 30 wt% 과산화수소수를 200㎖를 첨가한 후 수열합성법을 이용하여 150℃에서 36시간 반응시켜 연노랑색 반투명한 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 20 wt%의 산화티탄 졸(시료 Q)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium isopropoxide is added to 500 ml of isopropyl alcohol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. 200 ml of 30 wt% hydrogen peroxide solution was added thereto and reacted at 150 ° C. for 36 hours using hydrothermal synthesis to obtain a pale yellow translucent anatase titanium oxide sol. It was distilled under reduced pressure to obtain 20 wt% of titanium oxide sol (sample Q), and the netability is shown in Table 10 below.

[실시예 18]Example 18

에탄올 500 ㎖에 티타늄 이소프로폭사이드를 30 ㎖ 첨가하고 증류수를 2㎖를첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 Fe(NO3)3·9H2O를 약 10g을 첨가한 후 50℃에서 12시간 반응시켜 졸을 제조한다. 제조된 졸에 30 wt% 과산화수소수를 250㎖를 첨가한 후 200℃에서 4시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 15wt%의 산화티탄 졸(시료 R)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium isopropoxide is added to 500 ml of ethanol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. About 10 g of Fe (NO 3 ) 3 .9H 2 O was added thereto, followed by reaction at 50 ° C. for 12 hours to prepare a sol. 250 ml of 30 wt% hydrogen peroxide solution was added to the prepared sol, followed by reaction at 200 ° C. for 4 hours to obtain a pale yellow anatase-type titanium oxide sol. It was distilled under reduced pressure to obtain 15wt% titanium oxide sol (Sample R) and the netability is shown in Table 10 below.

[실시예 19]Example 19

에탄올 500 ㎖에 티타늄 이소프로폭사이드를 30 ㎖ 첨가하고 증류수를 2㎖를 첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 Al(NO3)2·5H2O를 15.2g을 첨가한 후 50℃에서 12시간 반응시켜 졸을 제조한다. 제조된 졸에 30 wt% 과산화수소수를 200㎖를 첨가한 후 150℃에서 12시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 20wt%의 산화티탄 졸(시료 S)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium isopropoxide is added to 500 ml of ethanol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. 15.2 g of Al (NO 3 ) 2 .5H 2 O was added thereto, followed by reaction at 50 ° C. for 12 hours to prepare a sol. 200 ml of 30 wt% hydrogen peroxide solution was added to the prepared sol, followed by reaction at 150 ° C. for 12 hours to obtain a pale yellow anatase-type titanium oxide sol. It was distilled under reduced pressure to obtain 20wt% of titanium oxide sol (Sample S), and the netability is shown in Table 10 below.

[실시예 20]Example 20

에탄올 500 ㎖에 티타늄 이소프로폭사이드를 30 ㎖ 첨가하고 증류수를 2㎖를 첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 Cu(NO3)2·5H2O를 5g을 첨가한 후 50℃에서 12시간 반응시켜 졸을 제조한다. 제조된 졸에 30 wt% 과산화수소수를 200㎖를 첨가한 후 120℃에서 18시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 20wt%의 산화티탄 (시료 T)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium isopropoxide is added to 500 ml of ethanol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. 5 g of Cu (NO 3 ) 2 .5H 2 O is added thereto and reacted at 50 ° C. for 12 hours to prepare a sol. 200 ml of 30 wt% hydrogen peroxide solution was added to the prepared sol, followed by reaction at 120 ° C. for 18 hours to obtain a pale yellow anatase-type titanium oxide sol. It was distilled under reduced pressure to obtain 20wt% of titanium oxide (sample T), and the netting is shown in Table 10 below.

[실시예 21]Example 21

에탄올 500 ㎖에 티타늄 이소프로폭사이드를 30 ㎖ 첨가하고 증류수를 2㎖를 첨가한 후 상온에서 30분 동안 반응시킨다. 여기에 Ni(NO3)2·5H2O를 7g을 첨가한 후 50℃에서 12시간 반응시켜 졸을 제조한다. 제조된 졸에 30 wt% 과산화수소수를 200㎖를 첨가한다. 여기에 28wt%의 NH4OH를 약 30㎖첨가한 후 150℃에서 12시간 반응시켜 연노랑색 아나타이즈형 산화티탄 졸이 된다. 이를 감압증류하여 20wt%의 산화티탄 졸(시료 U)을 얻었으며 그물성은 아래 표 10과 같다.30 ml of titanium isopropoxide is added to 500 ml of ethanol, and 2 ml of distilled water is added, followed by reaction at room temperature for 30 minutes. 7 g of Ni (NO 3 ) 2 .5H 2 O was added thereto and reacted at 50 ° C. for 12 hours to prepare a sol. 200 mL of 30 wt% hydrogen peroxide solution is added to the prepared sol. About 30 ml of NH 4 OH was added thereto and reacted at 150 ° C. for 12 hours to obtain a pale yellow anatase-type titanium oxide sol. This was distilled under reduced pressure to obtain 20wt% of titanium oxide sol (sample U), and the netability is shown in Table 10 below.

실시예 17부터 실시예 21을 통하여 제조된 각각의 시료의 물성은 표 10과 같다.Physical properties of each sample prepared in Example 17 to Example 21 are shown in Table 10.

[비교예 7]Comparative Example 7

실시예 17부터 실시예 21을 통하여 제조된 시료를 라임소다글라스에 코팅한 후 코팅 물성을 측정하였다. 코팅방법은 딥코터를 이용하여 라임소다글라스(25mm×75mm)를 타이타니아졸에 담지한 후 1cm/min의 속도로 상승시킨다. 이러한 과정을 3회 반복하고 난 후 250℃에서 30분간 건조한 후 코팅된 기재의 물성을 조사하면 표11과 같다Samples prepared in Examples 17 to 21 were coated on lime soda glass, and then coating properties thereof were measured. The coating method uses a dip coater to raise the lime soda glass (25mm × 75mm) in the titania sol and then increase it at a speed of 1 cm / min. After repeating this process three times and dried at 250 ℃ for 30 minutes, the properties of the coated substrate is investigated as shown in Table 11.

[비교예 8]Comparative Example 8

상기 비교예에서 수득한 시료(J-3 ∼ O-3)의 광촉매 활성을 하기 방법으로 평가한다.The photocatalytic activity of the samples (J-3 to O-3) obtained in the comparative example is evaluated by the following method.

직경 30 cm이고 용량이 30 ㎖인 석영용기에 100 ppm의 페놀용액을 20 ㎖넣은 후 타이타니아가 코팅된 라임소다 글라스를 세워 놓는다. 여기에 주파장이 365 nm인 UV 램프를 조사강도가 2 mW/㎠이 되게 조사한 후 시간별 페놀의 분해 정도를 측정하면 표 12와 같다.20 ml of 100 ppm phenol solution is placed in a 30 cm diameter, 30 ml quartz vessel, and then a Titania-coated lime soda glass is placed upright. Here, after irradiating a UV lamp having a dominant wavelength of 365 nm to have an irradiation intensity of 2 mW / cm 2, the decomposition degree of phenol by time is measured.

[실시예 22]Example 22

증류수 500 ㎖에 티타늄 에톡사이드를 100 ㎖를 넣고 여기에 60 wt% 질산을 5 ㎖정도 첨가하고 50℃에서 24 시간 교반한다. 여기에 Fe(NO3)3·9H2O를 5 g 첨가하고 50℃에서 30분 동안 교반하여 해교반응을 진행시킨다. 해교과정이 완료된 후 제조된 산화티탄 졸에 28 wt% NH4OH 수용액을 첨가하여 pH를 7이 되게 한 후 얻어진 슬러리를 여과하고 슬러리의 저항이 10 MΩ이 될 때까지 증류수로 세척한다. 세척한 후 얻어진 산화티탄 겔을 취하여 이소프로필알코올 1500 ㎖와 혼합한 후 30 wt% 과산화수소를 500 ㎖를 취하여 혼합한 후 80℃에서 24시간 반응시켜 연 노란색의 투명한 산화티탄 졸이 된다. 이를 30℃에서 진공도 30 mmHg의 상태에서 감압증류하여 15 wt%의 산화티탄(시료 V)을 얻었으며 그물성은 아래 표 13과 같다.100 ml of titanium ethoxide is added to 500 ml of distilled water, and about 5 ml of 60 wt% nitric acid is added thereto and stirred at 50 ° C for 24 hours. 5 g of Fe (NO 3 ) 3 .9H 2 O was added thereto and stirred at 50 ° C. for 30 minutes to proceed with the peptizing reaction. After the peptizing process was completed, 28 wt% NH 4 OH aqueous solution was added to the prepared titanium oxide sol so that the pH was 7, and the slurry thus obtained was filtered and washed with distilled water until the slurry had a resistance of 10 MΩ. After washing, the obtained titanium oxide gel was taken and mixed with 1500 ml of isopropyl alcohol, 500 ml of 30 wt% hydrogen peroxide was taken and mixed, and then reacted at 80 ° C for 24 hours to obtain a pale yellow transparent titanium oxide sol. This was distilled under reduced pressure at 30 ° C. in a vacuum of 30 mmHg to obtain 15 wt% of titanium oxide (Sample V).

[실시예 23]Example 23

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Al(NO3)2·5H2O를 7.6g 첨가하고 나머지공정은 실시예 22와 동일하게 반응시켜 18 wt%의 산화티탄 졸(시료 W)을 얻었으며 그물성은 아래 표 13과 같다.In Example 2 above, Fe (NO 3) 3 · instead of the addition of 9H 2 O Al (NO 3) 2 · 5H 2 O was added to 7.6g and the other process was the same reaction as in Example 22 for 18 wt% Titanium oxide sol (Sample W) was obtained and the netability is shown in Table 13 below.

[실시예 24]Example 24

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Cu(NO3)2·5H2O를 2.5g 첨가하고 나머지 공정은 실시예 22와 동일하게 반응시켜 20 wt%의 산화티탄 졸(시료 X)을 얻었으며 그물성은 아래 표 13과 같다.In Example 2 above, Fe (NO 3) 3 · instead of the addition of 9H 2 O Cu (NO 3) 2 · 5H 2 O was added to 2.5g and the other process was the same reaction as in Example 22 for 20 wt% Titanium oxide sol (Sample X) was obtained and the netability is shown in Table 13 below.

[실시예 25]Example 25

위의 실시예 2에서 Fe(NO3)3·9H2O를 첨가하는 대신 Ni(NO3)2·5H2O를 3.5g 첨가하고 나머지 공정은 실시예 22와 동일하게 반응시켜 15 wt%의 산화티탄 졸(시료 Y)을 얻었으며 그물성은 아래 표 13과 같다.In Example 2 above, Fe (NO 3) 3 · instead of the addition of 9H 2 O Ni (NO 3) 2 · 5H 2 O was added to 3.5g and the other process was the same reaction as in Example 22 15 wt% of Titanium oxide sol (Sample Y) was obtained and the netability is shown in Table 13 below.

실시예 22부터 실시예 25에 의해 제조된 각각의 시료에 대한 물성은 표 13과 같다.Physical properties of each sample prepared in Example 22 to Example 25 are shown in Table 13.

[비교예 9]Comparative Example 9

실시예 22부터 실시예 25에 의해 제조된 각각의 시료를 라임소다글라스에 코팅한 후 코팅물성을 측정하였다. 코팅방법은 딥코터를 이용하여 라임소다글라스 (25mm×75mm)를 타이타니아 졸에 담지한 후 1 cm/min의 속도로 상승시킨다. 이러한 과정을 3회 반복하고 난 후 250℃에서 각각 30분씩 건조한 후 코팅된 기재의 물성을 조사하면 표 14와 같다.Each sample prepared in Example 22 to Example 25 was coated on lime soda glass, and then coating properties were measured. The coating method uses a dip coater to immerse the lime soda glass (25 mm x 75 mm) in the titania sol and then increase the speed at 1 cm / min. After repeating this process three times and dried at 250 ° C. for 30 minutes each, the properties of the coated substrate were examined as shown in Table 14.

[비교예 10]Comparative Example 10

상기 비교예에서 수득한 시료(V-3 ∼ Y-3)의 광촉매 활성을 하기 방법으로 평가한다.The photocatalytic activity of the samples (V-3 to Y-3) obtained in the comparative example is evaluated by the following method.

직경 30 cm이고 용량이 30 ㎖인 석영용기에 100 ppm의 페놀용액을 20 ㎖넣은 후 타이타니아가 코팅된 라임소다 글라스를 세워 놓는다. 여기에 주파장이 365 nm인 UV 램프를 조사강도가 2 mW/㎠이 되게 조사한 후 시간별 페놀의 분해율을 측정하면 표 15와 같다.20 ml of 100 ppm phenol solution is placed in a 30 cm diameter, 30 ml quartz vessel, and then a Titania-coated lime soda glass is placed upright. Here, after irradiating a UV lamp having a dominant wavelength of 365 nm to have an irradiation intensity of 2 mW / cm 2, the decomposition rate of phenol by time is measured.

상기 설명한 것과 같이 본 발명은 기존의 광촉매용 산화티탄-졸의 단점인 부착력과 가시광선 투과도를 개선하고, 또한 pH를 중성에 가깝게 제조함으로서 다양한 기재에 사용 가능하고 광활성이 우수하다 또한 광촉매의 주원료인 티타늄에 다양한 금속을 첨가함으로서 광촉매활성과 안정성을 획기적으로 향상시켰을 뿐만 아니라 제조 공정 중 발생하는 부산물을 최소화하여 친환경적인 제조 공정을 개발하였다.As described above, the present invention improves adhesion and visible light transmittance, which are disadvantages of the conventional titanium oxide-sol for photocatalyst, and can be used for various substrates by producing a pH close to neutral, and is excellent in photoactivity. The addition of various metals to titanium not only dramatically improved the photocatalytic activity and stability, but also minimized the by-products generated during the manufacturing process.

Claims (15)

삭제delete 티타늄 알콕사이드를 산으로 해교하고 금속염을 첨가하여 산화티타늄과 금속이 균일하게 분산된 졸을 얻는 공정;Peptizing the titanium alkoxide with an acid and adding a metal salt to obtain a sol in which titanium oxide and the metal are uniformly dispersed; 상기 공정에서 얻은 산성 졸을 염기로 중화하여 금속이 첨가된 산화티타늄 케이크를 얻는 공정;Neutralizing the acidic sol obtained in the above step with a base to obtain a titanium oxide cake to which a metal is added; 상기 공정에서 얻은 산화티타늄 케이크를 용매에 넣고 과산화수소수를 가한 후 가열하거나 염기를 첨가하여 산화티탄-졸을 얻는 공정을 포함하는 금속이 첨가된 산화티탄-졸의 제조방법.A method of producing a titanium oxide-sol with a metal comprising the step of adding a titanium oxide cake obtained in the above step into a solvent, adding hydrogen peroxide and then heating or adding a base to obtain a titanium oxide-sol. 청구항 2에 있어서, 상기 금속은 Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh, W, Mo, Zr, Th, Nb 및 Ta 으로 구성된 군으로부터 하나 이상 선택되는 것을 특징으로 하는 제조방법.The method of claim 2, wherein the metal is Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, At least one selected from the group consisting of Pt, Rh, W, Mo, Zr, Th, Nb and Ta. 청구항 2에 있어서, 상기 금속염은 나이트레이트(nitrate), 아세테이트 (acetate), 클로라이드(chloride), 술페이트(sulfate), 하이드록사이드 (hydroxide), 알콕사이드(alkoxide), 암모늄 옥살레이트(ammonium oxalate) 중에서 선택된 물이나 유기용매에 용해 가능한 형태의 염인 것을 특징으로 하는 제조방법.The metal salt of claim 2, wherein the metal salt is nitrate, acetate, chloride, sulfate, hydroxide, alkoxide, ammonium oxalate. It is a salt of the form soluble in the selected water or organic solvent. 청구항 2에 있어서, 상기 금속은 금속(M)/티타늄(Ti) 중량비율로 0.0001∼50% 첨가되는 것을 특징으로 하는 제조방법.The method of claim 2, wherein the metal is added in an amount of 0.0001 to 50% by weight of the metal (M) / titanium (Ti). 청구항 2에 있어서, 상기 금속염은 알콕사이드를 산으로 해교하는 과정에서 해교반응 전후에 첨가되는 것을 특징으로 하는 제조방법.The method of claim 2, wherein the metal salt is added before or after the peptizing reaction in the process of peptizing the alkoxide with an acid. 티타늄알콕사이드, 티타늄클로라이드, 티타늄 나이트레이트, 티타늄 술페이트, 티타늄아미노옥살레이트 중에서 선택된 티타늄 원료를 용매에 용해시키고 금속염을 가한 후 과산화수소수를 첨가하여 TiO(OH)(OOH) 형태의 졸을 얻는 공정;Dissolving a titanium raw material selected from titanium alkoxide, titanium chloride, titanium nitrate, titanium sulfate and titanium aminooxalate in a solvent, adding a metal salt, and then adding hydrogen peroxide to obtain a sol in the form of TiO (OH) (OOH); 상기 공정에서 얻은 TiO(OH)(OOH) 졸에 열을 가하거나 염기를 첨가하여 과산화티탄-졸을 제조하는 공정을 포함하는 금속이 첨가된 산화티탄-졸의 제조방법.A method for producing a metal oxide-titanium-sol comprising the step of preparing a titanium peroxide-sol by applying heat or adding a base to the TiO (OH) (OOH) sol obtained in the step. 청구항 2에 있어서, 과산화수소수를 첨가한 후 가열하는 것을 특징으로 하는 제조방법.The method according to claim 2, wherein the hydrogen peroxide solution is added and then heated. 청구항 7에 있어서, 상기 TiO(OH)(OOH) 졸을 가열하여 과산화수소를 분해시켜 과산화티탄-졸을 제조하는 것을 특징으로 하는 제조방법.The method according to claim 7, wherein the TiO (OH) (OOH) sol is heated to decompose hydrogen peroxide to produce a titanium peroxide-sol. 청구항 7에 있어서, 첨가되는 염기의 양은 염기/과산화수소 비율로 0.0001∼2인 것을 특징으로 하는 제조방법.8. A process according to claim 7, wherein the amount of base added is from 0.0001 to 2 in base / hydrogen peroxide ratio. 청구항 7에 있어서, 상기 금속은 Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, Pt, Rh, W, Mo, Zr, Th, Nb 및 Ta 으로 구성된 군으로부터 하나 이상 선택되는 것을 특징으로 하는 제조방법.The method according to claim 7, wherein the metal is Fe, Al, Si, Cu, Ni, Ge, Ga, Sr, Ba, Mn, Mg, Ni, Ag, Au, Cr, Sr, Ba, V, Ca, Zn, Pd, At least one selected from the group consisting of Pt, Rh, W, Mo, Zr, Th, Nb and Ta. 청구항 2에 있어서, 상기 산화티타늄 케이크를 여과·수세하여 첨가된 이온을 제거하는 공정을 더 포함하는 것을 특징으로 하는 제조방법.The method according to claim 2, further comprising the step of filtering and washing the titanium oxide cake to remove the added ions. 청구항 7에 있어서, 상기 금속은 금속(M)/티타늄(Ti) 중량비율로 0.0001∼50% 첨가되는 것을 특징으로 하는 제조방법.The method of claim 7, wherein the metal is added in an amount of 0.0001 to 50% by weight of the metal (M) / titanium (Ti). 청구항 2에 있어서, 상기 산화티타늄 케이크를 얻은 후 첨가된 이온을 제거하지 않고 그대로 공정을 진행시켜 첨가된 이온이 포함된 상태로 산화티탄-졸을 제조하는 것을 특징으로 하는 제조방법.The method according to claim 2, wherein after the titanium oxide cake is obtained, the process is performed without removing the added ions, thereby producing a titanium oxide-sol in a state in which the added ions are contained. 청구항 7에 있어서, 상기 용매로는 증류수, 알코올류(에틸알코올, 이소프로필알코올, n-프로필알코올, n-부틸알코올), 케톤류(메틸에틸케톤, 디에틸케톤, 이소프로필메틸케톤, 이소부틸메틸케톤, 메틸부틸케톤, 메틸n-프로필케톤) 중에서 선택된 단일용매 또는 혼합용매가 사용되는 것을 특징으로 하는 제조방법.The method of claim 7, wherein the solvent is distilled water, alcohols (ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol), ketones (methyl ethyl ketone, diethyl ketone, isopropyl methyl ketone, isobutyl methyl Ketone, methyl butyl ketone, methyl n-propyl ketone) or a single solvent or a mixed solvent selected from the above.
KR20010030931A 2001-06-01 2001-06-01 Synthesis of highly active photocatalytic TiO2-sol containing active metals KR100444892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20010030931A KR100444892B1 (en) 2001-06-01 2001-06-01 Synthesis of highly active photocatalytic TiO2-sol containing active metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20010030931A KR100444892B1 (en) 2001-06-01 2001-06-01 Synthesis of highly active photocatalytic TiO2-sol containing active metals

Publications (2)

Publication Number Publication Date
KR20020092067A KR20020092067A (en) 2002-12-11
KR100444892B1 true KR100444892B1 (en) 2004-08-18

Family

ID=27707628

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20010030931A KR100444892B1 (en) 2001-06-01 2001-06-01 Synthesis of highly active photocatalytic TiO2-sol containing active metals

Country Status (1)

Country Link
KR (1) KR100444892B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825084B1 (en) * 2006-12-29 2008-04-28 (재)대구경북과학기술연구원 A method of manufacturing titanium dioxide sol and a method of titanium dioxide photo-catalyst including the method
WO2009052510A2 (en) * 2007-10-19 2009-04-23 Worthington Technologies, Llc Method of surface modifying titania using metal and compositions therefrom
KR100917131B1 (en) 2008-02-18 2009-09-11 금오공과대학교 산학협력단 Preparation of TiO2 Photocatalyst to utilize spectrum of visible ray
KR100980516B1 (en) 2008-08-27 2010-09-06 장순웅 Photocatalyst sol and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030043536A (en) * 2001-11-28 2003-06-02 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method
GB0413767D0 (en) 2004-06-21 2004-07-21 Johnson Matthey Plc Metal oxide sols
KR100623675B1 (en) * 2004-08-30 2006-09-19 (주)에이엠티기술 Synthesizing Process for High Efficiency Titanium Dioxide Nanosol
KR100935512B1 (en) * 2008-05-15 2010-01-06 경북대학교 산학협력단 Manufacturing method of TiO2 photocatalyst and TiO2 photocatalyst manufactured by the same
CN101780403B (en) * 2009-01-19 2012-07-11 中国科学院化学研究所 Method for preparing metal/titanium dioxide composite material
CN102295310A (en) * 2010-06-28 2011-12-28 中国科学院理化技术研究所 Preparation method of metal-ion-doped titanium dioxide transparent aqueous sol
KR101380193B1 (en) * 2012-02-03 2014-04-03 주식회사 이에스티 Catalyst for removing malodor and volatile organic compounds and manufacturing method thereof
KR101386113B1 (en) * 2012-02-03 2014-04-21 주식회사 이에스티 Catalyst having photo-degradable activity and manufacturing method thereof
CN103861601B (en) * 2012-12-18 2016-03-02 中国科学院大连化学物理研究所 A kind of preparation method of fixing crystalline phase composition different content Fe2O3 doping titanium dioxide
CN104248955A (en) * 2013-06-28 2014-12-31 中国科学院大连化学物理研究所 Method for preparing iron-doped rutile titanium dioxide
CN105170144A (en) * 2015-10-19 2015-12-23 河海大学 Zirconium and silver codoped nano-titanium dioxide visible light photocatalyst
CN106914236B (en) * 2017-03-20 2019-08-27 福州名谷纳米科技有限公司 The amorphous state plasma hetero-junctions nano-TiO of efficient visible light response2Colloidal sol
CN107115882B (en) * 2017-05-09 2018-09-14 赣州安益宏科技有限公司 The preparation method and its purposes in catalytic degradation organic wastewater of a kind of photocatalyst crystals
CN113813959B (en) * 2021-09-17 2023-12-19 盐城工学院 Preparation method of silver zirconate/titanium dioxide composite photocatalyst, product and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPS62249993A (en) * 1986-04-23 1987-10-30 Natl Inst For Res In Inorg Mater Production of aqueous solution of high-purity titanium peroxyhydrate
JPS6317221A (en) * 1986-07-03 1988-01-25 Taki Chem Co Ltd Crystalline titanium oxide sol and production thereof
JPH02255532A (en) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd Production of rutile type titanium oxide sol
JPH0790594A (en) * 1993-09-24 1995-04-04 Tokyo Ohka Kogyo Co Ltd Coating solution for forming titanium based multiple oxide
JPH0789722A (en) * 1993-08-30 1995-04-04 Merck Patent Gmbh Photo stabilization of titanium dioxide sol
KR20010096626A (en) * 2001-03-09 2001-11-08 김현용 TiO2 sol manufacturing method and device for normal temperature coating
KR20020043133A (en) * 2000-12-01 2002-06-08 서평원 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPS62249993A (en) * 1986-04-23 1987-10-30 Natl Inst For Res In Inorg Mater Production of aqueous solution of high-purity titanium peroxyhydrate
JPS6317221A (en) * 1986-07-03 1988-01-25 Taki Chem Co Ltd Crystalline titanium oxide sol and production thereof
JPH02255532A (en) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd Production of rutile type titanium oxide sol
JPH0789722A (en) * 1993-08-30 1995-04-04 Merck Patent Gmbh Photo stabilization of titanium dioxide sol
JPH0790594A (en) * 1993-09-24 1995-04-04 Tokyo Ohka Kogyo Co Ltd Coating solution for forming titanium based multiple oxide
KR20020043133A (en) * 2000-12-01 2002-06-08 서평원 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR20010096626A (en) * 2001-03-09 2001-11-08 김현용 TiO2 sol manufacturing method and device for normal temperature coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825084B1 (en) * 2006-12-29 2008-04-28 (재)대구경북과학기술연구원 A method of manufacturing titanium dioxide sol and a method of titanium dioxide photo-catalyst including the method
WO2009052510A2 (en) * 2007-10-19 2009-04-23 Worthington Technologies, Llc Method of surface modifying titania using metal and compositions therefrom
WO2009052510A3 (en) * 2007-10-19 2009-08-27 Worthington Technologies, Llc Method of surface modifying titania using metal and compositions therefrom
KR100917131B1 (en) 2008-02-18 2009-09-11 금오공과대학교 산학협력단 Preparation of TiO2 Photocatalyst to utilize spectrum of visible ray
KR100980516B1 (en) 2008-08-27 2010-09-06 장순웅 Photocatalyst sol and manufacturing method thereof

Also Published As

Publication number Publication date
KR20020092067A (en) 2002-12-11

Similar Documents

Publication Publication Date Title
KR100444892B1 (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
EP2366667B1 (en) Titanium oxide sol manufacturing method
EP1167296A1 (en) Method for producing anatase type titanium dioxide and titanium dioxide coating material
KR100421243B1 (en) The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100916930B1 (en) Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
JP2003137549A (en) Method for manufacturing tubular titanium oxide grain and tubular titanium oxide
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
EP2000208A9 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
JP3122658B1 (en) Solution for forming titanium oxide and method for producing the same
JP3055684B1 (en) Method for producing anatase-type titanium oxide
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP3791067B2 (en) Photocatalyst composition and glass article
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP4800914B2 (en) Method for producing metal oxide film
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
KR100353242B1 (en) A new type photocatalyst dopped and coated on silicagel and its method of preparation
JP4526619B2 (en) Visible light active photocatalyst
JP2003221230A (en) Ceramic dispersion and its production method
JP3885248B2 (en) Photocatalyst composition
JP3002186B1 (en) Titanium dioxide photocatalyst
JP2000070727A (en) Photocatalytic fine titanium particles and their production
US8852548B2 (en) Method of preparing high crystalline nanoporous titanium dioxide at room temperature
JP2003096433A (en) Ceramics dispersion, method for producing the same, hydrophilicity-imparting agent and photo-catalytic functional article by using the same
JPH09267037A (en) Photocatalyst with titanium dioxide as base material and its production

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee