KR100611632B1 - photocatalyst composition and manufacturing method thereof - Google Patents

photocatalyst composition and manufacturing method thereof Download PDF

Info

Publication number
KR100611632B1
KR100611632B1 KR1020030080447A KR20030080447A KR100611632B1 KR 100611632 B1 KR100611632 B1 KR 100611632B1 KR 1020030080447 A KR1020030080447 A KR 1020030080447A KR 20030080447 A KR20030080447 A KR 20030080447A KR 100611632 B1 KR100611632 B1 KR 100611632B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
sol
selenium
minutes
titanium dioxide
Prior art date
Application number
KR1020030080447A
Other languages
Korean (ko)
Other versions
KR20050046846A (en
Inventor
정청식
Original Assignee
(주)지엔씨글로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지엔씨글로텍 filed Critical (주)지엔씨글로텍
Priority to KR1020030080447A priority Critical patent/KR100611632B1/en
Priority to AU2003282430A priority patent/AU2003282430A1/en
Priority to PCT/KR2003/002546 priority patent/WO2005047185A1/en
Publication of KR20050046846A publication Critical patent/KR20050046846A/en
Application granted granted Critical
Publication of KR100611632B1 publication Critical patent/KR100611632B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 광촉매 조성물 및 그 제조방법에 관한 것으로, 본 발명의 광촉매조성물의 제조방법은 티타늄이소프로폭사이드 수용액에 알카리를 가해 침전시킨후, 상층 액을 버리고 산을 가하여 교반하고, 알카리를 부가해 중화시켜 이산화티탄 졸을 얻은 다음, 셀레늄(Se)메탈을 이용하여 제조한 셀레늄 졸을 상기 이산화티탄 졸과 혼합하여 100℃에서 10분-60분 가열하는 것으로 구성된다. The present invention relates to a photocatalyst composition and a method for producing the same, wherein the method for preparing a photocatalyst composition of the present invention is precipitated by adding alkali to an aqueous solution of titanium isopropoxide, and then discarding the supernatant, adding acid, stirring, and adding alkali. After neutralization to obtain a titanium dioxide sol, the selenium sol prepared using selenium (Se) metal is mixed with the titanium dioxide sol and heated at 100 ° C. for 10 minutes to 60 minutes.

산화티탄, 광촉매, 셀레늄 Titanium oxide, photocatalyst, selenium

Description

광촉매 조성물 및 그 제조방법{photocatalyst composition and manufacturing method thereof}Photocatalyst composition and manufacturing method thereof

본 발명은 자연광 및 실내의 조명광에서도 매우 우수한 광촉매의 기능을 갖는 광촉매 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a photocatalyst composition having a function of a photocatalyst which is very excellent in natural light and illumination light of a room, and a manufacturing method thereof.

반도체의 성질을 갖고 있는 금속물질에 그 밴드갭(Band Gap)이상의 에너지(Energy)를 갖는 파장의 빛을 조사하면 주변에 있는 유기물의 화합물질들이 산화와 환원의 반응이 일어나게 된다. 반도체의 성질을 가지고 있는 광촉매를 광촉매제라고 한다. When a metal material having a semiconductor property is irradiated with light having a wavelength of more than the band gap, the compounds of the surrounding organic materials react with oxidation and reduction. Photocatalysts having semiconductor properties are called photocatalysts.

광촉매는 유기고분자를 지지체로서 난분해성 결착제를 이용 그 기재위에 광촉매를 담지 시키는 방법과 광촉매를 분말 상으로 된 것을 바인더로서 불소계의 폴리머, 혹은 무기계의 실리콘 폴리머와 실리콘 졸의 기재위에 광촉매를 접착시키는 방법과 광촉매분말의 담지고정화재로서 금속산화물졸로부터 얻어지는 것을 이용 사용하는 방법이 있다.The photocatalyst is a method of supporting a photocatalyst on a substrate using an organic polymer as a support and a photocatalyst on a substrate, and bonding the photocatalyst on a substrate of a fluorine-based polymer or an inorganic silicone polymer and a silicone sol as a binder. The method and the method of using and using what is obtained from a metal oxide sol as a support | purification of a photocatalyst powder are used.

근간에 들어와서 광촉매를 이용한 활용의 범위가 매우 폭넓게 자리를 하고 있다.In recent years, the range of application using photocatalysts has been very widely established.

우리가 거주하는 집과 사무실, 산업의 분야 등에서 아주 중요한 곳에 역할을 충실히 이행하고 있다. 대기 중에 노출되어 있는 우리 인체의 유해물질과, 생산 공장 등지에서 발생되는 악취성분의 분해, 대중목욕탕의 미끄럼 방지 및 냄새입자 제거, 실내공기정화, 자동차 내부의 악취제거, 식품공장 실내 세균번식방지 등 광촉매의 적용범위가 급속하게 확대되어가고 있지만 광촉매 입자들이 사용하고자하는 기재위에 강력하게 응착이 되어 있으면서 광촉매의 기능이 조금도 떨어지지 않으면서 장기간동안 효능이 나올 수 있도록 하는 것이 기존의 광촉매들로부터의 물질의 개선이 요구 되고 있다. We are fulfilling our role in the most important places in our homes, offices, and industries. Decomposition of harmful substances in the human body exposed to the air and odorous substances generated in production plants, prevention of slipping and odor particles in public baths, indoor air purification, removal of odors in automobiles, and prevention of bacterial growth in food factories, etc. Although the scope of application of the photocatalyst is expanding rapidly, it is possible that the photocatalyst particles are strongly adhered to the substrate to be used and the effect of the photocatalyst for a long time without any deterioration of the function of the photocatalyst is that of the material from the conventional photocatalyst. Improvement is needed.

그러나, 유기고분자를 광촉매의 지지체로 이용을 하는 경우 반도체광촉매에서 밴드갭 에너지의 이상을 받아 유기물질을 산화와 분해의 과정을 지속하기 때문에 그의 효능은 매우 짧을 수밖에 없고 혹은 효과역시 매우 적어 소비자들의 혼란만 가중이 되어 왔었다.However, when the organic polymer is used as a support for the photocatalyst, the semiconductor photocatalyst receives the abnormal bandgap energy and continues to oxidize and decompose the organic material. Therefore, its efficacy is very short or the effect is very small. It has been weighted.

더욱이 루틸형 광촉매 파우더와 아나타제형 광촉매제를 유기계 바인더 및 무기계 실리콘계 폴리머를 지지체로 사용하여 기재위에 스프레이 혹은 붓을 사용하여 면상에 도포후 건조를 시키면 건조의 과정에서 입자들의 결합으로 인해 균열이 발생하거나 표면이 거칠게 되는 현상이 있다.Furthermore, when rutile type photocatalyst powder and anatase type photocatalyst are applied with organic binder and inorganic silicone polymer as a support, they are applied onto the surface using a spray or a brush on a substrate, and then dried. The surface is rough.

따라서, 본 발명의 목적은 이러한 문제점을 해결하기 위한 것으로, 광촉매의 입자와 광촉매의 기능들을 손상시키지 않으면서 도포시킨 면상위에 강력한 접착력과 장기간에 걸쳐서 효능이 손실되지 않으면서 광촉매의 효과를 유지할 수 있는 광촉매 조성물 및 그 제조방법을 제공하는 것이다.
Accordingly, an object of the present invention is to solve this problem, it is possible to maintain the effect of the photocatalyst without loss of potency and long-term efficacy on the coated surface without impairing the functions of the particles and photocatalyst of the photocatalyst It is to provide a photocatalyst composition and a method of manufacturing the same.

상기 본 발명의 목적은 티타늄이소프로폭사이드 수용액에 알카리를 가해 침전시킨후, 상층 액을 버리고 산을 가하여 교반하고, 알카리를 부가해 중화시켜 이산화티탄 졸을 얻은 다음, 셀레늄(Se)메탈을 이용하여 제조한 셀레늄 졸을 상기 이산화티탄 졸과 혼합하여 100℃에서 10분-60분 가열하는 것으로 구성되는 광촉매 조성물의 제조방법에 의해 달성된다. The object of the present invention is to add alkali to the aqueous solution of titanium isopropoxide to precipitate, discard the supernatant, add acid, stir, and neutralize by adding alkali to obtain a titanium dioxide sol, using selenium (Se) metal And a selenium sol prepared by mixing with the titanium dioxide sol and heating at 100 ° C. for 10 minutes to 60 minutes.

본 발명의 구성에 의해 산화티탄으로 결정화가 되지 않고 밀착성과 건조시 크렉이 가지 않으면서 균일한 박막의 코팅이 될 수 있으며 일회의 도포시 20㎛이내의 도포의 막을 형성할 수 있음을 확인하였다.According to the configuration of the present invention it was confirmed that it can be a coating of a uniform thin film without crystallization to titanium oxide, without adhesion and drying cracks, and can form a film of coating within 20㎛ in one application.

본 발명에서 사용할 수 있는 광촉매 졸의 층 분리제로서는 티타늄이소프로폭사이드와 같은 티탄염 수용액에 수산화나트륨(NaOH) 혹은 수산화칼륨(KOH), 중탄산소다(NaHCO3), 암모니아(Ammonia Water)등의 알카리 물성을 이용하여 알카리화를 시키면서 침전시킨다. As a layer separating agent of the photocatalyst sol that can be used in the present invention, an aqueous solution of a titanium salt such as titanium isopropoxide is added to sodium hydroxide (NaOH) or potassium hydroxide (KOH), sodium bicarbonate (NaHCO 3 ), ammonia (Ammonia Water), and the like. Precipitates while alkalizing using alkaline properties.

이때 층 분리된 상층 액은 알카리 성분을 가진 것으로서 증류수로 여러 회를 걸쳐서 수세를 하여 염기를 버리고 이를 다시 침전된 부피의 량에 증류수를 1배에 서 3배까지 고형분의 값을 증류수의 첨가량으로 맞추게 되며 이때 희질산용액을 1000ppm(0.1%)를 서서히 넣으면서 고속교반기에 넣어서 30분가량 격렬하게 교반을 시켜주고 이때의 pH는 1-2을 갖게 되며 이를 색상과 중성의 pH값을 조절하기 위해서 수용액에 수산화나트륨(NaOH) 혹은 수산화칼륨(KOH), 중탄산소다(NaHCO3), 암모니아(Ammonia Water)의 알카리 물성을 이용하여 0.2%를 넘기지 않는 범위에서 서서히 첨가를 시키어 중성 pH 7-8의 광촉매 졸을 얻을 수 있다.At this time, the layered supernatant has an alkaline component, washed with distilled water several times, discarded the base, and the distilled water was adjusted to the amount of the precipitated volume from 1 to 3 times to the added amount of distilled water. In this case, 1000 ppm (0.1%) of dilute nitric acid solution is slowly added to a high speed stirrer and stirred vigorously for about 30 minutes. At this time, the pH is 1-2, and it is hydrated in aqueous solution to adjust color and neutral pH value. By using the alkali properties of sodium (NaOH) or potassium hydroxide (KOH), sodium bicarbonate (NaHCO 3 ), and ammonia (Ammonia Water), the solution is added slowly within a range not exceeding 0.2% to obtain a photocatalyst sol having a neutral pH of 7-8. Can be.

상기 공정에서 얻은 물질을 100℃이상의 온도에서 30분 이상 가열을 하면 아나타제형의 결정인 산화티탄 졸이 되며 본 광촉매를 세라믹위에 도포를 하여 건조 후 400℃의 온도로 가열을 한 후 검사를 하여본 결과 아나타제 산화티탄으로 된다.When the material obtained in the above process is heated for more than 30 minutes at a temperature of 100 ℃ or more, it becomes titanium oxide sol, which is an anatase type crystal.The photocatalyst is coated on ceramic, dried, heated to 400 ℃, and then inspected. The result is anatase titanium oxide.

이때의 아나타제형의 산화티탄 졸은 입경이 5-20nm내의 입경이고 pH는 7-8의 중성이며 그 외관은 백색 투명색을 얻을 수 있다. At this time, the anatase type titanium oxide sol has a particle diameter of 5-20 nm, a pH of 7-8 neutral, and the appearance of white transparent color.

본 발명에서 사용할 수 있는 바인더의 재료로서는 Se, Co, CeO3, Ta2O5, RuO2, InPb, MoS3, MoS2, SaO2, Zno, SrTiO3, CdS, CdO, CaP, TiO2, SiO2, SiC, Ca, Fe, Mn, Mg 등을 이용할 수 있지만 그 중에서 도포면상에 응착력이 매우 뛰어난 것은 투명한 셀레늄 졸이다. As a binder material usable in the present invention, Se, Co, CeO 3, Ta 2 O 5 , RuO 2 , InPb, MoS 3 , MoS 2 , SaO 2 , Zno, SrTiO 3 , CdS, CdO, CaP, TiO 2 , SiO 2 , SiC, Ca, Fe, Mn, Mg and the like can be used, but among them, a very excellent selenium sol has excellent adhesion on the coated surface.

이하에 참고예 및 실시예를 들어 본 발명을 보다 구체적으로 설명하지만 본 발명의 범위는 이들 예시에 한정되는 것은 아니다.The present invention will be described in more detail with reference to Examples and Examples below, but the scope of the present invention is not limited to these examples.

(실시예 1) (티타니아 졸의 제조)Example 1 Preparation of Titania Sol

교반기통속에 12L의 증류수의 물에 1kg의 티타늄이소프로폭사이드(Titanium isopropoxide) 용액을 교반기에 서서히 첨가를 시키고 이를 투입시 생긴 응집용액을 10분 동안 분산을 시켜준 후 육안으로 흰색의 희석용액을 얻어짐을 확인을 한 후 이를 다시 상층부와 하층부로 분리가 될 수 있도록 수산화나트륨(NaOH)을 300ml을 서서히 첨가를 한 후 이를 다시 60RPM의 속도로 5분 동안 교반을 시킨 후 층분리됨을 육안으로 확인을 한 후 상층액을 버린다. 1몰의 질산은 용액으로 상층액에 포함되어 있는 염소의 이온이 검출되지 않을 때까지 충분하게 수세를 하여 2000ml의 겔을 얻었다.1 kg titanium isopropoxide solution was slowly added to the stirrer in 12 liters of distilled water in a stirrer, and the coagulation solution was added for 10 minutes. After confirming that it was obtained, slowly added 300ml of sodium hydroxide (NaOH) so that it could be separated into the upper layer and the lower layer again, and then stirred it at a rate of 60 RPM again for 5 minutes and visually confirmed that the layers were separated. The supernatant is then discarded. 1 mol of silver nitrate solution was washed with water sufficiently until chlorine ion contained in supernatant liquid was not detected, and 2000 ml of gels were obtained.

질산 70% (주)동양화학%로 희석하여 희석 질산용액의 비율에 따라서 자유스럽게 고형분 값을 조절하였으며 수분산의 상태가 매우 안전한 값이 10% 이상의 고형분을 얻을 수 있으며 약 5,000ml까지 얻을 수 있었다.Dilution with 70% nitric acid Dongyang Chemical Co., Ltd. adjusted the solids value freely according to the proportion of dilute nitric acid solution. A very safe value of aqueous dispersion could obtain more than 10% solids and up to about 5,000ml. .

(실시예 2) (무기질 바인더의 제조)Example 2 Preparation of Inorganic Binder

셀레늄(Se)을 질산70% (주)동양화학 용액100ml에 7:3의 증류수30ml 희질산 용액으로 만들어 10% 13g를 넣어서 용융하여 수산화칼륨(KoH) (주)덕산화학 30% 용액으로 중화를 하면서 pH를 8-9로 조정을 하고 이를 다시 층 분리를 막기 위하여 젖산을 이용 pH를 7.5-8의 값으로 고정을 하여주면서 증류수로 고형분 값을 조절하였다. 본 발명의 광촉매용 바인더를 사용하기에 매우 적합한 고형분은 광촉매제에 3%를 넘기지 않는 것이 바람직하다.Selenium (Se) was dissolved in 100% of 70% Dongyang Chemical's 70% Dongyang Chemical Co., Ltd. with 7: 3 distilled water 30ml dilute nitric acid solution, and dissolved in 10% 13g while neutralizing with 30% solution of potassium hydroxide (KoH) Duksan Chemical Co., Ltd. The pH was adjusted to 8-9 and the solid content was adjusted with distilled water while fixing the pH to a value of 7.5-8 using lactic acid to prevent layer separation again. It is preferable that the solid content suitable for using the photocatalytic binder of the present invention does not exceed 3% in the photocatalyst.

(실시예 3) (광촉매 조성물의 제조) Example 3 Preparation of Photocatalyst Composition

실시예 2에서 얻어진 무기질 바인더를 광촉매제와 혼합하여 100℃이내의 온도에서 10분 이내로 가열하여 아나타제형의 산화티탄 졸을 얻었다. 이때에 얻어진 광촉매졸의 색상은 백색 투명한 색상이었다. The inorganic binder obtained in Example 2 was mixed with a photocatalyst and heated within 10 minutes at a temperature within 100 ° C. to obtain an anatase titanium oxide sol. The photocatalyst sol obtained at this time was a white transparent color.

시험예 1Test Example 1

실시예 3의 무기질 바인더를 포함하는 광촉매졸의 유기물질들의 분해력시험들을 다음과 같은 방법으로 진행하였다. 가로×세로×높이의 사각박스를 불투명 프라스틱 평판으로 2㎥의 크기로 만들고 20w UV형광등을 사각코너에 부착을 시키고 2000ppm의 악취의 냄새(악취의 성분 : 암모니아, Sox, Nox 등)를 1분에 1회씩 24시간동안 1,440회를 펌프를 이용하여 주입을 하였으며 이 냄새의 입자들을 잡기 위하여 콤프레샤로 에어를 주입하도록 한 에어스프레이건으로 이용하여 1분에 10CC이내로 분사하도록 하고 1시간당 한번씩 냄새의 제거력을 실시하였다.Degradation tests of the organic materials of the photocatalyst sol including the inorganic binder of Example 3 were conducted in the following manner. A rectangular box of width × length × height is made into an opaque plastic plate with a size of 2㎥, a 20w UV fluorescent lamp is attached to the square corner, and a smell of 2000ppm of odor (components of odor: ammonia, Sox, Nox, etc.) in 1 minute. 1,440 times were infused for 24 hours using a pump once a day. Using an air spray gun to inject air into the compressor to catch particles of this odor, it was sprayed within 10CC per minute and the odor was removed once per hour. It was.

위의 방법으로 악취냄새의 제거의 효율성을 연구와 조사를 하여본 결과 유기물질의 분해력은 1분 이내에 소멸을 할 수 있는 것을 발견할 수 있었다.As a result of research and investigation on the effectiveness of the odor odor removal method, it was found that the degradability of organic matter could be extinguished within 1 minute.

시험예 2Test Example 2

항균력 시험을 가압밀착 방법(FC-TM-20)으로 균주1 : 황색포도상구균 초기균수 1.3×106 24시간후의 세균의 감소율을 확인하여 본 결과 99.9%의 사멸력과, 균주2 : 대장균 초기균수 1.5×105 24시간 후의 세균의 감소율을 확인하여 본 결과 99.9%의 사멸력이 있는 것으로 확인을 할 수 있었다.The antimicrobial activity test was carried out by the pressure-adhesive method (FC-TM-20). Strain 1: Initial strain of Staphylococcus aureus 1.3 × 10 6 After confirming the reduction rate of bacteria after 24 hours, the killing ability of 99.9%, Strain 2: Initial strain of E. coli 1.5 As a result of confirming the reduction rate of bacteria after 24 hours × 105, it was confirmed that there was 99.9% killing power.

시험예 3Test Example 3

유리시편 10㎝×5.5㎝×05㎝ 투명한 유리시편위에 1%의 고형분 값으로 광촉매 졸을 증류수로 맞추어 주고 이를 충분하게 희석을 하여준 후 준비된 시편위에 스프레이로 뿌려주면 1㎛∼2㎛의 도막두께의 코팅 층이 형성이 되도록 상온℃∼200℃ 이내의 자연 분위기의 온도℃에서 접착 강도를 시험을 하였다.Glass Specimens 10cm × 5.5cm × 05㎝ On a transparent glass specimen, adjust the photocatalyst sol with distilled water at a solids value of 1%, dilute it sufficiently, and spray it onto the prepared specimen to obtain a film thickness of 1 μm to 2 μm. The adhesive strength was tested at a temperature of a natural atmosphere within a normal temperature of 200 ° C to form a coating layer of.

시험예 4Test Example 4

상온 15℃에서 광촉매에 포함하고 있는 수분(H2O)자연 증발하도록 실내에 2시간동안 방치를 하였더니 수분이 완벽하게 증발이 되었다. 광촉매가 코팅된 유리시편을 측면으로 들고 육안으로 바라보면 무지개의 빛이 발생되는 것을 육안으로 확인을 하고 또한 광촉매가 코팅된 유리시편 위에 4H연필로 강도를 시험을 한 결과 조금도 긁힘의 현상을 발견하지 못하였다.At room temperature for 15 hours at room temperature to naturally evaporate the water (H 2 O) contained in the photocatalyst, the water was completely evaporated. When the glass specimen coated with photocatalyst is held to the side and visually observed, the rainbow light is generated visually, and the strength test with 4H pencil on the photocatalyst coated glass specimen does not reveal any scratches. I couldn't.

시험예 5Test Example 5

상온℃ 에서 위의 유리시편에 스프레이로 도포 시킨 후 50℃에서 수분을 대기로 날리어 준 후 광촉매가 코팅된 유리시편 위에 4H연필로 강도를 시험을 한 결과 조금도 긁힘의 현상을 발견하지 못하였다.After spraying the glass specimens at room temperature with a spray and then blowing the water at 50 ° C into the air, the test was performed on the glass specimen coated with photocatalyst with 4H pencil.

시험예 6Test Example 6

상온℃ 에서 위의 유리시편에 스프레이로 도포 시킨 후 50℃ 자연분위기에서 5분동안 수분을 대기로 날리어 준 후 이를 다시 100℃ 자연분위기에서 10분 동안 가열시켜 주었다. 광촉매가 코팅된 유리시편 위에 4H연필로 강도를 시험을 한 결과 조금도 긁힘의 현상을 발견하지 못하였다. 표면의 광촉매의 접착성을 시험하기 위해서 광촉매가 코팅된 유리시편 위에 4H연필로 강도를 시험을 한 결과 조금도 긁힘의 현상을 발견하지 못하였으며 이를 다시 중성 세제를 1000ppm의 농도로 만들어서 일반 행주를 이용하여 손으로 힘을 가하여 50회를 왕복 표면의 응착력을 시험한 결과 처음과 동일한 값을 얻을 수 있었다.After spraying the glass specimens at room temperature with a spray, water was blown into the atmosphere for 5 minutes in a 50 ℃ natural atmosphere and then heated again for 10 minutes in a 100 ℃ natural atmosphere. A test of the strength with a 4H pencil on the photocatalyst coated glass specimen showed no scratch. In order to test the adhesion of the photocatalyst on the surface, 4H pencil was tested for strength on the photocatalyst coated glass specimen, and no scratch was found. 50 times of adhesion was tested by hand force and the same value as the first was obtained.

시험예 7Test Example 7

무기질 바인더를 포함하는 광촉매 졸의 보관성 시험을 위해서 100cc의 앰플병에 500cc를 넣은후 영하5℃의 일반분위기의 냉동실에서 24시간동안 동결을 시키고 이를 상온℃에서 3시간동안 방치하여 두었다가 나노 입자들의 재결합의 상태를 육안으로 점검을 하여보았다. pH가 중성 값(pH 7-8)을 유지하고 있는 우리국내사의 제품들 및 일본제품들 모두 동결후 해빙을 시켜 보면 입자들의 재결합이 되어 상품의 가치가 없어졌다. 그러나 본 발명품은 수회를 동결 후에 해빙을 시키면 동결전의 상태로 유지되는 것을 확인 할 수 있다. 그러므로 보관시 부주의 혹은 운반도중에 동결이 되어도 상품에는 아무런 지장이 없이 판매 및 사용을 할 수 있다. For the storage test of the photocatalyst sol containing the inorganic binder, 500cc was put in a 100cc ampoule bottle and frozen in a freezer in a general atmosphere of minus 5 ° C for 24 hours, and left at room temperature for 3 hours. The state of recombination was visually checked. The freezing and thawing of both domestic and Japanese products whose pH maintains a neutral value (pH 7-8) resulted in recombination of the particles, which lost the value of the product. However, the present invention can be confirmed that the thaw after freezing several times to maintain the state before freezing. Therefore, the product can be sold and used without any problems even if it is frozen during carelessness or transportation.

본 발명의 제조방법에 의하면 광촉매입자를 그 광촉매의 기능을 손상시키지 않으면서 용처가 열악한 상태에 있을 지라도 광촉매의 기능이 저하되지 않으면서 면상 도포시 고착성, 퍼짐성, 내구성, 내한성 등이 있도록 하는 광촉매의 조성물을 얻을 수 있었다.According to the manufacturing method of the present invention, the photocatalyst particles have a fixing property, spreadability, durability, cold resistance, etc. when the photocatalyst particles are applied on the surface without degrading the function of the photocatalyst even though the solvent is in poor condition without impairing the function of the photocatalyst. A composition could be obtained.

Claims (4)

티타늄이소프로폭사이드 수용액에 알카리를 가해 침전시킨후, 상층액을 버리고 산을 가하여 교반하고, 알칼리를 부가해 중화시켜 이산화티탄 졸을 얻은 다음, 셀레늄(Se)을 질산에 녹여 수산화칼륨으로 중화를 하면서 pH를 8-9로 조정을 하고 이를 다시 층 분리를 막기 위하여 젖산을 이용 pH를 7.5-8의 값으로 고정하여 제조한 셀레늄 졸을 상기 이산화티탄 졸과 혼합하여 100℃에서 10분-60분 가열하는 것으로 구성되는 광촉매 조성물의 제조방법. Alkaline is added to the aqueous solution of titanium isopropoxide to precipitate, and the supernatant is discarded and stirred with acid, neutralized by addition of alkali to obtain a titanium dioxide sol. The selenium (Se) is dissolved in nitric acid and neutralized with potassium hydroxide. While adjusting the pH to 8-9 and again to prevent layer separation, the selenium sol prepared by fixing the pH to a value of 7.5-8 using lactic acid was mixed with the titanium dioxide sol for 10 minutes to 60 minutes at 100 ° C. A method for producing a photocatalyst composition comprising heating. 제 1 항에 있어서, 상기 셀레늄 고형분의 양은 이산화티탄 광촉매 고형분의 3중량% 이하인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the amount of selenium solids is 3% by weight or less of the titanium dioxide photocatalyst solids. 삭제delete 삭제delete
KR1020030080447A 2003-11-14 2003-11-14 photocatalyst composition and manufacturing method thereof KR100611632B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020030080447A KR100611632B1 (en) 2003-11-14 2003-11-14 photocatalyst composition and manufacturing method thereof
AU2003282430A AU2003282430A1 (en) 2003-11-14 2003-11-25 Photocatalyst composition and preparing method thereof
PCT/KR2003/002546 WO2005047185A1 (en) 2003-11-14 2003-11-25 Photocatalyst composition and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030080447A KR100611632B1 (en) 2003-11-14 2003-11-14 photocatalyst composition and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20050046846A KR20050046846A (en) 2005-05-19
KR100611632B1 true KR100611632B1 (en) 2006-08-11

Family

ID=34587904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030080447A KR100611632B1 (en) 2003-11-14 2003-11-14 photocatalyst composition and manufacturing method thereof

Country Status (3)

Country Link
KR (1) KR100611632B1 (en)
AU (1) AU2003282430A1 (en)
WO (1) WO2005047185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453165C (en) * 2006-06-02 2009-01-21 安徽大学 Nanometer titanium dioxide/selenium dioxide composition and its prepn. method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPH0889807A (en) * 1994-09-07 1996-04-09 Huels Ag Decomposition method for hcn in catalyst and gas
KR20030062215A (en) * 2002-01-15 2003-07-23 최광수 The liquid composition for promoting plant growth, which includes nano particle titanium dioxide
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR20040107315A (en) * 2003-06-13 2004-12-20 주식회사 씨피씨 photocatalyst composition and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121191A (en) * 1996-09-20 2000-09-19 Teruo Komatsu Ultrafine metal particle carrying photocatalyst, highly function material loaded with the photocatalyst, and method of manufacturing them
JP3080162B2 (en) * 1998-01-27 2000-08-21 日本パーカライジング株式会社 Titanium oxide sol and method for producing the same
US6399540B1 (en) * 1999-08-12 2002-06-04 Sumitomo Chemical Co., Ltd. Porous titania, catalyst comprising the porous titania
JP3645764B2 (en) * 1999-11-01 2005-05-11 株式会社ノエビア Porous titanium oxide, method for producing the same, and cosmetics containing the same
JP2001246247A (en) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd Method for producing photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPH0889807A (en) * 1994-09-07 1996-04-09 Huels Ag Decomposition method for hcn in catalyst and gas
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR20030062215A (en) * 2002-01-15 2003-07-23 최광수 The liquid composition for promoting plant growth, which includes nano particle titanium dioxide
KR20040107315A (en) * 2003-06-13 2004-12-20 주식회사 씨피씨 photocatalyst composition and manufacturing method thereof

Also Published As

Publication number Publication date
AU2003282430A1 (en) 2004-06-06
KR20050046846A (en) 2005-05-19
AU2003282430A8 (en) 2005-06-06
WO2005047185A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
TWI353881B (en)
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
KR100327997B1 (en) Photocatalytic Complex and Method for Manufacturing the Same
TWI533806B (en) Virus deactivator
CN100493696C (en) Doped zinc oxide and its preparation and application for photocatalysis degradation for organic matter and killing bacteria
Piccirillo et al. Calcium phosphate-based materials of natural origin showing photocatalytic activity
US10213780B2 (en) Multivalence semiconductor photocatalytic materials
TWI592210B (en) Photocatalytic composition and application thereof
US6383980B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
KR20150088998A (en) Antimicrobial and antiviral composition, and method of producing the same
US9376332B2 (en) Multivalence photocatalytic semiconductor elements
JPWO2016042913A1 (en) Antibacterial / antiviral composition, antibacterial / antiviral agent, photocatalyst, and bacteria / virus inactivation method
TW201608980A (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
WO2009103956A1 (en) Coating process and coated products
WO2018110173A1 (en) Photocatalytic material and photocatalytic coating composition
TWI581713B (en) Antiviral compositions, antiviral agents, photocatalysts and virus inactivation methods
KR20040107315A (en) photocatalyst composition and manufacturing method thereof
KR100611632B1 (en) photocatalyst composition and manufacturing method thereof
JP2002068915A (en) Sol
JP4883913B2 (en) Photocatalyst and method for producing the same
KR101657517B1 (en) Method for producing a visible light-responsive photocatalytic substance
WO2009123135A1 (en) Photocatalyst coating composition
JP4613021B2 (en) Photocatalyst-containing composition and photocatalyst-containing layer
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
KR200384854Y1 (en) Nanosilver photocatalyst cleaning tissue

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090804

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee