JPS62207718A - Sol of crystalline titanium oxide and its preparation - Google Patents

Sol of crystalline titanium oxide and its preparation

Info

Publication number
JPS62207718A
JPS62207718A JP5017086A JP5017086A JPS62207718A JP S62207718 A JPS62207718 A JP S62207718A JP 5017086 A JP5017086 A JP 5017086A JP 5017086 A JP5017086 A JP 5017086A JP S62207718 A JPS62207718 A JP S62207718A
Authority
JP
Japan
Prior art keywords
sol
titanium oxide
gel
acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5017086A
Other languages
Japanese (ja)
Other versions
JPH0262498B2 (en
Inventor
Shin Yamamoto
伸 山本
Hiroshi Nishikura
西倉 宏
Yukio Terao
寺尾 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP5017086A priority Critical patent/JPS62207718A/en
Publication of JPS62207718A publication Critical patent/JPS62207718A/en
Publication of JPH0262498B2 publication Critical patent/JPH0262498B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare sol of superfine particles of crystalline anatase type titanium oxide by forming gel by the reaction of a water-soluble Ti compd. with an ammonium compd. treating the gel hydrothermally at above a specified temp., and adding an acid thereto. CONSTITUTION:After forming gel by the reaction of a water-soluble Ti compd. (e.g. TiCl4 etc.) with an ammonium compd. (e.g. aq. soln. of ammonium bicarbonate, etc.), the gel is treated hydrothermally at >=100 deg.C, and adding an acid (e.g. HNO3, etc.) to prepare sol of crystalline titanium oxide. The crystalline titanium oxide has anatase-type crystal shape providing <=500Angstrom extremely fine colloidal particle in the state of aq. soln. forming stable sol. The sol improves chemical resistance and water resistance remarkably as compared to the effect of conventional amorphous coating materials when it is used for matting of chemical fibers, synthetic fibers, etc., or for coating paper, permitting the use of the fibers or paper under wide range of using condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、結晶質アナターゼ型酸化チタンゾル及びその
製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a crystalline anatase titanium oxide sol and a method for producing the same.

酸化チタンは、顔料、ペースト改良剤、温度センサー、
赤外線反射多層膜、触媒、圧電体(チタン酸塩)の原料
、二酸化チタン被覆雲母等の多方面の分野に於て使用さ
れている工業材料である。
Titanium oxide is used as pigment, paste improver, temperature sensor,
It is an industrial material used in many fields such as infrared reflective multilayer films, catalysts, piezoelectric materials (titanate) raw materials, and titanium dioxide-coated mica.

(従来の技術) これらの用途に用いられる酸化チタン原料粉末は、通常
イルメナイトに硫酸を加え、その硫酸塩の加水分解によ
り先ずメタチタン酸を得る。
(Prior Art) Titanium oxide raw material powder used for these purposes is usually obtained by adding sulfuric acid to ilmenite and hydrolyzing the sulfate to first obtain metatitanic acid.

そしてこれをろ過、乾燥、焼成する方法(硫酸法)、硫
酸の代わりに塩酸を用いる塩酸法、或いは無水塩化チタ
ンを気相で熱分解させる方法等により生産されている。
It is produced by a method in which it is filtered, dried, and calcined (sulfuric acid method), a hydrochloric acid method in which hydrochloric acid is used instead of sulfuric acid, or a method in which anhydrous titanium chloride is thermally decomposed in a gas phase.

しかし、これらの方法により得られた酸化チタン粉末は
、一般に粒子径が粗く、また不揃いであり、特に均−超
微細性を要求される分野への適用については問題があっ
た。
However, titanium oxide powders obtained by these methods generally have coarse and irregular particle sizes, which poses a problem, especially when applied to fields that require uniform to ultra-fine particles.

一方、無水塩化チタンを気相で熱分解させ製造する方法
が知られているが、この方法は@綱な均一粒子が得られ
る反面、粒子の分散性が悪く、水等の溶媒に分散させる
と、経時と共に沈降分離することで問題がある。
On the other hand, a method is known in which anhydrous titanium chloride is thermally decomposed in the gas phase, but although this method yields uniform particles, the dispersibility of the particles is poor, and when dispersed in a solvent such as water, , there is a problem with sedimentation and separation over time.

また、特開昭59−223231号記載の内容によれば
、硫酸法による酸化チタンの製造の際、焼成によりルチ
ル型への転位を促進するため、核物質として添加される
ものと基本的に同一であるものをチタニアゾルと云って
いる。
Furthermore, according to the content described in JP-A No. 59-223231, when producing titanium oxide using the sulfuric acid method, it is basically the same material as that added as a nuclear material in order to promote the rearrangement to the rutile type by calcination. It is called titania sol.

しかし、このものはその製造方法から明らかなように、
微粒子酸化チタンの製造中間体として得られるチタニア
ゾルとして、多量の酸を含むことから、本発明の結晶質
酸化チタンゾルとは興なるものである。
However, as is clear from the manufacturing method,
The crystalline titanium oxide sol of the present invention is interesting because it contains a large amount of acid as a titania sol obtained as an intermediate for producing fine-particle titanium oxide.

従って、赤外線反射多重り触媒、圧電体用原料、二酸化
チタン被覆雲母等に適用する場合には、これらの二酸化
チタン粉末では、純度、粒度、分散性に於て充分でなく
、問題が残されているのが現状である。
Therefore, when applied to infrared reflective multilayer catalysts, raw materials for piezoelectric materials, mica coated with titanium dioxide, etc., these titanium dioxide powders do not have sufficient purity, particle size, and dispersibility, and problems remain. The current situation is that

(発明が解決しようとする間運点) 本発明者らはこれらの実情に鑑み、純度、粒度、分散性
等の緒特性に於て優れる結晶質の酸化チタンゾルを得べ
く、鋭意研究を重ねた結果、新規な結晶質アナターゼ型
酸化チタンゾルを見出し、本発明を完成したものである
(Unfortunate problems to be solved by the invention) In view of these circumstances, the present inventors have conducted extensive research in order to obtain a crystalline titanium oxide sol that is excellent in properties such as purity, particle size, and dispersibility. As a result, a novel crystalline anatase-type titanium oxide sol was discovered, and the present invention was completed.

(問題点を解決するための手&) 即ち本発明は、結晶質アナターゼ型酸化チタンゾル及び
その製造方法に関し、水弟−の発明は、粒子径500^
以下の結晶質アナターゼ型酸化チタンゾルであり、また
、本第二の発明は、水溶性チタン化合物とアンモニウム
化合物とを反応させゲルを生成させた後、これを100
℃以上で水熱処理し、酸を添加することからなる粒子径
500^以下の結晶質アナターゼ型酸化チタンゾルの製
造方法に関する。
(Measures to Solve the Problems) That is, the present invention relates to a crystalline anatase type titanium oxide sol and a method for producing the same.
The following is a crystalline anatase type titanium oxide sol, and the second invention is a crystalline anatase type titanium oxide sol that is produced by reacting a water-soluble titanium compound and an ammonium compound to form a gel, and then
The present invention relates to a method for producing a crystalline anatase-type titanium oxide sol having a particle size of 500^ or less, which comprises hydrothermal treatment at a temperature of 0.degree. C. or higher and addition of an acid.

(作 用) 先ず、水弟−の発明である粒子径500λ以下の結晶質
アナターゼ型酸化チタンゾルについて詳細に説明する。
(Function) First, the crystalline anatase-type titanium oxide sol with a particle size of 500λ or less, which is an invention by Mizuo, will be explained in detail.

従来、酸化チタンのゾルを製造する方法として、無機チ
タン塩水溶液を原料とし、これに含まれる酸根を何等か
の方法により除去するか、或いはfLMチタンを水に加
え、加水分解を行うことにより得る方法が提案されてい
る。 また別に、チタンアルコキシドを各種の手段で加
水分解し、ゾルを得る方法も提案されている。
Conventionally, titanium oxide sol has been produced by using an inorganic titanium salt aqueous solution as a raw material and removing the acid groups contained therein by some method, or by adding fLM titanium to water and performing hydrolysis. A method is proposed. Separately, methods have also been proposed in which titanium alkoxide is hydrolyzed by various means to obtain a sol.

しかし、これらの方法により得られるゾルは何れもその
結晶形が無定形か或いはチタンの水酸化物であり、アナ
ターゼ型の結晶質酸化チタンゾルではない。
However, the sols obtained by these methods are either amorphous or titanium hydroxide, and are not anatase-type crystalline titanium oxide sols.

これに対し、本発明の結晶質酸化チタンゾルはアナター
ゼ型の結晶形をもち、且つこれが500λ以下という極
めて微細なコロイド粒子を水溶液状態で供与し、安定な
ゾル溶液を形成するものである。
In contrast, the crystalline titanium oxide sol of the present invention has an anatase crystal form, which provides extremely fine colloidal particles of 500λ or less in an aqueous solution state, thereby forming a stable sol solution.

非晶質からなる従来のゾルは、化繊2合繊等の艶消しや
、製紙のコーティングに用いた場合には、基材の耐熱性
が低いため、非晶質ゾルを結晶化させることができなか
った。 しかし本発明の結晶質酸化チタンゾルは、この
ような基材に結晶質のもの°を乾燥程度の低温処理でコ
ーティングできることより、耐薬品性、耐水性が非晶質
のものに比べ著しく向上し、広範な条件下での使用が可
能となるものである。
Conventional amorphous sols cannot be crystallized due to the low heat resistance of the base material when used for matting synthetic fibers or coating paper manufacturing. Ta. However, the crystalline titanium oxide sol of the present invention has significantly improved chemical resistance and water resistance compared to amorphous materials because it can coat such substrates with crystalline materials by drying or low-temperature treatment. It can be used under a wide range of conditions.

このようなゾルは従来全く知られていなかったものであ
り、酸化チタン系複合材料の適用分野に於て、新たな用
途を生み出すものである。
Such a sol has not been previously known and will create new uses in the field of application of titanium oxide composite materials.

その特徴を挙げれば次の通りである。Its characteristics are as follows.

第一に、本発明の結晶質アナターゼ型ゾルは、無定形ゾ
ルに比べて高濃度なゾルで得ることができ、酸化チタン
−シリカの多層赤外線反射膜を作成するような場合、−
回のコーティングで所望の膜厚や反射性能を得ることが
できる。
First, the crystalline anatase type sol of the present invention can be obtained at a higher concentration than an amorphous sol, and when creating a multilayer infrared reflective film of titanium oxide and silica, -
Desired film thickness and reflective performance can be obtained with one coating.

第二に、本発明の結晶質アナターゼ型酸化チタンゾルは
、ゾルの安定性に優れているので、従来の二酸化チタン
粉末ではコーティング等の作業の際に、均一な膜形成が
困難であったのに比べ、本発明品では長期間の保存後も
ゾルが均一に分散し、均一なコーテイング膜が得られる
Secondly, the crystalline anatase-type titanium oxide sol of the present invention has excellent sol stability, whereas it was difficult to form a uniform film during coating operations with conventional titanium dioxide powder. In comparison, in the product of the present invention, the sol is evenly dispersed even after long-term storage, and a uniform coating film can be obtained.

しかも500ス以下という超微細粒子であるから、二酸
化チタン被覆雲母に適用した場合には、粒子が分子分散
状に均一に分散し、優れた真珠光沢性を与える。
Moreover, since they are ultrafine particles of 500 s or less, when applied to titanium dioxide-coated mica, the particles are uniformly dispersed in a molecular dispersion state, giving excellent pearlescent properties.

更に、無定形ゾルに比べて高濃度での被覆が可能である
ため、硬牢なものが得られる。
Furthermore, since it is possible to coat with a higher concentration than an amorphous sol, a tough product can be obtained.

これらのことは、酸化チタン系セラミックのコーテイン
グ膜の製造に於て非常に有益である。
These facts are very useful in the production of titanium oxide ceramic coating films.

尚、コロイド粒子径の測定は、電子w4微鏡観察により
行ったが、本発明のゾルは、実質止金てのコロイド粒子
が500λ以下の粒子径であった。
The colloidal particle size was measured by electron W4 microscopic observation, and in the sol of the present invention, the colloidal particles, which were essentially the stopper, had a particle size of 500λ or less.

次に、本第二の発明である結晶質アナターゼ型酸化チタ
ンゾルの製造方法について詳述する。
Next, a method for producing a crystalline anatase-type titanium oxide sol, which is the second invention, will be described in detail.

本第二の発明は、水溶性チタン化合物とアンモニウム化
合物とを反応させゲルを生成させた後、これを100℃
以上で水熱処理し、酸を添加することからなる粒子径5
00X以下の結晶質アナターゼ型酸化チタンゾルの製造
方法に関する。
In the second invention, a water-soluble titanium compound and an ammonium compound are reacted to form a gel, and then the gel is heated to 100°C.
Particle size 5 obtained by hydrothermally treating the above and adding acid.
The present invention relates to a method for producing a crystalline anatase-type titanium oxide sol of 00X or less.

本発明に用いる水溶性チタン化合物としては、四塩化チ
タン、硝酸チタン、硫酸チタン等を例示でさ、またアン
モニウム化合物としては、重炭酸アンモニウム、炭酸ア
ンモニウム、アンモニア水等を例示することができるが
、これらに限定されるものではない。
Examples of water-soluble titanium compounds used in the present invention include titanium tetrachloride, titanium nitrate, titanium sulfate, etc., and examples of ammonium compounds include ammonium bicarbonate, ammonium carbonate, aqueous ammonia, etc. It is not limited to these.

また上記以外の原料として、重炭酸アルカリ*属塩や炭
酸アルカリ金属塩等の使用は、製品ゾル中にアルカリ金
属塩が残留することより好ましくない。
Furthermore, the use of alkali* bicarbonate salts, alkali metal carbonate salts, and the like as raw materials other than those mentioned above is not preferable because the alkali metal salts will remain in the product sol.

本発明では、先ず前記の水溶性チタン化合物とアンモニ
ウム化合物とを反応させ、ゲルを生成させる。
In the present invention, first, the water-soluble titanium compound and ammonium compound are reacted to form a gel.

このゲルの製造条件に関して云えば、両者の反応の際の
温度は、大略10〜90℃で行う。
Regarding the conditions for producing this gel, the temperature during the reaction between the two is approximately 10 to 90°C.

また添加割合については、アンモニウム化合物のアン毛
ニウム(A)と水溶性チタン化合物に由来する酸81 
(B)の当量比^/Bが0.9〜1.3の範囲となるよ
うに行う、 しかしこの範囲を逸脱しても、後述する生
成ゲルを洗浄する工程で、上限を越えた場合、希薄な酸
溶液で洗浄し、また下限以下ではRI薄なアルカリ性溶
液で洗浄することにより、所望のゾルを得ることができ
、特段に限定するものではないが、経済的理由から上記
範囲が望ましい、 また、添加順序に関しても特段限定
はされず、水溶性チタン化合物またはアンモニウム化合
物のいずれか一方を先に、あるいは両者を同時に添加す
る方法により行うことができる。
In addition, regarding the addition ratio, the acid derived from the ammonium compound anchaenium (A) and the water-soluble titanium compound is 81%.
Perform this so that the equivalent ratio ^/B of (B) is within the range of 0.9 to 1.3. However, even if it deviates from this range, if the upper limit is exceeded in the process of washing the produced gel, which will be described later, The desired sol can be obtained by washing with a dilute acid solution and, below the lower limit, with a RI dilute alkaline solution. Although not particularly limited, the above range is desirable for economic reasons. Furthermore, there is no particular limitation on the order of addition, and either the water-soluble titanium compound or the ammonium compound can be added first, or both can be added at the same time.

このようにして製造したゲルは、次いでろ過、洗浄を行
い、不純物を除去する。
The gel thus produced is then filtered and washed to remove impurities.

この残存不純物は、酸化チタンゾルの製造上、また用途
上、少ないほうが好ましい。
It is preferable that the amount of residual impurities be as small as possible in terms of production and usage of the titanium oxide sol.

ろ過、洗浄手段に関しては特に限定されず、通常用いら
れているフィルタープレスや遠心ろ過のような注水ろ過
、リパルプ−遠心分離法等の任意の手段を用いることが
できる。
The filtration and washing means are not particularly limited, and any commonly used means such as a filter press, water filtration such as centrifugal filtration, repulp-centrifugation method, etc. can be used.

ろ過、洗浄後のゲルは、次いで水熱処理に供される。The gel after filtering and washing is then subjected to hydrothermal treatment.

水熱処理条件に関しては、温度は100℃以上で行うが
、一般に処理温度が高く、また処理時間が長くなるほど
、結晶形の発達が良好であり、粒径の大きなコロイド粒
子が得られる。
Regarding the hydrothermal treatment conditions, the temperature is 100° C. or higher, and generally, the higher the treatment temperature and the longer the treatment time, the better the development of the crystal form and the larger the particle size colloidal particles can be obtained.

また、100℃を下回る温度での処理は、長時間行って
もコロイド粒子が結晶化せず、たとえ一部が結晶化して
もその結晶化度は著しく低く、無定形の性質が残り、本
発明の目的を達成することができない。
In addition, if the treatment is carried out at a temperature below 100°C, the colloidal particles will not crystallize even if carried out for a long time, and even if some of them crystallize, the degree of crystallinity will be extremely low and the amorphous nature will remain. unable to achieve its purpose.

蓋し、本発明の結晶質酸化チタンゾルの各用途に応じて
処理条件を選択し、所望する粒子径のゾルを得ることが
でき、その制御が水熱処理条件の選択によって可能であ
る点が本発明の大きな特徴である。
An advantage of the present invention is that it is possible to obtain a sol with a desired particle size by selecting treatment conditions according to each use of the crystalline titanium oxide sol of the present invention, and that this can be controlled by selecting the hydrothermal treatment conditions. This is a major feature of

続いて、本発明の水熱処理物に酸の添加を行う、 添加
する酸の種類としては、塩酸、硝酸、酢酸、蟻酸、乳酸
、グリコール酸等を例示できる。
Subsequently, an acid is added to the hydrothermally treated product of the present invention. Examples of the type of acid to be added include hydrochloric acid, nitric acid, acetic acid, formic acid, lactic acid, and glycolic acid.

また酸の添加量は、τ10,1モルに対して0.01〜
O,SOモルの範囲で行う。
The amount of acid added is 0.01 to 1 mole of τ10.
It is carried out within the range of O and SO moles.

この場合、添加量がこの範囲を逸脱すると、本発明の分
散性に優れたゾルを得ることができない。
In this case, if the amount added exceeds this range, the sol with excellent dispersibility of the present invention cannot be obtained.

更に、本発明では水熱処理後に酸を添加することが殊に
重要であり、水熱処理前の酸の添加では本発明のゾルを
得ることができない。
Furthermore, in the present invention, it is particularly important to add an acid after the hydrothermal treatment, and the sol of the present invention cannot be obtained by adding an acid before the hydrothermal treatment.

(実施例) 以下に本発明の実施例を掲げ、更に説明を行うが、本発
明はこれらに限定されるものではない、 また、Xは特
にことわらない限り、全てを量%を示す。
(Example) Examples of the present invention are listed below to further explain the present invention, but the present invention is not limited thereto. In addition, unless otherwise specified, all X indicates % by weight.

実施例1 四塩化チタン水溶)α(Ti022%)2000gとア
ンモニア水(N1132%)2042g (NH)/C
I当量比1.2)を攪はん下で添加し、ゲルを生成した
Example 1 2000 g of titanium tetrachloride (water soluble) α (Ti022%) and 2042 g of ammonia water (N1132%) (NH)/C
I equivalent ratio 1.2) was added under stirring to form a gel.

これをろ過水洗し、τi0.10%のゲルを得た。This was filtered and washed with water to obtain a gel with τi of 0.10%.

このゲル400Kをオートクレーブに入れ、250”C
で2時間の水熱処理を行った後、酢酸だ102モル比0
.3となるように酢酸9gを添加し、本発明のゾルを得
た。 このゾルを濃縮すると rio、 23%で流動
限界であった。
Put this gel 400K in an autoclave and heat it to 25”C.
After hydrothermal treatment for 2 hours, the molar ratio of acetic acid was 0.
.. 9 g of acetic acid was added so as to give a concentration of 3, to obtain a sol of the present invention. When this sol was concentrated, the flow limit was reached at 23% rio.

またこのゾルを丁10□1.0%に希釈し、静置したと
ころ、1力月後の分散安定率は99%であった。
When this sol was diluted to 1.0% and left to stand, the dispersion stability rate after 1 month was 99%.

更に、電子顕微鏡観察によるコロイド粒子径は170大
であり、X線回折の結果はアナターゼ型結晶質であった
Furthermore, the colloid particle diameter was 170 large by electron microscopic observation, and the result of X-ray diffraction showed that it was anatase type crystalline.

尚、分111安定率は1力月後にゾル液の上層部からサ
ンプリングした液のTiO7濃度を測定し、次式により
算出した。
Incidentally, the minute 111 stability rate was calculated by measuring the TiO7 concentration of a liquid sampled from the upper layer of the sol liquid after one month, and using the following formula.

実施例2〜4 四塩化チタン水溶液(11023%)100(logと
重炭酸アンモニウム水溶液(NH,2%)13404g
 (N)It/cl当量比1.05)を、水5000g
を予め添加した反応槽に攪はんを行いながら同時に添加
した。
Examples 2-4 Titanium tetrachloride aqueous solution (11023%) 100 (log and ammonium bicarbonate aqueous solution (NH, 2%) 13404 g
(N)It/cl equivalent ratio 1.05), 5000 g of water
were added at the same time to the reaction tank to which they had been added while stirring.

生成したゲルを水洗、ろ過し、 Ti121%%のゲル
1630gを得た。 このゲルを水で希釈し、T102
3%としたゲル400gをオートクレーブに入れ、第1
表に示したような処理条件で処理を行った。
The generated gel was washed with water and filtered to obtain 1630 g of a gel containing 121% Ti. This gel was diluted with water and T102
Put 400g of 3% gel into an autoclave and
The treatment was carried out under the treatment conditions shown in the table.

処理後、61%の硝酸1.55g (硝酸77102モ
ル比0゜1)を添加し、本発明のゾルを得た。
After the treatment, 1.55 g of 61% nitric acid (nitric acid 77102 molar ratio 0°1) was added to obtain the sol of the present invention.

これらのX線回折結果を第1表に示し、また実施v42
のX線回折図を第1図に示した。
These X-ray diffraction results are shown in Table 1, and
The X-ray diffraction pattern is shown in FIG.

更に、X線回折の結果から5cherr@rの式但し、
t;粒子径(わ λ;λ=1.542ス(CuK a )β:半価巾(ラ
シゝアン) casθ;2θ=25.3’とした により粒子径を算出した。
Furthermore, from the results of X-ray diffraction, the formula of 5cherr@r, however,
The particle diameter was calculated as follows: t: particle diameter (λ; λ=1.542 (CuK a )) β: half width (rathian) casθ: 2θ=25.3′.

粒子径は、電子顕微鏡観察結果からの粒子径と5che
rrarの式からの粒子径がほぼ一致していた。
The particle size is the particle size from the electron microscope observation result and 5che
The particle diameters determined by the rrar formula were almost the same.

また比較例として、上記のゲルを同量三ツロフラスコに
入れ、マントルヒーターで第1表記載の条件で処理した
。 結果を第1表に示した。
Further, as a comparative example, the same amount of the above gel was placed in a Mitsuro flask and treated with a mantle heater under the conditions listed in Table 1. The results are shown in Table 1.

実施例5 炭酸アンモニウム水溶液(NH,1%)10000gに
硝酸チタン水溶液(Ti121%)11520g(NH
x/N(h当量比1.02)を、攪はんを行いながら添
加した。
Example 5 11,520 g of titanium nitrate aqueous solution (Ti121%) was added to 10,000 g of ammonium carbonate aqueous solution (NH, 1%) (NH, 1%).
x/N (h equivalence ratio 1.02) was added with stirring.

得られたゲルを充分に水洗し、硝酸がウェットケーキ中
に残留していないことを確認後、これを水で希釈し、T
i028%のスラリー400gとして200℃で4時間
の水熱処理に供した。
After thoroughly washing the obtained gel with water and confirming that no nitric acid remains in the wet cake, it is diluted with water and T
400 g of i028% slurry was subjected to hydrothermal treatment at 200° C. for 4 hours.

次いで、HNO,パ10□モル比0.05となるように
61%の硝酸2.0gを添加し、本発明のゾルを得た。
Next, 2.0 g of 61% nitric acid was added so that the molar ratio of HNO and 10□ was 0.05 to obtain a sol of the present invention.

この本発明のゾルは、X線回折の結果アナターゼ型結晶
形を有し、粒子径は1aoXであり、また分散安定率は
98%であった。
As a result of X-ray diffraction, this sol of the present invention had an anatase crystal form, a particle size of 1aoX, and a dispersion stability rate of 98%.

また比較のために、水熱処理を行う前に、前記と同様の
硝酸を加えた後水熱処理を行ったが、本発明のゾルを得
ることができなかった。
For comparison, before the hydrothermal treatment, the same nitric acid as above was added and then the hydrothermal treatment was performed, but the sol of the present invention could not be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2で得た本発明結晶質アナター上型酸
化チタンゾルの60°C乾燥物のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of the crystalline anata-type titanium oxide sol of the present invention obtained in Example 2, dried at 60°C.

Claims (2)

【特許請求の範囲】[Claims] (1)粒子径500Å以下の結晶質アナターゼ型酸化チ
タンゾル。
(1) Crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less.
(2)水溶性チタン化合物とアンモニウム化合物とを反
応させゲルを生成させた後、これを100℃以上で水熱
処理し、酸を添加することからなる粒子径500Å以下
の結晶質アナターゼ型酸化チタンゾルの製造方法。
(2) A crystalline anatase-type titanium oxide sol with a particle size of 500 Å or less is produced by reacting a water-soluble titanium compound and an ammonium compound to form a gel, then hydrothermally treating the gel at 100°C or higher and adding an acid. Production method.
JP5017086A 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation Granted JPS62207718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017086A JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5017086A JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Publications (2)

Publication Number Publication Date
JPS62207718A true JPS62207718A (en) 1987-09-12
JPH0262498B2 JPH0262498B2 (en) 1990-12-25

Family

ID=12851727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017086A Granted JPS62207718A (en) 1986-03-06 1986-03-06 Sol of crystalline titanium oxide and its preparation

Country Status (1)

Country Link
JP (1) JPS62207718A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317221A (en) * 1986-07-03 1988-01-25 Taki Chem Co Ltd Crystalline titanium oxide sol and production thereof
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
FR2677012A1 (en) * 1991-05-31 1992-12-04 Rhone Poulenc Chimie Titanium dioxide in the form of platelets and process for its preparation
US5700451A (en) * 1995-05-24 1997-12-23 The Procter & Gamble Company Sunscreen composition
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
WO2002068576A1 (en) * 2001-02-27 2002-09-06 Ecodevice Laboratory Co., Ltd. Bleaching composition and method of bleaching tooth
KR100381921B1 (en) * 2000-07-21 2003-04-26 김정환 Titania coating solution and Method for manufacturing the same
KR100396085B1 (en) * 1999-12-21 2003-08-27 주식회사 포스코 A Titanium Dioxide powder and The method for preparation thereof
JP2003301167A (en) * 2002-02-07 2003-10-21 Nihon University Process for producing sol and method for water repellent treatment of base material
KR100404449B1 (en) * 2001-02-16 2003-11-05 한상목 The manufacturing method of titanium oxide powder by dropping precipitant
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100436240B1 (en) * 2001-11-01 2004-06-16 김대승 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
EP1167296A4 (en) * 1999-02-04 2005-03-16 Kawasaki Heavy Ind Ltd Method for producing anatase type titanium dioxide and titanium dioxide coating material
US6884753B2 (en) 2002-05-27 2005-04-26 Sumitomo Chemical Company, Limited Method for producing ceramic dispersion composition
US6974611B2 (en) 2002-06-25 2005-12-13 Sumitomo Chemical Company, Limited Titanium oxide dispersion composition, and method and container for preserving the same
US7045005B2 (en) 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
JP2006143535A (en) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd Zirconia sol and its manufacturing method
KR100611632B1 (en) * 2003-11-14 2006-08-11 (주)지엔씨글로텍 photocatalyst composition and manufacturing method thereof
US7303738B2 (en) 2002-12-20 2007-12-04 Sumitomo Chemical Company, Limited Method for producing titanium oxide
DE102006032755A1 (en) * 2006-07-14 2008-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
WO2010055770A1 (en) 2008-11-12 2010-05-20 日産化学工業株式会社 Titanium oxide sol manufacturing method
JP2011063496A (en) * 2009-09-18 2011-03-31 Sakai Chem Ind Co Ltd Anatase-type titanium dioxide hyperfine particle, dispersion containing the same and method for producing the titanium dioxide
US8557217B2 (en) 2006-09-21 2013-10-15 Tokusen, U.S.A., Inc. Low temperature process for producing nano-sized titanium dioxide particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044738A (en) * 2014-10-14 2015-03-12 テイカ株式会社 Amorphous titania sol and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843439A (en) * 1971-09-30 1973-06-23
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843439A (en) * 1971-09-30 1973-06-23
JPS5950604A (en) * 1982-09-16 1984-03-23 Seiko Instr & Electronics Ltd Oscillating circuit

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317221A (en) * 1986-07-03 1988-01-25 Taki Chem Co Ltd Crystalline titanium oxide sol and production thereof
JPH0262499B2 (en) * 1986-07-03 1990-12-25 Taki Chemical
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
JPH0587446B2 (en) * 1986-10-29 1993-12-16 Catalysts & Chem Ind Co
FR2677012A1 (en) * 1991-05-31 1992-12-04 Rhone Poulenc Chimie Titanium dioxide in the form of platelets and process for its preparation
US5700451A (en) * 1995-05-24 1997-12-23 The Procter & Gamble Company Sunscreen composition
EP1167296A4 (en) * 1999-02-04 2005-03-16 Kawasaki Heavy Ind Ltd Method for producing anatase type titanium dioxide and titanium dioxide coating material
KR100396085B1 (en) * 1999-12-21 2003-08-27 주식회사 포스코 A Titanium Dioxide powder and The method for preparation thereof
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
KR100381921B1 (en) * 2000-07-21 2003-04-26 김정환 Titania coating solution and Method for manufacturing the same
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100404449B1 (en) * 2001-02-16 2003-11-05 한상목 The manufacturing method of titanium oxide powder by dropping precipitant
WO2002068576A1 (en) * 2001-02-27 2002-09-06 Ecodevice Laboratory Co., Ltd. Bleaching composition and method of bleaching tooth
KR100444892B1 (en) * 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
US7045005B2 (en) 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
KR100436240B1 (en) * 2001-11-01 2004-06-16 김대승 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof
JP2003301167A (en) * 2002-02-07 2003-10-21 Nihon University Process for producing sol and method for water repellent treatment of base material
US6884753B2 (en) 2002-05-27 2005-04-26 Sumitomo Chemical Company, Limited Method for producing ceramic dispersion composition
US6974611B2 (en) 2002-06-25 2005-12-13 Sumitomo Chemical Company, Limited Titanium oxide dispersion composition, and method and container for preserving the same
US7303738B2 (en) 2002-12-20 2007-12-04 Sumitomo Chemical Company, Limited Method for producing titanium oxide
KR100611632B1 (en) * 2003-11-14 2006-08-11 (주)지엔씨글로텍 photocatalyst composition and manufacturing method thereof
JP2006143535A (en) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd Zirconia sol and its manufacturing method
DE102006032755A1 (en) * 2006-07-14 2008-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
US8557217B2 (en) 2006-09-21 2013-10-15 Tokusen, U.S.A., Inc. Low temperature process for producing nano-sized titanium dioxide particles
WO2010055770A1 (en) 2008-11-12 2010-05-20 日産化学工業株式会社 Titanium oxide sol manufacturing method
US8802159B2 (en) 2008-11-12 2014-08-12 Nissan Chemical Industries, Ltd. Production method of titanium oxide sol
JP2011063496A (en) * 2009-09-18 2011-03-31 Sakai Chem Ind Co Ltd Anatase-type titanium dioxide hyperfine particle, dispersion containing the same and method for producing the titanium dioxide

Also Published As

Publication number Publication date
JPH0262498B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
JPS62207718A (en) Sol of crystalline titanium oxide and its preparation
JPH0262499B2 (en)
JP4129564B2 (en) Method for producing weakly agglomerated nanoscalar particles
Yang et al. Preparation of rutile titania nanocrystals by liquid method at room temperature
JP3980272B2 (en) Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film
JPH05178617A (en) Production of spherical particulate made of titanate and spherical particulate obtained by the same
JPH06305729A (en) Fine powder of perovskite type compound and its production
JP7116473B2 (en) Ribbon-shaped nanostructure of vanadium oxide and method for producing the same, method for producing aqueous solution containing flaky nanostructure of vanadium oxide, and method for producing vanadium oxide nanoparticles
JPH0648734A (en) Production of crystalline titanic acid based perovskite-type fine particle
JPH05163022A (en) Spherical anatase titanium oxide and its production
JPH0967125A (en) Fine powder of titanium oxide and its production
JP2805202B2 (en) Method for producing titanium oxide fine powder
JPS6272525A (en) Production of barium titanate or strontium titanate
JPS6191015A (en) Production of barium titanate
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
JP3415733B2 (en) Method for producing fine particles of calcium titanate
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
KR100420277B1 (en) Preparation of TiO2 fine powder from titanium tetrachloride with Alcohol or Acetone
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH07242422A (en) Fine particle-shaped acicular titanium oxide and production thereof
JPH0573696B2 (en)
JP3653112B2 (en) Granular titanium dioxide and method for producing the same
JPH04238814A (en) Preparation of titanate of bi- or tri-valent cation
JP4247812B2 (en) Plate-like titanic acid composite oxide particles and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees