WO2018110173A1 - Photocatalytic material and photocatalytic coating composition - Google Patents

Photocatalytic material and photocatalytic coating composition Download PDF

Info

Publication number
WO2018110173A1
WO2018110173A1 PCT/JP2017/040590 JP2017040590W WO2018110173A1 WO 2018110173 A1 WO2018110173 A1 WO 2018110173A1 JP 2017040590 W JP2017040590 W JP 2017040590W WO 2018110173 A1 WO2018110173 A1 WO 2018110173A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
photocatalyst
particles
compound
photocatalytic
Prior art date
Application number
PCT/JP2017/040590
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 加藤
三木 慎一郎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018110173A1 publication Critical patent/WO2018110173A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a photocatalyst material and a photocatalyst coating composition.
  • the present invention relates to a photocatalytic material having antimicrobial properties, and in particular, capable of suppressing the growth of algae, and a photocatalytic coating composition for obtaining the photocatalytic material.
  • titanium oxide TiO 2
  • photocatalysts such as titanium oxide (TiO 2 ) utilize light energy and exhibit excellent purification and sterilization effects
  • various products having antifouling, sterilization and deodorizing actions have been put to practical use.
  • titanium oxide is considered to be applied to exterior materials because it exhibits a self-cleaning effect due to its superhydrophilicity and photodegradation reaction.
  • antifouling function added value such as anti-algal function is also strongly demanded.
  • antialgal function it has become clear that titanium oxide alone has a weak effect. That is, as described above, since titanium oxide exhibits superhydrophilicity by ultraviolet irradiation, it has been reported that the surface is more easily moisturized than ordinary exterior materials, and algae and the like are easily propagated. Therefore, in addition to titanium oxide, addition of antimicrobial metals such as silver and copper has been studied.
  • Patent Document 1 discloses a sol containing crystalline titanium oxide as a main component and a copper ion compound complexed with an alkanolamine, and applying the sol imparts an antibacterial function to various products. It describes what can be done.
  • crystalline titanium oxide is complexed as a material having high safety during production and use, long-term stability, and capable of imparting high antimicrobial properties. Applying copper with increased stability.
  • Patent Document 1 copper complexed with an alkanolamine is present as copper oxide or copper hydroxide, and these are factors of high antibacterial properties. However, since the copper periphery is coated with an alkanolamine, the contact with the bacteria may be inhibited and the antimicrobial performance may be reduced. In fact, Patent Document 1 describes that when the molar ratio of alkanolamine / copper ion compound (CuO) is 5.8 or more, the antibacterial performance is lowered although the reason is not clear.
  • CuO copper ion compound
  • the copper ion compounds have different degrees of elution into water and dilute acid depending on the valence and counter ion. Therefore, when using the copper ion compound outdoors, it is necessary to consider the effects such as acid rain. In particular, since monovalent copper ion compounds are soluble in acids, they may elute if used outdoors, and there is a risk that their antimicrobial performance may deteriorate in the long run.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a photocatalyst material which has high antimicrobial properties, and in particular can exhibit algal protection over a long period of time, and a photocatalyst coating composition for obtaining the photocatalyst material. It is in.
  • the photocatalyst material which concerns on the 1st aspect of this invention has a base material and the photocatalyst layer provided in one side of the base material.
  • a photocatalyst layer contains a photocatalyst particle, a copper compound particle containing at least one of copper oxide (II) and copper hydroxide (II), an inorganic particle which does not have photocatalytic activity, and an inorganic binder, and is a photocatalyst particle
  • the amount of copper in the copper compound particles is 0.1 to 5 parts by mass with respect to 100 parts by mass, and the copper compound particles are supported so as to be in contact with the surfaces of the photocatalyst particles and the inorganic particles.
  • the photocatalytic paint composition according to the second aspect of the present invention is a photocatalytic paint composition for forming a photocatalytic layer in a photocatalytic material, which comprises photocatalytic particles, copper (II) oxide and copper (II) hydroxide.
  • Copper in the copper compound which is a precursor, contains a copper compound containing at least a divalent copper ion compound, inorganic particles not having photocatalytic activity, and an inorganic binder precursor, and 100 parts by mass of the photocatalyst particles 0.1 to 5 parts by mass.
  • FIG. 1 is a schematic view showing a cross section of a photocatalyst material according to an embodiment of the present invention.
  • the photocatalyst material 100 which concerns on this embodiment has the base material 10 and the photocatalyst layer 20 provided in one side of the base material 10, as shown in FIG.
  • the photocatalyst layer 20 contains photocatalyst particles 21, copper compound particles 22 containing at least a divalent copper ion compound, inorganic particles 23 not having photocatalytic activity, and a binder 24.
  • the base 10 is not particularly limited, and a member capable of holding the photocatalyst layer 20 on the surface can be used.
  • the material used for the substrate may be rigid or flexible. It is preferable to apply the photocatalyst material 100 of this embodiment to the exterior material of a building, and in that case, any substrate may be used as long as it is a commercially available exterior material.
  • a color layer for coloring, a color blur preventing layer for suppressing color change of the color layer, or the like may be present.
  • a functional layer may be provided on the outer covering material as required.
  • the photocatalyst material of the present embodiment can suppress the reproduction of algae, but as an application, the reproduction of other microorganisms can also be suppressed.
  • the photocatalytic material can suppress, for example, the reproduction of bacteria and fungi. Therefore, for these microorganisms, forming the photocatalyst layer 20 on a transparent film or the like is also conceivable, and furthermore, the photocatalyst coating composition may be applied directly to a building material.
  • the specific material of the substrate may be basically any material such as organic polymer, ceramic, metal, glass, plastic, decorative plywood or a composite thereof.
  • the shape of the substrate is also not particularly limited. For example, it may be a simple shape or a complicated shape such as a plate, a sphere, a cylinder, a cylinder, a rod, a prism, a hollow prism, etc. Good.
  • the substrate may be a porous body such as a filter. Specifically, building materials such as tiles, glass, wall materials, floors, and exterior materials can be used as the base material.
  • the photocatalyst layer 20 contains photocatalyst particles 21, copper compound particles 22, inorganic particles 23 not having photocatalytic activity, and a binder 24, and the photocatalyst particles 21, copper compound particles 22 and an inorganic substance are contained in the binder 24.
  • the particles 23 are highly dispersed. As shown in FIG. 1, copper compound particles 22 are supported so as to be in contact with the surfaces of photocatalyst particles 21 and inorganic particles 23. Further, the particle diameter of the copper compound particles 22 is smaller than the particle diameter of the photocatalyst particles 21 and the inorganic particles 23.
  • the photocatalyst particles 21 and the inorganic particles 23 may be in contact with each other in the binder 24 or may be separated from each other.
  • the photocatalyst particle 21 may use a compound which generates electrons and holes by absorption of excitation light having energy higher than the band gap and causes a reduction / oxidation reaction on the surface of the photocatalyst particle.
  • a compound which generates electrons and holes by absorption of excitation light having energy higher than the band gap and causes a reduction / oxidation reaction on the surface of the photocatalyst particle titanium oxide (TiO 2 ), tungsten oxide (WO 3 ), strontium titanate (SrTiO 3 ), niobium oxide (Nb 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2) And the like.
  • One kind of these photocatalyst particles may be used alone, or two or more kinds thereof may be used in combination.
  • the photocatalyst layer 20 has high transparency in order not to lose the color tone of the color layer which is the base layer. Therefore, the photocatalyst particles 21 preferably contain titanium oxide particles, and more preferably titanium oxide particles. Since titanium oxide has a very high photocatalytic activity, it can exert an effect of suppressing the reproduction of algae by an oxidative decomposition reaction. In addition, titanium oxide particles are inexpensive, harmless, and white, so they can be suitably used as a packaging material. Furthermore, since the titanium oxide particles are superhydrophilic, it is possible to wash away dirt such as algae by rain. In addition, since titanium oxide is commercially available even in the state of sol, it is possible to simplify the manufacturing process by using a material in the state of sol in advance.
  • titanium oxide particles preferable as photocatalyst particles particles made of anatase type or rutile type titanium oxide can be used.
  • particles in which anatase type titanium oxide and rutile type titanium oxide are mixed can also be used.
  • particles of anatase type titanium oxide are preferably used. This is because anatase type titanium oxide has a larger band gap than rutile type titanium oxide and is excellent in photocatalytic activity.
  • an amorphous titanium oxide may be mixed with particles of anatase type titanium oxide.
  • the mixing amount is preferably as small as possible.
  • the average particle size of the photocatalyst particles 21 is not particularly limited, but is preferably 50 nm to 200 nm.
  • the average particle diameter of the photocatalyst particles 21 is 50 nm or more, the destruction of the crystal structure in the photocatalyst particles 21 is suppressed, and the photocatalytic activity and the antimicrobial property can be enhanced.
  • the average particle diameter of the photocatalyst particles 21 is 200 nm or less, the photocatalyst particles have a high specific surface area, and therefore, it is possible to exhibit high photocatalytic activity.
  • the average particle size of the photocatalyst particles 21 can be determined by measuring the diameters of the plurality of photocatalyst particles 21 using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the copper compound particles 22 contained in the photocatalyst layer 20 contain at least a divalent copper ion compound. Since the divalent copper ion compound has a protein denaturing action, growth of algae can be suppressed on the surface of the photocatalytic layer 20.
  • the divalent copper ion compound contained in the copper compound particle 22 is not particularly limited, and preferably contains at least one of copper oxide (II) and copper hydroxide (II), and contains copper hydroxide (II) More preferable. Since copper (II) hydroxide is difficult to dissolve in water and dilute acid, it is possible to continue exhibiting algal protection performance for a long time even outdoors exposed to rain water.
  • the photocatalyst layer 20 further include monovalent copper ion compound particles. That is, it is preferable that the copper compound particles 22 be formed by mixing monovalent copper ion compound particles and divalent copper ion compound particles.
  • monovalent copper ion compounds are known to have higher antimicrobial properties, and in particular, antimicrobial and antiviral performance, as compared to divalent copper ion compounds.
  • the monovalent copper ion compound has a very high ability to inhibit the growth of algae, the presence of monovalent copper ion compound particles containing a monovalent copper ion compound further suppresses algae growth. It becomes possible.
  • the monovalent copper ion compound particles are preferably particles containing at least one of copper oxide (I) (copper suboxide) and copper hydroxide (I).
  • the monovalent copper ion compound particles contain cuprous oxide particles.
  • copper suboxide (Cu 2 O) that is particularly high in antimicrobiality among monovalent copper ion compounds, it becomes possible to further suppress the growth of algae.
  • the average particle diameter of the copper compound particles 22 is not particularly limited, but preferably 0.1 nm to 20 nm. Since the copper compound particles 22 have a high specific surface area when the average particle diameter of the copper compound particles 22 is in this range, copper ions can be efficiently eluted and the effect of suppressing the reproduction of algae can be exhibited. . In addition, since the copper compound particles 22 have a high specific surface area, it is possible to impart high antimicrobial property to the photocatalyst layer 20 even if the addition amount is small.
  • the average particle diameter of the copper compound particles 22 can be determined, for example, by measuring the diameters of the plurality of copper compound particles 22 using a transmission electron microscope (TEM).
  • the photocatalyst layer 20 contains the photocatalyst particle 21 and the copper compound particle 22 containing the divalent copper ion compound, thereby the oxidation decomposition action of the photocatalyst and the protein of the copper ion compound Denatured action is exhibited.
  • a photocatalyst material 100 which has antimicrobial properties, and in particular can suppress the growth of algae.
  • the photocatalyst particles 21 and the copper compound particles 22 coexist in the photocatalyst layer 20
  • electrons are injected from the photocatalyst particles 21 excited by the excitation light into the copper compound particles 22, and as a result, the divalent copper ion compound It may be reduced to a monovalent copper ion compound.
  • the monovalent copper ion compound has a property of being gradually oxidized to be a divalent copper ion compound when left in air for a long time. Therefore, when the photocatalytic particles 21 and the copper compound particles 22 coexist, the copper ion compound causes a reaction of repeating monovalent and divalent.
  • monohydric copper ion compound has high modification
  • the photocatalyst layer 20 of the present embodiment contains the inorganic particles 23 having no photocatalytic activity.
  • the copper compound particles 22 present on the surface of the inorganic particles 23 can maintain the state of a divalent copper ion compound. That is, even if an electron is injected from the photocatalyst particle 21 excited by the excitation light to the copper compound particle 22, the electron is inhibited by the inorganic particle 23, so the copper compound particle 22 maintains the state of the divalent copper ion compound. Is possible.
  • the divalent copper ion compound is less soluble in water and dilute acid than the monovalent copper ion compound. As a result, even if the photocatalyst layer 20 is used outdoors, the copper compound particles 22 are less likely to be eluted due to the influence of acid rain, and therefore, it is possible to exhibit antimicrobial properties over a long period of time.
  • the copper compound particles 22 need to contain at least a divalent copper ion compound from the viewpoint of maintaining a long-term antimicrobial property.
  • the copper compound particles 22 contain a monovalent copper ion compound in addition to the divalent copper ion compound, it is possible to obtain long-term and high antimicrobial properties.
  • the inorganic particles 23 are not particularly limited as long as they do not have photocatalytic activity, and are composed of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ) and barium sulfate (BaSO 4 ). At least one selected from the group can be used. Moreover, when using the exterior material, it is preferable that the photocatalyst layer 20 has high transparency so as not to lose the color of the color layer which is the base layer. Therefore, by using a material in a sol state in advance as the inorganic particles 23, it is possible to further simplify the manufacturing process while securing transparency.
  • the average particle diameter of the inorganic particles 23 is not particularly limited, but is preferably 5 nm to 100 nm.
  • the average particle diameter of the inorganic particles 23 is in this range, the injection of electrons from the photocatalyst particles 21 to the copper compound particles 22 is suppressed, and the copper compound particles 22 on the surface of the inorganic particles 23 are bivalent over a long period of time It can be maintained in
  • the average particle size of the inorganic particles 23 can be determined, for example, by measuring the diameters of the plurality of inorganic particles 23 using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the photocatalyst layer 20 of the present embodiment contains a binder 24 in order to bind and hold the photocatalyst particles 21, the copper compound particles 22 and the inorganic particles 23 in a highly dispersed state.
  • the material of the binder 24 is not particularly limited as long as it does not inhibit the action of the photocatalyst particles 21, the copper compound particles 22 and the inorganic particles 23.
  • an organic binder made of an organic compound or an inorganic binder made of an inorganic compound can be used.
  • the binder 24 can also use the organic-inorganic hybrid binder obtained by combining an organic component and an inorganic component in a molecular level to a nano level.
  • the binder 24 is preferably an inorganic binder.
  • the inorganic binder is not particularly limited, but at least one selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ) and zirconia (ZrO 2 ) can be used.
  • the inorganic binder is preferably obtained by hydrolysis and polycondensation by heating an organic alkoxide which is a binder precursor.
  • the inorganic binder comprises silica
  • an alkoxysilane as a binder precursor.
  • the alkoxysilane is not particularly limited, and examples thereof include tetraethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyltrisilane.
  • Methoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane and the like can be used.
  • the inorganic binder comprises alumina
  • the aluminum alkoxide is not particularly limited, and aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide and the like can be used.
  • the inorganic binder comprises titania
  • a titanium alkoxide as a binder precursor.
  • the titanium alkoxide is not particularly limited, and titanium isopropoxide, titanium butoxide and the like can be used.
  • zirconium alkoxide it is preferable to use zirconium alkoxide as a binder precursor.
  • the zirconium alkoxide is not particularly limited, and zirconium methoxide, zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium n-butoxide, zirconium sec-butoxide, zirconium tert-butoxide and the like can be used.
  • These organic alkoxides may be used alone or in combination of two or more.
  • the copper in the copper compound particles is preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 1 parts by mass with respect to 100 parts by mass of the photocatalyst particles. .
  • the copper content in the copper compound particles is 0.1 parts by mass or more, the antimicrobial performance can be efficiently exhibited.
  • the content of copper in the copper compound particles is 5 parts by mass or less, coloring of the photocatalyst layer 20 can be suppressed, and visual problems such as a color change of the photocatalyst material 100 can be solved.
  • the content ratio of the copper compound particles in the photocatalyst layer 20 is calculated after converting the copper compound particles into the mass of copper alone.
  • the thickness of the photocatalyst layer 20 in the photocatalyst material 100 is not particularly limited, but the thickness after curing is preferably 0.5 ⁇ m to 20 ⁇ m, and more preferably 2 ⁇ m to 10 ⁇ m. When the thickness of the photocatalyst layer 20 is within this range, the surface hardness of the cured film can be improved, and high weather resistance can be obtained.
  • the photocatalyst material 100 of the present embodiment has the base material 10 and the photocatalyst layer 20 provided on one surface of the base material 10.
  • the photocatalyst layer 20 contains the photocatalyst particle 21, the copper compound particle 22 containing an at least bivalent copper ion compound, the inorganic particle 23 which does not have photocatalytic activity, and the binder 24, and 100 mass parts of photocatalyst particles
  • the amount of copper in the copper compound particles is 0.1 to 5 parts by mass.
  • the photocatalyst material 100 has a structure including, in addition to the photocatalyst particles 21, inorganic particles 23 not having photocatalytic activity, and a copper compound particle 22 whose surface is exposed, containing a divalent copper ion compound. As a result, it is possible to obtain a photocatalyst material 100 having high antimicrobial properties and capable of exhibiting particularly high algal properties.
  • the copper compound particles 22 can be both monovalent and divalent under the influence of both the reduction reaction by the photocatalyst and the oxidation reaction by water or oxygen in the air.
  • a monovalent copper ion compound greatly contributes to the algicidal performance, it is difficult to expect long-term algicidal activity because it elutes with dilute acid.
  • the copper compound particles 22 present on the surface of the inorganic particles 23 not having photocatalytic activity can maintain a divalent state. And, since the divalent copper ion compound is not dissolved in water or a dilute acid, it is possible to continue exhibiting algal protection performance for a long time even outdoors exposed to rain water.
  • the photocatalyst material 100 obtains the high algae-repellant property by the photocatalyst particles 21 and the long-term algae-repellant effect by the divalent algae copper compound and the algae-free property by the monovalent copper ion compound. be able to.
  • the photocatalyst layer 20 is provided in one side of the base material 10
  • the photocatalyst layer 20 is provided also in the other side which is the opposite side of the said one side. It is also good.
  • the photocatalytic material 100 of the present embodiment can be obtained by applying a photocatalytic coating composition to the substrate 10 and drying it.
  • the photocatalytic coating composition contains photocatalytic particles, a copper compound containing at least a divalent copper ion compound, inorganic particles not having photocatalytic activity, and a binder precursor, and is based on 100 parts by mass of the photocatalytic particles: The amount of copper in the copper compound is 0.1 to 5 parts by mass.
  • the photocatalytic coating composition can be prepared by mixing the above-mentioned photocatalytic particles, copper compound, inorganic particles and binder precursor and dispersing them highly. Moreover, in order to highly disperse the photocatalyst particles, the copper compound, the inorganic particles and the binder precursor, a solvent may be added as needed.
  • the solvent for example, water or an organic solvent is preferably used.
  • the organic solvent is not particularly limited, but it is preferable to appropriately select one that is easily volatilized at the time of formation of the photocatalyst layer 20 and does not cause curing inhibition at the time of formation of the photocatalyst layer 20.
  • the organic solvent include aromatic hydrocarbons (such as toluene and xylene), alcohols (such as methanol, ethanol and isopropyl alcohol), and ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone).
  • aliphatic hydrocarbons hexane and heptane etc.
  • ethers tetrahydrofuran etc.
  • amide solvents N, N-dimethylformamide (DMF) and dimethylacetamide (DMAc) etc.
  • alcohols are preferred.
  • organic solvents may be used alone or in combination of two or more.
  • the photocatalytic coating composition can be prepared by stirring using a common dissolver.
  • ball mills and bead mills using bead media such as glass and zircon, sand mills, horizontal media mill dispersers, colloid mills and the like can also be used.
  • media used in a bead mill bead media having a diameter of 1 mm or less are preferable, and bead media having a diameter of 0.5 mm or less are more preferable.
  • the application method in this case is not particularly limited.
  • a coating method or a printing method can be used.
  • a coating method a spray method, a bar coat method, a dip coat method or the like can be used.
  • a printing method gravure printing, reverse gravure printing, offset printing, flexographic printing, screen printing and the like can be used.
  • the photocatalyst material 100 can be obtained by heating the base material 10 which apply
  • the heating conditions at this time are not particularly limited, but when an organic alkoxide is used as a binder precursor, it is preferable to heat at a temperature at which the organic alkoxide is hydrolyzed and polycondensed to form an inorganic binder. Therefore, when heating the base material 10 to which the photocatalytic coating composition is applied, it is preferable to heat at 150 to 200 ° C. in the air.
  • photocatalyst particles and inorganic particles use a sol.
  • a sol As the photocatalyst particles and the inorganic particles, the photocatalyst particles and the inorganic particles can be highly dispersed in the binder, and a photocatalyst material can be obtained which exhibits high microbial activity in the long term.
  • the copper compound to be added to the photocatalytic coating composition it is preferable to use a compound that dissolves in water.
  • the copper compound at least one selected from the group consisting of copper chloride, copper acetate, copper chlorate, copper perchlorate, copper formate, copper bromide, copper nitrate and copper sulfate can be used.
  • the aqueous solution of a copper compound using photocatalyst particle sol and inorganic particle sol it is more preferable to add the aqueous solution of a copper compound using photocatalyst particle sol and inorganic particle sol.
  • the copper compound particles 22 can be easily supported on the surfaces of the photocatalyst particles 21 and the inorganic particles 23 of the photocatalyst layer 20.
  • the photocatalyst particle sol and the inorganic particle sol by adding an aqueous solution in which a copper compound is dissolved to the photocatalyst particle sol and the inorganic particle sol, copper ions adhere to the surfaces of the photocatalyst particles and the inorganic particles as the photocatalyst coating composition is heated and dried.
  • the deposited copper ions are, for example, particles of copper hydroxide or copper oxide, so that a photocatalyst material having long-term durability can be easily obtained.
  • photocatalyst particle sol, inorganic particle sol, and copper compound aqueous solution are not essential materials.
  • the photocatalyst coating composition can be obtained also by mixing powdery photocatalyst particles, inorganic particles and copper compound particles together with a binder precursor and dispersing these in high dispersion.
  • the photocatalytic coating composition may further contain a monovalent copper ion compound.
  • the monovalent copper ion compound is selected from the group consisting of copper (I) oxide (copper suboxide), copper (I) sulfide, copper (I) iodide, copper (I) chloride and copper (I) hydroxide. It is preferable that there is at least one.
  • copper in the copper compound is 0.1 to 5 parts by mass with respect to 100 parts by mass of the photocatalyst particles. Thereby, it becomes possible to make content of copper compound particles 22 into the above-mentioned range in photocatalyst layer 20 of photocatalyst material 100 concerning this embodiment.
  • TiO 2 sol the average particle diameter (D50) of TiO 2 measured by small angle X-ray scattering was 20 nm using a titanium oxide titanium oxide dispersion STS-21 manufactured by Ishihara Sangyo Co., Ltd.
  • SiO 2 dispersion AERODISP (registered trademark) W7520 manufactured by EVONIK was used.
  • copper ion compound copper chloride manufactured by Wako Pure Chemical Industries, Ltd. was used. Copper chloride was dissolved in ion exchange water and used as a copper ion aqueous solution.
  • silicate binder precursor Shin-Etsu Chemical Co., Ltd. product name KEB-04 (tetraethoxysilane) was used.
  • ion-exchanged water, alcohol and the like are added as a solvent to adjust the solid concentration and used.
  • Example 1 First, TiO 2 sol, SiO 2 dispersion, copper ion compound and silicate binder precursor were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained.
  • the solid content concentration of TiO 2 is 0.3% by mass
  • the solid content concentration of SiO 2 is 0.5% by mass
  • the solid content concentration of the copper ion compound is 0 when converted to copper.
  • Each was mixed so as to be .003% by mass.
  • the silicate binder precursor was mixed so that solid content concentration might be 0.2 mass%.
  • the obtained photocatalytic coating composition was applied to the surface of an alumite plate by a spray method, and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 ⁇ m. Moreover, the alumite board used the thing of 70 mm long and 150 mm wide. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained. In the photocatalyst layer of this example, copper of copper oxide particles is 1 part by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • Example 2 The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.0003% by mass when converted as copper, a silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass.
  • the photocatalyst material of this example was obtained in the same manner as in Example 1 except the above.
  • copper of copper oxide particles is 0.1 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • Example 3 The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.015% by mass when converted as copper, the silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass.
  • the photocatalyst material of this example was obtained in the same manner as in Example 1 except the above.
  • copper of copper oxide particles is 5 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • Comparative Example 1 The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.00003% by mass when converted as copper, a silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass.
  • the photocatalyst material of this example was obtained in the same manner as in Example 1 except the above.
  • copper of copper oxide particles is 0.01 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • Comparative Example 2 The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.03% by mass when converted as copper, the silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass.
  • the photocatalyst material of this example was obtained in the same manner as in Example 1 except the above.
  • copper of copper oxide particles is 10 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 ⁇ m. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained. In the photocatalyst layer of this example, copper of copper oxide particles is 0.375 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
  • Comparative Example 4 First, the same SiO 2 dispersion, copper ion compound and silicate binder precursor as in Example 1 were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained.
  • the solid content concentration of SiO 2 is 0.8% by mass
  • the solid content concentration of the copper ion compound is 0.003% by mass when converted as copper
  • the solid content concentration of the silicate binder precursor Each was mixed so that it might be 0.2 mass%.
  • the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 ⁇ m. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
  • Comparative Example 5 First, the same TiO 2 sol and silicate binder precursor as in Example 1 were mixed by sufficiently stirring. Thereby, the photocatalyst paint composition of this example was obtained. Incidentally, in this photocatalytic coating composition, the solid concentration of TiO 2 is 0.8 wt%, as solid content concentration of the silicate binder precursor is 0.2 wt%, was mixed respectively.
  • the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 ⁇ m. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
  • the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 ⁇ m. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
  • the value of the color difference ⁇ L * was within the allowable value.
  • Comparative Example 2 in which the content of copper was large, the value of the color difference ⁇ L * was out of the allowable value. From this result, it is understood that, in order to suppress the color change of the photocatalyst material, it is preferable that the copper in the copper compound particles is 0.1 to 5 parts by mass with respect to 100 parts by mass of the photocatalyst particles.
  • Algae test The algae protection test was carried out using the photocatalyst materials of Examples 1 to 3 and Comparative Examples 1 and 2. The test conditions and the evaluation method were as follows.
  • Test location A region surrounded by trees around the area Installation location: A photocatalytic material of the base material faces the north face, and a location about 1 m high from the ground. At this time, the substrate was placed vertically to the ground, and a weir was provided so that the rainwater hit the substrate. Test period: April to October next year Evaluation method: Visually determine the area coated with algae on the surface of the photocatalyst material. The algae coverage area was evaluated as "o" when less than 5%, "50” as 5% and 50% as "x" when more than 50%.
  • the mechanism capable of exerting the algicidal effect is “1. Photolysis reaction by TiO 2 ”, “2. Protein modification by monovalent copper (copper suboxide) generated by reduction reaction”, Examples include “protein denaturation with 3.2-valent copper (copper hydroxide)”.
  • the antialgal effect is higher in monovalent copper compared to divalent copper. Based on these, we will examine the results of the algae protection test.
  • Comparative Example 1 "1. Photolysis reaction by TiO 2 ", "2. Protein modification by monovalent copper (copper suboxide) generated by reduction reaction”, “3.2-valent copper (hydroxylation) The anti-algal effect of “protein denaturation by copper) can be expected. However, Comparative Example 1 has a very low content of copper, so “2. Denatured protein by monovalent copper (copper suboxide) generated by reduction reaction”, “protein by 3.2 monovalent copper (copper hydroxide) It is considered that the effect of "degeneration” is very small and algae has propagated. In Comparative Example 4, since there is only a weak anti-algal effect of only "protein denaturation by 3.2-valent copper (copper hydroxide)", it is considered that algae has propagated. In addition, in Comparative Example 5, although “1. Photodecomposition reaction by TiO 2 ” could be exhibited, it is considered that algae has proliferated because it is easily moisturized due to the hydrophilicity of the surface.
  • Comparative Example 3 in July of the second year after passing the second rainy season, reproduction of algae was also confirmed in Comparative Example 3. That is, Comparative Example 3, in the first year July as "photodecomposition reaction by 1.TiO 2" algae growth by "2 protein modification with resulting monovalent copper (cuprous oxide) by a reduction reaction" It could be suppressed. However, since it does not contain inorganic particles that do not have photocatalytic activity, copper oxide is eluted by rain water, which is a dilute acid, and the algae protection effect is lost, so it is thought that algae has proliferated in July of the second year. .
  • Table 3 summarizes the results of the above-mentioned color test and antialgal test. As shown in Table 3, it can be seen that the photocatalyst materials of Examples 1 to 3 according to this embodiment have very small color change and exhibit high algal resistance over a long period of time.
  • the photocatalytic material of Comparative Example 1 in which the copper compound particles are too small has an extremely small change in color, the algal protection is insufficient.
  • the photocatalyst material of Comparative Example 2 in which the copper compound particles are excessive is sufficient in antialgal property, it can be understood that it is difficult to apply as an exterior material because the change in color is large.
  • the photocatalytic materials of Comparative Examples 3 to 5 are “1. Photodecomposition reaction by TiO 2 ”, “2. Protein denaturation by monovalent copper generated by reduction reaction”, “protein denaturation by 3.2 valence copper” Due to the lack of either, the antialgal properties became insufficient.
  • the photocatalyst material of the comparative example 6 contains only the silica which does not have a photocatalytic activity and antimicrobial property with a titanium oxide, it is considered that the evaluation result similar to the comparative example 5 will be obtained.
  • the present invention it is possible to obtain a photocatalyst material having high antimicrobial properties and capable of exerting algal protection over a long period of time, and a photocatalyst coating composition for forming the photocatalyst material. .

Abstract

A photocatalytic material 100 which comprises a base 10 and a photocatalytic layer 20 disposed on one surface of the base. The photocatalytic layer comprises photocatalyst particles 21, copper compound particles 22 comprising copper(II) oxide and/or copper(II) hydroxide, inorganic particles 23 having no photocatalytic activity, and an inorganic binder 24, the amount of the copper contained in the copper compound particles being 0.1-5 parts by mass per 100 parts by mass of the photocatalyst particles. The copper compound particles have been fixed so as to be in contact with the surfaces of the photocatalyst particles and inorganic particles. The present invention further provides a photocatalytic coating composition which is for forming the photocatalytic layer of said photocatalytic material. The photocatalytic coating composition comprises photocatalyst particles, a copper compound which is a precursor of copper(II) oxide and copper(II) hydroxide and which comprises a compound of a divalent copper ion, inorganic particles having no photocatalytic activity, and a precursor of an inorganic binder, the amount of the copper contained in the copper compound being 0.1-5 parts by mass per 100 parts by mass of the photocatalyst particles.

Description

光触媒材及び光触媒塗料組成物Photocatalyst Material and Photocatalyst Coating Composition
 本発明は、光触媒材及び光触媒塗料組成物に関する。詳細には、本発明は、抗微生物性を有し、特に藻類の繁殖を抑制することが可能な光触媒材、及び当該光触媒材を得るための光触媒塗料組成物に関する。 The present invention relates to a photocatalyst material and a photocatalyst coating composition. In particular, the present invention relates to a photocatalytic material having antimicrobial properties, and in particular, capable of suppressing the growth of algae, and a photocatalytic coating composition for obtaining the photocatalytic material.
 消費者の清潔志向の向上により、生活環境中の微生物を減少させる多様な抗微生物性部材が開発され、製品化されている。例えば、酸化チタン(TiO)などの光触媒は光エネルギーを利用し、優れた浄化・殺菌効果を示すため、防汚、殺菌及び脱臭作用を持つ種々の製品が実用化されている。また、酸化チタンは、超親水性及び光分解反応などによりセルフクリーニング効果を発揮するため、外装材への応用が検討されている。 With the improvement of the consumer's preference for cleanliness, various antimicrobial members that reduce microorganisms in the living environment have been developed and commercialized. For example, since photocatalysts such as titanium oxide (TiO 2 ) utilize light energy and exhibit excellent purification and sterilization effects, various products having antifouling, sterilization and deodorizing actions have been put to practical use. In addition, titanium oxide is considered to be applied to exterior materials because it exhibits a self-cleaning effect due to its superhydrophilicity and photodegradation reaction.
 また、近年、防汚機能として、防藻機能などの付加価値も強く求められている。ただ、防藻機能に関し、酸化チタン単独ではその効果が弱いことが明らかとなってきた。つまり、上述のように、酸化チタンは紫外線照射により超親水性を示すため、通常の外装材よりも表面が保湿されやすく、藻類などが繁殖しやすいことが報告されている。そのため、酸化チタンに加え、銀や銅などの抗微生物性を持つ金属の添加が検討されている。 Moreover, in recent years, as antifouling function, added value such as anti-algal function is also strongly demanded. However, with regard to the antialgal function, it has become clear that titanium oxide alone has a weak effect. That is, as described above, since titanium oxide exhibits superhydrophilicity by ultraviolet irradiation, it has been reported that the surface is more easily moisturized than ordinary exterior materials, and algae and the like are easily propagated. Therefore, in addition to titanium oxide, addition of antimicrobial metals such as silver and copper has been studied.
 例えば、特許文献1では、主成分として結晶質酸化チタンとアルカノールアミンで錯体化した銅イオン化合物とを含有したゾルが開示されており、当該ゾルを適用することにより、各種製品に抗菌機能が付与できることが記載されている。このように特許文献1では、結晶質酸化チタンに対し、製造時及び使用時の安全性が高く、長期安定性を有し、高い抗微生物性を付与することができる材料として、錯体化して溶液安定性を高めた銅を適用している。 For example, Patent Document 1 discloses a sol containing crystalline titanium oxide as a main component and a copper ion compound complexed with an alkanolamine, and applying the sol imparts an antibacterial function to various products. It describes what can be done. Thus, in Patent Document 1, crystalline titanium oxide is complexed as a material having high safety during production and use, long-term stability, and capable of imparting high antimicrobial properties. Applying copper with increased stability.
特許第4356951号公報Patent No. 4356951
 特許文献1において、アルカノールアミンで錯体化された銅は酸化銅又は水酸化銅として存在しており、これらが高い抗菌性の要因となっている。しかしながら、銅の周囲がアルカノールアミンで被覆されているため、菌との接触が阻害され、抗菌性能が低下する恐れがある。事実、特許文献1において、アルカノールアミン/銅イオン化合物(CuO)のモル比が5.8以上になると、理由は定かではないが抗菌性能が低下することが記載されている。 In Patent Document 1, copper complexed with an alkanolamine is present as copper oxide or copper hydroxide, and these are factors of high antibacterial properties. However, since the copper periphery is coated with an alkanolamine, the contact with the bacteria may be inhibited and the antimicrobial performance may be reduced. In fact, Patent Document 1 describes that when the molar ratio of alkanolamine / copper ion compound (CuO) is 5.8 or more, the antibacterial performance is lowered although the reason is not clear.
 さらに、銅イオン化合物は、価数やカウンターイオンによって水や希酸への溶出の程度が異なっている。そのため、銅イオン化合物を屋外で使用する際は、酸性雨などの影響を考慮しなければならない。特に、1価の銅イオン化合物は酸に可溶であるため、屋外で使用すると溶出し、長期的には抗微生物性能が低下する恐れがある。 Furthermore, the copper ion compounds have different degrees of elution into water and dilute acid depending on the valence and counter ion. Therefore, when using the copper ion compound outdoors, it is necessary to consider the effects such as acid rain. In particular, since monovalent copper ion compounds are soluble in acids, they may elute if used outdoors, and there is a risk that their antimicrobial performance may deteriorate in the long run.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、高い抗微生物性を有し、特に防藻性を長期間に亘り発揮することが可能な光触媒材、及び当該光触媒材を得るための光触媒塗料組成物を提供することにある。 The present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a photocatalyst material which has high antimicrobial properties, and in particular can exhibit algal protection over a long period of time, and a photocatalyst coating composition for obtaining the photocatalyst material. It is in.
 上記課題を解決するために、本発明の第一の態様に係る光触媒材は、基材と、基材の一方の面に設けられた光触媒層とを有する。そして、光触媒層が、光触媒粒子と、酸化銅(II)及び水酸化銅(II)の少なくとも一方を含む銅化合物粒子と、光触媒活性を有さない無機粒子と、無機バインダーとを含み、光触媒粒子100質量部に対し、銅化合物粒子中の銅が0.1~5質量部であり、銅化合物粒子は、光触媒粒子及び無機粒子の表面に接触するように担持されている。 In order to solve the said subject, the photocatalyst material which concerns on the 1st aspect of this invention has a base material and the photocatalyst layer provided in one side of the base material. And a photocatalyst layer contains a photocatalyst particle, a copper compound particle containing at least one of copper oxide (II) and copper hydroxide (II), an inorganic particle which does not have photocatalytic activity, and an inorganic binder, and is a photocatalyst particle The amount of copper in the copper compound particles is 0.1 to 5 parts by mass with respect to 100 parts by mass, and the copper compound particles are supported so as to be in contact with the surfaces of the photocatalyst particles and the inorganic particles.
 本発明の第二の態様に係る光触媒塗料組成物は、光触媒材における光触媒層を形成するための光触媒塗料組成物であって、光触媒粒子と、酸化銅(II)及び水酸化銅(II)の前駆体であり、少なくとも2価の銅イオン化合物を含む銅化合物と、光触媒活性を有さない無機粒子と、無機バインダー前駆体とを含み、光触媒粒子100質量部に対し、銅化合物中の銅が0.1~5質量部である。 The photocatalytic paint composition according to the second aspect of the present invention is a photocatalytic paint composition for forming a photocatalytic layer in a photocatalytic material, which comprises photocatalytic particles, copper (II) oxide and copper (II) hydroxide. Copper in the copper compound, which is a precursor, contains a copper compound containing at least a divalent copper ion compound, inorganic particles not having photocatalytic activity, and an inorganic binder precursor, and 100 parts by mass of the photocatalyst particles 0.1 to 5 parts by mass.
図1は、本発明の実施形態に係る光触媒材の断面を示す概略図である。FIG. 1 is a schematic view showing a cross section of a photocatalyst material according to an embodiment of the present invention.
 以下、本実施形態に係る光触媒材及び光触媒塗料組成物について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the photocatalyst material and the photocatalyst coating composition according to the present embodiment will be described in detail. The dimensional ratios in the drawings are exaggerated for the convenience of description, and may differ from the actual ratios.
[光触媒材]
 本実施形態に係る光触媒材100は、図1に示すように、基材10と、基材10の一方の面に設けられた光触媒層20とを有している。そして、光触媒層20は、光触媒粒子21と、少なくとも2価の銅イオン化合物を含む銅化合物粒子22と、光触媒活性を有さない無機粒子23と、バインダー24とを含んでいる。
[Photocatalyst material]
The photocatalyst material 100 which concerns on this embodiment has the base material 10 and the photocatalyst layer 20 provided in one side of the base material 10, as shown in FIG. The photocatalyst layer 20 contains photocatalyst particles 21, copper compound particles 22 containing at least a divalent copper ion compound, inorganic particles 23 not having photocatalytic activity, and a binder 24.
 本実施形態において、基材10は特に限定されず、表面で光触媒層20を保持できる部材を用いることができる。基材に用いる材料としては、硬直なものでもよく、また柔軟なものでもよい。本実施形態の光触媒材100は建物の外装材へ適用することが好ましく、その場合、基材は、市販されている外装材であれば如何なるものでも構わない。さらに、基材としての外装材の表面には、着色のための色層や、色層の色変化を抑制するための色褪防止層などが存在してもよい。また、必要に応じて、外装材上へ機能層が設けられていてもかまわない。 In the present embodiment, the base 10 is not particularly limited, and a member capable of holding the photocatalyst layer 20 on the surface can be used. The material used for the substrate may be rigid or flexible. It is preferable to apply the photocatalyst material 100 of this embodiment to the exterior material of a building, and in that case, any substrate may be used as long as it is a commercially available exterior material. Furthermore, on the surface of the outer covering material as the base material, a color layer for coloring, a color blur preventing layer for suppressing color change of the color layer, or the like may be present. In addition, a functional layer may be provided on the outer covering material as required.
 本実施形態の光触媒材は藻類の繁殖を抑制可能であるが、応用として、他の微生物の繁殖も抑制可能である。光触媒材は、例えば、細菌及び真菌などの繁殖を抑制することができる。そのため、これらの微生物に対しては、透明なフィルムなどへ光触媒層20を成膜することも想定されるし、さらに建材へ光触媒塗料組成物を直接塗工してもよい。 The photocatalyst material of the present embodiment can suppress the reproduction of algae, but as an application, the reproduction of other microorganisms can also be suppressed. The photocatalytic material can suppress, for example, the reproduction of bacteria and fungi. Therefore, for these microorganisms, forming the photocatalyst layer 20 on a transparent film or the like is also conceivable, and furthermore, the photocatalyst coating composition may be applied directly to a building material.
 基材の具体的な材質は、有機高分子、セラミック、金属、ガラス、プラスチック、化粧合板又はそれらの複合物等、基本的に何でもよい。基材の形状も特に限定されず、例えば板状物や球状物、円柱状物、円筒状物、棒状物、角柱状物、中空の角柱状物などの単純形状のものでも複雑形状のものでもよい。また、基材はフィルターのような多孔質体でもよい。具体的には、基材としては、タイル、ガラス、壁材、床、外装材などの建築資材を用いることができる。 The specific material of the substrate may be basically any material such as organic polymer, ceramic, metal, glass, plastic, decorative plywood or a composite thereof. The shape of the substrate is also not particularly limited. For example, it may be a simple shape or a complicated shape such as a plate, a sphere, a cylinder, a cylinder, a rod, a prism, a hollow prism, etc. Good. Also, the substrate may be a porous body such as a filter. Specifically, building materials such as tiles, glass, wall materials, floors, and exterior materials can be used as the base material.
 光触媒層20は、光触媒粒子21と、銅化合物粒子22と、光触媒活性を有さない無機粒子23と、バインダー24とを含んでおり、バインダー24の内部で光触媒粒子21、銅化合物粒子22及び無機粒子23が高分散している。図1に示すように、銅化合物粒子22は光触媒粒子21及び無機粒子23の表面に接触するように担持されている。また、銅化合物粒子22の粒子径は光触媒粒子21及び無機粒子23の粒子径よりも小さくなっている。 The photocatalyst layer 20 contains photocatalyst particles 21, copper compound particles 22, inorganic particles 23 not having photocatalytic activity, and a binder 24, and the photocatalyst particles 21, copper compound particles 22 and an inorganic substance are contained in the binder 24. The particles 23 are highly dispersed. As shown in FIG. 1, copper compound particles 22 are supported so as to be in contact with the surfaces of photocatalyst particles 21 and inorganic particles 23. Further, the particle diameter of the copper compound particles 22 is smaller than the particle diameter of the photocatalyst particles 21 and the inorganic particles 23.
 なお、全ての銅化合物粒子22は光触媒粒子21及び無機粒子23の表面に担持されている必要はなく、銅化合物粒子22の一部は光触媒粒子21及び/又は無機粒子23に接触しないように、バインダー24の内部で分散していてもよい。また、銅化合物粒子22の粒子径は、光触媒粒子21及び無機粒子23の粒子径より大きくてもよい。図1に示すように、光触媒粒子21及び無機粒子23は、バインダー24の内部で互いに接触していてもよく、また互いに離間していてもよい。 Note that not all copper compound particles 22 need to be supported on the surfaces of the photocatalyst particles 21 and the inorganic particles 23, so that a part of the copper compound particles 22 does not come in contact with the photocatalyst particles 21 and / or the inorganic particles 23. It may be dispersed inside the binder 24. Further, the particle diameter of the copper compound particles 22 may be larger than the particle diameter of the photocatalyst particles 21 and the inorganic particles 23. As shown in FIG. 1, the photocatalyst particles 21 and the inorganic particles 23 may be in contact with each other in the binder 24 or may be separated from each other.
 光触媒粒子21は、バンドギャップ以上のエネルギーを持った励起光の吸収により電子及び正孔を生成し、光触媒粒子の表面で還元・酸化反応を起こす化合物を使用することができる。このような光触媒粒子としては、酸化チタン(TiO)、酸化タングステン(WO)、チタン酸ストロンチウム(SrTiO)、酸化ニオブ(Nb)、酸化亜鉛(ZnO)、酸化錫(SnO)などが挙げられる。これらの光触媒粒子は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 The photocatalyst particle 21 may use a compound which generates electrons and holes by absorption of excitation light having energy higher than the band gap and causes a reduction / oxidation reaction on the surface of the photocatalyst particle. As such photocatalyst particles, titanium oxide (TiO 2 ), tungsten oxide (WO 3 ), strontium titanate (SrTiO 3 ), niobium oxide (Nb 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2) And the like. One kind of these photocatalyst particles may be used alone, or two or more kinds thereof may be used in combination.
 光触媒材100を外装材として使用することを想定したとき、下地層である色層の色味を失わないために、光触媒層20は透明性が高いものが好ましい。そのため、光触媒粒子21は酸化チタン粒子を含むことが好ましく、酸化チタン粒子であることがより好ましい。酸化チタンは光触媒活性が非常に高いため、酸化分解反応により藻類の繁殖を抑制する効果を発揮することができる。また、酸化チタン粒子は安価かつ無害であり、さらに白色であることから、外装材に好適に用いることができる。さらに、酸化チタン粒子は超親水性であるため、藻類などの汚れを雨により洗い流すことが可能となる。なお、酸化チタンはゾルの状態でも市販されているため、予めゾル状態の材料を使用することで、製造工程を簡易化することも可能となる。 Assuming that the photocatalyst material 100 is used as an exterior material, it is preferable that the photocatalyst layer 20 has high transparency in order not to lose the color tone of the color layer which is the base layer. Therefore, the photocatalyst particles 21 preferably contain titanium oxide particles, and more preferably titanium oxide particles. Since titanium oxide has a very high photocatalytic activity, it can exert an effect of suppressing the reproduction of algae by an oxidative decomposition reaction. In addition, titanium oxide particles are inexpensive, harmless, and white, so they can be suitably used as a packaging material. Furthermore, since the titanium oxide particles are superhydrophilic, it is possible to wash away dirt such as algae by rain. In addition, since titanium oxide is commercially available even in the state of sol, it is possible to simplify the manufacturing process by using a material in the state of sol in advance.
 光触媒粒子として好ましい酸化チタン粒子としては、アナターゼ型又はルチル型の酸化チタンからなる粒子を用いることができる。また、アナターゼ型酸化チタン及びルチル型酸化チタンが混合した粒子を用いることもできる。ただ、酸化チタンとしては、アナターゼ型酸化チタンの粒子を用いることが好ましい。アナターゼ型酸化チタンはルチル型酸化チタンに比べてバンドギャップが大きく、光触媒活性に優れているからである。 As titanium oxide particles preferable as photocatalyst particles, particles made of anatase type or rutile type titanium oxide can be used. In addition, particles in which anatase type titanium oxide and rutile type titanium oxide are mixed can also be used. However, as titanium oxide, particles of anatase type titanium oxide are preferably used. This is because anatase type titanium oxide has a larger band gap than rutile type titanium oxide and is excellent in photocatalytic activity.
 なお、アナターゼ型酸化チタンの粒子には無定形状の酸化チタンが混合されていてもよい。ただ、無定形状の酸化チタンは光触媒活性の乏しいものであるため、混合量はできる限り少量であることが好ましい。 In addition, an amorphous titanium oxide may be mixed with particles of anatase type titanium oxide. However, since the amorphous titanium oxide has poor photocatalytic activity, the mixing amount is preferably as small as possible.
 光触媒層20において、光触媒粒子21の平均粒子径は特に限定されないが、50nm~200nmであることが好ましい。光触媒粒子21の平均粒子径が50nm以上であることにより、光触媒粒子21における結晶構造の破壊が抑制され、光触媒活性及び抗微生物性を高めることが可能となる。光触媒粒子21の平均粒子径が200nm以下であることにより、光触媒粒子が高比表面積となるため、高い光触媒活性を発揮することが可能となる。なお、光触媒粒子21の平均粒子径は、例えば透過型電子顕微鏡(TEM)を用いて複数個の光触媒粒子21の直径を測定することにより求めることができる。 In the photocatalyst layer 20, the average particle size of the photocatalyst particles 21 is not particularly limited, but is preferably 50 nm to 200 nm. When the average particle diameter of the photocatalyst particles 21 is 50 nm or more, the destruction of the crystal structure in the photocatalyst particles 21 is suppressed, and the photocatalytic activity and the antimicrobial property can be enhanced. When the average particle diameter of the photocatalyst particles 21 is 200 nm or less, the photocatalyst particles have a high specific surface area, and therefore, it is possible to exhibit high photocatalytic activity. The average particle size of the photocatalyst particles 21 can be determined by measuring the diameters of the plurality of photocatalyst particles 21 using, for example, a transmission electron microscope (TEM).
 光触媒層20に含まれる銅化合物粒子22は、少なくとも2価の銅イオン化合物を含んでいる。2価の銅イオン化合物は、タンパク質の変性作用を有しているため、光触媒層20の表面で藻類の増殖を抑制することができる。銅化合物粒子22に含まれる2価の銅イオン化合物は特に限定されず、酸化銅(II)及び水酸化銅(II)の少なくとも一方を含むことが好ましく、水酸化銅(II)を含むことがより好ましい。水酸化銅(II)は、水及び希酸へ溶解し難いため、雨水に晒される屋外においても長期に亘り防藻性能を発揮し続けることが可能となる。 The copper compound particles 22 contained in the photocatalyst layer 20 contain at least a divalent copper ion compound. Since the divalent copper ion compound has a protein denaturing action, growth of algae can be suppressed on the surface of the photocatalytic layer 20. The divalent copper ion compound contained in the copper compound particle 22 is not particularly limited, and preferably contains at least one of copper oxide (II) and copper hydroxide (II), and contains copper hydroxide (II) More preferable. Since copper (II) hydroxide is difficult to dissolve in water and dilute acid, it is possible to continue exhibiting algal protection performance for a long time even outdoors exposed to rain water.
 本実施形態において、光触媒層20が1価の銅イオン化合物粒子をさらに含むことが好ましい。つまり、銅化合物粒子22は、1価の銅イオン化合物粒子と2価の銅イオン化合物粒子とが混合してなることが好ましい。一般的に1価の銅イオン化合物は2価の銅イオン化合物に比べ、抗微生物性が高く、特に抗菌・抗ウイルス性能が高いことで知られている。同様に、1価の銅イオン化合物は藻類の繁殖抑制効果も非常に高いため、1価の銅イオン化合物を含有する1価の銅イオン化合物粒子が存在することで、藻類の繁殖をより抑制することが可能となる。なお、1価の銅イオン化合物粒子は、酸化銅(I)(亜酸化銅)及び水酸化銅(I)の少なくとも一つを含有する粒子であることが好ましい。 In the present embodiment, it is preferable that the photocatalyst layer 20 further include monovalent copper ion compound particles. That is, it is preferable that the copper compound particles 22 be formed by mixing monovalent copper ion compound particles and divalent copper ion compound particles. In general, monovalent copper ion compounds are known to have higher antimicrobial properties, and in particular, antimicrobial and antiviral performance, as compared to divalent copper ion compounds. Similarly, since the monovalent copper ion compound has a very high ability to inhibit the growth of algae, the presence of monovalent copper ion compound particles containing a monovalent copper ion compound further suppresses algae growth. It becomes possible. The monovalent copper ion compound particles are preferably particles containing at least one of copper oxide (I) (copper suboxide) and copper hydroxide (I).
 また、1価の銅イオン化合物粒子が亜酸化銅粒子を含むことが好ましい。1価の銅イオン化合物の中でも特に抗微生物性の高い亜酸化銅(CuO)を含むことで、藻類の繁殖をより抑制することが可能となる。 In addition, it is preferable that the monovalent copper ion compound particles contain cuprous oxide particles. By containing copper suboxide (Cu 2 O) that is particularly high in antimicrobiality among monovalent copper ion compounds, it becomes possible to further suppress the growth of algae.
 光触媒層20において、銅化合物粒子22の平均粒子径は特に限定されないが、0.1nm~20nmであることが好ましい。銅化合物粒子22の平均粒子径がこの範囲であることにより、銅化合物粒子22が高比表面積となるため、銅イオンが効率的に溶出し、藻類の繁殖を抑制する効果を発揮することができる。また、銅化合物粒子22が高比表面積となるため、添加量が少なくても光触媒層20に対し高い抗微生物性を付与することが可能となる。なお、銅化合物粒子22の平均粒子径は、例えば透過型電子顕微鏡(TEM)を用いて複数個の銅化合物粒子22の直径を測定することにより求めることができる。 In the photocatalyst layer 20, the average particle diameter of the copper compound particles 22 is not particularly limited, but preferably 0.1 nm to 20 nm. Since the copper compound particles 22 have a high specific surface area when the average particle diameter of the copper compound particles 22 is in this range, copper ions can be efficiently eluted and the effect of suppressing the reproduction of algae can be exhibited. . In addition, since the copper compound particles 22 have a high specific surface area, it is possible to impart high antimicrobial property to the photocatalyst layer 20 even if the addition amount is small. The average particle diameter of the copper compound particles 22 can be determined, for example, by measuring the diameters of the plurality of copper compound particles 22 using a transmission electron microscope (TEM).
 上述のように、本実施形態に係る光触媒層20は、光触媒粒子21と2価の銅イオン化合物を含む銅化合物粒子22とを含有することで、光触媒の酸化分解作用と、銅イオン化合物のタンパク質変性作用が発揮される。その結果、抗微生物性を有し、特に藻類の繁殖を抑制可能な光触媒材100を得ることができる。ただ、光触媒層20で光触媒粒子21と銅化合物粒子22が併存している場合、励起光により励起した光触媒粒子21から銅化合物粒子22に電子が注入され、その結果、2価の銅イオン化合物が1価の銅イオン化合物に還元される場合がある。また、1価の銅イオン化合物は、空気中に長時間放置されると徐々に酸化されて2価の銅イオン化合物となる性質を有する。そのため、光触媒粒子21と銅化合物粒子22が併存している場合、銅イオン化合物は1価と2価を繰り返す反応を起こす。 As described above, the photocatalyst layer 20 according to the present embodiment contains the photocatalyst particle 21 and the copper compound particle 22 containing the divalent copper ion compound, thereby the oxidation decomposition action of the photocatalyst and the protein of the copper ion compound Denatured action is exhibited. As a result, it is possible to obtain a photocatalyst material 100 which has antimicrobial properties, and in particular can suppress the growth of algae. However, when the photocatalyst particles 21 and the copper compound particles 22 coexist in the photocatalyst layer 20, electrons are injected from the photocatalyst particles 21 excited by the excitation light into the copper compound particles 22, and as a result, the divalent copper ion compound It may be reduced to a monovalent copper ion compound. In addition, the monovalent copper ion compound has a property of being gradually oxidized to be a divalent copper ion compound when left in air for a long time. Therefore, when the photocatalytic particles 21 and the copper compound particles 22 coexist, the copper ion compound causes a reaction of repeating monovalent and divalent.
 そして、上述のように、1価の銅イオン化合物は2価の銅イオン化合物に比べてタンパク質の変性作用が高いため、抗微生物性に優れる。そのため、銅化合物粒子22が1価の銅イオン化合物のみからなる場合、光触媒層20は高い防藻性を有すると推測される。しかし、1価の銅イオン化合物は酸に可溶であるため、屋外で使用すると酸性雨の影響等により溶出し、長期的には抗微生物性が低下する。そのため、銅化合物粒子22が1価の銅イオン化合物のみからなる場合は、長期の防藻性を期待することは難しい。 And as above-mentioned, since a monovalent | monohydric copper ion compound has high modification | denaturation effect of protein compared with a bivalent copper ion compound, it is excellent in antimicrobial property. Therefore, when the copper compound particle 22 consists only of a monovalent | monohydric copper ion compound, it is estimated that the photocatalyst layer 20 has high algal property. However, since the monovalent copper ion compound is soluble in an acid, when it is used outdoors, it elutes due to the influence of acid rain and the like, and in the long term, the antimicrobial property decreases. Therefore, when the copper compound particle 22 consists only of a monovalent | monohydric copper ion compound, it is difficult to expect long-term algal protection.
 そのため、本実施形態の光触媒層20は、光触媒活性を有さない無機粒子23を含有している。無機粒子23を含有することにより、無機粒子23の表面に存在する銅化合物粒子22は、2価の銅イオン化合物の状態を保つことができる。つまり、励起光により励起した光触媒粒子21から銅化合物粒子22に電子が注入されようとしても、無機粒子23により阻害されるため、銅化合物粒子22は2価の銅イオン化合物の状態を維持することが可能となる。そして、2価の銅イオン化合物は1価の銅イオン化合物と比べて水や希酸へ溶解し難い。その結果、光触媒層20を屋外で使用したとしても、銅化合物粒子22は酸性雨の影響により溶出し難くなるため、長期に亘り抗微生物性を発揮することが可能となる。 Therefore, the photocatalyst layer 20 of the present embodiment contains the inorganic particles 23 having no photocatalytic activity. By containing the inorganic particles 23, the copper compound particles 22 present on the surface of the inorganic particles 23 can maintain the state of a divalent copper ion compound. That is, even if an electron is injected from the photocatalyst particle 21 excited by the excitation light to the copper compound particle 22, the electron is inhibited by the inorganic particle 23, so the copper compound particle 22 maintains the state of the divalent copper ion compound. Is possible. The divalent copper ion compound is less soluble in water and dilute acid than the monovalent copper ion compound. As a result, even if the photocatalyst layer 20 is used outdoors, the copper compound particles 22 are less likely to be eluted due to the influence of acid rain, and therefore, it is possible to exhibit antimicrobial properties over a long period of time.
 なお、本実施形態の光触媒層20において、長期的な抗微生物性を維持する観点から、銅化合物粒子22は少なくとも2価の銅イオン化合物を含有する必要がある。ただ、銅化合物粒子22が2価の銅イオン化合物に加えて1価の銅イオン化合物を含有することにより、長期的かつ高い抗微生物性を得ることが可能となる。 In addition, in the photocatalyst layer 20 of the present embodiment, the copper compound particles 22 need to contain at least a divalent copper ion compound from the viewpoint of maintaining a long-term antimicrobial property. However, when the copper compound particles 22 contain a monovalent copper ion compound in addition to the divalent copper ion compound, it is possible to obtain long-term and high antimicrobial properties.
 無機粒子23は光触媒活性を有さないものであれば特に限定されないが、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)及び硫酸バリウム(BaSO)からなる群より選ばれる少なくとも一つを用いることができる。また、外装材での使用を想定したとき、下地層である色層の色味を失わないために、光触媒層20は透明性が高いものが好ましい。そのため、無機粒子23として予めゾル状態の材料を使用することで、透明性を確保しつつ、さらに製造工程を簡易化することも可能となる。 The inorganic particles 23 are not particularly limited as long as they do not have photocatalytic activity, and are composed of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ) and barium sulfate (BaSO 4 ). At least one selected from the group can be used. Moreover, when using the exterior material, it is preferable that the photocatalyst layer 20 has high transparency so as not to lose the color of the color layer which is the base layer. Therefore, by using a material in a sol state in advance as the inorganic particles 23, it is possible to further simplify the manufacturing process while securing transparency.
 光触媒層20において、無機粒子23の平均粒子径は特に限定されないが、5nm~100nmであることが好ましい。無機粒子23の平均粒子径がこの範囲内であることにより、光触媒粒子21から銅化合物粒子22への電子の注入を抑制し、無機粒子23の表面の銅化合物粒子22を長期間に亘り2価の状態に維持することができる。なお、無機粒子23の平均粒子径は、例えば透過型電子顕微鏡(TEM)を用いて複数個の無機粒子23の直径を測定することにより求めることができる。 In the photocatalyst layer 20, the average particle diameter of the inorganic particles 23 is not particularly limited, but is preferably 5 nm to 100 nm. When the average particle diameter of the inorganic particles 23 is in this range, the injection of electrons from the photocatalyst particles 21 to the copper compound particles 22 is suppressed, and the copper compound particles 22 on the surface of the inorganic particles 23 are bivalent over a long period of time It can be maintained in The average particle size of the inorganic particles 23 can be determined, for example, by measuring the diameters of the plurality of inorganic particles 23 using a transmission electron microscope (TEM).
 本実施形態の光触媒層20は、光触媒粒子21、銅化合物粒子22及び無機粒子23を高分散させた状態で結着して保持するために、バインダー24を含有している。バインダー24の材料は、光触媒粒子21、銅化合物粒子22及び無機粒子23の作用を阻害しないならば特に限定されない。バインダー24は、有機化合物からなる有機バインダー、又は無機化合物からなる無機バインダーを用いることができる。また、バインダー24は、有機成分と無機成分を分子レベルからナノレベルで組み合わせて得られる有機無機ハイブリッドバインダーを用いることもできる。ただ、光触媒材100を外装材として使用することを想定した場合、長期的な耐候性が必要となる。そのため、バインダー24は、無機バインダーであることが好ましい。 The photocatalyst layer 20 of the present embodiment contains a binder 24 in order to bind and hold the photocatalyst particles 21, the copper compound particles 22 and the inorganic particles 23 in a highly dispersed state. The material of the binder 24 is not particularly limited as long as it does not inhibit the action of the photocatalyst particles 21, the copper compound particles 22 and the inorganic particles 23. As the binder 24, an organic binder made of an organic compound or an inorganic binder made of an inorganic compound can be used. Moreover, the binder 24 can also use the organic-inorganic hybrid binder obtained by combining an organic component and an inorganic component in a molecular level to a nano level. However, assuming that the photocatalyst material 100 is used as an exterior material, long-term weather resistance is required. Therefore, the binder 24 is preferably an inorganic binder.
 無機バインダーは特に限定されないが、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)及びジルコニア(ZrO)からなる群より選ばれる少なくとも一つを用いることができる。また、無機バインダーは、バインダー前駆体である有機アルコキシドを加熱することにより、加水分解及び重縮合して得られたものであることが好ましい。 The inorganic binder is not particularly limited, but at least one selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ) and zirconia (ZrO 2 ) can be used. The inorganic binder is preferably obtained by hydrolysis and polycondensation by heating an organic alkoxide which is a binder precursor.
 無機バインダーがシリカからなる場合、バインダー前駆体としてはアルコキシシランを用いることが好ましい。アルコキシシランは特に限定されず、例えばテトラエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシランなどを用いることができる。無機バインダーがアルミナからなる場合、バインダー前駆体としてはアルミニウムアルコキシドを用いることが好ましい。アルミニウムアルコキシドは特に限定されず、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムsec-ブトキシドなどを用いることができる。 When the inorganic binder comprises silica, it is preferable to use an alkoxysilane as a binder precursor. The alkoxysilane is not particularly limited, and examples thereof include tetraethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyltrisilane. Methoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane and the like can be used. When the inorganic binder comprises alumina, it is preferable to use an aluminum alkoxide as the binder precursor. The aluminum alkoxide is not particularly limited, and aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide and the like can be used.
 無機バインダーがチタニアからなる場合、バインダー前駆体としてはチタンアルコキシドを用いることが好ましい。チタンアルコキシドは特に限定されず、チタンイソプロポキシド、チタンブトキシドなどを用いることができる。無機バインダーがジルコニアからなる場合、バインダー前駆体としてはジルコニウムアルコキシドを用いることが好ましい。ジルコニウムアルコキシドは特に限定されず、ジルコニウムメトキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウムイソプロポキシド、ジルコニウムn-ブトキシド、ジルコニウムsec-ブトキシド、ジルコニウムtert-ブトキシドなどを用いることができる。これらの有機アルコキシドは、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 When the inorganic binder comprises titania, it is preferable to use a titanium alkoxide as a binder precursor. The titanium alkoxide is not particularly limited, and titanium isopropoxide, titanium butoxide and the like can be used. When the inorganic binder is made of zirconia, it is preferable to use zirconium alkoxide as a binder precursor. The zirconium alkoxide is not particularly limited, and zirconium methoxide, zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium n-butoxide, zirconium sec-butoxide, zirconium tert-butoxide and the like can be used. These organic alkoxides may be used alone or in combination of two or more.
 本実施形態の光触媒層20において、光触媒粒子100質量部に対し、銅化合物粒子中の銅が0.1~5質量部であることが好ましく、0.1~1質量部であることがより好ましい。銅化合物粒子中の銅が0.1質量部以上であることにより、抗微生物性能を効率的に発揮することができる。また、銅化合物粒子中の銅が5質量部以下であることにより、光触媒層20の着色を抑制し、光触媒材100の色変化などの見た目の問題を解決することができる。なお、本明細書において、光触媒層20中の銅化合物粒子の含有割合は、銅化合物粒子を銅単独の質量に換算した上で算出する。 In the photocatalyst layer 20 of the present embodiment, the copper in the copper compound particles is preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 1 parts by mass with respect to 100 parts by mass of the photocatalyst particles. . When the copper content in the copper compound particles is 0.1 parts by mass or more, the antimicrobial performance can be efficiently exhibited. In addition, when the content of copper in the copper compound particles is 5 parts by mass or less, coloring of the photocatalyst layer 20 can be suppressed, and visual problems such as a color change of the photocatalyst material 100 can be solved. In the present specification, the content ratio of the copper compound particles in the photocatalyst layer 20 is calculated after converting the copper compound particles into the mass of copper alone.
 光触媒材100における光触媒層20の厚みは特に限定されないが、硬化後の厚みとして0.5μm~20μmであることが好ましく、2μm~10μmであることがより好ましい。光触媒層20の厚みがこの範囲内であることにより、硬化膜の表面硬度が向上し、高い耐候性を得ることができる。 The thickness of the photocatalyst layer 20 in the photocatalyst material 100 is not particularly limited, but the thickness after curing is preferably 0.5 μm to 20 μm, and more preferably 2 μm to 10 μm. When the thickness of the photocatalyst layer 20 is within this range, the surface hardness of the cured film can be improved, and high weather resistance can be obtained.
 このように、本実施形態の光触媒材100は、基材10と、基材10の一方の面に設けられた光触媒層20とを有する。そして、光触媒層20が、光触媒粒子21と、少なくとも2価の銅イオン化合物を含む銅化合物粒子22と、光触媒活性を有さない無機粒子23と、バインダー24とを含み、光触媒粒子100質量部に対し、銅化合物粒子中の銅が0.1~5質量部である。光触媒材100は、光触媒粒子21に加え、光触媒活性を有さない無機粒子23と、2価の銅イオン化合物を含み、表面が露出した銅化合物粒子22とを含む構造となっている。その結果、高い抗微生物性を有し、特に高い防藻性を発揮することが可能な光触媒材100を得ることができる。 Thus, the photocatalyst material 100 of the present embodiment has the base material 10 and the photocatalyst layer 20 provided on one surface of the base material 10. And the photocatalyst layer 20 contains the photocatalyst particle 21, the copper compound particle 22 containing an at least bivalent copper ion compound, the inorganic particle 23 which does not have photocatalytic activity, and the binder 24, and 100 mass parts of photocatalyst particles In contrast, the amount of copper in the copper compound particles is 0.1 to 5 parts by mass. The photocatalyst material 100 has a structure including, in addition to the photocatalyst particles 21, inorganic particles 23 not having photocatalytic activity, and a copper compound particle 22 whose surface is exposed, containing a divalent copper ion compound. As a result, it is possible to obtain a photocatalyst material 100 having high antimicrobial properties and capable of exhibiting particularly high algal properties.
 つまり、銅化合物粒子22は、光触媒による還元反応と大気中の水や酸素による酸化反応との両方の影響を受け、1価と2価の両方を取り得る。1価の銅イオン化合物は防藻性能へ大きく寄与するが、希酸により溶出し、長期の防藻性を期待することは難しい。一方で、光触媒活性を有さない無機粒子23の表面に存在する銅化合物粒子22は2価の状態を保つことができる。そして、2価の銅イオン化合物は、水や希酸へ溶解しないことから、雨水に晒される屋外においても長期に亘り防藻性能を発揮し続けることが可能となる。 That is, the copper compound particles 22 can be both monovalent and divalent under the influence of both the reduction reaction by the photocatalyst and the oxidation reaction by water or oxygen in the air. Although a monovalent copper ion compound greatly contributes to the algicidal performance, it is difficult to expect long-term algicidal activity because it elutes with dilute acid. On the other hand, the copper compound particles 22 present on the surface of the inorganic particles 23 not having photocatalytic activity can maintain a divalent state. And, since the divalent copper ion compound is not dissolved in water or a dilute acid, it is possible to continue exhibiting algal protection performance for a long time even outdoors exposed to rain water.
 このように、本実施形態に係る光触媒材100は、光触媒粒子21による高防藻性、1価の銅イオン化合物により高防藻性、2価の銅イオン化合物による長期防藻性の効果を得ることができる。なお、図1の光触媒材100では、基材10の一方の面に光触媒層20が設けられているが、当該一方の面の反対側にある他方の面にも光触媒層20が設けられていてもよい。 As described above, the photocatalyst material 100 according to the present embodiment obtains the high algae-repellant property by the photocatalyst particles 21 and the long-term algae-repellant effect by the divalent algae copper compound and the algae-free property by the monovalent copper ion compound. be able to. In addition, in the photocatalyst material 100 of FIG. 1, although the photocatalyst layer 20 is provided in one side of the base material 10, the photocatalyst layer 20 is provided also in the other side which is the opposite side of the said one side. It is also good.
[光触媒材の製造方法及び光触媒塗料組成物]
 次に、光触媒材の製造方法、及び光触媒材を製造する際に用いる光触媒塗料組成物について説明する。
[Method for Producing Photocatalyst Material and Photocatalyst Coating Composition]
Next, a method of producing a photocatalytic material and a photocatalytic coating composition used when producing a photocatalytic material will be described.
 本実施形態の光触媒材100は、基材10に光触媒塗料組成物を塗布して乾燥することにより得ることができる。そして、光触媒塗料組成物は、光触媒粒子と、少なくとも2価の銅イオン化合物を含む銅化合物と、光触媒活性を有さない無機粒子と、バインダー前駆体とを含み、光触媒粒子100質量部に対し、銅化合物中の銅が0.1~5質量部である。 The photocatalytic material 100 of the present embodiment can be obtained by applying a photocatalytic coating composition to the substrate 10 and drying it. The photocatalytic coating composition contains photocatalytic particles, a copper compound containing at least a divalent copper ion compound, inorganic particles not having photocatalytic activity, and a binder precursor, and is based on 100 parts by mass of the photocatalytic particles: The amount of copper in the copper compound is 0.1 to 5 parts by mass.
 光触媒塗料組成物は、上述の光触媒粒子、銅化合物、無機粒子及びバインダー前駆体を混合し、これらを高分散させることにより調製することができる。また、光触媒粒子、銅化合物、無機粒子及びバインダー前駆体を高分散させるために、必要に応じて溶媒を添加してもよい。 The photocatalytic coating composition can be prepared by mixing the above-mentioned photocatalytic particles, copper compound, inorganic particles and binder precursor and dispersing them highly. Moreover, in order to highly disperse the photocatalyst particles, the copper compound, the inorganic particles and the binder precursor, a solvent may be added as needed.
 溶媒としては、例えば水や有機溶剤を使用することが好ましい。有機溶剤は特に限定されないが、光触媒層20の作成時に容易に揮発し、かつ、光触媒層20の形成時に硬化阻害などを生じないものを適宜選択することが好ましい。有機溶剤としては、例えば芳香族炭化水素類(トルエン及びキシレン等)、アルコール類(メタノール、エタノール及びイソプロピルアルコール等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン等)を挙げることができる。さらに、脂肪族炭化水素類(ヘキサン及びヘプタン等)、エーテル類(テトラヒドロフラン等)、アミド系溶剤(N,N-ジメチルホルムアミド(DMF)及びジメチルアセトアミド(DMAc)等)が挙げられる。これらのうち好ましいのは、アルコール類である。これらの有機溶剤は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 As the solvent, for example, water or an organic solvent is preferably used. The organic solvent is not particularly limited, but it is preferable to appropriately select one that is easily volatilized at the time of formation of the photocatalyst layer 20 and does not cause curing inhibition at the time of formation of the photocatalyst layer 20. Examples of the organic solvent include aromatic hydrocarbons (such as toluene and xylene), alcohols (such as methanol, ethanol and isopropyl alcohol), and ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone). Further, aliphatic hydrocarbons (hexane and heptane etc.), ethers (tetrahydrofuran etc.), amide solvents (N, N-dimethylformamide (DMF) and dimethylacetamide (DMAc) etc.) can be mentioned. Among these, alcohols are preferred. These organic solvents may be used alone or in combination of two or more.
 光触媒塗料組成物の製造方法は、光触媒粒子、銅化合物及び無機粒子をバインダー前駆体と共に高分散させることが可能な方法であれば、如何なるものも使用することができる。例えば、光触媒塗料組成物は、一般的なディゾルバーを用いて攪拌することにより調製することができる。また、ガラスやジルコンなどのビーズメディアを使用したボールミルやビーズミル、サンドミル、横型メディアミル分散機、コロイドミルなども使用できる。ビーズミルにおいて使用するメディアとしては、直径1mm以下のビーズメディアが好ましく、直径0.5mm以下のビーズメディアがより好ましい。 As the method of producing the photocatalytic coating composition, any method can be used as long as the photocatalytic particles, the copper compound and the inorganic particles can be highly dispersed together with the binder precursor. For example, the photocatalytic coating composition can be prepared by stirring using a common dissolver. In addition, ball mills and bead mills using bead media such as glass and zircon, sand mills, horizontal media mill dispersers, colloid mills and the like can also be used. As media used in a bead mill, bead media having a diameter of 1 mm or less are preferable, and bead media having a diameter of 0.5 mm or less are more preferable.
 次に、得られた光触媒塗料組成物を基材10の一方の面に塗布する。この際の塗布方法は特に限定されない。光触媒塗料組成物を塗布する方法としては、塗工法や印刷法を用いることができる。塗工法としては、スプレー法、バーコート法、ディップコート法などを用いることができる。また、印刷法では、グラビア印刷、リバースグラビア印刷、オフセット印刷、フレキソ印刷、スクリーン印刷等を用いることができる。 Next, the obtained photocatalyst coating composition is applied to one surface of the substrate 10. The application method in this case is not particularly limited. As a method of applying the photocatalytic coating composition, a coating method or a printing method can be used. As a coating method, a spray method, a bar coat method, a dip coat method or the like can be used. Further, in the printing method, gravure printing, reverse gravure printing, offset printing, flexographic printing, screen printing and the like can be used.
 そして、光触媒塗料組成物を塗布した基材10を加熱して溶媒を除去することにより、光触媒材100を得ることができる。このときの加熱条件は特に限定されないが、バインダー前駆体として有機アルコキシドを用いた場合、有機アルコキシドが加水分解及び重縮合し、無機バインダーが生成する温度で加熱することが好ましい。そのため、光触媒塗料組成物を塗布した基材10を加熱する際には、空気中150~200℃で加熱することが好ましい。 And the photocatalyst material 100 can be obtained by heating the base material 10 which apply | coated the photocatalyst coating composition, and removing a solvent. The heating conditions at this time are not particularly limited, but when an organic alkoxide is used as a binder precursor, it is preferable to heat at a temperature at which the organic alkoxide is hydrolyzed and polycondensed to form an inorganic binder. Therefore, when heating the base material 10 to which the photocatalytic coating composition is applied, it is preferable to heat at 150 to 200 ° C. in the air.
 光触媒塗料組成物を調製する際、光触媒粒子及び無機粒子はゾルを用いることが好ましい。光触媒粒子及び無機粒子としてゾルを用いることにより、光触媒粒子及び無機粒子がバインダー中で高分散し、長期的に高い高微生物性を発揮する光触媒材を得ることができる。 When preparing a photocatalyst paint composition, it is preferable that photocatalyst particles and inorganic particles use a sol. By using a sol as the photocatalyst particles and the inorganic particles, the photocatalyst particles and the inorganic particles can be highly dispersed in the binder, and a photocatalyst material can be obtained which exhibits high microbial activity in the long term.
 光触媒塗料組成物に添加する銅化合物は、水に溶解する化合物を用いることが好ましい。具体的には、銅化合物として、塩化銅、酢酸銅、塩素酸銅、過塩素酸銅、ギ酸銅、臭化銅、硝酸銅及び硫酸銅からなる群より選ばれる少なくとも一つを用いることができる。そして、光触媒塗料組成物を調製する際、光触媒粒子ゾル及び無機粒子ゾルを用い、さらに銅化合物の水溶液を添加することがより好ましい。これにより、光触媒層20の光触媒粒子21及び無機粒子23の表面に銅化合物粒子22を容易に担持することが可能となる。具体的には、光触媒粒子ゾル及び無機粒子ゾルに、銅化合物が溶解した水溶液を添加することにより、光触媒塗料組成物が加熱して乾燥するにつれて、銅イオンが光触媒粒子及び無機粒子の表面に付着する。付着した銅イオンは、例えば水酸化銅や酸化銅の粒子となるため、長期耐久性を有する光触媒材を容易に得ることができる。 As the copper compound to be added to the photocatalytic coating composition, it is preferable to use a compound that dissolves in water. Specifically, as the copper compound, at least one selected from the group consisting of copper chloride, copper acetate, copper chlorate, copper perchlorate, copper formate, copper bromide, copper nitrate and copper sulfate can be used. . And when preparing a photocatalyst coating composition, it is more preferable to add the aqueous solution of a copper compound using photocatalyst particle sol and inorganic particle sol. Thereby, the copper compound particles 22 can be easily supported on the surfaces of the photocatalyst particles 21 and the inorganic particles 23 of the photocatalyst layer 20. Specifically, by adding an aqueous solution in which a copper compound is dissolved to the photocatalyst particle sol and the inorganic particle sol, copper ions adhere to the surfaces of the photocatalyst particles and the inorganic particles as the photocatalyst coating composition is heated and dried. Do. The deposited copper ions are, for example, particles of copper hydroxide or copper oxide, so that a photocatalyst material having long-term durability can be easily obtained.
 なお、光触媒塗料組成物を調製する際、光触媒粒子ゾル、無機粒子ゾル、及び銅化合物水溶液は必須の材料ではない。例えば、粉末状の光触媒粒子、無機粒子及び銅化合物粒子をバインダー前駆体と共に混合し、これらを高分散させることでも光触媒塗料組成物を得ることができる。この際、光触媒塗料組成物は、1価の銅イオン化合物をさらに含んでいてもよい。これにより、得られる光触媒材100は、2価の銅イオン化合物に加えて1価の銅イオン化合物を含有することとなるため、長期的かつ高い抗微生物性を得ることが可能となる。1価の銅イオン化合物は、酸化銅(I)(亜酸化銅)、硫化銅(I)、ヨウ化銅(I)、塩化銅(I)及び水酸化銅(I)からなる群より選ばれる少なくとも一つであることが好ましい。 In addition, when preparing a photocatalyst paint composition, photocatalyst particle sol, inorganic particle sol, and copper compound aqueous solution are not essential materials. For example, the photocatalyst coating composition can be obtained also by mixing powdery photocatalyst particles, inorganic particles and copper compound particles together with a binder precursor and dispersing these in high dispersion. At this time, the photocatalytic coating composition may further contain a monovalent copper ion compound. Thereby, in addition to a bivalent copper ion compound, since the photocatalyst material 100 obtained will contain a monovalent | monohydric copper ion compound, it becomes possible to obtain a long-term and high antimicrobial property. The monovalent copper ion compound is selected from the group consisting of copper (I) oxide (copper suboxide), copper (I) sulfide, copper (I) iodide, copper (I) chloride and copper (I) hydroxide. It is preferable that there is at least one.
 また、光触媒塗料組成物において、光触媒粒子100質量部に対し、銅化合物中の銅が0.1~5質量部であることが好ましい。これにより、本実施形態に係る光触媒材100の光触媒層20において、銅化合物粒子22の含有量を上述の範囲にすることが可能となる。 Further, in the photocatalyst coating composition, it is preferable that copper in the copper compound is 0.1 to 5 parts by mass with respect to 100 parts by mass of the photocatalyst particles. Thereby, it becomes possible to make content of copper compound particles 22 into the above-mentioned range in photocatalyst layer 20 of photocatalyst material 100 concerning this embodiment.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples and comparative examples, but the present embodiment is not limited to these examples.
 実施例及び比較例において、原料のTiOゾル、SiO分散液、銅イオン化合物及びシリケートバインダー前駆体は、次のものを用いた。TiOゾルは、石原産業株式会社製、光触媒酸化チタン水分散体STS-21を用い、X線小角散乱法で測定したTiOの平均粒子径(D50)は20nmであった。SiO分散液は、EVONIK社製、AERODISP(登録商標)W7520を使用した。銅イオン化合物は、和光純薬工業株式会社製の塩化銅を使用した。なお、塩化銅はイオン交換水に溶解し、銅イオン水溶液としたものを使用した。シリケートバインダー前駆体としては、信越化学工業株式会社製、品名KEB-04(テトラエトキシシラン)を使用した。なお、上述の市販の材料は固形分濃度が高いため、溶剤としてイオン交換水やアルコールなどを添加し、固形分濃度を調整して使用した。 In Examples and Comparative Examples, the following were used as raw materials TiO 2 sol, SiO 2 dispersion, copper ion compound and silicate binder precursor. Regarding TiO 2 sol, the average particle diameter (D50) of TiO 2 measured by small angle X-ray scattering was 20 nm using a titanium oxide titanium oxide dispersion STS-21 manufactured by Ishihara Sangyo Co., Ltd. As the SiO 2 dispersion, AERODISP (registered trademark) W7520 manufactured by EVONIK was used. As the copper ion compound, copper chloride manufactured by Wako Pure Chemical Industries, Ltd. was used. Copper chloride was dissolved in ion exchange water and used as a copper ion aqueous solution. As a silicate binder precursor, Shin-Etsu Chemical Co., Ltd. product name KEB-04 (tetraethoxysilane) was used. In addition, since the above-mentioned commercially available material has a high solid concentration, ion-exchanged water, alcohol and the like are added as a solvent to adjust the solid concentration and used.
[実施例1]
 まず、TiOゾル、SiO分散液、銅イオン化合物及びシリケートバインダー前駆体をこの順で混合した。この際、新たな材料を加えるごとに十分に攪拌した。これにより、本例の光触媒塗料組成物を得た。なお、当該光触媒塗料組成物では、TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.003質量%となるように、それぞれ混合した。また、シリケートバインダー前駆体は、固形分濃度が0.2質量%となるように混合した。
Example 1
First, TiO 2 sol, SiO 2 dispersion, copper ion compound and silicate binder precursor were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained. In the photocatalytic coating composition, the solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0 when converted to copper. Each was mixed so as to be .003% by mass. Moreover, the silicate binder precursor was mixed so that solid content concentration might be 0.2 mass%.
 次に、得られた光触媒塗料組成物を、スプレー法によりアルマイト板の表面に塗布し、200℃で30分乾燥した。この際、光触媒層の膜厚が約3μm程度となるように成膜した。また、アルマイト板は、縦70mm横150mmのものを使用した。このようにして、アルマイト板上に光触媒層を形成した本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が1質量部である。 Next, the obtained photocatalytic coating composition was applied to the surface of an alumite plate by a spray method, and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 μm. Moreover, the alumite board used the thing of 70 mm long and 150 mm wide. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained. In the photocatalyst layer of this example, copper of copper oxide particles is 1 part by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[実施例2]
 TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.0003質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。それ以外は実施例1と同様にして、本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が0.1質量部である。
Example 2
The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.0003% by mass when converted as copper, a silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass. The photocatalyst material of this example was obtained in the same manner as in Example 1 except the above. In the photocatalyst layer of the present example, copper of copper oxide particles is 0.1 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[実施例3]
 TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.015質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。それ以外は実施例1と同様にして、本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が5質量部である。
[Example 3]
The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.015% by mass when converted as copper, the silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass. The photocatalyst material of this example was obtained in the same manner as in Example 1 except the above. In the photocatalyst layer of the present example, copper of copper oxide particles is 5 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[比較例1]
 TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.00003質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。それ以外は実施例1と同様にして、本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が0.01質量部である。
Comparative Example 1
The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.00003% by mass when converted as copper, a silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass. The photocatalyst material of this example was obtained in the same manner as in Example 1 except the above. In the photocatalyst layer of the present example, copper of copper oxide particles is 0.01 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[比較例2]
 TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.03質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。それ以外は実施例1と同様にして、本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が10質量部である。
Comparative Example 2
The solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the copper ion compound is 0.03% by mass when converted as copper, the silicate binder precursor These were respectively mixed so that the solid content concentration of 0.2% by mass. The photocatalyst material of this example was obtained in the same manner as in Example 1 except the above. In the photocatalyst layer of this example, copper of copper oxide particles is 10 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[比較例3]
 まず、実施例1と同じTiOゾル、銅イオン化合物及びシリケートバインダー前駆体をこの順で混合した。この際、新たな材料を加えるごとに十分に攪拌した。これにより、本例の光触媒塗料組成物を得た。なお、当該光触媒塗料組成物では、TiOの固形分濃度が0.8質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.003質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。
Comparative Example 3
First, the same TiO 2 sol, copper ion compound and silicate binder precursor as in Example 1 were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained. In the photocatalytic coating composition, the solid content concentration of TiO 2 is 0.8% by mass, the solid content concentration of the copper ion compound is 0.003% by mass when converted as copper, and the solid content concentration of the silicate binder precursor Each was mixed so that it might be 0.2 mass%.
 次に、得られた光触媒塗料組成物を、実施例1と同様にアルマイト板の表面に塗布し、200℃で30分乾燥した。この際、光触媒層の膜厚が約3μm程度となるように成膜した。また、アルマイト板は、実施例1と同じものを使用した。このようにして、アルマイト板上に光触媒層を形成した本例の光触媒材を得た。なお、本例の光触媒層では、光触媒粒子であるTiO100質量部に対して、酸化銅粒子の銅が0.375質量部である。 Next, the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 μm. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained. In the photocatalyst layer of this example, copper of copper oxide particles is 0.375 parts by mass with respect to 100 parts by mass of TiO 2 which is photocatalyst particles.
[比較例4]
 まず、実施例1と同じSiO分散液、銅イオン化合物及びシリケートバインダー前駆体をこの順で混合した。この際、新たな材料を加えるごとに十分に攪拌した。これにより、本例の光触媒塗料組成物を得た。なお、当該光触媒塗料組成物では、SiOの固形分濃度が0.8質量%、銅イオン化合物の固形分濃度が銅として換算した場合に0.003質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。
Comparative Example 4
First, the same SiO 2 dispersion, copper ion compound and silicate binder precursor as in Example 1 were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained. In the photocatalytic coating composition, the solid content concentration of SiO 2 is 0.8% by mass, the solid content concentration of the copper ion compound is 0.003% by mass when converted as copper, and the solid content concentration of the silicate binder precursor Each was mixed so that it might be 0.2 mass%.
 次に、得られた光触媒塗料組成物を、実施例1と同様にアルマイト板の表面に塗布し、200℃で30分乾燥した。この際、光触媒層の膜厚が約3μm程度となるように成膜した。また、アルマイト板は、実施例1と同じものを使用した。このようにして、アルマイト板上に光触媒層を形成した本例の光触媒材を得た。 Next, the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 μm. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
[比較例5]
 まず、実施例1と同じTiOゾル及びシリケートバインダー前駆体を十分に攪拌することにより混合した。これにより、本例の光触媒塗料組成物を得た。なお、当該光触媒塗料組成物では、TiOの固形分濃度が0.8質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。
Comparative Example 5
First, the same TiO 2 sol and silicate binder precursor as in Example 1 were mixed by sufficiently stirring. Thereby, the photocatalyst paint composition of this example was obtained. Incidentally, in this photocatalytic coating composition, the solid concentration of TiO 2 is 0.8 wt%, as solid content concentration of the silicate binder precursor is 0.2 wt%, was mixed respectively.
 次に、得られた光触媒塗料組成物を、実施例1と同様にアルマイト板の表面に塗布し、200℃で30分乾燥した。この際、光触媒層の膜厚が約3μm程度となるように成膜した。また、アルマイト板は、実施例1と同じものを使用した。このようにして、アルマイト板上に光触媒層を形成した本例の光触媒材を得た。 Next, the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 μm. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
[比較例6]
 まず、実施例1と同じTiOゾル、SiO分散液及びシリケートバインダー前駆体をこの順で混合した。この際、新たな材料を加えるごとに十分に攪拌した。これにより、本例の光触媒塗料組成物を得た。なお、当該光触媒塗料組成物では、TiOの固形分濃度が0.3質量%、SiOの固形分濃度が0.5質量%、シリケートバインダー前駆体の固形分濃度が0.2質量%となるように、それぞれ混合した。
Comparative Example 6
First, the same TiO 2 sol, SiO 2 dispersion and silicate binder precursor as in Example 1 were mixed in this order. At this time, each time new material was added, it was sufficiently stirred. Thereby, the photocatalyst paint composition of this example was obtained. In the photocatalytic coating composition, the solid content concentration of TiO 2 is 0.3% by mass, the solid content concentration of SiO 2 is 0.5% by mass, and the solid content concentration of the silicate binder precursor is 0.2% by mass. Each was mixed so as to become.
 次に、得られた光触媒塗料組成物を、実施例1と同様にアルマイト板の表面に塗布し、200℃で30分乾燥した。この際、光触媒層の膜厚が約3μm程度となるように成膜した。また、アルマイト板は、実施例1と同じものを使用した。このようにして、アルマイト板上に光触媒層を形成した本例の光触媒材を得た。 Next, the obtained photocatalyst coating composition was applied to the surface of an alumite plate in the same manner as in Example 1 and dried at 200 ° C. for 30 minutes. At this time, the film thickness of the photocatalyst layer was about 3 μm. Moreover, the same alumite plate as in Example 1 was used. Thus, the photocatalyst material of this example in which the photocatalyst layer was formed on the alumite plate was obtained.
[評価]
 (着色試験)
 実施例1~3及び比較例1~2の光触媒材を用いて、着色試験を行った。具体的には、色差計として、コニカミノルタ株式会社製分光測色計CM-700dを用い、銅を添加していない比較例6の光触媒材との色差ΔLを測定した。その結果、比較例6の光触媒材との色差ΔLが±1以内の場合を「○」と評価し、±1を超える場合を「×」と評価した。評価結果を表1に示す。
[Evaluation]
(Coloring test)
A coloring test was conducted using the photocatalyst materials of Examples 1 to 3 and Comparative Examples 1 and 2. Specifically, using a spectrocolorimeter CM-700d manufactured by Konica Minolta Co., Ltd. as a color difference meter, the color difference ΔL * with the photocatalyst material of Comparative Example 6 in which copper was not added was measured. As a result, the case where the color difference ΔL * with the photocatalyst material of Comparative Example 6 was within ± 1 was evaluated as “o”, and the case exceeding ± 1 was evaluated as “x”. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、銅の含有量の少ない実施例1~3及び比較例1においては、色差ΔLの値は許容値内となった。しかし、銅の含有量の多い比較例2においては、色差ΔLの値は許容値外となった。この結果から、光触媒材の色変化を抑えるためには、光触媒粒子100質量部に対して、銅化合物粒子中の銅が0.1~5質量部であることが好ましいことが分かる。 As shown in Table 1, in Examples 1 to 3 and Comparative Example 1 in which the content of copper is small, the value of the color difference ΔL * was within the allowable value. However, in Comparative Example 2 in which the content of copper was large, the value of the color difference ΔL * was out of the allowable value. From this result, it is understood that, in order to suppress the color change of the photocatalyst material, it is preferable that the copper in the copper compound particles is 0.1 to 5 parts by mass with respect to 100 parts by mass of the photocatalyst particles.
 (防藻試験)
 実施例1~3及び比較例1~2の光触媒材を用いて防藻試験を行った。試験条件及び評価方法は次の通りとした。
(Algae test)
The algae protection test was carried out using the photocatalyst materials of Examples 1 to 3 and Comparative Examples 1 and 2. The test conditions and the evaluation method were as follows.
 試験場所:周囲を樹木に囲まれた地域
 設置箇所:基材の光触媒材が北面を向くようにし、さらに地上から高さ1m程度の箇所。この際、基材は地面と垂直に設置し、雨水が基材に当たるように樋を設けた。
 試験時期:4月から翌年10月まで
 評価方法:光触媒材の表面に藻類が被覆した面積を目視にて判定。藻類被覆面積が5%未満を「○」と評価し、5~50%を「△」と評価し、50%を超える場合を「×」と評価した。
Test location: A region surrounded by trees around the area Installation location: A photocatalytic material of the base material faces the north face, and a location about 1 m high from the ground. At this time, the substrate was placed vertically to the ground, and a weir was provided so that the rainwater hit the substrate.
Test period: April to October next year Evaluation method: Visually determine the area coated with algae on the surface of the photocatalyst material. The algae coverage area was evaluated as "o" when less than 5%, "50" as 5% and 50% as "x" when more than 50%.
 上記試験条件の設定根拠として、次のことを想定している。まず、周囲を樹木に囲まれた地域を試験場所とすることで、藻類が飛来しやすくなり、光触媒材の表面へ付着し易くした。また、基材の光触媒材を北面へ向けることで日光の直射を防ぎ、乾燥や日光(特に紫外線)の照射により、藻類の繁殖が抑制されるのを防ぐことができる。さらに樋を設けることにより、光触媒材を濡れた状態に保ち易くし、藻類の繁殖を促進させた。また、長期防藻性を評価するために、湿度が高く、雨天が多く、日光量が少ない梅雨時期を二度経過させるため、4月から翌年10月までの試験とした。評価結果を表2に示す。 The following is assumed as the basis for setting the above test conditions. First, by setting the area surrounded by trees as a test site, algae can easily fly and easily adhere to the surface of the photocatalyst material. Further, by directing the photocatalyst material of the base material to the north face, it is possible to prevent direct sunlight from being emitted, and it is possible to prevent the growth of algae from being suppressed by drying or irradiation of sunlight (especially ultraviolet light). Further, by providing a weir, the photocatalyst material can be easily kept in a wet state, and algae reproduction is promoted. In addition, in order to evaluate the long-term algae-proofness, the test was conducted from April to October of the following year, in order to cause the rainy season, which is high in humidity, wet in many days, and lighted twice, twice. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態に係る光触媒材において、防藻効果を発揮できるメカニズムは、「1.TiOによる光分解反応」、「2.還元反応により生じた1価銅(亜酸化銅)によるタンパク質変性」、「3.2価銅(水酸化銅)によるタンパク質変性」が挙げられる。また、防藻効果は2価銅と比べて1価銅の方が高い。これらを元に、防藻試験の結果について検討する。 In the photocatalyst material according to the present embodiment, the mechanism capable of exerting the algicidal effect is “1. Photolysis reaction by TiO 2 ”, “2. Protein modification by monovalent copper (copper suboxide) generated by reduction reaction”, Examples include “protein denaturation with 3.2-valent copper (copper hydroxide)”. In addition, the antialgal effect is higher in monovalent copper compared to divalent copper. Based on these, we will examine the results of the algae protection test.
 設置直後の1年目4月においては、いずれのサンプルも藻が繁殖していない状態からスタートさせた。次に1年目7月においては、梅雨時期を1度経験させたため、比較例1、比較例4及び比較例5にて藻類の繁殖が確認された。 In April, the first year after installation, all samples were started from the state where algae did not reproduce. Next, since the rainy season was experienced once in July in the first year, reproduction of algae was confirmed in Comparative Example 1, Comparative Example 4 and Comparative Example 5.
 ここで、比較例1においては、「1.TiOによる光分解反応」、「2.還元反応により生じた1価銅(亜酸化銅)によるタンパク質変性」、「3.2価銅(水酸化銅)によるタンパク質変性」の防藻効果が期待できる。ただ、比較例1は銅の含有量が非常に少ないため、「2.還元反応により生じた1価銅(亜酸化銅)によるタンパク質変性」、「3.2価銅(水酸化銅)によるタンパク質変性」の効果が非常に小さく、藻類が繁殖したと考えられる。比較例4においては、「3.2価銅(水酸化銅)によるタンパク質変性」のみの弱い防藻効果しかないため、藻類が繁殖したと考えられる。また、比較例5においては、「1.TiOによる光分解反応」が発揮できたものの、表面の親水性により保湿されやすいため、藻類が繁殖したと考えられる。 Here, in Comparative Example 1, "1. Photolysis reaction by TiO 2 ", "2. Protein modification by monovalent copper (copper suboxide) generated by reduction reaction", "3.2-valent copper (hydroxylation) The anti-algal effect of “protein denaturation by copper) can be expected. However, Comparative Example 1 has a very low content of copper, so "2. Denatured protein by monovalent copper (copper suboxide) generated by reduction reaction", "protein by 3.2 monovalent copper (copper hydroxide) It is considered that the effect of "degeneration" is very small and algae has propagated. In Comparative Example 4, since there is only a weak anti-algal effect of only "protein denaturation by 3.2-valent copper (copper hydroxide)", it is considered that algae has propagated. In addition, in Comparative Example 5, although “1. Photodecomposition reaction by TiO 2 ” could be exhibited, it is considered that algae has proliferated because it is easily moisturized due to the hydrophilicity of the surface.
 さらに、2度目の梅雨時期を経過させた2年目の7月においては、比較例3でも藻類の繁殖が確認された。つまり、比較例3は、1年目7月においては「1.TiOによる光分解反応」と「2.還元反応により生じた1価銅(亜酸化銅)によるタンパク質変性」により藻類の繁殖を抑制できた。しかし、光触媒活性を有さない無機粒子を含まないことから、希酸である雨水により亜酸化銅が溶出し、防藻効果を失ったため、2年目7月時点では藻類が繁殖したと考えられる。 Furthermore, in July of the second year after passing the second rainy season, reproduction of algae was also confirmed in Comparative Example 3. That is, Comparative Example 3, in the first year July as "photodecomposition reaction by 1.TiO 2" algae growth by "2 protein modification with resulting monovalent copper (cuprous oxide) by a reduction reaction" It could be suppressed. However, since it does not contain inorganic particles that do not have photocatalytic activity, copper oxide is eluted by rain water, which is a dilute acid, and the algae protection effect is lost, so it is thought that algae has proliferated in July of the second year. .
 最後に、2年目10月においても実施例1乃至3及び比較例2では藻類の繁殖を確認できなかった。つまり、これらの例では「1.TiOによる光分解反応」、「2.還元反応により生じた1価銅(亜酸化銅)によるタンパク質変性」、「3.2価銅(水酸化銅)によるタンパク質変性」の3つの効果を発揮できたと考えられる。加えて、これらの例では、希酸による溶出を起こさない2価銅(水酸化銅)により長期の防藻効果を発揮できたと考えられる。 Finally, even in the second year of October, reproduction of algae could not be confirmed in Examples 1 to 3 and Comparative Example 2. That is, in these examples, "1. Photolysis reaction by TiO 2 ", "2. Protein modification by monovalent copper (copper suboxide) generated by reduction reaction", "3.2 by copper (copper hydroxide)" It is considered that the three effects of "protein denaturation" could be exhibited. In addition, in these examples, it is considered that a long-term antialgal effect can be exhibited by divalent copper (copper hydroxide) which does not cause elution by a dilute acid.
 上述の着色試験及び防藻試験の結果を表3に纏めて示す。表3に示すように、本実施形態に係る実施例1乃至3の光触媒材は色の変化が極めて小さく、かつ、長期に亘り高い防藻性を示すことが分かる。 Table 3 summarizes the results of the above-mentioned color test and antialgal test. As shown in Table 3, it can be seen that the photocatalyst materials of Examples 1 to 3 according to this embodiment have very small color change and exhibit high algal resistance over a long period of time.
 これに対し、銅化合物粒子が過少な比較例1の光触媒材は色の変化が極めて小さいものの、防藻性が不十分であることが分かる。また、銅化合物粒子が過多な比較例2の光触媒材は防藻性が十分であるものの、色の変化が大きいため、外装材として適用し難いことが分かる。そして、比較例3~5の光触媒材は、「1.TiOによる光分解反応」、「2.還元反応により生じた1価銅によるタンパク質変性」、「3.2価銅によるタンパク質変性」のいずれかが欠けているため、防藻性が不十分となった。 On the other hand, it can be seen that although the photocatalytic material of Comparative Example 1 in which the copper compound particles are too small has an extremely small change in color, the algal protection is insufficient. In addition, although the photocatalyst material of Comparative Example 2 in which the copper compound particles are excessive is sufficient in antialgal property, it can be understood that it is difficult to apply as an exterior material because the change in color is large. And, the photocatalytic materials of Comparative Examples 3 to 5 are “1. Photodecomposition reaction by TiO 2 ”, “2. Protein denaturation by monovalent copper generated by reduction reaction”, “protein denaturation by 3.2 valence copper” Due to the lack of either, the antialgal properties became insufficient.
 なお、比較例6の光触媒材は、酸化チタンと共に、光触媒活性及び抗微生物性を有さないシリカを含有しているだけであるため、比較例5と同様の評価結果になると考えられる。 In addition, since the photocatalyst material of the comparative example 6 contains only the silica which does not have a photocatalytic activity and antimicrobial property with a titanium oxide, it is considered that the evaluation result similar to the comparative example 5 will be obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 特願2016-244106号(出願日:2016年12月16日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2016-244106 (filing date: December 16, 2016) are incorporated herein by reference.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible.
 本発明によれば、高い抗微生物性を有し、特に防藻性を長期間に亘り発揮することが可能な光触媒材、及び当該光触媒材を形成するための光触媒塗料組成物を得ることができる。 According to the present invention, it is possible to obtain a photocatalyst material having high antimicrobial properties and capable of exerting algal protection over a long period of time, and a photocatalyst coating composition for forming the photocatalyst material. .
 10 基材
 20 光触媒層
 21 光触媒粒子
 22 銅化合物粒子
 23 光触媒活性を有さない無機粒子
 24 バインダー
 100 光触媒材
DESCRIPTION OF SYMBOLS 10 base material 20 photocatalyst layer 21 photocatalyst particle 22 copper compound particle 23 inorganic particle which does not have photocatalytic activity 24 binder 100 photocatalyst material

Claims (7)

  1.  基材と、
     前記基材の一方の面に設けられた光触媒層と、
     を有し、
     前記光触媒層が、光触媒粒子と、酸化銅(II)及び水酸化銅(II)の少なくとも一方を含む銅化合物粒子と、光触媒活性を有さない無機粒子と、無機バインダーとを含み、
     前記光触媒粒子100質量部に対し、前記銅化合物粒子中の銅が0.1~5質量部であり、
     前記銅化合物粒子は、前記光触媒粒子及び前記無機粒子の表面に接触するように担持されている、光触媒材。
    A substrate,
    A photocatalyst layer provided on one surface of the substrate;
    Have
    The photocatalyst layer includes photocatalyst particles, copper compound particles containing at least one of copper (II) oxide and copper (II) hydroxide, inorganic particles not having photocatalytic activity, and an inorganic binder.
    The copper in the copper compound particles is 0.1 to 5 parts by mass with respect to 100 parts by mass of the photocatalyst particles,
    The photocatalytic material, wherein the copper compound particles are supported so as to be in contact with the surfaces of the photocatalyst particles and the inorganic particles.
  2.  前記光触媒層が1価の銅イオン化合物粒子をさらに含む、請求項1に記載の光触媒材。 The photocatalyst material according to claim 1, wherein the photocatalyst layer further comprises monovalent copper ion compound particles.
  3.  前記1価の銅イオン化合物粒子が亜酸化銅粒子を含む、請求項2に記載の光触媒材。 The photocatalyst material according to claim 2, wherein the monovalent copper ion compound particles contain cuprous oxide particles.
  4.  前記銅化合物粒子の平均粒子径が0.1nm~20nmである、請求項1乃至3のいずれか一項に記載の光触媒材。 The photocatalyst material according to any one of claims 1 to 3, wherein an average particle diameter of the copper compound particles is 0.1 nm to 20 nm.
  5.  前記光触媒粒子が酸化チタン粒子を含む、請求項1乃至4のいずれか一項に記載の光触媒材。 The photocatalyst material according to any one of claims 1 to 4, wherein the photocatalyst particles include titanium oxide particles.
  6.  請求項1乃至5のいずれか一項に記載の光触媒材における光触媒層を形成するための光触媒塗料組成物であって、
     光触媒粒子と、酸化銅(II)及び水酸化銅(II)の前駆体であり、少なくとも2価の銅イオン化合物を含む銅化合物と、光触媒活性を有さない無機粒子と、無機バインダー前駆体とを含み、
     前記光触媒粒子100質量部に対し、前記銅化合物中の銅が0.1~5質量部である、光触媒塗料組成物。
    It is a photocatalyst coating composition for forming the photocatalyst layer in the photocatalyst material as described in any one of Claims 1 thru | or 5, Comprising:
    A photocatalytic particle, a copper compound containing copper (II) oxide and copper (II) hydroxide and containing at least a divalent copper ion compound, inorganic particles having no photocatalytic activity, an inorganic binder precursor, and Including
    A photocatalytic paint composition, wherein the copper in the copper compound is 0.1-5 parts by mass with respect to 100 parts by mass of the photocatalyst particles.
  7.  1価の銅イオン化合物をさらに含む、請求項6に記載の光触媒塗料組成物。 The photocatalytic coating composition according to claim 6, further comprising a monovalent copper ion compound.
PCT/JP2017/040590 2016-12-16 2017-11-10 Photocatalytic material and photocatalytic coating composition WO2018110173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244106A JP6283922B1 (en) 2016-12-16 2016-12-16 Photocatalyst material and photocatalyst coating composition
JP2016-244106 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110173A1 true WO2018110173A1 (en) 2018-06-21

Family

ID=61282746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040590 WO2018110173A1 (en) 2016-12-16 2017-11-10 Photocatalytic material and photocatalytic coating composition

Country Status (3)

Country Link
JP (1) JP6283922B1 (en)
TW (1) TW201825181A (en)
WO (1) WO2018110173A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675808C1 (en) * 2018-10-29 2018-12-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Photocatalytically active film production method
CN111701613A (en) * 2020-06-12 2020-09-25 江南大学 Application of nano copper oxide/carbon nitride composite material in water bloom control
CN112805243A (en) * 2019-03-06 2021-05-14 Toto株式会社 Coated body and coating composition
WO2023161686A1 (en) 2022-02-25 2023-08-31 Vieira Lopes Lda Air filter with photocatalytic coating and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775433B (en) * 2021-05-12 2022-08-21 浩河未來實業有限公司 Antimicrobial composition and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH11169727A (en) * 1997-12-11 1999-06-29 Titan Kogyo Kk Photocatalyst body and application thereof
JP2002212510A (en) * 2001-01-19 2002-07-31 Haruo Kunii Trielement curing agent
JP2010149099A (en) * 2009-01-09 2010-07-08 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid therefor
JP2011050847A (en) * 2009-09-01 2011-03-17 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid
JP2011063973A (en) * 2009-09-16 2011-03-31 Toto Ltd Building external facing material and coating liquid for building external facing
JP2013124312A (en) * 2011-12-15 2013-06-24 Toto Ltd Photocatalyst coating liquid and inorganic material having photocatalyst function
JP2013166705A (en) * 2010-12-22 2013-08-29 Univ Of Tokyo Virus inactivating agent
WO2014184989A1 (en) * 2013-05-13 2014-11-20 パナソニックIpマネジメント株式会社 Coating-agent composition and antimicrobial/antiviral member
JP2015205998A (en) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Antiviral coating film
JP2016112480A (en) * 2014-12-11 2016-06-23 太陽工業株式会社 Photocatalyst-carrying sheet and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149005A (en) * 2008-12-24 2010-07-08 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid therefor
JP2012250133A (en) * 2009-09-30 2012-12-20 Toto Ltd Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2012210557A (en) * 2011-03-30 2012-11-01 Panasonic Corp Water-repellent photocatalytic composition and water-repellent photocatalytic coating film
JP5812488B2 (en) * 2011-10-12 2015-11-11 昭和電工株式会社 Antibacterial antiviral composition and method for producing the same
JP6040021B2 (en) * 2012-12-13 2016-12-07 昭和電工株式会社 Antibacterial antiviral composition and method for producing the same
WO2014141600A1 (en) * 2013-03-13 2014-09-18 パナソニック株式会社 Copper complex titanium oxide dispersion liquid, coating material composition, and antibacterial/antiviral member
JP6041170B2 (en) * 2013-06-04 2016-12-07 パナソニックIpマネジメント株式会社 Room temperature curable photocatalyst paint, room temperature curable coating composition and interior material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227829A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic, hydrophilic coating composition, method for forming hydrophilic coating, and coated article
JPH11169727A (en) * 1997-12-11 1999-06-29 Titan Kogyo Kk Photocatalyst body and application thereof
JP2002212510A (en) * 2001-01-19 2002-07-31 Haruo Kunii Trielement curing agent
JP2010149099A (en) * 2009-01-09 2010-07-08 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid therefor
JP2011050847A (en) * 2009-09-01 2011-03-17 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid
JP2011063973A (en) * 2009-09-16 2011-03-31 Toto Ltd Building external facing material and coating liquid for building external facing
JP2013166705A (en) * 2010-12-22 2013-08-29 Univ Of Tokyo Virus inactivating agent
JP2013124312A (en) * 2011-12-15 2013-06-24 Toto Ltd Photocatalyst coating liquid and inorganic material having photocatalyst function
WO2014184989A1 (en) * 2013-05-13 2014-11-20 パナソニックIpマネジメント株式会社 Coating-agent composition and antimicrobial/antiviral member
JP2015205998A (en) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Antiviral coating film
JP2016112480A (en) * 2014-12-11 2016-06-23 太陽工業株式会社 Photocatalyst-carrying sheet and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675808C1 (en) * 2018-10-29 2018-12-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Photocatalytically active film production method
CN112805243A (en) * 2019-03-06 2021-05-14 Toto株式会社 Coated body and coating composition
CN111701613A (en) * 2020-06-12 2020-09-25 江南大学 Application of nano copper oxide/carbon nitride composite material in water bloom control
CN111701613B (en) * 2020-06-12 2021-11-23 江南大学 Application of nano copper oxide/carbon nitride composite material in water bloom control
WO2023161686A1 (en) 2022-02-25 2023-08-31 Vieira Lopes Lda Air filter with photocatalytic coating and manufacturing method thereof

Also Published As

Publication number Publication date
TW201825181A (en) 2018-07-16
JP2018095797A (en) 2018-06-21
JP6283922B1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2018110173A1 (en) Photocatalytic material and photocatalytic coating composition
JP3559892B2 (en) Photocatalytic film and method for forming the same
EP2908646B1 (en) A surface coating
RU2377267C2 (en) Coating material
JP3354428B2 (en) Aqueous paint composition
KR101028797B1 (en) The functional coating agent and manufacturing mtehod the same
KR100784137B1 (en) Titanium Dioxide Photocatalyst and Its Coating Method
CN105273443A (en) Nanometer self-cleaning, anti-fog and sterilization glass coating and preparation method thereof
CN1230079C (en) Nanometer optical catalyst bactericidal composition and preparation thereof
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
KR102066527B1 (en) sol composition of photo-catalystic material, method of preparing the same, and Method of preparing thin layer of Photo-catalyst using the same
JP2004244608A (en) Hydrolytic polycondensation product solution, method for producing the same and transparent film forming composition given by using the same
CN100450622C (en) Transparent film-forming composition
JP2009263651A (en) Photocatalyst coating composition
JP4509718B2 (en) Photocatalyst layer transfer body
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
CN113025103A (en) Multi-effect antibacterial and antiviral film layer and preparation method thereof
JP2005131552A (en) Transparent photocatalyst layer formation composition and use thereof
JP2011126941A (en) Coating liquid forming antimicrobial and deodorizing coating film and substrate with antimicrobial and deodorizing coating film
JPH10165811A (en) Photocatalyst composition, forming agent thereof and base body with deposition of photocatalyst composition
JP2019196440A (en) Coated film and aqueous composition
WO2020050147A1 (en) Photocatalyst supporting structure and production method
JP2005137977A (en) Composition for forming transparent photocatalyst layer
JPH10225351A (en) Flower vase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881285

Country of ref document: EP

Kind code of ref document: A1